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This paper introduces a dual-objective control framework for standalone photovoltaic (PV) systems 
that uniquely integrates maximum power point tracking (MPPT) with precise DC load voltage 
regulation. Unlike existing approaches that concentrate almost exclusively on power optimization, 
the proposed system simultaneously ensures both efficient energy harvesting and robust output 
voltage stability under fluctuating climatic and load conditions. The novelty lies in the design of a 
reference voltage estimator (RVE)—a sensorless MPPT mechanism that fuses explicit irradiance 
estimation with a radial basis function neural network—combined with two Lyapunov-based nonlinear 
controllers supervising a two-stage Boost–Buck converter architecture. This coordinated design 
enables accurate real-time MPP prediction, finite-time load-side voltage stabilization, and decoupled 
handling of PV-side and load-side dynamics. The system is implemented through microcontroller-in-
the-loop experimentation and validated under diverse and extreme disturbances. Results demonstrate 
exceptionally low mean absolute errors (0.1253 V for MPPT and 0.0793 V for load regulation) with rapid 
recovery times (< 3 ms), confirming superior efficiency, reliability, and resilience. This work bridges 
a critical research gap by experimentally proving that stable voltage regulation can be unified with 
optimal power harvesting in a single architecture, offering a deployable solution for standalone PV 
systems in real-world conditions.
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 The urgent necessity of a rapid transition to environmentally friendly energy sources cannot be overstated; 
it is the most practical and sustainable approach to ensuring a dependable energy future while concurrently 
addressing the pressing global climate concerns. Renewable energy sources are implemented to significantly 
reduce dependence on fossil fuels, thereby reducing greenhouse gas emissions and facilitating the transition 
to a more sustainable globe. Not only does this transition ensure energy security and resilience, but it also 
contributes to the realization of global climate objectives, the preservation of ecosystems, and the development of 
a more sustainable planet for future generations. A renewable energy source that is considered to be particularly 
robust is solar photovoltaic (PV). The solar PV technology is one of the most thrilling and rapidly expanding 
in the renewable energy industry. As a result of significant technological advancements1,2, the cost of solar PV 
systems has been on a steady decline, rendering them increasingly affordable and accessible. This price reduction 
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has facilitated the widespread adoption of solar PV throughout the world. Over the past decade, solar PV has 
outpaced all other power-generation technologies in terms of installed capacity. As exemplification, latest data 
from the international renewable energy agency, IRENA (2024), reveals that the global cumulative capacity 
of solar PV installations surpassed 1418 GW by the end of 2023, cementing its position as a leading force in 
the renewable energy landscape3. This remarkable growth underscores the transformative potential of solar 
PV in the transition to a cleaner, more sustainable energy future. Experts strongly argue that, with continued 
technological advancements and policy support, solar PV has the potential to become the world’s dominant 
energy source in the coming years4.

Despite the prominence of solar PV energy, there are still several prevailing concerns with its implementation, 
ranging from the conversion efficiency of a solar cell to the operational efficiency of a PV-connected system. 
Over the last few years, renewable energy research has been characterized by a perpetual evolving endeavor 
to enhance the conversion efficiency of the solar cell. In this pursuit, engineers and scientists worldwide are 
motivated by the objective of optimizing the quantity of sunlight that a solar cell can convert into electrical energy. 
They investigate innovative solutions, such as the development of multi-junction cells that capture a broader 
spectrum of sunlight5,6 and the use of cutting-edge materials such as perovskites, which are recognized for their 
exceptional efficiency potential7. Beyond conversion efficiency, the operation of a PV module in a connected 
setup, such as a standalone setup, introduces several challenges. One significant issue is that the system may not 
perform optimally, often due to mismatches in energy delivery and voltage instability from the load side. These 
constraints arise from factors like the variability of environmental conditions and load demands, which can have 
a tremendous effect on power delivery and the complexity related to controlling the PV side as well as the load. 
As a result, the system might fail to deliver the expected performance, compromising both energy efficiency and 
operational reliability. The issue related to energy mismatch has been intensively pursued under the umbrella 
of maximum power point tracking (MPPT)8–10. Over the last few years, several approaches to MPPT have been 
understudied. Each MPPT method is unique, has its own specific advantages and limitations, and differs from 
the others in terms of complexity, number of sensors, and overall performance11. Among the several approaches, 
the fractional methods such as fractional open circuit, fractional short circuit and pilot cells methods factor out 
as the most simplest12. However, they encounter several challenges which hinders their efficacy, including their 
approximate and extreme nature. Alternative algorithms include the perturb and observe (P&O), incremental 
conductance (INC) which have been extensively investigated13–15. These two algorithms are considered as the 
classical MPPT methods. Several challenges have been identified in the extensive research conducted on classical 
algorithms. One of these challenges is the trade-off between response speed and steady-state oscillations, which 
reduces overall efficiency. Under abruptly altering climatic conditions, their performance also suffers. In recent 
years, there has been a strong emphasis on the development of methods to address these limitations. Many of 
these methods are either inspired by or built upon P&O/INC, which underscores their foundational role in the 
field of MPPT.

Table 1 offers a concise summary of the pertinent research in the field of MPPT for PV systems, emphasizing 
both the most recent developments and the existing constraints. The intense emphasis on MPPT as a critical issue 
in PV systems is a significant observation from these works. A variety of control strategies and configurations 
are proposed by numerous authors to address the challenges presented by PV systems under dynamic 

References Converter circuitry MPPT objective MPPT developed for standalone system

Output 
voltage 
regulation 
objective

21 Push-Pull Pursued Variable step-size INC Not pursued
22 Boost Pursued Variable step-size P&O Not pursued
23 Boost Pursued Beta-P&O Not pursued
24 Boost Pursued Enhanced Variable step size P&O Not pursued
25 Boost Pursued Enhanced Variable step size INC Not pursued
15 Buck-Boost Pursued Variable step-size P&O Not pursued
26 Boost Pursued Enhanced INC Not pursued
27 Quadratic Boost Pursued Irradiance sensor-based linear MPP estimation with PI controller Not pursued
28 Boost Pursued Fractional Open Circuit method with genetic algorithm optimization Not pursued
29 Non-inverted Buck-Boost Pursued Hybrid ANN and Global Sliding Mode controller Not pursued
30 Buck-Boost Pursued Hybrid ANN and Arbitrary order sliding mode controller Not pursued
31 Boost Pursued Enhanced Grey Wolf Optimizer Not pursued
32 Boost Pursued Swarm Size Reduction-based Particle Swarm Optimization Not pursued
33 Boost Pursued Hybrid Grey Wolf –Bat Optimizer Not pursued
34 Boost Pursued ANN-based Backstepping optimized particle swarm optimization Not pursued

35 SEPIC Pursued Hybrid MPPT Tactic: Temperature based MPP estimation combined with 
Integral backstepping controller Not pursued

36
37

Boost
Buck-Boost

Pursued
Pursued

Current perturbation based improved P&O
Adaptive fractional order PID

Not pursued
Not pursued

Table 1.  Summary of related works in the field, intended to spotlight state-of-the-art interest and limitations.
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environmental conditions. These contributions comprise a diverse array of techniques, including variant 
of the INC and P&O algorithms, such as variable step size INC and P&O methods. Fractional open-circuit 
voltage and short-circuit current methods, linear interpolation techniques, traditional linear control strategies 
such as the PI controller, and advanced nonlinear control methods such as sliding mode and backstepping 
controllers are additional approaches. Further, optimization algorithms (e.g., Particle Swarm Optimization, 
Genetic Algorithms) and artificial intelligence (AI) techniques (e.g., fuzzy logic and artificial neural networks) 
have been increasingly implemented to improve the accuracy and efficiency of MPPT in a variety of operating 
environments. Collectively, these contributions represent substantial advancements in the field, particularly in 
the enhancement of the responsiveness and dependability of MPPT solutions.

Other contributions to MPPT in standalone PV systems are outlined in high-quality studies that offer 
valuable insights into both algorithmic innovation and performance metrics.

In16, the authors developed a hybrid MPPT technique combining Particle Swarm Optimization (PSO) 
with neural networks for standalone PV systems. The method achieved high power extraction accuracy and 
minimized convergence time under fluctuating conditions. The study emphasized MPPT efficiency and RMS-
based tracking performance as primary evaluation criteria. In17, an intelligent fuzzy particle swarm optimization 
was used to dynamically adjust MPPT operating points. The system demonstrated improved response speed 
and power stability over conventional methods, particularly under non-uniform irradiance. In18, a single-stage 
hybrid photovoltaic (PV)-fuel cell (FC)-based grid-integrated system with Lyapunov function-based controller 
was designed to obtain optimal power extraction from hybrid renewable sources without maximum power point 
tracking (MPPT) application. In19, the authors proposed a hybrid whale optimization algorithm differential 
evolution (WOADE) as a maximum power point tracking (MPPT) for wind energy conversion systems (WECS) 
employed for water pumping applications. The control strategy provides rapid and zero oscillation power 
tracking to achieve the global maximum power point within a limited number of iterations. In20, the authors 
introduced an improved differential evolution particle swarm optimization (IDEPSO) established photovoltaic 
(PV) maximum power point tracker (MPPT) for water pumping applications.

  
In spite of the extensive research and optimization of MPPT, the current literature still contains a critical gap: 

other equally significant aspects of standalone PV systems have not been adequately addressed. In particular, the 
stochastic nature of environmental conditions has resulted in underexplored issues regarding voltage instability. 
The voltage output of a PV system is inherently variable due to fluctuations in temperature and irradiance, making 
it equally important to maintain stability as it is to optimize power through MPPT. In reality, MPPT guarantees 
that the system operates at its optimal power point; however, it does not inherently resolve the issue of voltage 
regulation at the output. When the system is subjected to coupling with other electrical systems or during direct 
exploitation by the load, this lack of voltage control can result in significant instability. The load may be adversely 
affected by the absence of sufficient voltage quality control, which can lead to voltage fluctuations, surges, or 
declines that may diminish the efficacy and lifespan of connected devices. The current corpus of research has 
primarily concentrated on maximizing power extraction, despite these challenges, without addressing the 
equally critical need for stable and reliable voltage output. The issue of voltage instability, particularly in the 
context of standalone PV systems, is largely overlooked, as demonstrated in Table 1. Consequently, in order to 
guarantee both power optimization and system stability, it is of utmost importance to prioritize the integration 
of voltage control mechanisms in conjunction with MPPT solutions, thereby resolving a critical void in the 
current state-of-the-art research.

Motivation
The impetus for this paper is the increasing dependence on standalone PV systems as a critical solution for 
sustainable energy generation, particularly in regions with restricted or nonexistent access to conventional grid 
infrastructure. These systems provide a promising alternative to conventional energy sources, thereby promoting 
energy independence and supporting the global transition to sustainable energy. Nevertheless, the extensive 
research and optimization of MPPT to enhance power extraction from PV systems have frequently resulted 
in the neglect of other equally critical aspects of system performance, particularly voltage stability. Voltage 
instability continues to be a persistent challenge in standalone PV systems. The system’s capacity to provide 
consistent and reliable power to connected applications can be compromised by these fluctuations, which can 
result in unpredictable voltage shifts. This problem has the potential to limit the overall efficacy and viability of 
the PV system by reducing the lifespan of sensitive equipment connected to it, in addition to affecting system 
efficiency. This emphasizes the necessity of a more comprehensive control strategy that not only optimizes power 
output through MPPT but also guarantees consistent and dependable voltage delivery to the load. The necessity 
of addressing the frequently disregarded issue of voltage regulation in standalone PV systems is the pivotal 
impetus for our research. Our objective is to offer a solution that bridges the gap between power optimization 
and voltage stability by concentrating on this critical yet underexplored area. This will guarantee that standalone 
PV systems can operate efficiently and reliably under a variety of environmental conditions.

Proposed solution and contribution
This paper introduces a novel, comprehensive control strategy that is intended to resolve the discerned limitations 
in previous studies. The strategy is designed to ensure that the voltage delivery to the load is stable and reliable, 
as well as to maximize power extraction from PV panel through advanced MPPT techniques. Unlike much 
of the current state-of-the-art research, which focuses primarily on power optimization, this work sets a dual 
objective: (1) ensuring robust and efficient energy extraction from the PV array, and (2) achieving precise, finite-
time regulation of the DC load voltage. We establish resilient nonlinear controllers that supervise a two-stage 
converter system, which comprises Buck and Boost converters, in order to achieve these objectives. We present 
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a novel Reference Voltage Estimator (RVE) that is integrated into an innovative MPPT solution to accurately 
predict the maximum power point (MPP) voltage for the first objective. This MPP voltage is subsequently 
utilized by a Lyapunov-based nonlinear controller to guarantee that the standalone system consistently operates 
at the optimal MPP, even in dynamic environmental conditions, facilitated by the Boost converter. The Buck 
converter is simultaneously managed by an additional Lyapunov nonlinear controller to ensure that the voltage 
at the output side is precisely regulated. A microcontroller-in-the-loop (MIL) experimental framework is used to 
implement the entire system, which enables practical real-time feedback and control. Under a variety of uncertain 
climatic and load conditions, a series of rigorous experiments were conducted to assess the MPPT performance 
and output voltage stability. The findings indicate that the proposed control strategy effectively accomplishes 
the dual objectives of improving the efficiency, reliability, and overall performance of standalone PV systems 
by maximizing power output and ensuring constant voltage delivery. This work contributes meaningfully to the 
field by offering a more holistic solution to the critical issues of both power optimization and voltage stability in 
PV systems. The key novelties and contributions of this work are summarized as follows:

	1.	 Dual-objective control framework: Simultaneous resolution of two critical problems—Maximum Power Point 
Tracking (MPPT) and precise DC load voltage regulation—in standalone PV systems.

	2.	 Novel reference voltage estimator (RVE): A sensorless MPPT mechanism that combines an explicit irradiance 
estimator and a radial basis function (RBF) neural network to accurately predict the MPP voltage using only 
electrical measurements.

	3.	 Nonlinear Lyapunov-based controllers: Two robust controllers are designed to coordinate a dual-stage DC-
DC converter topology (Boost + Buck), ensuring both optimal power extraction and fast, stable output volt-
age regulation.

	4.	 Real-time implementation: The system is fully validated through Microcontroller-in-the-Loop (MIL) experi-
mentation, highlighting practical viability and deployment readiness.

	5.	 Comprehensive experimental validation: Extensive testing under realistic and extreme operating conditions, 
including abrupt changes in irradiance, temperature, reference voltage, and load uncertainties.

	6.	 Bridging a major research gap: Unlike most state-of-the-art studies (see Table 1), which focus solely on MPPT, 
this work offers a holistic, experimentally proven solution that unifies MPPT with load-side voltage regula-
tion in a single control architecture.

Unlike prior works that primarily optimize MPPT while leaving load-side stability as a secondary concern, this 
paper presents a holistic two-stage control strategy that unifies maximum power extraction with finite-time DC 
voltage regulation. The originality lies in three aspects: (i) a sensorless Reference Voltage Estimator (RVE) that 
eliminates costly irradiance sensors while achieving high MPP prediction accuracy, (ii) the coordination of dual 
Lyapunov-based nonlinear controllers across Boost and Buck converters to achieve decoupled yet synchronized 
PV-side and load-side objectives, and (iii) the first microcontroller-in-the-loop experimental validation of such 
an integrated dual-objective PV control scheme. This contribution directly addresses the overlooked challenge 
of voltage instability in standalone PV systems and establishes a deployable framework that surpasses the 
capabilities of existing single-focus MPPT systems.

The rest of this paper is outlines as follows: In Section  “General description of the system studied and 
proposed comprehensive control strategy”, a general description of the system under study is prescribed- 
Section “Reference voltage estimator (RVE) design”, presents the proposed RVE- Section “Nonlinear controller 
design” the nonlinear controllers’ design- Section “Overall system implementation and MIL setup” is dedicated 
to the MIL implementation- Section “Experimental results and discussion” presents the results of investigations 
while Sect “Conclusion” concludes the paper.

General description of the system studied and proposed comprehensive control 
strategy
This section interns to provide a general description of the system understudied. It is also aimed at briefly 
delineating the comprehensive control strategy proposed in this paper. The general structure of the standalone 
PV system understudy is prescribed in Fig. 1. It consists of a PV panel connected to a load via two DC-DC 
converters, namely the Boost and Buck converter. Since the former is directly linked to the PV, it allows for 
control of the power delivered by the PV. While the latter converter, connected to the load, allows for control of 
the final output. These two converters thus allow to pursue two objectives delineated as follows:

Objective-1: Ensuring robust and efficient energy extraction from the PV array.
Objective-2: Achieving precise, finite-time regulation of the DC load voltage.
Advanced mathematical modeling and nonlinear control techniques are integrated in a synergistic manner 

to achieve these objectives. On the photovoltaic (PV) side of the autonomous system, a novel Reference Voltage 
Estimator (RVE) is essential for the precise estimation of the maximum power point (MPP) voltage of the 
system, denoted as φ. This anticipated MPP voltage is subsequently employed by a nonlinear controller, which 
directs the PV system to operate at its optimal power point. A neural network model and an explicit irradiance 
estimator are integrated into the RVE to generate real-time irradiance estimates, which are denoted as Ĝ. The 
irradiance estimator is based on the mathematical relationship F (Ipv, Vpv, T ), V, where PV current, voltage, 
and temperature are used as inputs to generate accurate irradiance estimates. The neural network subsequently 
processes these estimates to approximate the MPP voltage. The proposed RVE system’s primary benefit is 
its reliance on straightforward, cost-effective measurements of PV current, voltage, and temperature, which 
eliminates the necessity for expensive irradiance sensors. This RVE accomplishes substantial success by operating 
independently of such measurements, in contrast to existing MPPT controllers that significantly rely on expensive 
and intricate irradiance measurement systems. The RVE is a highly innovative and practical contribution to the 
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field of PV system optimization due to its independence. The central coordinator on the PV side, the nonlinear 
controller-1, is responsible for guiding the system to the MPP voltage, thereby guaranteeing the most efficient 
energy extraction from the PV array. The MPPT mechanism proposed in this study is fundamentally composed 
of the RVE and the nonlinear controller-1.

In order to regulate the output voltage of the system, a second nonlinear controller (Nonlinear controller-2) 
is configured on the load side. Its primary objective is to preserve the output voltage at a predetermined set 
point, as denoted by Ω, in the face of stochastic fluctuations in environmental conditions, including changes in 
irradiance (G) and temperature (T), as well as the nonlinear dynamics of the Boost converter. It should be noted 
that the set point voltage may not always be consistent, as it is contingent upon the given application. The control 
problem may be further complicated by the fact that the load may experience uncertainties or disturbances. The 
output voltage of the nonlinear controller-2 is intended to be stable and consistent with the reference voltage, 
regardless of the presence of external load disturbances and uncertainties. Essentially, this controller is expected 
to guarantee that the system is capable of sustaining voltage regulation under a variety of operating conditions, 
thereby improving the overall stability and efficiency of the standalone PV system and delivering dependable 
performance. In the subsequent discourse, we will provide details into the various subsystems.

Reference voltage estimator (RVE) design
This section is aimed at presenting the design of the RVE proposed in this paper. The RVE is responsible 
for approximating the MPP voltage by harnessing real time measurements of the PV voltage, current and 
Temperature. As illustrated in Fig. 1, the RVE employs an explicit irradiance estimator and a NN model. The 
estimator will be derived by mathematical manipulation of the nonlinear equations of the PV panel model. We 
resort to the single diode model (SDM) for its good balance between accuracy and complexity38,39. Additionally, 
it can allow us to formulate an explicit approximator of irradiance. The mathematical equation of a SDM is 
presented in Eq. (1). Note that the PV modelling equivalent circuit is found in Appendix A, Fig A.

	
Ipv = Iph − Is

[
exp

(
(Vpv + IpvRs)

a

)
− 1

]
− Vpv + IpvRs

Rp
� (1)

Where a = nNsKBT/q. The terms Iph, Is are respectively the photocurrent and the saturation current of the 
diode. Additionally, n is the diode ideality factor, Ns is the number of cells, k is the Boltzmann’s constant having 
the value 1.381 × 10−23J/K, q is the charge constant q = 1.602 × 10−19C , and T  is the temperature of the 
cell in kelvin. Additionally, the term, Iph, can be obtained as :

	
Iph = G

1000(Iph,ref + Ki(T − Tref )� (2)

	
Is = Is,ref

(
T

Tref

)3

exp

[
q

k

(
Eg,ref

Tref
− Eg

T

)]
, Eg = Eg,ref (1 − 0.000267(T − Tref )� (3)

Where G is the actual incident solar irradiance in W/m2, Iph−ref is the photocurrent at standard test conditions 
(STC) i.e. 1000 W/m2 and 25 ◦C, Ki is the temperature coefficient of short circuit current, Eg  is the band-
gap energy which has the reference value Eg,ref = 1.12 eV  for silicon material. Additionally, the variation of 
the shunt resistance with irradiance G can be modeled mathematically as:

Fig. 1.  Synoptic structure of the standalone PV system understudy.
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Rp = Rp,ref

(1000
G

)
� (4)

Where Rp,ref  is the shunt resistance at STC, and Rp is any arbitrary value of the shunt at given irradiance.
We about to show how the irradiance estimator is obtained. If we substitute Eq. (4) into (1), we would have 

(5)

	
Ipv = Iph − Is

[
exp

(
(Vpv + IpvRs)

a

)
− 1

]
− (Vpv + IpvRs) Ĝ

1000Rp,ref
.� (5)

It should be noted that the term Ĝ, has been introduced to convey that this manipulation does not yield the 
actual irradiance, but its estimate. For the purpose of simplicity, we can write establish the following nonlinear 
functions:

	




N(Ipv, Vpv) = Vpv+IpvRs

1000Rp,ref

M(Ipv, Vpv, T ) = Is

[
exp

( (Vpv+IpvRs)
a

)
− 1

]

Ĝ = F (Ipv, Ipv, T )

� (6)

By substituting the above functions into (5) alongside (2) one have: (6)

	
Ipv = G

1000 (Iph,ref + Ki (T − Tref )) − M(Ipv, Vpv, T ) − ĜN(Ipv, Vpv)� (7)

Through rearrangements, we obtain the following:

	
Ĝ = F (Ipv, Ipv, T ) =

Ipv + M(Ipv, Vpv, T )[
G

1000 (Iph,ref + Ki (T − Tref )) − N(Ipv, Vpv)
] � (8)

Therefore, Eq. (8) is the explicit equation that will allow the RVE to estimate irradiance in real time. Despite 
the implicit nature of Eq.  (1), the above manipulation obtains a straightforward equation for approximating 
the irradiance. Given that the estimate of irradiance is available, we can build a neural network model tailored 
for appreciating the MPP voltage. We resort to radial basis function neural network (RBF). Radial Basis 
Function neural networks provide a versatile and potent method for modeling intricate data. They are well-
suited for function approximation due to their capacity to capture non-linear relationships through localized 
activation functions. The mathematical foundation, specifically the application of Gaussian functions and linear 
optimization for training, establishes a strong foundation for the effective application and comprehension of 
RBF networks in a variety of contexts. RBF activation functions are implemented in a three-layer network. The 
input layer receives the input measurements, processing them with RBF neurons in the hidden layers. The output 
retunes the approximated MPP voltage. The RBF is a real-world function whose output is contingent upon the 
distance from a center vector. The Gaussian function can be used to approximate it:

	
φ (x) = exp

(
∥x − c∥2

2σ2

)
� (9)

Where x = [T, Ĝ]  is the input vector, c is the center of the function and σ  is the standard deviation which 
controls the function’s width. Each neuron in the hidden layer computes the radial basis function for a given 
input vector x. The output of the i-th neuron is written as:

	
hi (x) = φi (∥x − c∥) = exp

(
∥x − c∥2

2σ2

)
� (10)

The output layer is a linear combination of the hidden layer outputs:

	
y (x) =

N∑
i=1

wiexp

(
∥x − c∥2

2σ2

)
+ wo� (11)

Where wi represents the weight connection between the i-th hidden layer and the output, and worepresents 
the output bias. The total number of neurons in the concealed layer is represented by the symbol N. It is 
worth noting that the RBF neural network chosen has three hidden layers and a neuron structure of (5 5). The 
Levenberg–Marquardt algorithm was employed to train the model, as indicated in40. It is important to note that 
the training process was conducted offline, a strategic decision that was made to reduce the system’s complexity 
during deployment. Offline training enables the computationally intensive components of model development 
to be managed independently, thereby alleviating the system’s workload during real-time operation. Specially 
constructed patterns, consisting of over 2000 points of irradiance and temperature were used to train the Neural 
Network model. The dataset in total consisted of irradiance ranging from 1 to 1000 W/m2 and temperature 
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ranging from 10 to 50 °C. After training, testing and validation, the validated model was found to have a 
regression value of 0.999 and a mean squared error of a 7 × 10−5. Therefore, the Ĝ = F (Ipv, Ipv, T ), and 
the NN model together form the RVE. In the next discourse, we present the design of the nonlinear controllers 
used to coordinate the standalone system.

Nonlinear controller design
This section is aimed at presenting the nonlinear controllers designed to coordinate the standalone system. 
Due to the strong nonlinear dynamics of the system, we resort to nonlinear control design. The Lyapunov-
based design has proven to be an outstanding approach for stabilizing nonlinear systems41–43. For the sake of 
emphasis, we would recall that the control design pursues the two objectives delineated in the previous sections. 
The first objective is achieved by acting on the Boost converter. While the second is pursued by acting on the 
Buck converter. A lot of studies has already been done on converter modelling and design, we would not place 
further emphasis on that. However, we note that the controllers are supposed to maximize the dynamics of the 
converters. For mathematical simplicity, the dynamics of the converters is derived considering ideal and lossless 
operation with the assumption of continuous conduction mode44–46. In addition, the following assumption is 
considered:

Assumption I  The overall PV system operates under uniform irradiance conditions such that the influence of 
partial shading is negligible.

Assumption II  For control design, the converters are assumed to be lossless such that their parasitic influences 
can be considered negligible.

Assumption III  The converters operate under continuous conduction mode.

The average mathematical model of the boost converter, which allows for continuity in control is presented in 
Eq. (12) according to44

	

{
ẋ1 = Ipv

Ca
− x2

Ca

ẋ2 = x1
La

− x3
La

(1 − u1) � (12)

Where x1, x2, x3 are the three states of the Boost converter and represent the average values over one period, 
of the PV voltage, Vpv, inductor current, ia, and boost output voltage, va. Also, Ipv , denotes the PV current, 
while Ca, La, represent the Capacitance of the Capacitor at the input of the boost converter, and the Boost 
inductance respectively. Using the Lyapunov and backstepping technique, we derive the following nonlinear 
control law for the Boost converter.

	




e1 = x1 − ϕ
p =
´ t

o
(x1 − ϕ )dt

e2 = x2 − C1(K1e1 + iP V
C1

− ϕ̇ + kp)

u1 = 1 − La
x3

(
K2e2 + x1

L
+ K2

1 Cae1 + K1e2 + kK1Cap − ˙̇iP V + Caϕ̈ − Cake1 − e1
C1

) � (13)

Where, ϕ  is the reference voltage provided by the RVE, K1, K2, k, are control gains. It should be noted that 
this control approach principally seeks to asymptotically vanish the error between the actual PV voltage and the 
RVE reference, e1. The stability of this controller can be proven by Lyapunov law and functions, following the 
approaches in44,47–49. See the appendix section for a rigorous presentation of the overall system’s stability.

On the other hand, the44–46. The average mathematical model of the boost converter, which allows for 
continuity in control is presented in Eq. (12) according to45

	

{
x4 = − 1

Lb
x5 + u2

va
Lb

x5 = − 1
Cb

x4 + 1
RCb

x5
� (14)

Where x4, x5 are the states of the Buck converter and represent the average values over one period, of the 
inductor current, ib, and Buck output voltage, vb. Also, Cb, Lb, represent the Capacitance and Inductance of 
the Buck converter. The load is resistive and modelled by a resistance, R. Using the Lyapunov and backstepping 
technique, we derive the following nonlinear control law for the Buck converter

	




z1 = x5 − Ω
z2 = x4

Cb
+ c1z1

1
RCb

x5 + Ω̇

u2 = LbCb
va

[(
c2

1 − 1
)

z1 − (c1 + c2) z2 + x4
RC2

b

−
[

1
(RCb)2 − 1

LbCb

]
x5 + Ω̈

] � (15)

Where, Ω  is the reference voltage, which can either be manually be set by the operator or determined according 
to a specific application. It is also noted that, c1 and c2 are control gains for the Nonlinear controller-2. It 
can also be noted that this control approach principally seeks to asymptotically vanish the error between the 
actual output voltage and a set reference, z1. The stability of this controller can be proven by Lyapunov law 
and functions, following the approaches in45. Therefore the control law, u2, is expected to stabilize the output 
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of the standalone system. A rigorous analysis of the overall system’s stability is presented in Appendix B. In the 
subsequent discourse, we will discuss how the system is implemented.

Overall system implementation and MIL setup
This section aims at comprehensively describing how the proposed system is implemented. We resort to a 
practical approach termed Microcontroller-in-the-loop (MIL) experimentation. The general structure of the 
MIL configuration is shown in Fig. 2. In this practical approach, the plant runs on the host computer while the 
controller is executed on a practical embedded microcontroller board. The link between the host computer is 
ensured through a specialized communication link. The controller is deployed and executed using C/C + + code. 
The MIL allows the overall system to run in real time. For the proposed standalone system, we implemented 
the plant on the host computer while the controllers where executed on an Arduino-Due board (see Fig. 3). 
The communication link is ensured by serial communication protocol. Additionally, we note that the two 
controllers were properly discretized before integration into the setup. The control laws, u1, u2, are executed by 

Fig. 3.  Implementation of the proposed system using MIL experimentation.

 

Fig. 2.  Operating structure of the MIL.
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the Arduino-Due, which will be transmitted through the communication link to the host computer where the 
Boost and Buck converters are coordinated. Coordination action is received in the form of PWM signals. The 
PWM of the Boost and Buck converter operates at 300 Hz and 62,500 Hz respectively.

To successfully execute MIL experiments, it is crucial to ensure data type synchronization between the 
standalone system running on the host computer and the microcontroller. Typically, since the plant operates 
on a 64-bit architecture (the host computer), the microcontroller should ideally support 64-bit operations to 
maintain precision and consistency. The Arduino Due, powered by a 32-bit ARM Cortex-M3 processor, is 
capable of handling 64-bit operations efficiently due to its architecture and configuration.

Experimental results and discussion
Several experiments were performed to assess the standalone system under the coordination of the two nonlinear 
controllers. The system was investigated under the protocol described in Fig.  3. The following parameters 
were used in the experiments (Table  2): Boost converter [ Ca = 370 uF , La = 0.3 mH], Buck converter 
[ Cb = 50 uF , Lb = 15 mH], Nonlinear Controller-1 [ K1 = 1.375 × 105, K2 = 10000, k = 1000 ], 
Nonlinear Controller-2 [ c1 = 2.8075 × 104, c2 = 6.2602 × 104 ]. The sampling time of the experimental 
platform was 1 × 10−6s. A 60  W solar panel was consistently used in this study. Its parameters are : 
[Rs = 0.0018Ω, Rp,ref = 400Ω, Iph,ref = 3.8 A, Is,ref = 2.454 × 10−6, n = 1.6. In order to evaluate 
the attainment of our control objectives, two principal metrics were employed; the Mean Absolute Error (MAE) 
and the Mean Absolute Percentage Error (MAPE). The tracking time, Tr , was also used to record the time taken 
for convergence to the actual value.

	
MAE = 1

N

N∑
i=1

|ya − yb|� (16)

	
MAP E = 1

N

N∑
i=1

|ya − yb|
yb

× 100� (17)

Where ya, represents the actual variable, yb , denotes the expected variable, while N denotes the number of 
observations or samples. In order to assess objective-1, we employ the MAE, so that ya, will be the actual PV 
voltage and yb being the reference voltage provided by the RVE, φ. We note that the outcome of the MAE speaks 
directly about the power harvesting performance of the system; the closer its value to zero, the more efficient 
the system is. We will also occasionally use the tracking time to appreciate the convergence performance of the 
system to the RVE reference. Also, objective-2 will be evaluated by the MAE.

Evaluation of the RVE performance
This section seeks to evaluate the performance of the RVE. We employed the MAE ad well as the MAPE to 
achieve this evaluation. The actual variable is the estimate of irradiance ( Ĝ), while the expected variable is the 
true irradiance (G). To achieve this evaluation, the RVE was subjected to two different sets of Random Climatic 
Patterns (RCP), namely, RCP-1 and RCP-2.

The performance of the RVE for RCP-1 is presented in Figs. 4 and 5, while for RCP-2, the outcomes are 
presented in Figs. 6 and 7. It can be seen that the estimated irradiance aligns well with the actual irradiance. 

Component Parameter Value

Boost converter
Ca 370 µF

La 0.3 mH

Buck converter
Cb 50 µF

Lb 15 mH

Nonlinear controller-1

K1 1.375 × 105

K2 10,000

k 1000

Nonlinear controller-2
c1 2.8075 × 104

c2 6.2602 × 104

Experimental platform Sampling time 1 × 10−6s

Solar panel (60 W)

Rs 0.0018 Ω

Rp,ref 400 Ω

Iph,ref 3.8 A

Is,ref 2.454 × 10−6,

n 1.6

Table 2.  Parameters and specifications of the standalone system.
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The approximated MPP voltage aligns also with the actual MPP voltage. We found that under RCP-1, estimator 
recorded MAE and MAPE of 4.3489 W/m2 and 1. 41%, while the voltage estimation was accurate to an MAE 
and MAPE of 0.2755 V and 3.0347%. Additionally, under RCP-2, the estimator recorded MAE and MAPE of 
4.1901 W/m2 and 1. 3410%, while the voltage estimation was accurate to an MAE and MAPE of 0.2542 and 
2.3527%. It cannot be overstated that these values are very close to exceptionally accurate; they are all very close 
to zero. This shows that the RVE performed outstandingly. Guided by this remarkable performance, the RVE was 
integrated into the system for subsequent evaluations. It should be noted that the RVE will be considered as the 
reference of the system; it will be the basis against which the MPPT performance will be evaluated.

Evaluation under stable climatic conditions with a fixed DC load and fixed output reference 
voltage
The subsection is aimed at presenting and discussion the outcomes of the standalone PV system when it was 
evaluated under stable climatic conditions, fixed DC load and fixed output reference. The climatic conditions 
were fixed at standard test condition, G = 1000 W/m2, T = 25 °C. The DC load was fixed 100Ω, while the output 
reference voltage, Ω = 12 V. The result of this experiment are presented in Fig. 8. It can be seen that the system 
tracked the reference voltage on the PV side in just 2ms with little or no oscillations at steady-state. On the DC 
load side, it was found that the system tracked the desired reference load voltage of 12 V in just about 3ms, with 
no oscillations at steady-state. However, there was an initial overshoot stemming from the strong nonlinear 
dynamics of the overall system. The MAE on the PV side is found to be 0.2108 V while on the DC side, it was 
0.2011 V. This small deviation values indicate that the system operated at effectively at the MPP as well as at the 
desired reference load voltage.

Fig. 5.  Plot of the Actual Vmpp and its estimated [achieved by RVE] under RCP-1.

 

Fig. 4.  Plot of the Actual G and its estimated [achieved by RVE] under RCP-1.
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Fig. 8.  Performance plot of the system at fixed STC, fixed DC load (100Ω) and fixed reference (Ω = 12 V).

 

Fig. 7.  Plot of the Actual Vmpp and its estimated [achieved by RVE] under RCP-2.

 

Fig. 6.  Plot of the Actual G and its estimated [achieved by RVE] under RCP-2.
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Evaluation under abrupt changes in climatic condition, abrupt changes in load reference and 
fixed load voltage
The subsection is aimed at presenting and discussion the outcomes of the standalone PV system when it was 
evaluated under abruptly changing climatic conditions, fixed DC load and abruptly changing output or DC 
load reference voltage. Within the operating time range of 0 to 0.05s, G was fixed at G = 1000  W/m2, while 
the load reference voltage was constantly at Ω = 12  V. At exactly 0.05s, the DC reference was increased to 
18 V while G was unaltered. Then finally at 0.1s, G was brought down to G = 100 W/m2. The results of this 
experiment are presented in Fig. 9. We found the MAE on the PV side to be 0.1653 V while on the load side it 
was 0.4052 V. On the PV side, it was found that the PV voltage consistently followed the reference in spite of 
the alterations in irradiance. This shows the effectiveness of the MPPT controller. The challenging conditions 
caused by transients was effectively handled by the Nonlinear controller-1. It was observed that alterations in 
the reference voltage did not have a noticeable effect on the PV side. This indicates that the controller on this 
side can perpetually focus on maximizing power harvesting from the PV module. This is a serious advantage of 
the two stage controlled circuitry. On the load side, we notice firstly that the in spite of the heavy alterations in 
G, the Nonlinear controller-2 succeeded in enforcing the reference voltage. A change of reference voltage from 
12 V to 18 V introduced a strong underdamped characteristics marked by overshoots in the transient. However, 
the results show that the controller rapidly adjusted the dynamics of the system; resulting in smooth tracking of 
the load reference voltage. The outcome of this experiment, as discussed, reveals that the two control objectives 
were achieved.

Performance under stable G, fixed abruptly changing DC reference voltage, and load 
uncertainty
The subsection is aimed at presenting and discussion the outcomes of the standalone PV system when it was 
evaluated under stable climatic conditions, uncertain DC load and abruptly changing output or DC voltage 
reference. The climatic conditions were fixed at standard test condition, G = 1000 W/m2, T = 25 °C. The reference 
output voltage was maintained at 12 V until the time of 0.05s when it was changed to 20 V and maintained again 
until the time of 0.1s when it was changed to 8 V. In this instances of voltage changes, the load was altered from 
100 to 30 Ω and then to 120Ω. The results of this experiment are presented in Fig. 10.

It was found that the PV side operation was unaltered in this experiment while the load responded according 
to the plot in Fig. 10. It was found that the changes in reference voltage and load alterations introduced strong 
underdamped dynamics in the standalone system; this is a possible explanation for the appearance of overshoots. 
At 0.05s, when the reference voltage increased from 12 to 20 V and the load resistance changed from 100Ω to 
30Ω, it was observed that the actual load voltage deviated from the reference by more than 200%. However, 
the Nonlinear controller-2 rapidly restored this voltage to the expected reference in just about 2.8 ms after 
which the load operated perpetually at the reference voltage. At 0.1s, when the reference voltage decreased from 
12 to 8 V and the reference load resistance changed from 30Ω to 120Ω, it was observed that the actual load 
voltage experiences a slight overshoot before rapidly tracing the desired reference voltage in just about 4ms. 
This outcome indicates that the Nonlinear controller-2 was very robust, effectively achieving objective-1 with an 
accuracy, measured by MAE of 0.4621 V.

Performance under continually changing G, continually changing output reference voltage 
and uncertain load
This section evaluates the robustness and adaptability of the proposed standalone PV system under the most 
realistic and demanding operating conditions—namely, simultaneously changing irradiance (G), temperature 
(T), output reference voltage (Ω), and uncertain load resistance. This setting simulates the complexity of real-
world environments where PV systems are expected to operate reliably.

As shown in Fig. 11, the irradiance begins at 300 W/m² and steadily rises to 1000 W/m² before gradually 
falling back to 300 W/m², while the temperature varies stochastically between 15 and 40 °C. Simultaneously, the 

Fig. 9.  Performance plot of the system: abruptly changing G, fixed DC load and abrupt load reference.

 

Scientific Reports |        (2025) 15:38435 12| https://doi.org/10.1038/s41598-025-24134-0

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


output voltage reference varies dynamically from 12 to 30 V, and the load resistance transitions through three 
abrupt changes: from 100 Ω (0–0.05 s), to 30 Ω (0.05–0.1 s), and finally to 120 Ω (0.1–0.8 s).

The system’s performance under these highly dynamic and uncertain conditions is illustrated in Figs. 12 and 
13, where the actual responses are compared against their respective references.

	A.	 MPPT tracking under variable climatic conditions (Fig. 12).

Figure 12 highlights the effectiveness of the MPPT mechanism. Despite the unpredictable and continuous 
variations in both irradiance and temperature, the PV voltage closely follows the reference MPP voltage (φ). 
This indicates that the Reference Voltage Estimator (RVE) and the associated Nonlinear Controller-1 maintain 
strong coordination, enabling the system to consistently operate at the MPP with high fidelity. Notably:

•	 No significant divergence is observed between the actual PV voltage and the reference voltage, even during 
rapid climatic transitions.

•	 The Mean absolute error (MAE) is maintained at a remarkably low value of 0.1253 V, underscoring the accu-
racy of the MPP tracking algorithm.

•	 The MPPT operation remains unaffected by load perturbations, validating the decoupled architecture of the 
two-stage converter design.

	B.	 Load voltage regulation under uncertainty (Fig. 13).

Figure 13 presents the system’s response on the load side. Here, the most critical challenge lies in handling 
concurrent changes in load resistance and output reference voltage. The performance reveals the following key 
insights:

Fig. 11.  Plots of continually changing irradiance and temperature conditions.

 

Fig. 10.  Performance plot of the system: Fix G, abruptly changing reference voltage and uncertain load.
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•	 Transient overshoots and settling: Sudden changes in reference voltage and load resistance introduce under-
damped transient behavior. Despite this, the output voltage converges to the reference within 3 ms, reflecting 
the finite-time convergence capability of Nonlinear Controller-2.

•	 Robust recovery: For instance, when the load drops from 100 Ω to 30 Ω while the reference increases, the 
controller swiftly suppresses the overshoot and stabilizes the output voltage.

•	 Superior accuracy: The MAE on the load side is an impressively low 0.0793 V, confirming high-precision reg-
ulation even under coupled disturbances.

•	 High disturbance rejection: This experiment strongly affirms the disturbance rejection analysis presented in 
Appendix A, particularly the system’s resilience under combined reference, climatic, and load perturbations.

	C.	 Critical and conclusive perspective.

The outcomes shown in Figs. 12 and 13 collectively validate the dual-objective control strategy proposed in this 
paper:

	1.	 Objective 1 (Efficient MPPT): Achieved through close MPP tracking (MAE = 0.1253 V) under time-varying 
G and T.

	2.	 Objective 2 (Reliable Voltage Regulation): Achieved through prompt stabilization of the load voltage 
(MAE = 0.0793 V) under changing Ω and R.

Fig. 13.  Performance plot of the system (DC load side) under challenging conditions: continually changing, G, 
T and φ, and uncertain load.

 

Fig. 12.  Performance plot of the system (PV side) under challenging conditions: continually changing, G, T 
and φ, and uncertain load.
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These results emphasize the system’s superior coordination, minimal steady-state error, and fast convergence, all 
of which are critical for deploying PV systems in off-grid or harsh environments. The robustness exhibited here 
demonstrates the practical readiness of the system for real-time deployment. The control strategies’ precision is 
underscored by these exceptionally small error values, which also affirm that the system’s design objectives—
ensuring reliable MPP tracking and finite-time load voltage regulation—were successfully accomplished. The 
system’s capacity to operate efficiently under a variety of challenging conditions is emphasized by the results, 
which satisfies the two objectives of load regulation and stable energy production. It was essential to achieve 
the robust system performance by coordinating the response between the MPPT controller and the nonlinear 
control strategies.

Conclusion
This research set out with the clear objective of developing and validating a comprehensive dual-objective control 
strategy for standalone PV systems: (i) ensuring efficient maximum power point tracking for robust energy 
harvesting, and (ii) achieving precise and stable load-side voltage regulation under variable environmental and 
load conditions. Both simulation analyses and microcontroller-in-the-loop experimental results demonstrated 
that this objective was successfully achieved. Through the integration of the novel Reference Voltage Estimator 
(RVE) and nonlinear Lyapunov-based controllers within a two-stage (Boost–Buck) architecture, the system 
consistently operated at the maximum power point while simultaneously regulating the output voltage with 
high accuracy. The simulation results confirmed the theoretical robustness of the control strategy, while 
microcontroller-in-the-loop experimentation validated its real-time applicability, resilience to abrupt climatic 
and load variations, and fast recovery from disturbances. Performance indices—such as mean absolute error 
(MAE) values of 0.1253 V on the PV side and 0.0793 V on the load side—highlight the precision and reliability 
of the proposed scheme. In summary, the dual objectives of the study were fully realized, bridging a critical gap 
in the literature by combining optimum power extraction with reliable voltage regulation in a single framework. 
The outcomes confirm the practical viability of the system for real-world standalone PV applications, thereby 
contributing a robust and scalable solution to renewable energy deployment. A future study could investigate the 
potential for implementing such a control approach for PV-storage connected systems as well as for larger-scale 
PV installations. Also, while the proposed strategy excels under uniform irradiance, partial shading conditions—
characterized by multiple power peaks—require global MPPT techniques. Future work will integrate hybrid 
algorithms (e.g., combining the RVE with metaheuristic optimization) to address shading-induced challenges, 
further enhancing the system’s applicability in complex environments.

Data availability
Data Related to this paper can be found in Figshare open access Data repository with the DOI link: 10.6084/
m9.figshare.28783733.
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