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The generalized Poisson regression model (GPRM) provides a flexible framework for modeling count 
data, especially those exhibiting over- or underdispersion. Although the generalized Poisson maximum 
likelihood estimator is considered the standard method for estimating the parameters of this model, 
its reliability and accuracy are severely affected by the presence of multicollinearity among explanatory 
variables. Multicollinearity inflates the variance of parameter estimates, undermining the validity 
of statistical inference and ultimately leading to unstable and unreliable estimators. To mitigate 
these problems, this study presents the ridge estimator as a robust alternative within the GPRM 
framework. Several new strategies are proposed for selecting the optimal value of the ridge parameter. 
The statistical properties of the proposed ridge estimator were theoretically studied. Theoretical 
comparisons and extensive Monte Carlo simulations demonstrated a clear and significant superiority 
of the ridge estimator under multicollinearity conditions, confirming its robustness and efficiency. 
To demonstrate the scientific and practical relevance of the proposed estimator, it was applied to a 
real-world case study modeling carbon dioxide emissions in Canada. The results of this experimental 
application conclusively confirmed the simulation and theoretical comparison results, with the ridge 
estimator providing more stable and interpretable results than the conventional method, making it 
a valuable tool for researchers and decision makers in analyzing multicollinear environmental and 
economic data.
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The Poisson regression model (PRM) is a fundamental tool for analyzing count data, where the outcome 
variable consists of non-negative integers representing the frequency of events. A core assumption of the 
PRM is equidispersion—the equality of the mean and variance1. However, empirical data frequently violate 
this assumption, displaying either overdispersion, where variance exceeds the mean, or the less common 
underdispersion, where variance is constrained below the mean. These patterns often emerge from unobserved 
heterogeneity, dependencies between events, or other latent factors, potentially leading to inefficient estimates 
and misleading inferences. To overcome these limitations, numerous alternative count models have been 
developed. These include the negative binomial regression model (NBRM), which incorporates a dispersion 
parameter to handle overdispersion2,3; the geometric regression model (GERM) for underdispersed data4; and 
the Conway–Maxwell Poisson regression model (CMPRM), which offers flexibility for both types of dispersion5. 
Additional approaches include the double Poisson model (DPRM), which explicitly corrects for deviations from 
equidispersion6; the Bell regression model (BRM) for overdispersed counts; and the Poisson-inverse Gaussian 
model (PIGRM) for data with severe overdispersion and heavy tails7. Among these, the generalized Poisson 
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regression model (GPRM) stands out for its ability to directly adjust the mean-variance relationship, effectively 
addressing both over- and underdispersion, making it a versatile alternative when the standard Poisson 
assumptions are untenable8.

The GPRM effectively handles both over- or underdispersed count data, making it valuable in numerous 
fields9. For example, it has been used to study child stunting in Indonesia10, neonatal mortality in Ethiopia11, 
and COVID-19 spread in Ghana12. The GPRM has also inspired new methods, such as a stochastic process for 
signed integers13. These applications demonstrate the model’s flexibility in addressing real-world data challenges.

The presence of multicollinearity, a high degree of intercorrelation among explanatory variables, poses a 
significant challenge to regression analysis. This condition detrimentally inflates the variance of parameter 
estimates derived from both ordinary least squares (OLS) and maximum likelihood estimation (MLE)14. The 
issue is particularly acute within the context of the GPRM, where MLE can produce excessively high variance 
in the presence of correlated predictors. To mitigate the adverse effects of multicollinearity, several techniques 
are commonly employed. These include variable selection methods like Lasso regression and the use of biased 
estimation techniques, such as Ridge regression15. Under conditions of multicollinearity, such biased estimators 
often outperform MLE by trading a small amount of bias for a substantial reduction in variance, thereby 
yielding a lower scalar mean squared error (MSE) and more reliable estimates. The ridge estimator, formulated 
as β̂RE = (X ′X + kI)−1X ′Y  where X  is the design matrix, Y  the response vector, I  the identity matrix, and 
k > 0 the ridge parameter, can be analyzed through its spectral properties to derive its MSE. The selection of 
an optimal k value is critical, and numerous methods have been developed for this purpose, building upon the 
foundational work of Hoerl and Kennard16,17 for nonorthogonal problems. Subsequent advancements include 
the alternative estimators proposed by Kibria18 and further methodological elaborations by Muniz and Kibria19.

Ridge regression has been widely used in generalized linear models (GLMs), with Segerstedt20 being one of 
the first to apply it in GLMs. This technique has since been used in various models to deal with multicollinearity. 
For instance, Månsson and Shukur21, Schaefer et al.22, Rady et al.23, Månsson24, Tharshan et al.25, Almulhim et 
al.26, Abonazel et al.27, Sami et al.28, Algamal et al.29, Dawoud30, El-Alosey et al.31, Akram et al.32, Shahzad et al.33, 
and Ashraf et al.34.

A substantial body of literature has explored the development and application of ridge estimators and other 
biasing parameters across a range of statistical frameworks, from classical linear regression to various count and 
GLMs. Despite these extensive developments, the integration of ridge regression methodology within the GPRM 
remains notably understudied. This research aims to address this gap by systematically evaluating the efficacy of 
ridge regression in ameliorating the dual challenges of multicollinearity and overdispersion within the GPRM 
framework and derivation and evaluation of optimal estimators for the ridge parameter k. The performance 
of the resulting ridge estimators will be rigorously compared against the conventional generalized Poisson 
maximum likelihood estimates (GPMLE). Theoretical comparisons and Monte Carlo simulations will be used 
to study the performance of the proposed estimator, and these findings will be further validated through a real-
world application.

This paper is organized in the following: Section "Generalized Poisson regression model" provides the 
statistical formulation of the Generalized Poisson (GP) distribution and its corresponding regression model. 
Section "Generalized Poisson ridge regression estimator" presents the methodological framework for addressing 
multicollinearity within the GPRM through the application of ridge regression. The performance criteria used to 
evaluate the proposed estimators are defined in Sect. "The superiority of the GPRRE over the GPMLE". Section 
"Selection of the biasing parameters" is devoted to a discussion of the methods for selecting the optimal ridge 
parameter, k. The efficacy of the proposed methodology is then rigorously assessed via an extensive Monte Carlo 
simulation study in Sect. "Monte Carlo simulation". To demonstrate its practical utility, the approach is applied 
to empirical datasets in Sect. "Application". Finally, the principal findings, along with concluding remarks and 
potential avenues for future research, are summarized in Sect. "Conclusion".

Generalized Poisson regression model
The GP distribution initially introduced by Consul and Jain35, which has parameters θ and ν. This distribution’s 
probability mass function (PMF) is defined as:

	
P (Y = y; θ, ν) = θ

y! (θ + νy)y−1e−(θ+νy),� (1)

where y = 0, 1, 2, . . . , θ > 0, and max(−1, −θ/4) ≤ ν ≤ 1. The GP distribution was initially introduced 
as an approximation to the generalized negative binomial distribution. Its properties were subsequently 
extensively developed by Consul36, whose foundational work led to it being commonly referred to as Consul’s 
GP distribution. The mean and variance of the distribution are given by:

	
E(Y ) = θ

1 − ν
,

and

	
Var(Y ) = θ

(1 − ν)3 .

Famoye37 suggested a more appropriate parametrization of the GP distribution for regression models by 
reparameterizing the original formulation in Eq. (1). Specifically, let µ = θ

1−ν  and φ = ν
θ . This transformation 
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leads to the relationships θ = µ
1+φµ  and ν = φµ

1+φµ . Under this reparameterization, the PMF for the GP 
distribution, denoted as GP(µ, φ), is given by:

	
P (Y = y; µ, φ) = (1 + φy)y−1

y!

(
µ

1 + φµ

)y

exp
(

−µ(1 + φy)
1 + φµ

)
, µ > 0, y = 0, 1, 2, . . .� (2)

This parameterization is very good for regression since it is easy to understand and fits well with modeling 
frameworks. The GP distribution is great for analyzing count data because it can handle over- or underdispersion. 
The mean and variance of GP(µ, φ) are:

	 E(Y |xi) = µi,

and

	 Var(Y |xi) = µi(1 + φµi)2.

The GPRM provides a flexible extension of the standard PRM, designed to handle count data characterized by 
either over- or underdispersion. The model is constructed within the GLM framework. In this specification, 
the mean of the response variable, denoted by µi, is connected to a linear combination of predictors through a 
logarithmic link function, expressed as:

	 log µi = ηi = x′
iβ,� (3)

where µi denotes the expected count for the i-th observation. This mean is modeled as a function of a 
p × 1 vector of explanatory variables, xi, and a corresponding p-dimensional vector of unknown regression 
coefficients, β. The coefficients quantify the relationship between the explanatory variables and the expected 
value of the response variable. The MLE method is commonly used to estimate the parameters of the GPRM. In 
this approach, we maximize the likelihood function L(β, φ), which expresses the probability of observing the 
data given the model parameters. The log-likelihood function ℓ(β, φ) is given by:

	
ℓ(β, φ) =

n∑
i=1

[
yi [log (µi) − log (1 + φµi)] + (yi − 1) log(1 + φyi) − log(yi!) − µi(1 + φyi)

1 + φµi

]
.� (4)

Eq.(4) represent the GPMLE for the parameters φ (dispersion parameter) and βr  (regression coefficients) in a 
GPRM:

	

∂ℓ

∂φ
=

n∑
i=1

(
−yiµi

1 + φµi
+ yi(yi − 1)

1 + φyi
− µi(yi − µi)

(1 + φµi)2

)
= 0, � (5)

	

∂ℓ

∂βr
=

n∑
i=1

yi − µi

µi(1 + φµi)2
∂µi

∂βr
= 0. � (6)

Since the likelihood equation for the regression coefficients, β, is nonlinear, the Iterative Weighted Least Squares 
(IWLS) algorithm (also known as the Fisher Scoring method) proposed by Dutang38 is employed to derive the 
MLE. Let β(s−1) denote the vector of regression coefficients estimated at the (s − 1)-th iteration. The coefficient 
vector is subsequently updated at the s-th iteration according to the following rule:

	 β(s) = β(s−1) + I−1(β(s−1))S(β(s−1)),� (7)

where S(β(s−1)) is the score function evaluated at β(s−1) and I(β(s−1)) is the Fisher information matrix. In 
the final step of the algorithm, the GPMLE for the regression coefficients, β̂GPMLE, is given by:

	 β̂GPMLE = A−1X ′Ŵ ẑ,� (8)

where A = X ′Ŵ X , ẑ is the adjusted response vector, and Ŵ  is a diagonal weight matrix with diagonal elements 
ŵi. The diagonal elements of Ŵ  are ŵi = µ̂i

(1+φµi)2 , and the elements of the adjusted response vector ĉ are 

ẑi = log(µ̂i) + yi−µ̂i
µ̂i

.

The asymptotic covariance matrix, matrix mean squared error (MMSE), and the MSE for GPMLE are given 
by:

	
Cov(β̂GPMLE) =

[
−E

(
∂2ℓ

∂β∂β′

)]
= φ̂ QΛ−1Q′, � (9)
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MMSE(β̂GPMLE) =E
[
(β̂GPMLE − β)(β̂GPMLE − β)′]

=Cov(β̂GPMLE) +
(
E(β̂GPMLE) − β

) (
E(β̂GPMLE) − β

)′ = φ̂ QΛ−1Q′,
� (10)

	
MSE(β̂GPMLE) =Tr

(
MMSE(β̂GPMLE)

)
= φ̂

p∑
j=1

1
λj

. � (11)

where Tr is the trace of the matrix, φ̂ is the estimated dispersion parameter, the matrix A is expressed as 
A = QΛQ′, Λ = diag(λ1, λ2, . . . , λp) = QAQ′ with Q is an orthogonal matrix whose columns represent 
the eigenvectors of QAQ′, and λj  is the jth eigenvalue of the A matrix. When the explanatory variables in the 
GPRM are highly correlated, the weighted cross-product matrix A becomes unstable. This leads to inefficient 
estimates from the GPMLE, with large variances. As a result, the estimated coefficients are often too large, 
making them difficult to interpret.

Generalized Poisson ridge regression estimator
Segerstedt20 introduced the ridge estimator for GLMs as a solution to multicollinearity, building on the 
foundational work of Hoerl and Kennard16,17. When the explanatory variables in the GPRM are highly correlated, 
the GPMLE produces inefficient estimates characterized by a large MSE. Following the contributions of Månsson 
and Shukur21, Sami et al.28, Shahzad et al.33, and Ashraf et al.34, this paper introduces a ridge estimator extended 
to the GPRM, referred to as the Generalized Poisson Ridge Regression Estimator (GPRRE). Its formulation is 
expressed as:

	 β̂k∗ = (A + k∗Ip)−1
Sβ̂GPMLE,� (12)

where k∗(k∗ > 0) is the ridge parameter, Ip is the identity matrix, and if k∗ = 0 then the GPRRE is reduced to 
GPMLE.

The bias vector and variance-covariance matrix of the GPRRE are given by:

	 Bias
(
β̂k∗

)
= E

(
β̂k∗

)
− β = −k∗QΛ−1

k∗ α, � (13)

	
Cov

(
β̂k∗

)
= E

[ (
β̂k∗ − E(β̂k∗ )

) (
β̂k∗ − E(β̂k∗ )

)′

]
= φ̂ QΛ−1

k∗ ΛΛ−1
k∗ Q′. � (14)

The MMSE and MSE for the GPRRE can be computed using Eqs. (13) and (14) as follows:

	

MMSE
(
β̂k∗

)
=E

(
(β̂k∗ − β)(β̂k∗ − β)′) = Cov

(
β̂k∗

)
+ Bias

(
β̂k∗

)
Bias′ (

β̂k∗
)

=φ̂ QΛ−1
k∗ ΛΛ−1

k∗ Q′ + k∗2
QΛ−1

k∗ αα′Λ−1
k∗ Q′,

� (15)

	
MSE

(
β̂k∗

)
=Tr

[
MMSE

(
β̂k∗

)]
= φ̂

p∑
j=1

λj

(λj + k∗)2 + k∗2
p∑

j=1

α2
j

(λj + k∗)2 , � (16)

where the vector α = QT β, and Λk∗ = diag(λ1 + k∗, λ2 + k∗, . . . , λp + k∗) = Q(A + kI)Q′.

The superiority of the GPRRE over the GPMLE
To assess the superiority of the GPRRE compared to GPMLE, Hoerl and Kennard16 proposed theoretical results 
regarding the properties of the MSE for ridge regression estimators in the linear regression model. In this study, 
we demonstrate that these results are also applicable to the GPRM. Based on these theorems, we will investigate 
the superiority of the GPRRE over the GPMLE.

Theorem 1  The variance D1(k∗) and the squared bias D2(k∗) are continuous functions of k∗, where D1(k∗) is 
monotonically decreasing and D2(k∗) is monotonically increasing, provided that k∗ > 0 and λj > 0.

Proof  Using Eq. 16, we are given the following expressions for the variance and squared bias:

	
D1(k∗) = φ̂

p∑
j=1

λj

(λj + k∗)2 , D2(k∗) = k∗2
p∑

j=1

α2
j

(λj + k∗)2 .

	1.	 Monotonicity of D1(k∗): The derivative of D1(k∗) with respect to k∗ is:
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dD1(k∗)
dk∗ = −φ̂

p∑
j=1

2λj

(λj + k∗)3 ,

	since λj > 0 and k∗ > 0, we conclude that dD1(k∗)
dk∗ < 0, implying D1(k∗) is monotonically decreasing.

	2.	 Monotonicity of D2(k∗): The derivative of D2(k∗) with respect to k∗ is:

	

dD2(k∗)
dk∗ = 2k∗

p∑
j=1

α2
j

(λj + k∗)3 λj ,

	since λj > 0 and k∗ > 0, we have dD2(k∗)
dk∗ > 0, implying D2(k∗) is monotonically increasing.

Thus, D1(k∗) is monotonically decreasing and D2(k∗) is monotonically increasing for k∗ > 0. □

Theorem 2  For the GPRM, the GPRRE is more efficient than the GPMLE if

	 MSE(β̂GPMLE) − MSE(β̂k∗ ) > 0 for all k∗ > 0 and λj > 0.

Proof  For D1(k∗) when k∗ = 0, we have:

	
D1(k∗) = φ̂

p∑
j=1

1
λj

,

which equals MSE(β̂k∗ ) . The difference between MSE(β̂k∗ ) and MSE(β̂GPMLE) is:

	
∆ = φ̂

p∑
j=1

1
λj

−

(
φ̂

p∑
j=1

λj

(λj + k∗)2 +
p∑

j=1

k∗2 α2
j

(λj + k∗)2

)
=

p∑
j=1

k∗(φ̂k∗ + 2φ̂λ − k∗λα2
j )

λj(λj + k∗)2 ,

for any k∗ > 0, then ∆ > 0 if and only if φ̂k∗ + 2φ̂λ − k∗λα2
j > 0. Consequently, 

MSE(β̂GPMLE) − MSE(β̂k∗ ) > 0 holds under the same condition, i.e., φ̂k∗ + 2φ̂λ − k∗λα2
j > 0. □

Selection of the biasing parameters
The ridge parameter (k) is a critical component of the ridge regression estimator, as its value directly governs 
the degree of shrinkage and bias introduced to stabilize the coefficient estimates. Consequently, the selection 
of an optimal value for this shrinkage parameter has become a central challenge in the application of the ridge 
methodology. This is particularly vital in the presence of multicollinearity, where high correlations among 
explanatory variables can severely degrade the performance of standard estimators. In response, a significant 
body of research has been dedicated to developing methods for estimating the optimal k across diverse regression 
frameworks, such as those of Månsson and Shukur21, Schaefer et al.22, Rady et al.23, Tharshan and Wijekoon25, 
Algamal et al.29, Akram et al.32.

The foundational work on this technique was established by16,17, who first proposed ridge estimation to 
mitigate multicollinearity in linear regression models. Their approach has since been successfully generalized to 
a wider array of models, including the gamma regression model32 and the zero-inflated CMPRM34. Within the 
context of the GPRM, the resulting estimator is designated as the GPRRE. For our analysis, following the works 
of16,17 and21, we adopt the following values for k∗:

	
k̂∗

1
= φ̂∑p

j=1 α̂2
j

, � (17)

	
k̂∗

2
= φ̂

max(α̂2
j ) , � (18)

	
k̂∗

3
= min

(
φ̂

α̂2
j

)
. � (19)

Following Ashraf et al.34, we use the following values for k∗:

	
qj = φ̂

2λjα̂2
j + φ̂

, � (20)

	 k̂∗
4

= median(qj), � (21)
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k̂∗

5
= median

(
λj

1 + 2λjα̂2
j

)
. � (22)

Following Shahzad et al.33, we use the following values for k∗:

	
k̂∗

6
= min

(
λjφ̂

φ̂ + λjα̂2
j

)
, � (23)

	
k̂∗

7
= 1

max(α̂2
j ) . � (24)

Following Tharshan et al.25, we use the following values for k∗:

	
k̂∗

8
= median

(√
1

α̂2
j

)
, � (25)

	

k̂∗
9

= max


 1√

1
α̂2

j


 . � (26)

Following Sami et al.28, we use the following value for k∗:

ρ n

GPMLE GPRRE

– k̂∗
1 k̂∗

2 k̂∗
3 k̂∗

4 k̂∗
5 k̂∗

6 k̂∗
7 k̂∗

8 k̂∗
9 k̂∗

10 k̂∗
11 k̂∗

12 k̂∗
13 k̂∗

14 k̂∗
15

0.80 50 0.2898 0.2751 0.2707 0.2707 0.2827 0.1991 0.2708 0.2671 0.2048 0.2684 0.2679 0.2213 0.1436 0.1718 0.1367 0.1551

100 0.1324 0.1289 0.1283 0.1283 0.1309 0.0965 0.1283 0.1277 0.1051 0.1284 0.1275 0.1145 0.0728 0.0959 0.0830 0.0965

150 0.0945 0.0912 0.0905 0.0905 0.0936 0.0745 0.0905 0.0919 0.0800 0.0924 0.0922 0.0849 0.0564 0.0728 0.0629 0.0711

200 0.0617 0.0603 0.0601 0.0601 0.0613 0.0506 0.0600 0.0606 0.0543 0.0609 0.0607 0.0574 0.0440 0.0516 0.0463 0.0518

300 0.0386 0.0379 0.0378 0.0378 0.0385 0.0326 0.0378 0.0382 0.0349 0.0383 0.0382 0.0369 0.0332 0.0343 0.0318 0.0350

400 0.0342 0.0333 0.0332 0.0332 0.0341 0.0290 0.0332 0.0339 0.0311 0.0340 0.0339 0.0328 0.0294 0.0304 0.0283 0.0310

0.85 50 0.2582 0.2452 0.2419 0.2419 0.2521 0.1772 0.2421 0.2408 0.1848 0.2421 0.2412 0.2020 0.1251 0.1521 0.1247 0.1448

100 0.1897 0.1778 0.1759 0.1759 0.1859 0.1327 0.1752 0.1793 0.1416 0.1803 0.1784 0.1535 0.0935 0.1199 0.0962 0.1111

150 0.1105 0.1067 0.1058 0.1058 0.1093 0.0858 0.1058 0.1068 0.0915 0.1074 0.1070 0.0968 0.0575 0.0810 0.0674 0.0767

200 0.0828 0.0789 0.0783 0.0783 0.0820 0.0648 0.0784 0.0808 0.0703 0.0811 0.0808 0.0748 0.0464 0.0640 0.0547 0.0618

300 0.0529 0.0518 0.0516 0.0516 0.0526 0.0422 0.0516 0.0521 0.0465 0.0522 0.0521 0.0495 0.0334 0.0453 0.0413 0.0460

400 0.0422 0.0412 0.0410 0.0410 0.0420 0.0338 0.0410 0.0417 0.0375 0.0418 0.0417 0.0400 0.0275 0.0364 0.0332 0.0372

0.90 50 0.5974 0.5289 0.5035 0.5035 0.5654 0.3804 0.5099 0.4957 0.3481 0.4899 0.4994 0.3668 0.2488 0.2360 0.1436 0.1604

100 0.2662 0.2446 0.2383 0.2383 0.2582 0.1802 0.2387 0.2439 0.1848 0.2450 0.2465 0.1980 0.1037 0.1344 0.0884 0.1071

150 0.1761 0.1651 0.1634 0.1634 0.1730 0.1237 0.1634 0.1665 0.1326 0.1675 0.1654 0.1430 0.0782 0.1093 0.0836 0.0984

200 0.1346 0.1236 0.1216 0.1216 0.1321 0.1008 0.1218 0.1287 0.1072 0.1295 0.1292 0.1137 0.0555 0.0863 0.0648 0.0760

300 0.0818 0.0778 0.0772 0.0772 0.0810 0.0631 0.0773 0.0796 0.0689 0.0800 0.0799 0.0735 0.0386 0.0619 0.0513 0.0596

400 0.0562 0.0539 0.0536 0.0536 0.0557 0.0430 0.0536 0.0552 0.0483 0.0554 0.0552 0.0520 0.0276 0.0450 0.0387 0.0452

0.95 50 1.5628 1.3330 1.1923 1.1923 1.3788 0.8473 1.2329 1.0755 0.6101 0.8662 0.9604 0.7141 0.4779 0.3230 0.1252 0.1377

100 0.5249 0.4493 0.4227 0.4227 0.4934 0.3271 0.4282 0.4398 0.3032 0.4357 0.4428 0.3208 0.1785 0.1624 0.0857 0.1013

150 0.3151 0.2744 0.2631 0.2631 0.3017 0.2107 0.2649 0.2820 0.2095 0.2826 0.2848 0.2201 0.1094 0.1287 0.0739 0.0887

200 0.2129 0.1914 0.1872 0.1872 0.2065 0.1414 0.1879 0.1977 0.1497 0.1985 0.1979 0.1623 0.0777 0.1079 0.0685 0.0868

300 0.1507 0.1386 0.1363 0.1363 0.1477 0.1100 0.1365 0.1435 0.1171 0.1442 0.1435 0.1247 0.0570 0.0910 0.0633 0.0774

400 0.1203 0.1129 0.1115 0.1115 0.1183 0.0891 0.1116 0.1153 0.0957 0.1160 0.1155 0.1021 0.0447 0.0775 0.0560 0.0684

0.99 50 5.1331 3.6900 3.1279 3.1279 3.2843 2.2495 3.5360 2.9300 0.8933 0.7646 1.4590 1.6130 0.6255 0.2144 0.0904 0.0887

100 2.7809 2.1335 1.7621 1.7621 2.1783 1.3616 1.9195 1.6389 0.6881 0.8592 1.1961 0.9519 0.5569 0.1459 0.0399 0.0436

150 1.6278 1.2167 1.0004 1.0004 1.3530 0.8740 1.0816 1.0614 0.5628 0.8179 0.9808 0.6623 0.3522 0.1422 0.0357 0.0415

200 1.3280 0.9515 0.7765 0.7765 1.0993 0.7049 0.8530 0.8800 0.4879 0.7348 0.8498 0.5532 0.3204 0.1201 0.0341 0.0386

300 0.8750 0.6573 0.5644 0.5644 0.7635 0.4781 0.5920 0.6484 0.3825 0.6009 0.6419 0.4224 0.2215 0.1168 0.0321 0.0422

400 0.5920 0.4872 0.4472 0.4472 0.5456 0.3519 0.4551 0.4792 0.3147 0.4665 0.4805 0.3326 0.1908 0.1351 0.0445 0.0578

Table 1.  Estimated MSE values for different estimators at p = 4 and φ = 0.1. Bold values indicate the 
minimum MSE.
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Following Amin et al.39, we use the following values for k∗:
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Building upon the previous works, we propose the following values for k∗:
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ρ n

GPMLE GPRRE

– k̂∗
1 k̂∗

2 k̂∗
3 k̂∗

4 k̂∗
5 k̂∗

6 k̂∗
7 k̂∗

8 k̂∗
9 k̂∗

10 k̂∗
11 k̂∗

12 k̂∗
13 k̂∗

14 k̂∗
15

0.80 50 0.8220 0.6225 0.5491 0.5491 0.6965 0.4756 0.5687 0.6162 0.4041 0.5756 0.5123 0.4362 0.2693 0.2601 0.3483 0.3246

100 0.3983 0.3277 0.2989 0.2989 0.3729 0.2712 0.3011 0.3409 0.2592 0.3459 0.3110 0.2682 0.1690 0.1639 0.1814 0.1659

150 0.2482 0.2157 0.2067 0.2067 0.2375 0.1909 0.1923 0.2218 0.1877 0.2282 0.2124 0.1875 0.1295 0.1300 0.1527 0.1330

200 0.1677 0.1443 0.1398 0.1398 0.1622 0.1332 0.1333 0.1559 0.1350 0.1591 0.1512 0.1373 0.0991 0.0997 0.1131 0.0982

300 0.1015 0.0912 0.0912 0.0912 0.0992 0.0789 0.0870 0.0980 0.0837 0.0987 0.0951 0.0890 0.0845 0.0683 0.0718 0.0668

400 0.0893 0.0833 0.0819 0.0819 0.0881 0.0741 0.0806 0.0859 0.0770 0.0870 0.0843 0.0798 0.0642 0.0669 0.0603 0.0604

0.85 50 0.7522 0.5727 0.5013 0.5013 0.6468 0.4471 0.5216 0.5748 0.3918 0.5483 0.4836 0.4156 0.2700 0.2654 0.3620 0.3329

100 0.5080 0.4406 0.4153 0.4153 0.4740 0.3322 0.4014 0.4186 0.3062 0.4210 0.3671 0.3161 0.2097 0.1855 0.1924 0.1818

150 0.3109 0.2527 0.2347 0.2347 0.2915 0.2280 0.2233 0.2683 0.2184 0.2769 0.2527 0.2173 0.1308 0.1310 0.1552 0.1398

200 0.2312 0.2034 0.1965 0.1965 0.2225 0.1655 0.1922 0.2104 0.1673 0.2135 0.1976 0.1748 0.1064 0.1147 0.1014 0.1006

300 0.1510 0.1435 0.1406 0.1406 0.1484 0.1167 0.1386 0.1418 0.1202 0.1440 0.1367 0.1245 0.0759 0.0954 0.0724 0.0799

400 0.1084 0.0992 0.0985 0.0985 0.1061 0.0867 0.0918 0.1031 0.0903 0.1048 0.1011 0.0941 0.0610 0.0718 0.0654 0.0640

0.90 50 1.9967 1.4032 1.1688 1.1688 1.4414 0.9476 1.3027 1.2470 0.6316 0.8582 0.7814 0.7623 0.4169 0.2837 0.3792 0.3590

100 0.8377 0.5733 0.4856 0.4856 0.6904 0.4598 0.5255 0.6172 0.3709 0.5764 0.4973 0.4136 0.1839 0.1449 0.1861 0.1694

150 0.4564 0.3838 0.3504 0.3504 0.4249 0.3077 0.3477 0.3725 0.2819 0.3811 0.3312 0.2825 0.1764 0.1520 0.1361 0.1330

200 0.3680 0.2873 0.2644 0.2644 0.3421 0.2633 0.2627 0.3107 0.2462 0.3193 0.2871 0.2443 0.1286 0.1239 0.1204 0.1130

300 0.2240 0.1854 0.1740 0.1740 0.2137 0.1693 0.1683 0.2015 0.1672 0.2069 0.1938 0.1691 0.0810 0.0986 0.0819 0.0792

400 0.1560 0.1385 0.1318 0.1318 0.1520 0.1196 0.1316 0.1455 0.1235 0.1486 0.1406 0.1282 0.0665 0.0904 0.0681 0.0730

0.95 50 3.8194 2.3711 1.9112 1.9112 2.2518 1.5623 2.3487 2.1922 0.7851 0.8564 0.8715 1.2078 0.5174 0.2696 0.4781 0.4510

100 1.5045 1.0422 0.8315 0.8315 1.1737 0.8046 0.9295 0.9611 0.5416 0.7591 0.6290 0.6064 0.3356 0.1654 0.1980 0.1901

150 1.0376 0.7071 0.5711 0.5711 0.8676 0.6168 0.6274 0.7187 0.4774 0.6637 0.5668 0.4887 0.2558 0.1391 0.1530 0.1493

200 0.5757 0.4185 0.3763 0.3763 0.5057 0.3272 0.3916 0.4630 0.2894 0.4551 0.3885 0.3214 0.1439 0.1129 0.1000 0.1037

300 0.3579 0.2688 0.2417 0.2417 0.3292 0.2534 0.2434 0.3023 0.2365 0.3110 0.2776 0.2339 0.1136 0.1033 0.0816 0.0804

400 0.3077 0.2214 0.1952 0.1952 0.2841 0.2230 0.1979 0.2667 0.2128 0.2742 0.2484 0.2124 0.0919 0.0952 0.0676 0.0660

0.99 50 16.7179 9.1220 7.6334 7.6334 3.3114 4.5110 9.9153 8.9474 0.7863 0.3171 0.5814 4.0202 0.3304 0.1879 0.6243 0.5402

100 8.6364 3.9314 3.0897 3.0897 2.7907 2.7088 4.6309 4.7197 0.7608 0.4671 0.6669 2.3045 0.2862 0.0996 0.3660 0.3227

150 4.7889 2.2297 1.6376 1.6376 2.2234 1.9964 2.4581 2.6431 0.7892 0.6876 0.7425 1.4200 0.2910 0.0792 0.2268 0.2109

200 4.2318 1.9942 1.4255 1.4255 2.1155 1.7478 2.1377 2.3026 0.7569 0.7006 0.7325 1.2572 0.4574 0.0667 0.1819 0.1743

300 2.3594 1.1437 0.7755 0.7755 1.4394 1.1820 1.1636 1.3182 0.6514 0.7770 0.6705 0.7877 0.3348 0.0626 0.0917 0.0910

400 1.6393 0.9453 0.6527 0.6527 1.2012 0.9106 0.8500 0.9920 0.5957 0.7701 0.6449 0.6344 0.3390 0.0794 0.0489 0.0491

Table 2.  Estimated MSE values for different estimators at p = 4 and φ = 0.5. Bold values indicate the 
minimum MSE.
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Monte Carlo simulation
This section presents Monte Carlo simulations to evaluate the performance of the proposed estimator, including 
the simulation design, results, and a comparison of relative efficiency.

Simulation design
This section describes the Monte Carlo simulation study conducted to evaluate the performance of different 
estimators in the GPRM under multicollinearity. The response variable (y) was generated from a GP 
distribution40,41, with the mean (µi = exp(xiβ)) for i = 1, . . . , n, β representing the vector of coefficients, and 
xi being the i th row of the design matrix X  contains the explanatory variables. The explanatory variables were 
simulated using the formula42,34:

	 xij =
√

1 − ρ2 eij + ρei,p+1, i = 1, . . . , n; j = 2, . . . , p,� (34)

where ρ determines the correlation between explanatory variables and eij  is drawn from a standard normal 
distribution. Multicollinearity was analyzed for ρ values of 0.80, 0.85, 0.90, 0.95, and 0.99. Models were tested 
with 4, 7, and 10 explanatory variables. The intercept (β0) was set to 1, and the dispersion parameter φ was varied 

ρ n

GPMLE GPRRE

– k̂∗
1 k̂∗

2 k̂∗
3 k̂∗

4 k̂∗
5 k̂∗

6 k̂∗
7 k̂∗

8 k̂∗
9 k̂∗

10 k̂∗
11 k̂∗

12 k̂∗
13 k̂∗

14 k̂∗
15

0.80 50 3.6489 1.7840 1.5776 1.5776 1.4195 0.9476 2.0133 1.8727 0.6849 0.8922 0.7117 0.9642 0.5797 0.6368 0.9644 0.8964

100 0.9571 0.6492 0.5691 0.5691 0.7714 0.5420 0.5889 0.6802 0.4448 0.6126 0.4506 0.4743 0.3659 0.3461 0.6071 0.5475

150 0.5211 0.4269 0.4043 0.4043 0.4650 0.3448 0.3491 0.4144 0.3162 0.4171 0.3340 0.3172 0.3521 0.2613 0.4741 0.4124

200 0.3610 0.3069 0.3052 0.3052 0.3308 0.2511 0.2481 0.3084 0.2418 0.3135 0.2635 0.2457 0.2823 0.1921 0.3709 0.3081

300 0.2400 0.2221 0.2288 0.2288 0.2276 0.1769 0.1823 0.2165 0.1763 0.2208 0.1910 0.1810 0.2164 0.1308 0.2199 0.1776

400 0.1715 0.1610 0.1617 0.1617 0.1666 0.1337 0.1469 0.1600 0.1355 0.1619 0.1470 0.1386 0.1408 0.1117 0.1413 0.1176

0.85 50 4.0078 1.5357 1.3720 1.3720 1.2153 0.8870 1.6035 1.6477 0.6760 0.8763 0.6878 0.8689 0.6007 0.6739 1.0125 0.9435

100 1.1519 0.8641 0.7409 0.7409 0.9168 0.6134 0.7679 0.7883 0.4786 0.6855 0.4900 0.5219 0.5047 0.3725 0.5372 0.4799

150 0.7483 0.5325 0.4773 0.4773 0.6375 0.4525 0.4510 0.5614 0.3912 0.5462 0.4183 0.4047 0.3171 0.2654 0.5123 0.4593

200 0.5378 0.4299 0.3874 0.3874 0.4894 0.3439 0.3799 0.4228 0.3091 0.4245 0.3257 0.3116 0.2277 0.1866 0.2567 0.2326

300 0.3416 0.2922 0.2702 0.2702 0.3250 0.2404 0.2701 0.2934 0.2308 0.3000 0.2503 0.2323 0.1575 0.1513 0.1454 0.1342

400 0.2135 0.1843 0.1826 0.1826 0.2040 0.1601 0.1651 0.1956 0.1615 0.1984 0.1770 0.1642 0.1348 0.1156 0.1636 0.1359

0.90 50 8.5537 4.2505 3.7717 3.7717 2.1770 1.5578 4.8827 4.3108 0.8267 0.9296 0.7978 1.8232 0.6627 0.6689 1.0485 0.9703

100 2.4749 1.4253 1.1802 1.1802 1.4381 0.9700 1.4313 1.4723 0.5925 0.7810 0.5282 0.8176 0.3843 0.3213 0.6477 0.6005

150 1.0471 0.7850 0.6814 0.6814 0.8836 0.5627 0.7050 0.7439 0.4383 0.6591 0.4707 0.4947 0.3500 0.2567 0.3700 0.3248

200 0.7964 0.5680 0.4881 0.4881 0.6836 0.4783 0.4960 0.5802 0.3985 0.5649 0.4164 0.4059 0.2599 0.1994 0.3289 0.2982

300 0.4590 0.3283 0.2951 0.2951 0.4101 0.3073 0.2846 0.3714 0.2820 0.3807 0.3066 0.2783 0.1728 0.1421 0.2338 0.2061

400 0.3178 0.2638 0.2490 0.2490 0.3004 0.2110 0.2468 0.2792 0.2096 0.2829 0.2376 0.2189 0.1496 0.1292 0.1337 0.1236

0.95 50 12.6088 6.2636 5.5080 5.5080 2.7403 2.2383 7.2900 6.4603 0.8256 0.7356 0.7104 2.6804 0.6402 0.6548 1.1497 1.0466

100 3.7182 2.1997 1.7574 1.7574 2.0520 1.4411 2.1849 2.1261 0.7059 0.8197 0.5638 1.1552 0.5030 0.3381 0.6570 0.6037

150 2.2661 1.2740 0.9779 0.9779 1.4555 1.0220 1.2351 1.3215 0.5961 0.8031 0.5244 0.7618 0.3775 0.2287 0.4988 0.4650

200 1.4026 0.8972 0.7106 0.7106 1.0706 0.7598 0.8126 0.9046 0.5243 0.7493 0.4729 0.5770 0.3159 0.1718 0.3062 0.2874

300 0.8113 0.5183 0.4321 0.4321 0.6760 0.4787 0.4579 0.5973 0.3942 0.5804 0.4209 0.4096 0.2264 0.1426 0.2343 0.2138

400 0.6150 0.3725 0.3283 0.3283 0.5135 0.3682 0.3364 0.4776 0.3181 0.4711 0.3507 0.3344 0.1830 0.1164 0.2174 0.1886

0.99 50 73.1927 33.8598 30.9481 30.9481 2.3796 7.8464 41.4792 35.5031 0.7683 0.3623 0.4318 12.3884 0.4705 0.6210 1.3286 1.1616

100 22.4155 9.5273 8.0536 8.0536 2.8515 5.2309 12.1525 12.4546 0.7808 0.2865 0.3609 5.6033 0.3500 0.3376 1.0869 0.9433

150 10.7908 4.3459 3.4415 3.4415 2.6203 3.1024 5.4814 5.8097 0.7263 0.3877 0.3648 2.7016 0.3189 0.1933 0.7474 0.6645

200 9.2668 4.1048 3.2091 3.2091 2.9107 3.0169 4.8104 5.0379 0.7521 0.4261 0.3924 2.4307 0.3128 0.1537 0.6041 0.5397

300 4.9456 2.0607 1.4914 1.4914 2.0414 1.9294 2.4068 2.6616 0.7074 0.6138 0.4203 1.3836 0.2586 0.0926 0.3879 0.3532

400 3.4664 1.5695 1.1006 1.1006 1.8078 1.5584 1.6910 1.9099 0.6938 0.7355 0.4782 1.0584 0.2535 0.0779 0.2325 0.2178

Table 3.  Estimated MSE values for different estimators at p = 4 and φ = 1. Bold values indicate the minimum 
MSE.
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at 0.01, 0.5, and 141. The slope coefficients were set such that 
∑p

j=2 β2
j = 1, with equal values for β1, . . . , βp−1. 

Simulations were conducted for sample sizes of 50, 100, 150, 200, 300, and 400.
The simulations were implemented in the R software (R version 4.4.1). For each iteration, the estimated MSE 

of the estimators was calculated as follows43,44:

	
MSE(β∗) =

∑1000
l=1 (β̂l − β)T (β̂l − β)

1000 ,� (35)

where βl denotes the vector of estimated coefficients from the -th simulation run for a specific estimator (such 
as the GPMLE or a GPRRE employing a particular ridge parameter). The estimator associated with the smallest 
MSE was deemed optimal for alleviating the effects of multicollinearity within the GPRM framework.

Simulation results
Simulation Tables 1, 2, 3, 4, 5, 6, 7, 8 and 9 provide a detailed comparison of the MSE for the GPMLE and 
different versions of the GPRRE under various experimental conditions. These conditions include different levels 
of multicollinearity (ρ), sample sizes (n), dimensions (p), and shrinkage parameters (φ). The tables highlight the 
best-performing estimator in each scenario by marking the lowest MSE values in bold. Main factors affecting 
simulation: 

	1.	 Effect of multicollinearity:

•	 The degree of multicollinearity (ρ) emerged as the most critical factor influencing estimator performance. 
As expected, the MSE of the GPMLE becomes increasingly severe with higher ρ values.

•	 Under severe multicollinearity, the GPMLE’s MSE becomes prohibitively large, often by an order of mag-
nitude or more compared to the best-performing GPRRE. The ridge estimators, particularly k̂∗

13, k̂∗
14, and 

ρ n

GPMLE GPRRE

– k̂∗
1 k̂∗

2 k̂∗
3 k̂∗

4 k̂∗
5 k̂∗

6 k̂∗
7 k̂∗

8 k̂∗
9 k̂∗

10 k̂∗
11 k̂∗

12 k̂∗
13 k̂∗

14 k̂∗
15

0.80 50 0.7017 0.6444 0.6154 0.6154 0.6604 0.3936 0.6197 0.6171 0.4078 0.6343 0.6358 0.4367 0.2191 0.2180 0.2076 0.2228

100 0.3298 0.3015 0.2923 0.2923 0.3177 0.2013 0.2930 0.3095 0.2254 0.3169 0.3136 0.2425 0.1176 0.1225 0.1247 0.1353

150 0.1965 0.1848 0.1824 0.1824 0.1924 0.1234 0.1825 0.1901 0.1471 0.1927 0.1912 0.1627 0.0810 0.0926 0.0962 0.1152

200 0.1341 0.1276 0.1263 0.1263 0.1319 0.0862 0.1263 0.1310 0.1049 0.1323 0.1315 0.1167 0.0661 0.0733 0.0750 0.0907

300 0.0932 0.0900 0.0892 0.0892 0.0922 0.0626 0.0892 0.0917 0.0764 0.0924 0.0920 0.0842 0.0543 0.0576 0.0579 0.0702

400 0.0729 0.0720 0.0718 0.0718 0.0724 0.0497 0.0718 0.0720 0.0609 0.0724 0.0721 0.0674 0.0473 0.0506 0.0518 0.0623

0.85 50 1.2653 1.0494 0.9347 0.9347 1.0894 0.6325 0.9771 0.9987 0.5796 1.0120 1.0642 0.6262 0.2558 0.2067 0.2081 0.2047

100 0.3712 0.3442 0.3359 0.3359 0.3573 0.2148 0.3366 0.3455 0.2405 0.3538 0.3490 0.2640 0.1145 0.1207 0.1236 0.1459

150 0.2772 0.2553 0.2495 0.2495 0.2677 0.1606 0.2503 0.2620 0.1860 0.2674 0.2645 0.2066 0.0851 0.0928 0.0931 0.1160

200 0.2035 0.1883 0.1842 0.1842 0.1982 0.1232 0.1844 0.1960 0.1483 0.1991 0.1972 0.1657 0.0717 0.0822 0.0831 0.1047

300 0.1128 0.1110 0.1106 0.1106 0.1116 0.0706 0.1106 0.1105 0.0885 0.1116 0.1108 0.0994 0.0504 0.0640 0.0671 0.0852

400 0.0950 0.0937 0.0934 0.0934 0.0942 0.0601 0.0934 0.0934 0.0765 0.0942 0.0936 0.0855 0.0416 0.0578 0.0605 0.0759

0.90 50 1.5898 1.2730 1.0845 1.0845 1.3115 0.7799 1.1584 1.1887 0.6522 1.1785 1.2469 0.7106 0.2788 0.1995 0.2179 0.2051

100 0.7877 0.6630 0.5990 0.5990 0.7172 0.4503 0.6133 0.6738 0.4392 0.7014 0.6974 0.4528 0.1824 0.1297 0.1320 0.1321

150 0.4141 0.3818 0.3690 0.3690 0.3954 0.2415 0.3696 0.3819 0.2635 0.3920 0.3864 0.2824 0.1157 0.1012 0.0918 0.1144

200 0.3465 0.3258 0.3166 0.3166 0.3335 0.2043 0.3166 0.3237 0.2287 0.3317 0.3289 0.2492 0.0988 0.0920 0.0842 0.1133

300 0.2028 0.1963 0.1941 0.1941 0.1984 0.1200 0.1941 0.1948 0.1451 0.1980 0.1963 0.1623 0.0617 0.0759 0.0747 0.1051

400 0.1471 0.1390 0.1368 0.1368 0.1443 0.0904 0.1368 0.1433 0.1131 0.1449 0.1439 0.1262 0.0485 0.0645 0.0620 0.0853

0.95 50 3.0292 2.5059 2.1398 2.1398 2.3637 1.4310 2.2886 2.0990 1.0119 1.7262 1.9217 1.1955 0.5672 0.2407 0.2173 0.2051

100 1.5290 1.2809 1.1169 1.1169 1.3177 0.8152 1.1629 1.1641 0.6822 1.1740 1.1731 0.6972 0.3574 0.1220 0.1229 0.1210

150 0.9041 0.8188 0.7549 0.7549 0.8253 0.4985 0.7570 0.7512 0.4610 0.7785 0.7770 0.4748 0.2069 0.1030 0.0804 0.0948

200 0.5995 0.5424 0.5127 0.5127 0.5593 0.3406 0.5132 0.5326 0.3461 0.5487 0.5404 0.3610 0.1527 0.0807 0.0665 0.0860

300 0.3722 0.3314 0.3166 0.3166 0.3540 0.2198 0.3168 0.3469 0.2432 0.3548 0.3510 0.2625 0.0939 0.0732 0.0631 0.0874

400 0.2792 0.2584 0.2516 0.2516 0.2697 0.1657 0.2516 0.2648 0.1919 0.2700 0.2671 0.2106 0.0757 0.0723 0.0662 0.0965

0.99 50 20.0532 13.7990 11.1530 11.1530 5.4951 6.0691 13.4736 12.3782 1.6942 1.0565 3.3032 5.4084 0.9910 0.1263 0.3738 0.3176

100 6.0251 4.6956 3.7970 3.7970 3.7630 2.7080 4.2466 3.7683 1.2478 1.7902 2.6554 1.8935 0.8647 0.0770 0.1005 0.0921

150 3.9783 2.9370 2.2153 2.2153 2.6677 1.8769 2.5665 2.5536 1.0776 1.7923 2.3125 1.3552 0.6347 0.0512 0.0705 0.0647

200 2.9540 2.0199 1.4693 1.4693 2.0084 1.4063 1.7843 1.9342 0.9099 1.6049 1.8928 1.0373 0.4822 0.0425 0.0595 0.0548

300 1.7375 1.2677 0.9978 0.9978 1.3714 0.8765 1.1011 1.2850 0.6920 1.2546 1.3292 0.7225 0.3339 0.0400 0.0332 0.0339

400 1.2668 1.0563 0.8980 0.8980 1.0803 0.6704 0.9089 0.9955 0.5735 1.0112 1.0309 0.5779 0.3073 0.0434 0.0272 0.0329

Table 4.  Estimated MSE values for different estimators at p = 7 and φ = 0.1. Bold values indicate the 
minimum MSE.
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k̂∗
15, demonstrate remarkable robustness, maintaining stable and low MSE by effectively shrinking the 

coefficients and controlling variance, even when the correlation between predictors approaches 0.99.
•	 While the performance gap narrows under moderate multicollinearity, the GPRRE variants still con-

sistently achieve a lower MSE than the GPMLE. This advantage is most evident for smaller sample sizes 
(n = 50, 100), where the data provides less information to stabilize the MLE.

	2.	 Effect of sample size:

•	 The benefits of the ridge approach are most acute in “small n” situations, which are common in modern 
statistical applications.

•	 For small n = 50, 100, the GPMLE is highly unstable. The GPRRE provides dramatic improvements in 
these settings, often reducing the MSE by half or more. This confirms that ridge regression is an essential 
tool for preventing overfitting when data is scarce.

•	 As the sample size increases (n = 300, 400), the performance of all estimators improves, and the relative 
advantage of the GPRRE diminishes. This is consistent with theoretical expectations, as the GPMLE is 
asymptotically unbiased. However, even with n = 400, the GPRRE often retains a slight edge, especially 
under high multicollinearity.

	3.	 Effect of number of explanatory variables:

•	 The benefits of the ridge approach are most acute in “large p” situations, which are common in modern 
statistical applications.

•	 The challenge of estimation increases with the number of explanatory variables. The GPRRE shows a clear 
and growing advantage over the GPMLE as p increases from 4 to 10, effectively managing the added com-
plexity and severe multicollinearity.

ρ n

GPMLE GPRRE

– k̂∗
1 k̂∗

2 k̂∗
3 k̂∗

4 k̂∗
5 k̂∗

6 k̂∗
7 k̂∗

8 k̂∗
9 k̂∗

10 k̂∗
11 k̂∗

12 k̂∗
13 k̂∗

14 k̂∗
15

0.80 50 3.2325 2.1434 1.8052 1.8052 1.6820 0.9828 2.1016 2.0620 0.7769 1.3945 1.2490 0.9881 0.4157 0.5200 0.6765 0.6007

100 0.9011 0.7451 0.6440 0.6440 0.7907 0.4867 0.6595 0.7081 0.4550 0.7571 0.6465 0.4606 0.2551 0.3169 0.3945 0.3410

150 0.5856 0.4978 0.4583 0.4583 0.5396 0.3332 0.4570 0.5061 0.3416 0.5332 0.4781 0.3537 0.1767 0.1896 0.2426 0.2058

200 0.3863 0.3329 0.3127 0.3127 0.3664 0.2349 0.3125 0.3519 0.2555 0.3661 0.3394 0.2672 0.1393 0.1488 0.1836 0.1585

300 0.2693 0.2401 0.2253 0.2253 0.2592 0.1693 0.2258 0.2511 0.1905 0.2597 0.2449 0.2027 0.1075 0.1111 0.1232 0.1136

400 0.1980 0.1895 0.1827 0.1827 0.1938 0.1277 0.1828 0.1873 0.1479 0.1932 0.1849 0.1595 0.0948 0.0959 0.0898 0.1024

0.85 50 7.8202 5.3076 4.7770 4.7770 2.4711 1.6676 4.7630 5.1508 1.0122 1.6948 1.6988 1.7863 0.5035 0.5652 0.8339 0.7490

100 1.1477 0.9346 0.7998 0.7998 0.9725 0.5824 0.8213 0.8691 0.5162 0.9124 0.7630 0.5363 0.2580 0.2931 0.3774 0.3305

150 0.8676 0.6950 0.5965 0.5965 0.7608 0.4585 0.6205 0.6954 0.4312 0.7366 0.6335 0.4446 0.1868 0.1879 0.2488 0.2139

200 0.5302 0.4221 0.3749 0.3749 0.4855 0.3101 0.3790 0.4563 0.3177 0.4872 0.4375 0.3270 0.1554 0.1703 0.2464 0.1960

300 0.3154 0.2963 0.2826 0.2826 0.3043 0.1914 0.2828 0.2906 0.2137 0.3020 0.2823 0.2279 0.1094 0.1104 0.1030 0.1137

400 0.2779 0.2654 0.2563 0.2563 0.2702 0.1700 0.2564 0.2595 0.1945 0.2682 0.2525 0.2090 0.0925 0.0970 0.0869 0.1085

0.90 50 5.9029 3.7296 2.9772 2.9772 2.4956 1.7694 3.6752 3.5626 1.0339 1.6834 1.5897 1.5697 0.5516 0.5983 0.8830 0.8126

100 2.2916 1.6298 1.2516 1.2516 1.6366 1.0745 1.4578 1.5253 0.7825 1.3880 1.1410 0.8446 0.3784 0.3644 0.5540 0.5051

150 1.3322 1.0759 0.8690 0.8690 1.1143 0.6926 0.9237 0.9682 0.5796 1.0251 0.8445 0.5832 0.2622 0.1983 0.2576 0.2309

200 1.0541 0.8927 0.7354 0.7354 0.9238 0.5883 0.7592 0.8054 0.5188 0.8695 0.7508 0.5136 0.2350 0.1540 0.1785 0.1607

300 0.6192 0.5526 0.4958 0.4958 0.5725 0.3532 0.4983 0.5264 0.3511 0.5590 0.4978 0.3606 0.1481 0.1062 0.0994 0.1001

400 0.4097 0.3451 0.3045 0.3045 0.3844 0.2443 0.3086 0.3667 0.2628 0.3862 0.3557 0.2770 0.1083 0.0917 0.0990 0.0972

0.95 50 10.5843 7.0806 5.9125 5.9125 3.8011 2.8498 6.9864 6.4531 1.3367 1.7615 1.8616 2.6896 0.8338 0.5889 0.9031 0.8234

100 3.9217 2.7952 2.1136 2.1136 2.4471 1.7547 2.5055 2.4785 1.0480 1.7062 1.3859 1.2694 0.6122 0.3425 0.5792 0.5387

150 2.6906 2.1520 1.6390 1.6390 1.9883 1.3176 1.8054 1.7437 0.8875 1.5214 1.2302 0.9509 0.4792 0.1986 0.2902 0.2718

200 1.7517 1.4372 1.1145 1.1145 1.4214 0.9307 1.1920 1.2053 0.7097 1.2315 0.9964 0.7079 0.3597 0.1378 0.1806 0.1665

300 1.0475 0.8044 0.6329 0.6329 0.8934 0.5876 0.6839 0.8076 0.5138 0.8666 0.7370 0.5092 0.2225 0.0966 0.1284 0.1143

400 0.8092 0.6313 0.5098 0.5098 0.7156 0.4700 0.5394 0.6577 0.4393 0.7082 0.6198 0.4408 0.1808 0.0805 0.0957 0.0885

0.99 50 63.1640 39.9406 33.0709 33.0709 4.2545 12.5910 40.6951 37.4582 1.5280 0.4250 1.1941 13.5719 0.7797 0.5791 1.2742 1.1157

100 19.6837 13.3269 10.4364 10.4364 4.9210 6.0585 12.7453 11.8404 1.5031 0.9308 1.4385 5.0314 0.9795 0.2323 0.6602 0.5736

150 12.7634 8.3207 6.2424 6.2424 3.9310 4.4185 7.9100 7.6234 1.3548 1.1547 1.4043 3.2993 0.8687 0.1587 0.4670 0.4159

200 8.7063 5.0538 3.5677 3.5677 3.1355 3.3136 4.9629 5.1701 1.2420 1.4011 1.3747 2.3261 0.7758 0.1285 0.4192 0.3815

300 5.3728 3.3092 2.2601 2.2601 2.7869 2.4599 3.0419 3.2663 1.2150 1.7226 1.4843 1.6332 0.7372 0.0702 0.2124 0.2002

400 4.0594 2.8981 1.9895 1.9895 2.5001 1.9594 2.4366 2.4998 1.1080 1.6942 1.3881 1.3062 0.7798 0.0526 0.1050 0.1003

Table 5.  Estimated MSE values for different estimators at p = 7 and φ = 0.5. Bold values indicate the 
minimum MSE.
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	4.	 Effect of dispersion parameter:

•	 The value of the dispersion parameter φ influences the scale of the MSE but does not alter the fundamental 
ranking of the estimators. The relative performance of the different GPRRE variants remains consistent 
across values of φ. Among the fifteen evaluated ridge estimators, k̂∗

13, k̂∗
14, and k̂∗15 consistently emerge 

as top performers. Their success is attributed to a more effective calibration of the shrinkage intensity, opti-
mally balancing the introduced bias against the reduction in variance to minimize the total MSE.

The results consistently demonstrate that the proposed GPRRE outperforms the conventional GPMLE across 
virtually all simulated scenarios. The reduction in MSE is particularly pronounced, underscoring the efficacy 
of introducing a bias-variance trade-off to manage the adverse effects of multicollinearity. The GPMLE, which 
relies on asymptotic properties that are violated in the presence of high correlation among predictors and finite 
samples, exhibits significantly inflated variance. In contrast, the GPRRE successfully stabilizes the coefficient 
estimates, leading to a substantial decrease in MSE.

In summary, the simulation study provides robust empirical evidence that the GPRRE is a superior 
alternative to the traditional maximum likelihood estimator in the presence of multicollinearity. Its performance 
is particularly strong in finite samples, with high-dimensional data, and under severe correlation among 
regressors. The proposed estimators k̂∗

13 and k̂∗
14 are recommended as reliable choices for practitioners, as they 

consistently provide the most accurate and stable estimates across a wide range of challenging data conditions. 
This demonstrates that the GPRRE is not merely a theoretical exercise but a practical and necessary enhancement 
to the regression toolkit for overdispersed and multicollinear count data.

ρ n

GPMLE GPRRE

– k̂∗
1 k̂∗

2 k̂∗
3 k̂∗

4 k̂∗
5 k̂∗

6 k̂∗
7 k̂∗

8 k̂∗
9 k̂∗

10 k̂∗
11 k̂∗

12 k̂∗
13 k̂∗

14 k̂∗
15

0.80 50 16.1732 8.0728 7.2716 7.2716 2.7418 1.8034 9.4390 8.3400 1.2007 1.8469 1.5786 2.6585 0.8037 1.0956 1.3595 1.2575

100 2.4058 1.7802 1.4759 1.4759 1.5857 0.9128 1.6242 1.6113 0.7244 1.3013 0.8854 0.8341 0.5529 0.7998 0.9848 0.9005

150 1.5092 1.1371 0.9427 0.9427 1.1621 0.6966 1.0098 1.0701 0.5971 1.0394 0.7412 0.6214 0.3683 0.5256 0.7076 0.6377

200 0.8858 0.7169 0.6257 0.6257 0.7779 0.4843 0.6261 0.6950 0.4576 0.7438 0.5679 0.4548 0.2949 0.3949 0.5446 0.4707

300 0.5869 0.4888 0.4318 0.4318 0.5395 0.3496 0.4355 0.4928 0.3513 0.5295 0.4362 0.3482 0.2164 0.2833 0.3714 0.3060

400 0.4116 0.3742 0.3509 0.3509 0.3920 0.2557 0.3510 0.3677 0.2694 0.3855 0.3367 0.2731 0.1835 0.2126 0.2331 0.1925

0.85 50 44.5253 19.2054 17.7375 17.7375 3.2841 4.8726 87.8744 20.5468 1.3894 1.7603 1.8163 5.6880 0.9071 1.1960 1.4980 1.3740

150 3.2801 2.2984 1.8786 1.8786 1.9107 1.1435 2.1526 2.1340 0.8296 1.4693 1.0039 1.0353 0.5275 0.7466 0.9901 0.9066

150 2.0796 1.4872 1.1718 1.1718 1.4862 0.9178 1.3304 1.3993 0.6979 1.2701 0.8470 0.7608 0.3865 0.5428 0.7493 0.6796

200 1.1694 0.8629 0.7306 0.7306 0.9703 0.6121 0.7587 0.8777 0.5458 0.9263 0.6919 0.5439 0.3351 0.4779 0.6799 0.6020

300 0.6897 0.6049 0.5356 0.5356 0.6328 0.3946 0.5422 0.5693 0.3864 0.6110 0.4928 0.3847 0.2163 0.2621 0.3011 0.2546

400 0.5908 0.5395 0.4927 0.4927 0.5541 0.3477 0.4946 0.5049 0.3484 0.5356 0.4408 0.3511 0.1758 0.1916 0.1957 0.1690

0.90 50 26.6443 12.8660 11.3970 11.3970 3.1424 2.7380 15.2469 13.2616 1.2917 1.6274 1.5598 4.0495 0.8801 1.1796 1.4996 1.3943

150 6.3980 4.2367 3.4625 3.4625 2.7218 1.7854 4.1330 3.9512 1.0399 1.6638 1.2103 1.6834 0.6607 0.8795 1.1795 1.0958

150 3.1826 2.3064 1.7719 1.7719 1.9998 1.2619 2.0536 2.0021 0.8280 1.4781 0.9561 0.9837 0.4810 0.5551 0.7791 0.7209

200 2.3122 1.7464 1.3433 1.3433 1.6688 1.0504 1.5099 1.5241 0.7569 1.3561 0.9151 0.8133 0.4105 0.4528 0.6259 0.5738

300 1.4348 1.1587 0.9133 0.9133 1.1909 0.7569 0.9774 1.0312 0.6226 1.0807 0.7633 0.6187 0.2995 0.2789 0.3712 0.3313

400 0.8575 0.6629 0.5523 0.5523 0.7507 0.4830 0.5780 0.6862 0.4488 0.7352 0.5730 0.4392 0.2056 0.2186 0.3167 0.2687

0.95 50 38.7926 20.4570 17.9864 17.9864 3.9621 4.2892 23.1129 20.2791 1.4289 1.4173 1.5132 5.9982 0.9520 1.1485 1.5305 1.4264

150 8.8604 5.7931 4.5739 4.5739 3.2445 2.6658 5.6083 5.3304 1.1368 1.5757 1.1548 2.2290 0.6718 0.8339 1.2101 1.1164

150 6.3144 4.4583 3.4314 3.4314 3.0500 2.1912 4.0834 3.8861 1.0754 1.6363 1.1061 1.7558 0.6657 0.5983 0.9183 0.8451

200 3.9766 3.0092 2.2939 2.2939 2.5367 1.6674 2.6174 2.4998 0.9872 1.6719 1.0705 1.2511 0.6195 0.4113 0.6419 0.5853

300 2.2919 1.6210 1.1845 1.1845 1.6415 1.1040 1.4012 1.5027 0.7759 1.3902 0.9011 0.8148 0.3986 0.2815 0.4622 0.4198

400 1.6893 1.1671 0.8611 0.8611 1.2913 0.8693 1.0021 1.1899 0.6771 1.1990 0.8267 0.6797 0.3163 0.2070 0.3557 0.3181

0.99 50 293.3510 144.5770 130.8878 130.8878 3.1598 20.2619 169.9600 148.5945 1.6232 0.6247 0.9731 38.5042 0.7641 1.1852 1.7468 1.6240

150 56.0313 35.2408 29.2588 29.2588 3.9917 11.0812 36.0232 33.4683 1.3765 0.4765 0.6987 11.9138 0.6885 0.6918 1.3683 1.2176

150 35.4648 22.4000 17.9599 17.9599 4.1469 8.7160 22.5259 21.1925 1.3732 0.5730 0.6925 8.2405 0.6718 0.5411 1.1911 1.0531

200 20.6019 11.5381 8.6184 8.6184 3.4313 6.1718 11.9510 12.2228 1.3063 0.7933 0.7121 4.8790 0.5420 0.4630 1.0999 0.9923

300 12.3012 7.5286 5.4996 5.4996 3.7441 4.4425 7.2676 7.4877 1.3711 1.2109 0.8663 3.3271 0.8401 0.2577 0.7083 0.6403

400 9.2597 6.1726 4.4768 4.4768 3.6194 3.4974 5.6342 5.5786 1.2850 1.4149 0.9554 2.5114 0.9182 0.1848 0.4890 0.4398

Table 6.  Estimated MSE values for different estimators at p = 7 and φ = 1. Bold values indicate the minimum 
MSE.
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Relative efficiency
Relative Efficiency (RE) is used to compare the performance of statistical estimators by measuring their 
precision and reliability. This comparison relies on the MSE, which combines bias and variance, with a lower 
MSE indicating better performance. The formula for RE is:

	
RE(βk∗

i ) = MSE(βGPMLE)
MSE(βk∗

i ) ,� (36)

where βk∗
i  represents the MSE of GPRRE with each parameter. The reference estimator, MSE(βGPMLE), is 

often used as a benchmark due to its strong asymptotic properties.
Figures 1, 2, 3 and 4 present a comprehensive evaluation of RE was conducted to rigorously assess the 

performance of the GPRRE under different shrinkage parameters, with RE plotted as a function of key statistical 
parameters: sample size (n), population correlation (ρ), the number of predictor variables (p), and a measure of 
dispersion (φ). The results demonstrate that the proposed GPRRE estimator consistently achieved the highest 
relative efficiency across the vast majority of the investigated scenarios. This superior performance manifests as 
a high RR, indicating that the GPRRE provides estimates with greater precision and stability that is, a smaller 
variance and reduced susceptibility to bias compared to its competitors. The empirical evidence thus robustly 
confirms that the GPRRE is the most efficient estimator within the defined class of models under study. This 
dominance was particularly pronounced when compared to the estimator denoted as k̂∗

13, k̂∗
14, and k̂∗

15, which 
was consistently outperformed, often by a significant margin.

Application
This study investigates CO2 emissions from plug-in hybrid electric vehicles (PHEVs) sold in Canada between 
2020 and 2025. The primary dataset focuses on vehicles from this five-year period, though additional data for 

ρ n

GPMLE GPRRE

– k̂∗
1 k̂∗

2 k̂∗
3 k̂∗

4 k̂∗
5 k̂∗

6 k̂∗
7 k̂∗

8 k̂∗
9 k̂∗

10 k̂∗
11 k̂∗

12 k̂∗
13 k̂∗

14 k̂∗
15

0.80 50 1.4062 1.2383 1.1235 1.1235 1.2388 0.6644 1.1528 1.1623 0.6739 1.1984 1.2199 0.7064 0.2753 0.2754 0.2726 0.2673

150 0.5650 0.5371 0.5205 0.5205 0.5418 0.3041 0.5206 0.5219 0.3507 0.5406 0.5335 0.3652 0.1569 0.1562 0.1454 0.1653

150 0.3287 0.3063 0.2990 0.2990 0.3185 0.1768 0.2994 0.3146 0.2216 0.3217 0.3174 0.2441 0.1061 0.1123 0.1166 0.1388

200 0.2295 0.2246 0.2230 0.2230 0.2256 0.1322 0.2230 0.2232 0.1693 0.2266 0.2245 0.1858 0.0873 0.0910 0.0973 0.1299

300 0.1451 0.1428 0.1420 0.1420 0.1433 0.0835 0.1421 0.1424 0.1114 0.1440 0.1428 0.1248 0.0654 0.0666 0.0753 0.1014

400 0.1218 0.1201 0.1196 0.1196 0.1206 0.0741 0.1196 0.1200 0.0975 0.1210 0.1203 0.1078 0.0620 0.0622 0.0696 0.0909

0.85 50 2.0705 1.6912 1.4560 1.4560 1.6372 0.8495 1.5733 1.5867 0.7884 1.5602 1.6396 0.8685 0.2874 0.2766 0.2978 0.2729

150 0.8047 0.6826 0.6201 0.6201 0.7378 0.4146 0.6358 0.7126 0.4474 0.7488 0.7420 0.4556 0.1640 0.1708 0.1797 0.1669

150 0.4192 0.4033 0.3963 0.3963 0.4050 0.2236 0.3963 0.3973 0.2718 0.4076 0.4005 0.2938 0.1117 0.1067 0.1063 0.1416

200 0.3553 0.3400 0.3333 0.3333 0.3445 0.1947 0.3334 0.3385 0.2395 0.3467 0.3419 0.2571 0.0981 0.0961 0.0959 0.1264

300 0.2062 0.2022 0.2009 0.2009 0.2027 0.1146 0.2009 0.2007 0.1510 0.2037 0.2018 0.1678 0.0683 0.0719 0.0836 0.1189

400 0.1581 0.1556 0.1548 0.1548 0.1561 0.0904 0.1548 0.1550 0.1215 0.1567 0.1554 0.1350 0.0574 0.0639 0.0757 0.1054

0.90 50 3.7407 2.9990 2.4765 2.4765 2.4930 1.4104 2.6973 2.5932 1.1048 2.1467 2.4423 1.6389 0.3976 0.2697 0.2970 0.2646

150 1.4160 1.1803 0.9990 0.9990 1.1983 0.6501 1.0485 1.1210 0.6055 1.1888 1.1956 0.6220 0.1938 0.1718 0.1781 0.1597

150 0.6022 0.5618 0.5397 0.5397 0.5715 0.3259 0.5399 0.5572 0.3695 0.5756 0.5686 0.3820 0.1397 0.1029 0.0986 0.1183

200 0.5225 0.4938 0.4772 0.4772 0.4986 0.2806 0.4773 0.4855 0.3241 0.5019 0.4946 0.3384 0.1232 0.0912 0.0887 0.1160

300 0.3405 0.3295 0.3245 0.3245 0.3311 0.1852 0.3245 0.3250 0.2304 0.3327 0.3282 0.2479 0.0881 0.0733 0.0812 0.1206

400 0.2261 0.2213 0.2196 0.2196 0.2221 0.1239 0.2196 0.2194 0.1637 0.2229 0.2207 0.1804 0.0650 0.0648 0.0784 0.1172

0.95 50 10.2149 8.5428 7.5293 7.5293 4.5904 6.7328 8.0403 7.5675 1.8907 2.8028 4.4658 5.4586 0.7120 0.2463 0.3533 0.3033

150 2.5728 2.1707 1.7531 1.7531 2.0278 1.1813 1.8526 1.8837 0.9390 1.8733 1.9465 0.9753 0.3553 0.1398 0.1595 0.1400

150 1.5011 1.3211 1.1547 1.1547 1.3100 0.7579 1.1703 1.2217 0.6938 1.2833 1.2854 0.6816 0.2641 0.0995 0.0990 0.0944

200 1.0722 0.9911 0.9175 0.9175 0.9797 0.5535 0.9183 0.9184 0.5464 0.9661 0.9382 0.5399 0.2004 0.0744 0.0682 0.0808

300 0.6670 0.6326 0.6110 0.6110 0.6320 0.3568 0.6110 0.6107 0.3948 0.6326 0.6199 0.4028 0.1509 0.0624 0.0633 0.0926

400 0.4621 0.4422 0.4314 0.4314 0.4440 0.2481 0.4314 0.4331 0.2927 0.4463 0.4391 0.3079 0.1086 0.0585 0.0653 0.1031

0.99 50 32.4039 24.4047 19.7646 19.7646 8.7644 10.0134 22.9465 21.6112 2.9838 1.8059 6.4482 9.1490 1.6363 0.1968 0.5256 0.4411

150 12.8321 9.5508 7.0341 7.0341 5.1040 5.1113 8.4529 8.1270 1.9224 2.3267 4.4613 3.4463 1.1347 0.1257 0.2843 0.2505

150 7.7078 6.9505 5.5602 5.5602 4.3766 3.2532 9.8280 5.5190 1.6118 2.7408 3.7907 2.2650 1.1277 0.0763 0.1257 0.1069

200 5.2463 4.4771 3.4217 3.4217 3.5625 2.3493 3.6828 3.4454 1.3930 2.6048 3.1553 1.6674 0.8815 0.0548 0.0761 0.0667

300 2.6472 2.3487 1.9468 1.9468 2.1480 1.2806 1.9737 1.9370 0.9957 1.9349 1.9984 0.9788 0.5707 0.0373 0.0359 0.0352

400 2.2951 2.0695 1.7679 1.7679 1.9347 1.1649 1.7822 1.7425 0.9505 1.7800 1.8098 0.9134 0.5115 0.0327 0.0287 0.0310

Table 7.  Estimated MSE values for different estimators at p = 10 and φ = 0.1. Bold values indicate the 
minimum MSE.
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other years is available through Open Canada. The dataset includes 245 vehicles, with CO2 emissions in grams 
per kilometer (y) as the response variable and six explanatory variables: motor power in kilowatts (x1), engine 
size in liters (x2), number of cylinders (x3), city fuel consumption in liters per 100 kilometers (x4), highway fuel 
consumption in liters per 100 kilometers (x5), and combined fuel consumption in liters per 100 kilometers (x6). 
Fuel consumption metrics are provided separately for city and highway driving, along with a combined rating 
(55% city and 45% highway) expressed in both liters per 100 kilometers and miles per gallon. CO2 emissions are 
derived from combined city and highway driving data and are reported in grams per kilometer.

Initially, the fit of the data to the chosen model is carefully evaluated using commonly used criteria such as 
log-likelihood (LL), Akaike Information Criterion (AIC), and Bayesian Information Criterion (BIC). The best 
model is selected based on having the highest LL value and the lowest values for both AIC and BIC. Based on the 
results presented in Table 10, the GPRM model performs best in modeling this data, achieving the highest LL 
value and the lowest values for both AIC and BIC.

The correlation plot (Fig. 5) indicated strong correlation among the variables, suggesting the presence of 
multicollinearity. To assess this formally, variance inflation factors (VIFs) and the condition number (CN) were 
calculated. The CN, defined as the ratio of the largest to the smallest eigenvalue, was 4557.855. The computed VIF 
values were 1.28, 8.79, 10.38, 2873.80, 804.81, and 6496.13, which clearly demonstrate severe multicollinearity. 
These results confirm that the variables are highly correlated, raising concerns about the stability and reliability 
of subsequent regression analyses.

Table 11 compares the GPMLE and the GPRRE for a dataset with seven regression coefficients (β0 to β6). 
The coefficients are estimated using Eqs. (8) and (12), while the MSE is computed using Eqs. (11) and (16), 
respectively. The GPMLE yields an MSE of 29.2930, indicating poor performance likely due to multicollinearity. 
In contrast, the GPRRE, evaluated using 15 ridge parameters (k̂∗

1  to k̂∗
15), demonstrates significantly lower MSE 

values, with the best performance achieved by k̂∗
14 (MSE = 1.3728). This substantial improvement highlights 

the effectiveness of the ridge estimator in mitigating multicollinearity by stabilizing coefficient estimates and 

ρ n

GPMLE GPRRE

– k̂∗
1 k̂∗

2 k̂∗
3 k̂∗

4 k̂∗
5 k̂∗

6 k̂∗
7 k̂∗

8 k̂∗
9 k̂∗

10 k̂∗
11 k̂∗

12 k̂∗
13 k̂∗

14 k̂∗
15

0.80 50 10.0413 6.5984 5.6933 5.6933 3.3771 1.9264 7.5501 6.4572 1.3362 2.5071 3.7315 8.6925 0.6424 0.7781 0.9773 0.8511

150 1.7898 1.5391 1.2726 1.2726 1.4750 0.7910 1.3252 1.3288 0.7133 1.4068 1.1779 0.7170 0.3250 0.4996 0.5227 0.4449

150 1.0541 0.8711 0.7401 0.7401 0.9291 0.5143 0.7716 0.8520 0.5187 0.9363 0.8098 0.5084 0.2273 0.3764 0.4125 0.3334

200 0.6941 0.6362 0.5880 0.5880 0.6478 0.3576 0.5902 0.6117 0.3941 0.6507 0.5853 0.3949 0.1795 0.2471 0.2206 0.1835

300 0.4091 0.3878 0.3694 0.3694 0.3944 0.2267 0.3698 0.3782 0.2687 0.3959 0.3691 0.2794 0.1394 0.1691 0.1459 0.1401

400 0.3359 0.3194 0.3040 0.3040 0.3250 0.1912 0.3042 0.3134 0.2296 0.3273 0.3096 0.2408 0.1225 0.1448 0.1254 0.1254

0.85 50 11.2624 6.9740 5.9049 5.9049 3.3051 2.0109 7.2177 6.8487 1.3386 2.4649 2.4821 2.2982 0.5955 0.8259 1.0479 0.9365

150 3.0234 2.0703 1.5728 1.5728 2.0213 1.2002 1.9317 2.0745 0.9207 1.9218 1.6007 1.0067 0.3553 0.5881 0.7833 0.6891

150 1.2829 1.1406 0.9953 0.9953 1.1259 0.6032 1.0124 1.0332 0.5844 1.1077 0.9241 0.5861 0.2482 0.3447 0.3312 0.2698

200 1.1445 1.0240 0.8864 0.8864 1.0280 0.5791 0.8971 0.9324 0.5718 1.0175 0.8745 0.5568 0.2259 0.2840 0.2793 0.2294

300 0.6448 0.6033 0.5651 0.5651 0.6072 0.3361 0.5656 0.5751 0.3725 0.6087 0.5514 0.3796 0.1492 0.1621 0.1385 0.1317

400 0.4413 0.4207 0.4007 0.4007 0.4251 0.2426 0.4008 0.4060 0.2871 0.4263 0.3963 0.2971 0.1249 0.1355 0.1170 0.1248

0.90 50 21.2886 14.8412 13.7362 13.7362 4.8245 3.2693 13.9964 14.1815 1.7533 2.6035 3.1982 4.5273 0.8007 0.8366 1.1202 0.9984

150 5.2755 3.7706 2.8606 2.8606 2.8511 1.8235 3.4791 3.4300 1.1671 2.3215 1.9960 1.4843 0.4349 0.6061 0.8008 0.7206

150 2.2256 1.8223 1.4441 1.4441 1.7593 0.9923 1.5524 1.6225 0.8258 1.6793 1.3836 0.8397 0.3248 0.3312 0.3886 0.3278

200 1.6677 1.4419 1.1726 1.1726 1.4070 0.8078 1.2136 1.2558 0.7098 1.3659 1.1189 0.6885 0.2836 0.2831 0.3001 0.2494

300 0.9812 0.8908 0.7858 0.7858 0.8934 0.5094 0.7892 0.8168 0.5111 0.8894 0.7711 0.4933 0.1997 0.1767 0.1638 0.1402

400 0.6979 0.6552 0.6080 0.6080 0.6576 0.3736 0.6085 0.6134 0.4056 0.6560 0.5917 0.4035 0.1561 0.1244 0.1083 0.1108

0.95 50 46.2000 29.1804 25.2659 25.2659 5.4837 5.8644 30.2338 28.4016 2.0015 1.9057 3.2731 21.5943 1.0508 0.8383 1.2761 1.1310

150 7.7996 5.9213 4.5311 4.5311 3.7790 2.7474 5.2810 5.0166 1.4398 2.5307 2.1785 2.0708 0.7427 0.5808 0.8271 0.7487

150 4.9747 3.9420 2.9481 2.9481 3.1353 2.0870 3.3786 3.2766 1.3085 2.4907 2.0358 1.5181 0.6213 0.3795 0.5363 0.4824

200 2.7902 2.3894 1.8350 1.8350 2.1707 1.3487 1.9560 1.9215 0.9977 1.9515 1.4803 0.9913 0.4586 0.2909 0.3492 0.3010

300 1.9752 1.7565 1.4396 1.4396 1.6631 0.9894 1.4677 1.4550 0.8212 1.5677 1.2487 0.7804 0.3680 0.1622 0.1709 0.1474

400 1.3726 1.2224 1.0014 1.0014 1.2074 0.7226 1.0184 1.0661 0.6598 1.1884 1.0039 0.6259 0.2731 0.1312 0.1324 0.1143

0.99 50 224.6266 133.1416 117.7330 117.7330 6.4006 23.3219 145.6016 134.0307 2.7253 0.5511 2.4014 38.1833 1.0479 0.8056 1.5100 1.3295

150 45.6679 32.1013 25.0650 25.0650 5.4541 12.3144 30.2648 29.2505 2.0631 0.9091 1.8923 10.6451 1.2642 0.5692 1.1834 1.0402

150 26.6899 21.1364 16.5910 16.5910 6.3364 8.4746 18.6381 17.0394 2.0629 1.4275 2.0042 6.5258 1.7247 0.3591 0.7869 0.6792

200 16.5518 12.9521 9.6456 9.6456 5.4292 5.9350 11.1317 10.3195 1.9041 1.9134 2.0424 4.1712 1.2661 0.2514 0.5495 0.4835

300 8.5828 7.1642 5.3534 5.3534 4.6558 3.6995 5.9379 5.4118 1.7028 2.5801 2.1512 2.4129 1.3575 0.1367 0.2615 0.2337

400 6.7322 5.6428 4.1643 4.1643 3.9672 2.9926 4.6288 4.2021 1.5484 2.5519 2.0452 1.9070 1.2166 0.1068 0.1880 0.1731

Table 8.  Estimated MSE values for different estimators at p = 10 and φ = 0.5. Bold values indicate the 
minimum MSE.
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reducing overfitting. The consistent performance of GPRRE across various ridge parameters underscores its 
robustness, making it a superior choice for datasets affected by multicollinearity.

Figure (6) compares the performance of the GPMLE and GPRRE estimators based on MSE values across a 
range of ridge parameters (k∗). The graph illustrates that GPRRE significantly outperforms GPMLE in reducing 
MSE, particularly as k∗ increases. The MSE associated with the GPRRE demonstrates a substantial reduction, 
achieving its minimum at higher values of the ridge parameter k∗. In contrast, the MSE for the Generalized 
Poisson Maximum Likelihood Estimator (GPMLE) remains consistently larger across the entire range of 
k∗ values. This performance improvement is attributed to the ridge estimator’s mechanism for mitigating 
multicollinearity, which stabilizes coefficient estimates and reduces their variance through the introduction of 
a penalty term contingent upon k∗. Furthermore, the accompanying figure delineates the bias-squared and 
variance components of the GPRRE, illustrating how the estimator successfully negotiates a trade-off between 
these two elements. Although the squared bias experiences a marginal increase, it is offset by a considerable 
reduction in variance, culminating in a net decrease in the overall MSE. These findings underscore the efficacy 
of the GPRRE in enhancing predictive performance, particularly in contexts where the data exhibit pronounced 
multicollinearity.

Table 12 presents the results of the verification process for the necessary condition associated with Theorem 2 
under the GPRRE. The analysis evaluates this condition across a range of proposed ridge parameters (k∗

i ) and for 
each of the seven coefficients (λ1 to λ7). The computed values of the condition are consistently positive for all 
combinations of k∗ and λj , thereby confirming that the requisite condition is satisfied. This uniform positivity 
demonstrates the efficacy of the GPRRE in stabilizing the model and reducing estimation variance, even in the 
presence of significant multicollinearity. Consequently, these results underscore the capability of the GPRRE to 
manage complex data structures while simultaneously enhancing model performance and reliability.

ρ n

GPMLE GPRRE

– k̂∗
1 k̂∗

2 k̂∗
3 k̂∗

4 k̂∗
5 k̂∗

6 k̂∗
7 k̂∗

8 k̂∗
9 k̂∗

10 k̂∗
11 k̂∗

12 k̂∗
13 k̂∗

14 k̂∗
15

0.80 50 43.9419 24.0414 22.8368 22.8368 4.4846 3.5615 31.7292 25.2534 1.8394 2.7311 2.8121 14.8916 1.0697 1.3603 1.5806 1.4420

150 6.4898 4.4968 3.7773 3.7773 2.6913 1.4813 4.3489 4.0301 1.0811 2.1588 1.4694 1.4894 0.6453 1.0880 1.2134 1.1180

150 2.9094 2.2065 1.7685 1.7685 1.9340 1.0646 1.9890 1.9819 0.8720 1.7604 1.1886 0.9321 0.4685 0.8918 1.0132 0.9200

200 1.8857 1.5842 1.2773 1.2773 1.5143 0.8172 1.3579 1.3641 0.7241 1.4320 0.9814 0.7210 0.3704 0.6912 0.7456 0.6464

300 0.8863 0.7920 0.6941 0.6941 0.8091 0.4554 0.7041 0.7332 0.4707 0.8046 0.6434 0.4555 0.2771 0.4992 0.4913 0.3961

400 0.7087 0.6395 0.5684 0.5684 0.6584 0.3868 0.5734 0.6065 0.4111 0.6590 0.5551 0.3968 0.2388 0.4170 0.4034 0.3224

0.85 50 51.2366 26.2680 24.0040 24.0040 4.1655 507.8358 29.1396 27.7856 1.7760 2.5333 2.6531 8.7187 1.0204 1.3795 1.6148 1.4918

150 12.1771 7.7588 6.5989 6.5989 3.4575 2.2944 7.9762 7.5613 1.3622 2.4683 1.8194 2.5646 0.7606 1.1845 1.4128 1.3114

150 3.6171 2.8546 2.2705 2.2705 2.2510 1.2269 2.5159 2.4169 0.9150 1.9513 1.1892 1.0698 0.4788 0.8718 0.9816 0.8710

200 2.6577 2.1716 1.6957 1.6957 1.9945 1.1324 1.8540 1.8306 0.8936 1.8000 1.1825 0.9035 0.4247 0.7397 0.8374 0.7483

300 1.5448 1.3575 1.1086 1.1086 1.3302 0.7505 1.1457 1.1546 0.6767 1.2751 0.9190 0.6463 0.2990 0.4809 0.5020 0.4232

400 0.9851 0.8918 0.7834 0.7834 0.8962 0.5042 0.7919 0.8124 0.5098 0.8872 0.7003 0.4933 0.2457 0.4019 0.3841 0.3105

0.90 50 85.4574 45.4213 42.0775 42.0775 5.2160 5.6672 52.0209 47.3936 2.0616 2.6698 3.0893 13.0073 1.2579 1.3704 1.6454 1.5057

150 17.4779 11.2047 9.4451 9.4451 3.9037 2.8437 11.4164 10.6959 1.4504 2.3276 1.8647 3.4581 0.7999 1.1961 1.4560 1.3494

150 7.8280 5.7391 4.6553 4.6553 3.4554 2.1673 5.3750 5.1165 1.3159 2.4686 1.5645 1.9888 0.6329 0.8680 1.0941 1.0019

200 4.1110 3.2349 2.4796 2.4796 2.5920 1.5697 2.8052 2.7231 1.0702 2.1852 1.3371 1.2183 0.5024 0.7535 0.9032 0.8181

300 2.3133 1.9535 1.5203 1.5203 1.8224 1.0549 1.6262 1.6314 0.8440 1.6991 1.1110 0.8301 0.3724 0.5407 0.6110 0.5298

400 1.4976 1.3322 1.1042 1.1042 1.2996 0.7510 1.1277 1.1343 0.6735 1.2566 0.9227 0.6314 0.2849 0.3776 0.3831 0.3212

0.95 50 202.3284 108.4413 114.3752 114.3752 5.3887 10.8222 118.8485 114.3699 2.4270 1.5071 3.0951 136.3603 1.1029 1.3907 1.7543 1.6204

150 24.0414 16.0191 13.2113 13.2113 5.0109 5.0292 15.8748 14.6336 1.6450 2.0407 1.6839 4.7445 0.9850 1.1917 1.5089 1.4045

150 13.2234 9.6023 7.6636 7.6636 4.3308 3.4118 8.9754 8.4137 1.5173 2.3241 1.6254 3.0560 0.9286 0.9334 1.2421 1.1462

200 6.2824 5.0350 3.8973 3.8973 3.4608 2.2541 4.3478 4.0954 1.2274 2.4656 1.3977 1.7045 0.6826 0.7811 0.9907 0.8818

300 4.6646 3.8960 2.9911 2.9911 3.0593 1.9392 3.2716 3.0550 1.2173 2.3697 1.3611 1.3896 0.6735 0.5267 0.6691 0.6067

400 2.8593 2.3807 1.7980 1.7980 2.1443 1.3153 1.9456 1.9745 0.9732 1.9688 1.2805 0.9731 0.4700 0.4314 0.5197 0.4561

0.99 50 1016.4337 521.0672 479.1481 479.1481 4.5520 54.7318 597.0681 545.1915 3.1899 0.7824 1.6398 138.3801 0.8867 1.3948 1.8611 1.7616

150 148.3388 94.5453 79.9782 79.9782 3.7671 21.8796 96.8118 89.2753 2.0481 0.5560 0.9642 25.0264 0.6954 1.1844 1.7162 1.5920

150 70.4286 51.4349 41.6901 41.6901 5.5590 16.0473 48.1100 43.1926 2.0389 0.6651 0.9603 14.1791 1.0333 0.9111 1.4824 1.3405

200 46.2591 34.5278 27.4815 27.4815 5.4063 11.9639 31.7283 29.2801 1.9306 0.9042 0.9515 10.2964 1.2540 0.7319 1.3018 1.1534

300 21.6349 17.2964 13.5154 13.5154 5.9929 6.9744 15.1198 13.7596 1.8851 1.6330 1.1961 5.3072 1.8774 0.4880 0.9212 0.8144

400 14.3064 11.4588 8.5342 8.5342 5.1806 5.2026 9.6996 8.7160 1.7196 1.9678 1.3351 3.4466 1.7150 0.3963 0.7279 0.6543

Table 9.  Estimated MSE values for different estimators at p = 10 and φ = 1. Bold values indicate the 
minimum MSE.
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Conclusion
The GPRM serves as a robust framework for analyzing count data, particularly in cases of overdispersion 
or underdispersion. While the GPMLE is widely employed, its efficacy is compromised in the presence of 
multicollinearity among explanatory variables. To mitigate this issue, this study introduces ridge estimators 
within the generalized GPRRE framework and explores methodologies for optimal ridge parameter selection. 
The theoretical properties of the ridge estimator are rigorously derived, and its performance is assessed 
using both MMSE and MSE criteria. A detailed Monte Carlo simulation study is conducted, examining 
various parametric configurations, including sample sizes, numbers of predictor variables, dispersion levels, 
and degrees of multicollinearity. Furthermore, the proposed estimators are applied to a real-world dataset 
concerning carbon dioxide emissions. The results from both the simulation study and the empirical application 
consistently demonstrate that the GPRRE, particularly when paired with an optimally selected ridge parameter, 
significantly outperforms the GPMLE in reducing MSE under conditions of severe multicollinearity, especially 
for parameter values k∗

13 and k∗
14. These findings underscore the GPRRE as a superior estimation technique 

for addressing multicollinearity in overdispersed count data. Despite the positive results of this study, it is not 
without limitations. The performance of the GPRRE method depends primarily on selecting the optimal value 

Fig. 2.  Estimated MSE of the GPRRE under different parameter settings and multicollinearity level.

 

Fig. 1.  Estimated MSE of the GPRRE under different parameter settings and sample sizes.
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for the shrinkage parameter (k∗), which is highly sensitive and balances bias and variance. Furthermore, the 
high dimensionality of the data increases the complexity of the calculations and poses significant challenges 
that require further research and improvement. Additionally, the current application of this method is limited 
to addressing multicollinearity in the Generalized Poisson Regression Model (GPRM), which opens promising 

Criteria GPRM PRM NBRM PIGRM DPORM GERM CMPRM

AIC 2278.56 3533.44 2288.82 2301.36 2328.97 2730.21 5531.51

BIC 2310.07 3561.45 2320.33 2332.87 2360.48 2758.22 5563.02

LL –1130.28 − 1758.72 − 1135.41 − 1141.68 − 1155.49 − 1357.10 − 2756.75

Table 10.  Comparison of model performance for the dataset.

 

Fig. 4.  Estimated MSE of the GPRRE under different parameter settings and dispersion parameter.

 

Fig. 3.  Estimated MSE of the GPRRE under different parameter settings and number of explanatory variables.
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avenues for future development to address other issues, such as outliers, building upon previous research, such 
as the study by Dawoud et al.45, Abonazel and Dawoud46, Mohammad et al.47, and Alghamdi et al.48.

Estimator β0 β1 β2 β3 β4 β5 β6 MSE

GPMLE – 3.1606 − 0.0034 − 0.0161 − 0.0147 0.0864 0.1021 0.0128 29.2930

GPRRE

k̂∗
1 3.0143 − 0.0034 − 0.0273 0.0007 0.0528 0.1127 0.0487 2.7943

k̂∗
2 2.9869 − 0.0034 − 0.0292 0.0035 0.0491 0.1167 0.0508 2.3287

k̂∗
3 2.9869 − 0.0034 − 0.0292 0.0035 0.0491 0.1167 0.0508 2.3287

k̂∗
4 3.1597 − 0.0034 − 0.0162 − 0.0146 0.0859 0.1019 0.0136 28.4057

k̂∗
5 3.1080 − 0.0034 − 0.0202 − 0.0092 0.0687 0.1014 0.0359 8.0755

k̂∗
6 3.1073 − 0.0034 − 0.0203 − 0.0091 0.0686 0.1014 0.0360 7.9869

k̂∗
7 3.1576 − 0.0034 − 0.0163 − 0.0144 0.0848 0.1015 0.0152 26.3976

k̂∗
8 3.0658 − 0.0034 − 0.0235 − 0.0047 0.0606 0.1057 0.0433 4.4871

k̂∗
9 3.0900 − 0.0034 − 0.0216 − 0.0073 0.0650 0.1030 0.0396 6.0952

k̂∗
10 3.1605 − 0.0034 − 0.0161 − 0.0147 0.0863 0.1020 0.0129 29.1616

k̂∗
11 3.1432 − 0.0034 − 0.0175 − 0.0129 0.0786 0.1003 0.0240 17.1243

k̂∗
12 2.8888 − 0.0034 − 0.0360 0.0136 0.0370 0.1319 0.0563 1.5296

k̂∗
13 2.9429 − 0.0034 − 0.0323 0.0081 0.0435 0.1234 0.0535 1.8580

k̂∗
14 2.8458 − 0.0034 − 0.0387 0.0179 0.0320 0.1388 0.0581 1.3728

k̂∗
15 2.9580 − 0.0034 − 0.0313 0.0065 0.0454 0.1211 0.0527 1.9912

Table 11.  Estimated MSE and coefficient of GPMLE and GPRRE for the dataset.

 

Fig. 5.  Correlation matrix illustrating the relationships between explanatory variables in the dataset.
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Data availability
The data that supports the findings of this study are available within the article.
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Estimator Condition λ1 λ2 λ3 λ4 λ5 λ6 λ7

GPRRE

k̂∗
1 φ̂k∗

1 + 2φ̂λ − k∗
1 λα2

j 5.53E+09 2.30E+07 5.26E+05 2.46E+05 2.17E+04 8.61E+03 6.44E+02

k̂∗
2 φ̂k∗

2 + 2φ̂λ − k∗
2 λα2

j 5.53E+09 2.30E+07 5.26E+05 2.45E+05 2.15E+04 7.52E+03 7.19E+02

k̂∗
3 φ̂k∗

3 + 2φ̂λ − k∗
3 λα2

j 5.53E+09 2.30E+07 5.26E+05 2.45E+05 2.15E+04 7.52E+03 7.19E+02

k̂∗
4 φ̂k∗

4 + 2φ̂λ − k∗
4 λα2

j 5.54E+09 2.31E+07 5.27E+05 2.51E+05 2.25E+04 1.41E+04 2.69E+02

k̂∗
5 φ̂k∗

5 + 2φ̂λ − k∗
5 λα2

j 5.54E+09 2.31E+07 5.27E+05 2.49E+05 2.22E+04 1.22E+04 3.98E+02

k̂∗
6 φ̂k∗

6 + 2φ̂λ − k∗
6 λα2

j 5.54E+09 2.31E+07 5.27E+05 2.49E+05 2.22E+04 1.22E+04 4.00E+02

k̂∗
7 φ̂k∗

7 + 2φ̂λ − k∗
7 λα2

j 5.54E+09 2.31E+07 5.27E+05 2.50E+05 2.25E+04 1.40E+04 2.74E+02

k̂∗
8 φ̂k∗

8 + 2φ̂λ − k∗
8 λα2

j 5.53E+09 2.30E+07 5.27E+05 2.47E+05 2.20E+04 1.06E+04 5.07E+02

k̂∗
9 φ̂k∗

9 + 2φ̂λ − k∗
9 λα2

j 5.53E+09 2.30E+07 5.27E+05 2.48E+05 2.21E+04 1.15E+04 4.44E+02

k̂∗
10 φ̂k∗

10 + 2φ̂λ − k∗
10λα2

j 5.54E+09 2.31E+07 5.27E+05 2.51E+05 2.25E+04 1.41E+04 2.67E+02

k̂∗
11 φ̂k∗

11 + 2φ̂λ − k∗
11λα2

j 5.54E+09 2.31E+07 5.27E+05 2.50E+05 2.24E+04 1.35E+04 3.09E+02

k̂∗
12 φ̂k∗

12 + 2φ̂λ − k∗
12λα2

j 5.53E+09 2.29E+07 5.26E+05 2.41E+05 2.08E+04 3.41E+03 1.00E+03

k̂∗
13 φ̂k∗

13 + 2φ̂λ − k∗
13λα2

j 5.53E+09 2.30E+07 5.26E+05 2.43E+05 2.12E+04 5.71E+03 8.43E+02

k̂∗
14 φ̂k∗

14 + 2φ̂λ − k∗
14λα2

j 5.53E+09 2.29E+07 5.25E+05 2.39E+05 2.05E+04 1.51E+03 1.13E+03

k̂∗
15 φ̂k∗

15 + 2φ̂λ − k∗
15λα2

j 5.53E+09 2.30E+07 5.26E+05 2.44E+05 2.13E+04 6.33E+03 8.00E+02

Table 12.  Results confirming the necessary condition for Theorem 2.

 

Fig. 6.  Estimated MSE with different values of ridge parameter.

 

Scientific Reports |        (2025) 15:39224 18| https://doi.org/10.1038/s41598-025-24142-0

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


	 5.	 Sellers, K. F. & Premeaux, B. Conway–Maxwell–Poisson regression models for dispersed count data. Wiley Interdiscip. Rev. Comput. 
Stat. 13(6), e1533 (2021).

	 6.	 Efron, B. Double exponential families and their use in generalized linear regression. J. Am. Stat. Assoc. 81(395), 709–721 (1986).
	 7.	 Putri, G. N., Nurrohmah, S. & Fithriani, I. Comparing Poisson-inverse Gaussian model and negative binomial model on case 

study: Horseshoe crabs data. J. Phys. Conf. Ser. 1442(1), 012028 (2020).
	 8.	 Consul, P. & Famoye, F. Generalized Poisson regression model. Commun. Stat. Theory Methods 21(1), 89–109 (1992).
	 9.	 Yadav, B. et al. Can generalized Poisson model replace any other count data models? An evaluation. Clin. Epidemiol. Global Health 

11, 100774 (2021).
	10.	 Lais, M. F., Atti, A., Pangaribuan, R. M. & Guntur, R. D. Model generalized Poisson regression (gpr) pada kasus stunting di provinsi 

Nusa Tenggara timur. J. Difer. 5(2), 68–75 (2023).
	11.	 Getaneh, F. B. et al. A generalized Poisson regression analysis of determinants of early neonatal mortality in Ethiopia using 2019 

Ethiopian mini demographic health survey. Sci. Rep. 14(1), 2784 (2024).
	12.	 Odoi, B., Ofosu, R. A. & William, K. A generalised Poisson regression analysis of covid-19 cases in Ghana. Int. J. Stat. Appl. Math. 

9(2), 131–136 (2024).
	13.	 Carallo, G., Casarin, R. & Robert, C. P. Generalized Poisson difference autoregressive processes. Int. J. Forecast. 40(4), 1359–1390 

(2024).
	14.	 Dawoud, I. & Eledum, H. Detection of influential observations for the regression model in the presence of multicollinearity: 

Theory and methods. Communications in Statistics-Theory and Methods 1–26 (Taylor & Francis, 2025).
	15.	 Algamal, Z. Y. & Lee, M. H. Adjusted adaptive lasso in high-dimensional Poisson regression model. Mod. Appl. Sci. 9(4), 170 

(2015).
	16.	 Hoerl, A. E. & Kennard, R. W. Ridge regression: Applications to nonorthogonal problems. Technometrics 12(1), 69–82 (1970).
	17.	 Hoerl, A. E. & Kennard, R. W. Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 

(1970).
	18.	 Kibria, B. G. Performance of some new ridge regression estimators. Commun. Stat. Simul. Comput. 32(2), 419–435 (2003).
	19.	 Muniz, G. & Kibria, B. G. On some ridge regression estimators: An empirical comparisons. Commun. Stat. Simul. Comput. 38(3), 

621–630 (2009).
	20.	 Segerstedt, B. On ordinary ridge regression in generalized linear models. Commun. Stat. Theory Methods 21(8), 2227–2246 (1992).
	21.	 Månsson, K. & Shukur, G. A Poisson ridge regression estimator. Econ. Model. 28(4), 1475–1481 (2011).
	22.	 Schaefer, R. L., Roi, L. D. & Wolfe, R. A. A ridge logistic estimator. Commun. Stat. Theory Methods 13(1), 99–113 (1984).
	23.	 Rady, E. A., Abonazel, M. R., & Taha, I. M. Ridge estimators for the negative binomial regression model with application. in The 

53rd Annual Conference on Statistics, Computer Science, and Operation Research 3–5 (2018).
	24.	 Månsson, K. On ridge estimators for the negative binomial regression model. Econ. Model. 29(2), 178–184 (2012).
	25.	 Tharshan, R. & Wijekoon, P. Ridge estimator in a mixed Poisson regression model. Commun. Stat. Simul. Comput. 53(7), 3253–

3270 (2024).
	26.	 Almulhim, F. A. et al. Development of the generalized ridge estimator for the Poisson-inverse Gaussian regression model with 

multicollinearity. Sci. Rep. 15(1), 31162 (2025).
	27.	 Abonazel, M. R. et al. Developing ridge estimators for the extended Poisson-tweedie regression model: Method, simulation, and 

application. Sci. Afr. 23, e02006 (2024).
	28.	 Sami, F., Amin, M. & Butt, M. M. On the ridge estimation of the Conway–Maxwell Poisson regression model with multicollinearity: 

Methods and applications. Concurr. Comput. Pract. Exp. 34(1), e6477 (2022).
	29.	 Algamal, Z. Y., Lukman, A. F., Abonazel, M. R. & Awwad, F. A. Performance of the ridge and Liu estimators in the zero-inflated 

bell regression model. J. Math. 2022(1), 9503460 (2022).
	30.	 Dawoud, I. New biased estimators for the Conway–Maxwell–Poisson model. J. Stat. Comput. Simul. 95(1), 117–136 (2025).
	31.	 El-Alosey, A. R., Hammad, A. T., & Gemeay, A. M. A novel zero-inflated regression model for overdispersed count data with 

enhancing its estimation for multicollinearity in medical data. Statistics 1–32 (Taylor & Francis, 2025).
	32.	 Akram, M. N., Kibria, B. G., Abonazel, M. R. & Afzal, N. On the performance of some biased estimators in the gamma regression 

model: Simulation and applications. J. Stat. Comput. Simul. 92(12), 2425–2447 (2022).
	33.	 Shahzad, A., Amin, M., Emam, W. & Faisal, M. New ridge parameter estimators for the quasi-Poisson ridge regression model. Sci. 

Rep. 14(1), 8489 (2024).
	34.	 Ashraf, B., Amin, M. & Akram, M. N. New ridge parameter estimators for the zero-inflated Conway Maxwell Poisson ridge 

regression model. J. Stat. Comput. Simul. 94(8), 1814–1840 (2024).
	35.	 Consul, P. C. & Jain, G. C. A generalization of the Poisson distribution. Technometrics 15(4), 791–799 (1973).
	36.	 Consul, P. C. Generalized Poisson distributions: Properties and applications (Marcel Dekker, New York, 1989).
	37.	 Famoye, F. Restricted generalized Poisson regression model. Commun. Stat. Theory Methods 22(5), 1335–1354 (1993).
	38.	 Dutang, C. Some explanations about the IWLS algorithm to fit generalized linear models. HAL Open Science (2017).
	39.	 Amin, M., Akram, M. N. & Majid, A. On the estimation of bell regression model using ridge estimator. Commun. Stat. Simul. 

Comput. 52(3), 854–867 (2023).
	40.	 Orji, G. O. et al. A new odd reparameterized exponential transformed-x family of distributions with applications to public health 

data. Innov. Stat. Prob. 1(1), 88–118 (2025).
	41.	 Rigby, R. A., Stasinopoulos, M. D., Heller, G. Z. & De Bastiani, F. Distributions for Modeling Location, Scale, and Shape: Using 

GAMLSS in R (Chapman and Hall/CRC, 2019).
	42.	 Abonazel, M. R. A new biased estimation class to combat the multicollinearity in regression models: Modified two-parameter Liu 

estimator. Comput. J. Math. Stat. Sci. 4(1), 316–347 (2025).
	43.	 Dawoud, I. & Abonazel, M. R. Robust Dawoud–Kibria estimator for handling multicollinearity and outliers in the linear regression 

model. J. Stat. Comput. Simul. 91(17), 3678–3692 (2021).
	44.	 Hammad, A. T. et al. New modified Liu estimators to handle the multicollinearity in the beta regression model: Simulation and 

applications. Modern J. Stat. 1(1), 58–79 (2025).
	45.	 Dawoud, I., Awwad, F. A., Tag Eldin, E. & Abonazel, M. R. New robust estimators for handling multicollinearity and outliers in the 

Poisson model: Methods, simulation and applications. Axioms 11(11), 612 (2022).
	46.	 Abonazel, M. R. & Dawoud, I. Developing robust ridge estimators for Poisson regression model. Concurr. Comput. Pract. Exp. 

34(15), e6979 (2022).
	47.	 Mohammad, H. H. et al. New robust two-parameter estimator for overcoming outliers and multicollinearity in Poisson regression 

model. Sci. Rep. 15(1), 27445 (2025).
	48.	 Alghamdi, F. M. et al. On robust and non-robust modified Liu estimation in Poisson regression model with multicollinearity and 

outliers. Internat. J. Uncertain. Fuzziness Knowl.-Based Syst. 33(06), 787–823 (2025).

Acknowledgements
Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2025R735), 
Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Scientific Reports |        (2025) 15:39224 19| https://doi.org/10.1038/s41598-025-24142-0

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Author contributions
Fatimah M. Alghamdi: Conceptualization, Validation, Methodology, Formal analysis, Data curation, Software, 
Writing -original draft, Writing - review & editing. Ahmed M. Gemeay: Conceptualization, Validation, Meth-
odology, Formal analysis, Data curation, Software, Writing -original draft, Writing - review & editing. Gamal A. 
Abd-Elmougod: Conceptualization, Validation, Methodology, Formal analysis, Data curation, Software, Writing 
-original draft, Writing - review & editing. Ehab M. Almetwally: Conceptualization, Validation, Methodology, 
Formal analysis, Data curation, Software, Writing -original draft, Writing - review & editing. M. A. El-Qurashi: 
Conceptualization, Validation, Methodology, Formal analysis, Data curation, Software, Writing -original draft, 
Writing - review & editing. Getachew Tekle Mekiso: Conceptualization, Validation, Methodology, Formal anal-
ysis, Data curation, Software, Writing -original draft, Writing - review & editing. Ali T. Hammad: Conceptu-
alization, Validation, Methodology, Formal analysis, Data curation, Software, Writing -original draft, Writing 
- review & editing.

Declarations

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to G.T.M.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 
4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in 
any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide 
a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have 
permission under this licence to share adapted material derived from this article or parts of it. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence 
and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to 
obtain permission directly from the copyright holder. To view a copy of this licence, visit ​h​t​t​p​:​/​/​c​r​e​a​t​i​v​e​c​o​m​m​o​
n​s​.​o​r​g​/​l​i​c​e​n​s​e​s​/​b​y​-​n​c​-​n​d​/​4​.​0​/​​​​​.​​

© The Author(s) 2025 

Scientific Reports |        (2025) 15:39224 20| https://doi.org/10.1038/s41598-025-24142-0

www.nature.com/scientificreports/

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.nature.com/scientificreports

	﻿A bias-reduced estimator for generalized Poisson regression with application to carbon dioxide emission in Canada
	﻿﻿Generalized Poisson regression model
	﻿﻿Generalized Poisson ridge regression estimator
	﻿﻿The superiority of the GPRRE over the GPMLE
	﻿﻿Selection of the biasing parameters
	﻿﻿Monte Carlo simulation
	﻿Simulation design
	﻿Simulation results
	﻿Relative efficiency

	﻿﻿Application
	﻿﻿Conclusion
	﻿References


