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OPEN A bias-reduced estimator for

generalized Poisson regression
with application to carbon dioxide
emission in Canada

Fatimah M. Alghamdi!, Ahmed M. Gemeay?, Gamal A. Abd-Elmougod?,
Ehab M. Almetwally*, M. A. El-Qurashi®, Getachew Tekle Mekiso®" & Ali T. Hammad?

The generalized Poisson regression model (GPRM) provides a flexible framework for modeling count
data, especially those exhibiting over- or underdispersion. Although the generalized Poisson maximum
likelihood estimator is considered the standard method for estimating the parameters of this model,
its reliability and accuracy are severely affected by the presence of multicollinearity among explanatory
variables. Multicollinearity inflates the variance of parameter estimates, undermining the validity

of statistical inference and ultimately leading to unstable and unreliable estimators. To mitigate

these problems, this study presents the ridge estimator as a robust alternative within the GPRM
framework. Several new strategies are proposed for selecting the optimal value of the ridge parameter.
The statistical properties of the proposed ridge estimator were theoretically studied. Theoretical
comparisons and extensive Monte Carlo simulations demonstrated a clear and significant superiority
of the ridge estimator under multicollinearity conditions, confirming its robustness and efficiency.

To demonstrate the scientific and practical relevance of the proposed estimator, it was applied to a
real-world case study modeling carbon dioxide emissions in Canada. The results of this experimental
application conclusively confirmed the simulation and theoretical comparison results, with the ridge
estimator providing more stable and interpretable results than the conventional method, making it

a valuable tool for researchers and decision makers in analyzing multicollinear environmental and
economic data.

Keywords Biased estimator, Generalized Poisson regression model, Multicollinearity, Ridge estimator, CO2
emissions

The Poisson regression model (PRM) is a fundamental tool for analyzing count data, where the outcome
variable consists of non-negative integers representing the frequency of events. A core assumption of the
PRM is equidispersion—the equality of the mean and variance'. However, empirical data frequently violate
this assumption, displaying either overdispersion, where variance exceeds the mean, or the less common
underdispersion, where variance is constrained below the mean. These patterns often emerge from unobserved
heterogeneity, dependencies between events, or other latent factors, potentially leading to inefficient estimates
and misleading inferences. To overcome these limitations, numerous alternative count models have been
developed. These include the negative binomial regression model (NBRM), which incorporates a dispersion
parameter to handle overdispersion??; the geometric regression model (GERM) for underdispersed data?; and
the Conway-Maxwell Poisson regression model (CMPRM), which offers flexibility for both types of dispersion®.
Additional approaches include the double Poisson model (DPRM), which explicitly corrects for deviations from
equidispersion’; the Bell regression model (BRM) for overdispersed counts; and the Poisson-inverse Gaussian
model (PIGRM) for data with severe overdispersion and heavy tails”. Among these, the generalized Poisson
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regression model (GPRM) stands out for its ability to directly adjust the mean-variance relationship, effectively
addressing both over- and underdispersion, making it a versatile alternative when the standard Poisson
assumptions are untenable®.

The GPRM effectively handles both over- or underdispersed count data, making it valuable in numerous
fields®. For example, it has been used to study child stunting in Indonesia'®, neonatal mortality in Ethiopia'l,
and COVID-19 spread in Ghana!2 The GPRM has also inspired new methods, such as a stochastic process for
signed integers!®. These applications demonstrate the model’s flexibility in addressing real-world data challenges.

The presence of multicollinearity, a high degree of intercorrelation among explanatory variables, poses a
significant challenge to regression analysis. This condition detrimentally inflates the variance of parameter
estimates derived from both ordinary least squares (OLS) and maximum likelihood estimation (MLE)!*. The
issue is particularly acute within the context of the GPRM, where MLE can produce excessively high variance
in the presence of correlated predictors. To mitigate the adverse effects of multicollinearity, several techniques
are commonly employed. These include variable selection methods like Lasso regression and the use of biased
estimation techniques, such as Ridge regression'®. Under conditions of multicollinearity, such biased estimators
often outperform MLE by trading a small amount of bias for a substantial reduction in variance, thereby
yielding a lower scalar mean squared error (MSE) and more reliable estimates. The ridge estimator, formulated
as fre = (X'X + kI)"' XY where X is the design matrix, Y the response vector, I the identity matrix, and
k > 0 the ridge parameter, can be analyzed through its spectral properties to derive its MSE. The selection of
an optimal k value is critical, and numerous methods have been developed for this purpose, building upon the
foundational work of Hoerl and Kennard!®!” for nonorthogonal problems. Subsequent advancements include
the alternative estimators proposed by Kibria'® and further methodological elaborations by Muniz and Kibria!®.

Ridge regression has been widely used in generalized linear models (GLMs), with Segerstedt?® being one of
the first to apply it in GLMs. This technique has since been used in various models to deal with multicollinearity.
For instance, Mansson and Shukur?!, Schaefer et al.?, Rady et al.??, Mansson??, Tharshan et al.?*, Almulhim et
al.?%, Abonazel et al.?’, Sami et al.?%, Algamal et al.?’, Dawoud?, El-Alosey et al.>!, Akram et al.*2, Shahzad et al.3,
and Ashraf et al.>*,

A substantial body of literature has explored the development and application of ridge estimators and other
biasing parameters across a range of statistical frameworks, from classical linear regression to various count and
GLMs. Despite these extensive developments, the integration of ridge regression methodology within the GPRM
remains notably understudied. This research aims to address this gap by systematically evaluating the efficacy of
ridge regression in ameliorating the dual challenges of multicollinearity and overdispersion within the GPRM
framework and derivation and evaluation of optimal estimators for the ridge parameter f. The performance
of the resulting ridge estimators will be rigorously compared against the conventional generalized Poisson
maximum likelihood estimates (GPMLE). Theoretical comparisons and Monte Carlo simulations will be used
to study the performance of the proposed estimator, and these findings will be further validated through a real-
world application.

This paper is organized in the following: Section "Generalized Poisson regression model" provides the
statistical formulation of the Generalized Poisson (GP) distribution and its corresponding regression model.
Section "Generalized Poisson ridge regression estimator" presents the methodological framework for addressing
multicollinearity within the GPRM through the application of ridge regression. The performance criteria used to
evaluate the proposed estimators are defined in Sect. "The superiority of the GPRRE over the GPMLE". Section
"Selection of the biasing parameters" is devoted to a discussion of the methods for selecting the optimal ridge
parameter, . The efficacy of the proposed methodology is then rigorously assessed via an extensive Monte Carlo
simulation study in Sect. "Monte Carlo simulation". To demonstrate its practical utility, the approach is applied
to empirical datasets in Sect. "Application". Finally, the principal findings, along with concluding remarks and
potential avenues for future research, are summarized in Sect. "Conclusion".

Generalized Poisson regression model
The GP distribution initially introduced by Consul and Jain®, which has parameters 6 and v. This distribution’s
probability mass function (PMF) is defined as:

0 —1_—(0+v
P(Y =y;0,v) = = (0 +vy)’te” T, (1)
y!
where y =0,1,2,..., § > 0, and max(—1,—0/4) < v < 1. The GP distribution was initially introduced
as an approximation to the generalized negative binomial distribution. Its properties were subsequently
extensively developed by Consul*®, whose foundational work led to it being commonly referred to as Consul’s
GP distribution. The mean and variance of the distribution are given by:

and

Var(Y) = ﬁ

Famoye®” suggested a more appropriate parametrization of the GP distribution for regression models by
reparameterizing the original formulation in Eq. (1). Specifically, let ;1 = 12— and ¢ = %. This transformation
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leads to the relationships 0 = =F—

distribution, denoted as GP (i, go),?s given by:

At [ w ) exp [~ L+ 2Y)
y! L+ pp 1+ pp

and v = 702, Under this reparameterization, the PMF for the GP

PY =y;p,p) = > p>0,y=0, 1,2 ... (2

This parameterization is very good for regression since it is easy to understand and fits well with modeling
frameworks. The GP distribution is great for analyzing count data because it can handle over- or underdispersion.
The mean and variance of GP(y, o) are:

E(Y|zi) = pi,
and
Var(Y|z:) = pa(1 + opi)*.

The GPRM provides a flexible extension of the standard PRM, designed to handle count data characterized by
either over- or underdispersion. The model is constructed within the GLM framework. In this specification,
the mean of the response variable, denoted by ;, is connected to a linear combination of predictors through a
logarithmic link function, expressed as:

log pui = mi = xif3, 3)

where p; denotes the expected count for the i-th observation. This mean is modeled as a function of a
p X 1 vector of explanatory variables, x;, and a corresponding p-dimensional vector of unknown regression
coefficients, 5. The coeflicients quantify the relationship between the explanatory variables and the expected
value of the response variable. The MLE method is commonly used to estimate the parameters of the GPRM. In
this approach, we maximize the likelihood function L(f, ¢), which expresses the probability of observing the
data given the model parameters. The log-likelihood function (83, ¢) is given by:

n

“Be) = [yz' [log (i) — log (1 + @pi)] + (yi — 1) log(1 + ¢yi) — log(ys!)

i=1

wi(1+ @y
1+ -) @
P

Eq.(4) represent the GPMLE for the parameters ¢ (dispersion parameter) and 3, (regression coeflicients) in a
GPRM:

ot - —Yilbi vilyi — 1) pa(ys — pa)
ot _ B _o,
O ; (1 Tou | Ttew (Lt ®
ot - Yi — Hi 8;“
=y = P, y
9B ; pi(1+ ppi)? OB: ©)

Since the likelihood equation for the regression coefficients, 3, is nonlinear, the Iterative Weighted Least Squares
(IWLS) algorithm (also known as the Fisher Scoring method) proposed by Dutang® is employed to derive the
MLE. Let 3~ denote the vector of regression coeflicients estimated at the (s — 1)-th iteration. The coefficient
vector is subsequently updated at the s-th iteration according to the following rule:

B =BT N () S(BTY), @

where S(3 ™)) is the score function evaluated at 3~ and I(8¢~Y ) is the Fisher information matrix. In
the final step of the algorithm, the GPMLE for the regression coeflicients, SgpmLE, is given by:

BapmLe = AT X'W 2, (8)

where A = X'W X, % is the adjusted response vector, and W is a diagonal weight matrix with diagonal elements
w;. The diagonal elements of W are w; = (HZ#)’“ and the elements of the adjusted response vector ¢ are
Zi = log(ﬂl) + 7%‘;;1’. .

The asymptotic covariance matrix, matrix mean squared error (MMSE), and the MSE for GPMLE are given
by:

N % 1
C = |-F| —— =0 QA 9
ov(BaPMLE) { (aﬂaﬁ’)] P Q Q' %)
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MMSE(BepMmLe) =E [(BGPMLE - 0B) (BGPMLE - B)/]

5 A . / (10)
=Cov(BapMLE) + (E(ﬁGPMLE) — ﬁ) (E(ﬁepMLE) - 5) = QAT'Q,
MSE(BGPMLE) =Tr (MMSE(BGPMLE)) =¢ Z )\i (11)

j=1 "’

where Tr is the trace of the matrix, ¢ is the estimated dispersion parameter, the matrix A is expressed as
A=QAQ’, A =diag(A1,X2,...,Ny) = QAQ’ with Q is an orthogonal matrix whose columns represent
the eigenvectors of QAQ’, and ); is the jth eigenvalue of the A matrix. When the explanatory variables in the
GPRM are highly correlated, the weighted cross-product matrix A becomes unstable. This leads to inefficient
estimates from the GPMLE, with large variances. As a result, the estimated coefficients are often too large,
making them difficult to interpret.

Generalized Poisson ridge regression estimator

Segerstedt® introduced the ridge estimator for GLMs as a solution to multicollinearity, building on the
foundational work of Hoerl and Kennard!®!”. When the explanatory variables in the GPRM are highly correlated,
the GPMLE produces inefficient estimates characterized by a large MSE. Following the contributions of Mansson
and Shukur?!, Sami et al.?%, Shahzad et al.’3, and Ashraf et al.*, this paper introduces a ridge estimator extended
to the GPRM, referred to as the Generalized Poisson Ridge Regression Estimator (GPRRE). Its formulation is
expressed as:

Brs = (A+/€*Ip)_ISBGP1v1LE, (12)
where k£ (k™ > 0) is the ridge parameter, I, is the identity matrix, and if ¥ = 0 then the GPRRE is reduced to
GPMLE.

The bias vector and variance-covariance matrix of the GPRRE are given by:
Bias (B+) = E (Br+) — B = —k* QA (13)
~ A~ ~ ~ A ’ — — ’
Cov (Bi+) =E| (Be —E(Br+)) (Brr —E(Brr)) | = ¢ QAL AALQ' (14)

The MMSE and MSE for the GPRRE can be computed using Egs. (13) and (14) as follows:

MMSE (Bk+ ) =E ((Bk+ — B)(Br= — B)") = Cov (Bk+ ) + Bias (Bk+ ) Bias’ (Bx-)

(15)
=¢ QA ANL Q' + KPP QAL ad AL Q)
u A a?
A _ A A J *2 J
MSE (fi+) =Tr [MMSE (fi+)] = ¢Z; oEE T TR (16)
Jj= Jj=

where the vector @ = QT 8, and Ay = diag(\1 + k™, A2 +k*,..., M + k%) = QA+ KNQ'.

The superiority of the GPRRE over the GPMLE

To assess the superiority of the GPRRE compared to GPMLE, Hoerl and Kennard!® proposed theoretical results
regarding the properties of the MSE for ridge regression estimators in the linear regression model. In this study,
we demonstrate that these results are also applicable to the GPRM. Based on these theorems, we will investigate
the superiority of the GPRRE over the GPMLE.

Theorem 1 'The variance D1 (k™) and the squared bias D2 (k™) are continuous functions of k*, where D1 (k™) is
monotonically decreasing and D (k™) is monotonically increasing, provided that ¥* > 0 and \; > 0.

Proof Using Eq. 16, we are given the following expressions for the variance and squared bias:

P

p 2
* ~ Aj * *2 a;
j=1 j

j=1

1. Monotonicity of D1 (k™): The derivative of D1 (k™) with respect to k™ is:
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dD+(
dlk* g Aj +k* ’

since A; > 0and k" > 0, we conclude that dDdlk(f D <, implying D1 (k™) is monotonically decreasing.

2. Monotonicity of D2 (k™): The derivative of D2 (k™) with respect to k™ is:

dDs (k
W‘ Z:,\Jrk 34

since A\; > O and k™ > 0, we have %@ > 0, implying D2 (k™) is monotonically increasing.

Thus, D1 (k™) is monotonically decreasing and D2 (k™) is monotonically increasing for k* > 0.0
Theorem 2 For the GPRM, the GPRRE is more efficient than the GPMLE if

MSE(Bapvie) — MSE(B+) >0 forall k* >0 and A; >0.

Proof For D; (k™) when k™ = 0, we have:
D) =Y
1 N 0
=N

which equals MSE(3y+) . The difference between MSE (B¢« ) and MSE(BapmLi) is:
p

P p p 2 K ATk N * 2
R 1 . Aj 2 oj E*(pk™ 4 20X — k™ Aaj)
= E - _ E A B E AL N R :E
72 (“’, DR (Aj+k*>2> . MO HRE
J= )= J=

j=1

for any k*>0, then A >0 if and only if @k*+2¢X—k*Aaj >0. Consequently,
MSE(BapmLe) — MSE(Bk+) > 0 holds under the same condition, i.e., pk* + 2pA — k AaZ > 0.0

Selection of the biasing parameters

The ridge parameter (k) is a critical component of the ridge regression estimator, as its value directly governs
the degree of shrinkage and bias introduced to stabilize the coefficient estimates. Consequently, the selection
of an optimal value for this shrinkage parameter has become a central challenge in the application of the ridge
methodology. This is particularly vital in the presence of multicollinearity, where high correlations among
explanatory variables can severely degrade the performance of standard estimators. In response, a significant
body of research has been dedicated to developing methods for estimating the optimal k across diverse regression
frameworks, such as those of Mansson and Shukur?!, Schaefer et al.??, Rady et al.?3, Tharshan and Wijekoon?,
Algamal et al.?®, Akram et al.>%.

The foundational work on this technique was established by'®!’, who first proposed ridge estimation to
mitigate multicollinearity in linear regression models. Their approach has since been successfully generalized to
a wider array of models, including the gamma regression model®? and the zero-inflated CMPRM?>*. Within the
context of the GPRM, the resulting estimator is designated as the GPRRE. For our analysis, following the works
of!®17 and?!, we adopt the following values for k*:

16,17

v @
po P
ky = max(o??) (18)
5 P
ks = min <6¢J2> (19)

o @
YT onaTr g (20)
EZ = median(g;), (21)
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. i y
k; = median <1+2)\7&?) . (22)
Following Shahzad et al.**, we use the following values for &*:
I%g = min EFSW —i\j/\?dg , (23)
Ea]
- 1
kr = ———<.
7 max(a7) (24)
Following Tharshan et al.?5, we use the following values for k*:
k+ = median <\/T2) , (25)
8 Pl
j
k» = max 1 (26)
9 i
&2
J
Following Sami et al.?® we use the following value for k*:
GPMLE | GPRRE
p |n |- ki k3 ks (k1 |kp o (kg k7 [ky kg RYo kD, Rz | kis | Ki. |Kis
0.80 | 50 |0.2898 |0.2751 |0.2707 | 0.2707 | 0.2827 | 0.1991 | 0.2708 | 0.2671 | 0.2048 | 0.2684 | 0.2679 | 0.2213 | 0.1436 |0.1718 | 0.1367 | 0.1551
100 | 0.1324 | 0.1289 | 0.1283 |0.1283 | 0.1309 | 0.0965 | 0.1283 | 0.1277 | 0.1051 | 0.1284 | 0.1275 | 0.1145 | 0.0728 | 0.0959 | 0.0830 | 0.0965
150 | 0.0945 | 0.0912 | 0.0905 | 0.0905 | 0.0936 | 0.0745 | 0.0905 | 0.0919 | 0.0800 | 0.0924 | 0.0922 | 0.0849 | 0.0564 | 0.0728 | 0.0629 | 0.0711
200 | 0.0617 | 0.0603 | 0.0601 | 0.0601 | 0.0613 | 0.0506 | 0.0600 | 0.0606 | 0.0543 | 0.0609 | 0.0607 | 0.0574 | 0.0440 | 0.0516 | 0.0463 | 0.0518
300 | 0.0386 | 0.0379 | 0.0378 | 0.0378 | 0.0385 | 0.0326 | 0.0378 | 0.0382 | 0.0349 | 0.0383 | 0.0382 | 0.0369 | 0.0332 | 0.0343 | 0.0318 | 0.0350
400 | 0.0342 | 0.0333 | 0.0332 | 0.0332 | 0.0341 | 0.0290 | 0.0332 | 0.0339 | 0.0311 | 0.0340 | 0.0339 | 0.0328 | 0.0294 | 0.0304 | 0.0283 | 0.0310
0.85 |50 |0.2582 |0.2452 |0.2419 | 0.2419 | 02521 | 0.1772 | 0.2421 | 0.2408 | 0.1848 | 0.2421 | 0.2412 | 0.2020 | 0.1251 | 0.1521 | 0.1247 | 0.1448
100 | 0.1897 | 0.1778 | 0.1759 | 0.1759 | 0.1859 | 0.1327 | 0.1752 | 0.1793 | 0.1416 | 0.1803 | 0.1784 | 0.1535 | 0.0935 | 0.1199 | 0.0962 | 0.1111
150 | 0.1105 | 0.1067 |0.1058 | 0.1058 | 0.1093 | 0.0858 | 0.1058 | 0.1068 | 0.0915 |0.1074 | 0.1070 | 0.0968 | 0.0575 | 0.0810 | 0.0674 | 0.0767
200 | 0.0828 | 0.0789 | 0.0783 | 0.0783 | 0.0820 | 0.0648 | 0.0784 | 0.0808 |0.0703 | 0.0811 | 0.0808 | 0.0748 | 0.0464 | 0.0640 | 0.0547 | 0.0618
300 | 0.0529 | 0.0518 | 0.0516 | 0.0516 | 0.0526 | 0.0422 | 0.0516 | 0.0521 |0.0465 | 0.0522 | 0.0521 | 0.0495 | 0.0334 | 0.0453 | 0.0413 | 0.0460
400 [0.0422 | 0.0412 | 0.0410 | 0.0410 | 0.0420 | 0.0338 | 0.0410 | 0.0417 | 0.0375 | 0.0418 | 0.0417 | 0.0400 | 0.0275 | 0.0364 | 0.0332 | 0.0372
0.90 [50 | 05974 |0.5289 |0.5035 | 0.5035 | 0.5654 | 0.3804 | 0.5099 | 0.4957 | 0.3481 | 0.4899 | 0.4994 | 0.3668 | 0.2488 | 0.2360 | 0.1436 | 0.1604
100 | 0.2662 | 0.2446 | 0.2383 | 0.2383 | 0.2582 | 0.1802 | 0.2387 | 0.2439 | 0.1848 | 0.2450 | 0.2465 | 0.1980 | 0.1037 | 0.1344 | 0.0884 | 0.1071
150 | 0.1761 | 0.1651 | 0.1634 | 0.1634 | 0.1730 | 0.1237 | 0.1634 | 0.1665 | 0.1326 | 0.1675 | 0.1654 | 0.1430 | 0.0782 | 0.1093 | 0.0836 | 0.0984
200 | 0.1346 | 0.1236 | 0.1216 | 0.1216 | 0.1321 | 0.1008 | 0.1218 | 0.1287 | 0.1072 | 0.1295 | 0.1292 | 0.1137 | 0.0555 | 0.0863 | 0.0648 | 0.0760
300 | 0.0818 | 0.0778 | 0.0772 | 0.0772 | 0.0810 | 0.0631 | 0.0773 | 0.0796 | 0.0689 | 0.0800 | 0.0799 | 0.0735 | 0.0386 | 0.0619 | 0.0513 | 0.0596
400 | 0.0562 | 0.0539 | 0.0536 | 0.0536 | 0.0557 |0.0430 | 0.0536 | 0.0552 | 0.0483 | 0.0554 | 0.0552 | 0.0520 | 0.0276 | 0.0450 | 0.0387 | 0.0452
0.95 [50 | 15628 |1.3330 |1.1923 | 1.1923 | 1.3788 | 0.8473 | 1.2329 | 1.0755 | 0.6101 | 0.8662 | 0.9604 | 0.7141 | 0.4779 | 0.3230 | 0.1252 | 0.1377
100 | 0.5249 | 0.4493 | 0.4227 | 0.4227 | 0.4934 | 03271 | 0.4282 | 0.4398 | 0.3032 | 0.4357 | 0.4428 | 0.3208 | 0.1785 | 0.1624 | 0.0857 | 0.1013
150 | 03151 | 0.2744 | 0.2631 |0.2631 | 0.3017 | 0.2107 | 0.2649 | 0.2820 | 0.2095 | 0.2826 | 0.2848 | 0.2201 | 0.1094 | 0.1287 | 0.0739 | 0.0887
200 | 02129 | 0.1914 | 0.1872 | 0.1872 | 0.2065 | 0.1414 | 0.1879 | 0.1977 | 0.1497 | 0.1985 | 0.1979 | 0.1623 | 0.0777 | 0.1079 | 0.0685 | 0.0868
300 | 0.1507 | 0.1386 | 0.1363 | 0.1363 | 0.1477 | 0.1100 | 0.1365 | 0.1435 |0.1171 | 0.1442 | 0.1435 | 0.1247 | 0.0570 | 0.0910 | 0.0633 | 0.0774
400 |0.1203 | 0.1129 | 0.1115 | 0.1115 | 0.1183 | 0.0891 | 0.1116 | 0.1153 |0.0957 | 0.1160 | 0.1155 | 0.1021 | 0.0447 | 0.0775 | 0.0560 | 0.0684
0.99 [50 | 51331 |3.6900 |3.1279 |3.1279 | 3.2843 | 2.2495 | 3.5360 | 2.9300 | 0.8933 | 0.7646 | 1.4590 | 1.6130 | 0.6255 | 0.2144 |0.0904 | 0.0887
100 | 2.7809 | 2.1335 | 17621 | 1.7621 | 2.1783 | 1.3616 | 1.9195 | 1.6389 | 0.6881 | 0.8592 | 1.1961 | 0.9519 | 0.5569 | 0.1459 | 0.0399 | 0.0436
150 | 1.6278 | 1.2167 | 1.0004 | 1.0004 | 1.3530 | 0.8740 | 1.0816 | 1.0614 | 0.5628 | 0.8179 | 0.9808 | 0.6623 | 0.3522 | 0.1422 | 0.0357 | 0.0415
200 | 1.3280 | 0.9515 | 0.7765 | 0.7765 | 1.0993 | 0.7049 | 0.8530 | 0.8800 | 0.4879 | 0.7348 | 0.8498 | 0.5532 | 0.3204 | 0.1201 | 0.0341 | 0.0386
300 | 0.8750 | 0.6573 | 0.5644 | 0.5644 | 0.7635 | 0.4781 | 0.5920 | 0.6484 | 0.3825 | 0.6009 | 0.6419 | 0.4224 | 0.2215 | 0.1168 | 0.0321 | 0.0422
400 | 0.5920 | 0.4872 | 0.4472 | 0.4472 | 0.5456 | 0.3519 | 0.4551 | 0.4792 | 0.3147 | 0.4665 | 0.4805 | 0.3326 | 0.1908 | 0.1351 | 0.0445 | 0.0578

Table 1. Estimated MSE values for different estimators at p = 4 and ¢ = 0.1. Bold values indicate the
minimum MSE.
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GPMLE | GPRRE
P |n |- e L L S LS S L T R S 2 T L PO O - L L P
0.80 |50 [0.8220 |0.6225 | 0.5491 | 0.5491 | 0.6965 | 0.4756 | 0.5687 | 0.6162 | 0.4041 | 0.5756 | 0.5123 | 0.4362 | 0.2693 | 0.2601 | 0.3483 | 0.3246
100 | 0.3983 | 0.3277 | 0.2989 | 0.2989 | 0.3729 | 0.2712 | 0.3011 | 0.3409 | 0.2592 | 0.3459 | 0.3110 | 0.2682 | 0.1690 | 0.1639 | 0.1814 | 0.1659
150 | 0.2482 | 0.2157 | 0.2067 | 0.2067 | 0.2375 | 0.1909 | 0.1923 | 0.2218 | 0.1877 | 0.2282 | 0.2124 | 0.1875 | 0.1295 | 0.1300 | 0.1527 | 0.1330
200 | 0.1677 | 0.1443 | 0.1398 | 0.1398 | 0.1622 | 0.1332 | 0.1333 | 0.1559 | 0.1350 | 0.1591 | 0.1512 | 0.1373 |0.0991 |0.0997 |0.1131 | 0.0982
300 |0.1015 | 0.0912 | 0.0912 | 0.0912 | 0.0992 | 0.0789 | 0.0870 | 0.0980 | 0.0837 | 0.0987 | 0.0951 |0.0890 |0.0845 |0.0683 | 0.0718 | 0.0668
400 | 0.0893 | 0.0833 | 0.0819 | 0.0819 | 0.0881 | 0.0741 | 0.0806 | 0.0859 | 0.0770 | 0.0870 | 0.0843 | 0.0798 | 0.0642 |0.0669 | 0.0603 | 0.0604
0.85 |50 [0.7522 |0.5727 | 0.5013 | 0.5013 | 0.6468 | 0.4471 | 0.5216 | 0.5748 | 0.3918 | 0.5483 | 0.4836 | 0.4156 | 0.2700 | 0.2654 | 0.3620 | 0.3329
100 | 0.5080 | 0.4406 | 0.4153 | 0.4153 | 0.4740 | 0.3322 | 0.4014 | 0.4186 | 0.3062 | 0.4210 | 0.3671 | 0.3161 | 0.2097 | 0.1855 |0.1924 |0.1818
150 | 0.3109 | 0.2527 | 0.2347 | 0.2347 | 0.2915 | 0.2280 | 0.2233 | 0.2683 | 0.2184 | 0.2769 | 0.2527 | 0.2173 | 0.1308 | 0.1310 | 0.1552 | 0.1398
200 |0.2312 | 0.2034 | 0.1965 | 0.1965 | 0.2225 | 0.1655 | 0.1922 | 0.2104 | 0.1673 | 0.2135 | 0.1976 | 0.1748 | 0.1064 |0.1147 | 0.1014 | 0.1006
300 | 0.1510 | 0.1435 | 0.1406 | 0.1406 | 0.1484 | 0.1167 |0.1386 | 0.1418 | 0.1202 | 0.1440 | 0.1367 | 0.1245 | 0.0759 | 0.0954 | 0.0724 | 0.0799
400 |0.1084 | 0.0992 | 0.0985 | 0.0985 | 0.1061 | 0.0867 | 0.0918 | 0.1031 | 0.0903 | 0.1048 | 0.1011 | 0.0941 | 0.0610 |0.0718 | 0.0654 | 0.0640
0.90 |50 [1.9967 |1.4032 | 1.1688 | 1.1688 | 1.4414 | 0.9476 | 1.3027 | 1.2470 | 0.6316 | 0.8582 | 0.7814 | 0.7623 | 0.4169 |0.2837 | 0.3792 | 0.3590
100 | 0.8377 | 0.5733 | 0.4856 | 0.4856 | 0.6904 | 0.4598 | 0.5255 | 0.6172 | 0.3709 | 0.5764 | 0.4973 | 0.4136 | 0.1839 |0.1449 | 0.1861 | 0.1694
150 | 0.4564 | 0.3838 | 0.3504 | 0.3504 | 0.4249 | 0.3077 | 0.3477 | 0.3725 | 0.2819 | 0.3811 | 0.3312 | 0.2825 | 0.1764 | 0.1520 | 0.1361 |0.1330
200 |0.3680 | 0.2873 | 0.2644 | 0.2644 | 0.3421 | 0.2633 | 0.2627 | 0.3107 | 0.2462 | 0.3193 | 0.2871 | 0.2443 | 0.1286 |0.1239 | 0.1204 | 0.1130
300 | 0.2240 | 0.1854 | 0.1740 | 0.1740 | 0.2137 | 0.1693 | 0.1683 | 0.2015 | 0.1672 | 0.2069 | 0.1938 | 0.1691 | 0.0810 | 0.0986 | 0.0819 | 0.0792
400 | 0.1560 | 0.1385 | 0.1318 | 0.1318 | 0.1520 | 0.1196 | 0.1316 | 0.1455 | 0.1235 | 0.1486 | 0.1406 | 0.1282 | 0.0665 | 0.0904 | 0.0681 | 0.0730
095 (50 |[3.8194 |2.3711 | 1.9112 | 1.9112 | 2.2518 | 1.5623 | 2.3487 | 2.1922 | 0.7851 | 0.8564 | 0.8715 | 1.2078 | 0.5174 |0.2696 | 0.4781 | 0.4510
100 | 1.5045 | 1.0422 | 0.8315 | 0.8315 | 1.1737 | 0.8046 | 0.9295 | 0.9611 | 0.5416 | 0.7591 | 0.6290 | 0.6064 |0.3356 |0.1654 | 0.1980 | 0.1901
150 | 1.0376 | 0.7071 | 0.5711 | 0.5711 | 0.8676 | 0.6168 | 0.6274 | 0.7187 | 0.4774 | 0.6637 | 0.5668 | 0.4887 | 0.2558 |0.1391 | 0.1530 | 0.1493
200 | 05757 | 0.4185 | 0.3763 | 0.3763 | 0.5057 | 0.3272 | 0.3916 | 0.4630 | 0.2894 | 0.4551 | 0.3885 | 0.3214 | 0.1439 [0.1129 |0.1000 | 0.1037
300 | 0.3579 | 0.2688 |0.2417 | 0.2417 | 03292 | 0.2534 | 0.2434 | 0.3023 | 0.2365 | 0.3110 | 0.2776 | 0.2339 | 0.1136 | 0.1033 | 0.0816 | 0.0804
400 |0.3077 | 0.2214 | 0.1952 | 0.1952 | 0.2841 | 0.2230 | 0.1979 | 0.2667 | 0.2128 | 0.2742 | 0.2484 | 0.2124 |0.0919 |0.0952 | 0.0676 | 0.0660
099 |50 [16.7179 |9.1220 | 7.6334 | 7.6334 | 3.3114 | 45110 | 9.9153 | 8.9474 | 0.7863 | 0.3171 | 0.5814 | 4.0202 | 0.3304 | 0.1879 | 0.6243 | 0.5402
100 | 8.6364 | 3.9314 |3.0897 | 3.0897 | 2.7907 | 2.7088 | 4.6309 | 4.7197 | 0.7608 | 0.4671 | 0.6669 | 2.3045 | 0.2862 | 0.0996 | 0.3660 | 0.3227
150 | 4.7889 | 22297 | 1.6376 | 1.6376 | 2.2234 | 1.9964 | 2.4581 | 2.6431 | 0.7892 | 0.6876 | 0.7425 | 1.4200 | 0.2910 | 0.0792 | 0.2268 | 0.2109
200 |4.2318 | 1.9942 | 1.4255 | 1.4255 | 2.1155 | 1.7478 | 2.1377 | 2.3026 | 0.7569 | 0.7006 | 0.7325 | 1.2572 | 0.4574 |0.0667 | 0.1819 | 0.1743
300 |2.3594 | 1.1437 | 0.7755 | 0.7755 | 1.4394 | 1.1820 | 1.1636 | 1.3182 | 0.6514 | 0.7770 | 0.6705 | 0.7877 | 0.3348 |0.0626 | 0.0917 | 0.0910
400 | 1.6393 | 0.9453 | 0.6527 | 0.6527 | 1.2012 | 0.9106 | 0.8500 | 0.9920 | 0.5957 | 0.7701 | 0.6449 | 0.6344 |0.3390 |0.0794 | 0.0489 | 0.0491
Table 2. Estimated MSE values for different estimators at p = 4 and ¢ = 0.5. Bold values indicate the
minimum MSE.
. 1
k;o = min =5 (27)
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Following Amin et al.*%, we use the following values for k*:
b= (28)
&
oo P
11 Z;’Zl % (29)
Building upon the previous works, we propose the following values for £*:
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ks, = s <’ (30)
i=11/ &,
R P
ko= (0a)), (31)
j=1
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GPMLE | GPRRE
p |n |- ki k3 k3 (kD kg (kg k7 (kg (ks | kio KTy ki |kig |kia KIS
0.80 | 50 | 3.6489 1.7840 | 1.5776 | 1.5776 | 1.4195 | 0.9476 | 2.0133 | 1.8727 |0.6849 | 0.8922 | 0.7117 | 0.9642 | 0.5797 | 0.6368 | 0.9644 | 0.8964
100 | 0.9571 0.6492 | 0.5691 |0.5691 |0.7714 | 0.5420 | 0.5889 | 0.6802 | 0.4448 | 0.6126 | 0.4506 | 0.4743 | 0.3659 | 0.3461 | 0.6071 | 0.5475
150 | 0.5211 0.4269 | 0.4043 | 0.4043 | 0.4650 | 0.3448 | 0.3491 | 0.4144 |0.3162 | 0.4171 | 0.3340 | 0.3172 | 0.3521 | 0.2613 | 0.4741 | 0.4124
200 | 0.3610 0.3069 |0.3052 | 0.3052 |0.3308 | 0.2511 | 0.2481 | 0.3084 | 0.2418 | 0.3135 | 0.2635 | 0.2457 | 0.2823 | 0.1921 | 0.3709 | 0.3081
300 | 0.2400 0.2221 |0.2288 |0.2288 |0.2276 | 0.1769 | 0.1823 | 0.2165 | 0.1763 | 0.2208 | 0.1910 | 0.1810 | 0.2164 | 0.1308 | 0.2199 | 0.1776
400 | 0.1715 0.1610 |0.1617 |0.1617 |0.1666 | 0.1337 | 0.1469 | 0.1600 |0.1355 | 0.1619 | 0.1470 | 0.1386 | 0.1408 | 0.1117 | 0.1413 | 0.1176
0.85 | 50 | 4.0078 1.5357 | 1.3720 | 1.3720 | 1.2153 | 0.8870 | 1.6035 | 1.6477 | 0.6760 | 0.8763 | 0.6878 | 0.8689 | 0.6007 | 0.6739 | 1.0125 | 0.9435
100 | 1.1519 0.8641 |0.7409 |0.7409 |0.9168 | 0.6134 | 0.7679 | 0.7883 | 0.4786 | 0.6855 | 0.4900 | 0.5219 | 0.5047 | 0.3725 | 0.5372 | 0.4799
150 | 0.7483 0.5325 |0.4773 |0.4773 |0.6375 | 0.4525 | 0.4510 | 0.5614 |0.3912 | 0.5462 | 0.4183 | 0.4047 | 0.3171 | 0.2654 | 0.5123 | 0.4593
200 | 0.5378 0.4299 |0.3874 | 0.3874 | 0.4894 | 0.3439 | 0.3799 | 0.4228 | 0.3091 | 0.4245 | 0.3257 | 0.3116 | 0.2277 | 0.1866 | 0.2567 | 0.2326
300 | 0.3416 0.2922 | 0.2702 |0.2702 | 0.3250 | 0.2404 | 0.2701 | 0.2934 | 0.2308 | 0.3000 | 0.2503 | 0.2323 | 0.1575 | 0.1513 | 0.1454 | 0.1342
400 | 0.2135 0.1843 |0.1826 |0.1826 |0.2040 | 0.1601 | 0.1651 | 0.1956 |0.1615 | 0.1984 | 0.1770 | 0.1642 | 0.1348 | 0.1156 | 0.1636 | 0.1359
0.90 | 50 |8.5537 42505 |3.7717 |3.7717 | 2.1770 | 1.5578 | 4.8827 | 4.3108 | 0.8267 | 0.9296 | 0.7978 | 1.8232 | 0.6627 | 0.6689 | 1.0485 | 0.9703
100 | 2.4749 1.4253 | 1.1802 | 1.1802 | 1.4381 |0.9700 | 1.4313 | 1.4723 |0.5925 | 0.7810 | 0.5282 | 0.8176 | 0.3843 | 0.3213 | 0.6477 | 0.6005
150 | 1.0471 0.7850 |0.6814 | 0.6814 |0.8836 | 0.5627 | 0.7050 | 0.7439 |0.4383 | 0.6591 | 0.4707 | 0.4947 | 0.3500 | 0.2567 | 0.3700 | 0.3248
200 | 0.7964 0.5680 |0.4881 | 0.4881 |0.6836 | 0.4783 | 0.4960 | 0.5802 |0.3985 | 0.5649 | 0.4164 | 0.4059 | 0.2599 | 0.1994 | 0.3289 | 0.2982
300 | 0.4590 0.3283 |0.2951 |0.2951 |0.4101 | 0.3073 | 0.2846 | 0.3714 | 0.2820 | 0.3807 | 0.3066 | 0.2783 | 0.1728 | 0.1421 | 0.2338 | 0.2061
400 | 0.3178 0.2638 | 0.2490 | 0.2490 |0.3004 | 0.2110 | 0.2468 | 0.2792 | 0.2096 | 0.2829 | 0.2376 | 0.2189 | 0.1496 | 0.1292 | 0.1337 | 0.1236
0.95 | 50 | 12.6088 |6.2636 |5.5080 |5.5080 |2.7403 |2.2383 |7.2900 | 6.4603 |0.8256 | 0.7356 | 0.7104 | 2.6804 | 0.6402 | 0.6548 | 1.1497 | 1.0466
100 | 3.7182 2.1997 | 1.7574 | 1.7574 | 2.0520 | 1.4411 | 2.1849 | 2.1261 |0.7059 | 0.8197 | 0.5638 | 1.1552 | 0.5030 | 0.3381 | 0.6570 | 0.6037
150 | 2.2661 1.2740 | 0.9779 |0.9779 | 1.4555 | 1.0220 | 1.2351 | 1.3215 | 0.5961 | 0.8031 | 0.5244 | 0.7618 | 0.3775 | 0.2287 | 0.4988 | 0.4650
200 | 1.4026 0.8972 | 0.7106 |0.7106 |1.0706 | 0.7598 | 0.8126 | 0.9046 | 0.5243 | 0.7493 | 0.4729 | 0.5770 | 0.3159 | 0.1718 | 0.3062 | 0.2874
300 | 0.8113 0.5183 |0.4321 |0.4321 |0.6760 | 0.4787 | 0.4579 | 0.5973 |0.3942 | 0.5804 | 0.4209 | 0.4096 | 0.2264 | 0.1426 | 0.2343 | 0.2138
400 | 0.6150 0.3725 |0.3283 |0.3283 |0.5135 | 0.3682 | 0.3364 | 0.4776 |0.3181 | 0.4711 | 0.3507 | 0.3344 | 0.1830 | 0.1164 | 0.2174 | 0.1886
0.99 |50 |73.1927 | 33.8598 | 30.9481 | 30.9481 | 2.3796 | 7.8464 | 41.4792 | 35.5031 | 0.7683 | 0.3623 | 0.4318 | 12.3884 | 0.4705 | 0.6210 | 1.3286 | 1.1616
100 | 22.4155 | 9.5273 |8.0536 |8.0536 |2.8515 | 5.2309 | 12.1525 | 12.4546 | 0.7808 | 0.2865 | 0.3609 | 5.6033 | 0.3500 | 0.3376 | 1.0869 | 0.9433
150 | 10.7908 | 4.3459 | 3.4415 |3.4415 |2.6203 | 3.1024 | 5.4814 | 5.8097 |0.7263 | 0.3877 | 0.3648 | 2.7016 | 0.3189 | 0.1933 | 0.7474 | 0.6645
200 | 9.2668 41048 |3.2091 |3.2091 |2.9107 |3.0169 | 4.8104 |5.0379 |0.7521 | 0.4261 | 0.3924 | 2.4307 | 0.3128 | 0.1537 | 0.6041 | 0.5397
300 | 4.9456 2.0607 |1.4914 |1.4914 |2.0414 | 1.9294 | 2.4068 |2.6616 |0.7074 | 0.6138 | 0.4203 | 1.3836 | 0.2586 | 0.0926 | 0.3879 | 0.3532
400 | 3.4664 1.5695 |1.1006 | 1.1006 |1.8078 | 1.5584 | 1.6910 | 1.9099 | 0.6938 | 0.7355 | 0.4782 | 1.0584 | 0.2535 | 0.0779 | 0.2325 | 0.2178

Table 3. Estimated MSE values for different estimators at p = 4 and ¢ = 1. Bold values indicate the minimum
MSE.

7 : ¥p
k’»{4 = median = , (32)
&2
J
~ by
kfs = —mean J (33)

Monte Carlo simulation
This section presents Monte Carlo simulations to evaluate the performance of the proposed estimator, including
the simulation design, results, and a comparison of relative efficiency.

Simulation design

This section describes the Monte Carlo simulation study conducted to evaluate the performance of different
estimators in the GPRM under multicollinearity. The response variable (y) was generated from a GP
distribution®!, with the mean (u; = exp(z;8)) fori = 1,...,n, 8 representing the vector of coefficients, and
x; being the ¢ th row of the design matrix X contains the explanatory variables. The explanatory variables were
simulated using the formula*?3:

:Cij:\/lfpzeij + peip+1, t=1,...

where p determines the correlation between explanatory variables and e;; is drawn from a standard normal
distribution. Multicollinearity was analyzed for p values of 0.80, 0.85, 0.90, 0.95, and 0.99. Models were tested
with 4, 7, and 10 explanatory variables. The intercept (3o) was set to 1, and the dispersion parameter ¢ was varied

(34)
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GPMLE | GPRRE
o |n |- ky k3 k3 k3 (kp kg |ky (kg ks |k ki, kD, | kis |Ri. | Kis
0.80 |50 |0.7017 |0.6444 |0.6154 |0.6154 |0.6604 | 0.3936 |0.6197 |0.6171 |0.4078 | 0.6343 | 0.6358 | 0.4367 |0.2191 |0.2180 | 0.2076 |0.2228
100 [0.3298 |0.3015 |0.2923 |0.2923 |0.3177 [ 0.2013 |0.2930 |0.3095 |0.2254 | 0.3169 | 0.3136 | 0.2425 | 0.1176 | 0.1225 | 0.1247 | 0.1353
150 | 0.1965 [0.1848 |0.1824 [0.1824 |0.1924 |0.1234 | 0.1825 |0.1901 |0.1471 | 0.1927 |0.1912 | 0.1627 | 0.0810 | 0.0926 | 0.0962 | 0.1152
200 | 0.1341 | 0.1276 |0.1263 |0.1263 |0.1319 |0.0862 | 0.1263 |0.1310 |0.1049 | 0.1323 | 0.1315 | 0.1167 | 0.0661 |0.0733 | 0.0750 | 0.0907
300 | 0.0932 | 0.0900 |0.0892 |0.0892 |0.0922 |0.0626 | 0.0892 |0.0917 |0.0764 | 0.0924 |0.0920 | 0.0842 | 0.0543 |0.0576 | 0.0579 | 0.0702
400 |0.0729 |0.0720 [0.0718 |0.0718 |0.0724 | 0.0497 | 0.0718 |0.0720 |0.0609 |0.0724 | 0.0721 | 0.0674 |0.0473 | 0.0506 | 0.0518 | 0.0623
085 |50 |1.2653 |1.0494 |0.9347 |0.9347 |1.0894 |0.6325 |0.9771 |0.9987 |0.5796 | 1.0120 | 1.0642 | 0.6262 | 0.2558 | 0.2067 | 0.2081 | 0.2047
100 [0.3712 | 0.3442 | 03359 |0.3359 |0.3573 | 0.2148 |0.3366 | 0.3455 |0.2405 | 0.3538 | 0.3490 | 0.2640 |0.1145 | 0.1207 | 0.1236 | 0.1459
150 [0.2772 | 0.2553 |0.2495 |0.2495 |0.2677 | 0.1606 |0.2503 | 0.2620 | 0.1860 | 0.2674 | 0.2645 | 0.2066 | 0.0851 | 0.0928 | 0.0931 |0.1160
200 | 0.2035 |0.1883 |0.1842 |0.1842 |[0.1982 | 0.1232 | 0.1844 [0.1960 |0.1483 |0.1991 | 0.1972 | 0.1657 | 0.0717 | 0.0822 | 0.0831 | 0.1047
300 | 0.1128 | 0.1110 |0.1106 |0.1106 |0.1116 | 0.0706 | 0.1106 | 0.1105 |0.0885 | 0.1116 | 0.1108 |0.0994 | 0.0504 | 0.0640 | 0.0671 | 0.0852
400 | 0.0950 | 0.0937 |0.0934 |0.0934 |0.0942 |0.0601 | 0.0934 |0.0934 |0.0765 | 0.0942 | 0.0936 | 0.0855 | 0.0416 |0.0578 | 0.0605 | 0.0759
090 |50 |1.5898 |1.2730 |1.0845 |1.0845 |1.3115|0.7799 | 1.1584 |1.1887 |0.6522 | 1.1785 | 1.2469 | 0.7106 |0.2788 | 0.1995 | 0.2179 | 0.2051
100 [0.7877 | 0.6630 |0.5990 |0.5990 |0.7172 | 0.4503 |0.6133 |0.6738 |0.4392 |0.7014 | 0.6974 | 0.4528 |0.1824 |0.1297 | 0.1320 | 0.1321
150 [0.4141 |0.3818 |0.3690 |0.3690 |0.3954 | 0.2415 |0.3696 |0.3819 |0.2635 | 0.3920 | 0.3864 | 0.2824 |0.1157 |0.1012 | 0.0918 | 0.1144
200 | 0.3465 |0.3258 |0.3166 |0.3166 |0.3335 | 0.2043 | 0.3166 |0.3237 |0.2287 |0.3317 | 0.3289 | 0.2492 |0.0988 |0.0920 | 0.0842 | 0.1133
300 | 0.2028 | 0.1963 |0.1941 |0.1941 |0.1984 |0.1200 | 0.1941 |0.1948 |0.1451 | 0.1980 | 0.1963 |0.1623 | 0.0617 | 0.0759 | 0.0747 | 0.1051
400 | 0.1471 | 0.1390 |0.1368 |0.1368 |0.1443 |0.0904 | 0.1368 |0.1433 | 0.1131 | 0.1449 | 0.1439 | 0.1262 | 0.0485 |0.0645 | 0.0620 | 0.0853
095 |50 |3.0292 [2.5059 |2.1398 |2.1398 |2.3637 | 1.4310 |2.2886 |2.0990 |1.0119 |1.7262 | 1.9217 | 1.1955 | 0.5672 | 0.2407 |0.2173 | 0.2051
100 15290 [1.2809 | 1.1169 |1.1169 |1.3177 | 0.8152 |1.1629 |[1.1641 |0.6822 | 1.1740 | 1.1731 | 0.6972 | 0.3574 | 0.1220 |0.1229 | 0.1210
150 [0.9041 |0.8188 |0.7549 |0.7549 |0.8253 | 0.4985 |0.7570 |0.7512 |0.4610 | 0.7785 | 0.7770 | 0.4748 |0.2069 |0.1030 | 0.0804 |0.0948
200 | 0.5995 |0.5424 |0.5127 |0.5127 |0.5593 | 0.3406 | 0.5132 [0.5326 |0.3461 |0.5487 | 0.5404 | 0.3610 | 0.1527 |0.0807 | 0.0665 | 0.0860
300 | 03722 |0.3314 | 03166 |0.3166 |0.3540 |0.2198 | 0.3168 |0.3469 |0.2432 |0.3548 | 0.3510 | 0.2625 | 0.0939 | 0.0732 | 0.0631 | 0.0874
400 | 02792 |0.2584 |0.2516 |0.2516 |0.2697 |0.1657 | 0.2516 |0.2648 |0.1919 | 0.2700 | 0.2671 | 0.2106 | 0.0757 |0.0723 | 0.0662 | 0.0965
0.99 |50 |20.0532 |13.7990 | 11.1530 | 11.1530 | 5.4951 | 6.0691 | 13.4736 | 12.3782 | 1.6942 | 1.0565 | 3.3032 | 5.4084 | 0.9910 | 0.1263 | 0.3738 | 0.3176
100 | 6.0251 | 4.6956 |3.7970 |[3.7970 |3.7630 | 2.7080 |4.2466 |3.7683 |1.2478 | 1.7902 | 2.6554 | 1.8935 | 0.8647 | 0.0770 | 0.1005 | 0.0921
150 [3.9783 |2.9370 |22153 |2.2153 |2.6677 | 1.8769 |2.5665 |2.5536 |1.0776 |1.7923 | 2.3125 | 1.3552 | 0.6347 |0.0512 | 0.0705 |0.0647
200 | 2.9540 |2.0199 |1.4693 |1.4693 |2.0084 |1.4063 | 1.7843 |1.9342 |0.9099 | 1.6049 | 1.8928 | 1.0373 | 0.4822 |0.0425 | 0.0595 | 0.0548
300 | 1.7375 | 1.2677 |0.9978 |0.9978 |1.3714 | 0.8765 | 1.1011 |1.2850 |0.6920 | 1.2546 | 1.3292 | 0.7225 | 0.3339 | 0.0400 | 0.0332 | 0.0339
400 | 1.2668 | 1.0563 |0.8980 |0.8980 |1.0803 | 0.6704 | 0.9089 |0.9955 |0.5735 | 1.0112 | 1.0309 | 0.5779 | 0.3073 |0.0434 | 0.0272 | 0.0329
Table 4. Estimated MSE values for different estimators at p = 7 and ¢ = 0.1. Bold values indicate the
minimum MSE.
at 0.01, 0.5, and 1*%. The slope coefficients were set such that Z?:z ,BJQ- = 1, with equal values for 81, ..., Bp—1.
Simulations were conducted for sample sizes of 50, 100, 150, 200, 300, and 400.
The simulations were implemented in the R software (R version 4.4.1). For each iteration, the estimated MSE
of the estimators was calculated as follows*>*4;
1000/ 4 5
MsE(g) = 2=t PP L), 65)
1000
where 3; denotes the vector of estimated coefficients from the -th simulation run for a specific estimator (such
as the GPMLE or a GPRRE employing a particular ridge parameter). The estimator associated with the smallest
MSE was deemed optimal for alleviating the effects of multicollinearity within the GPRM framework.
Simulation results
Simulation Tables 1, 2, 3, 4, 5, 6, 7, 8 and 9 provide a detailed comparison of the MSE for the GPMLE and
different versions of the GPRRE under various experimental conditions. These conditions include different levels
of multicollinearity (p), sample sizes (), dimensions (p), and shrinkage parameters (). The tables highlight the
best-performing estimator in each scenario by marking the lowest MSE values in bold. Main factors affecting
simulation:
1. Effect of multicollinearity:
o The degree of multicollinearity (p) emerged as the most critical factor influencing estimator performance.
As expected, the MSE of the GPMLE becomes increasingly severe with higher p values.
« Under severe multicollinearity, the GPMLE’s MSE becomes prohibitively large, often by an order of mag-
nitude or more compared to the best-performing GPRRE. The ridge estimators, particularly k73, k74, and
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GPMLE | GPRRE
p |n |- A L A L L T O PR PO PR PR
0.80 | 50 |3.2325 2.1434 | 1.8052 |1.8052 | 1.6820 | 0.9828 |2.1016 |2.0620 |0.7769 | 1.3945 | 1.2490 | 0.9881 | 0.4157 | 0.5200 | 0.6765 | 0.6007
100 | 0.9011 0.7451 | 0.6440 | 0.6440 |0.7907 | 0.4867 | 0.6595 |0.7081 |0.4550 |0.7571 | 0.6465 | 0.4606 | 0.2551 | 0.3169 | 0.3945 | 0.3410
150 | 0.5856 0.4978 | 0.4583 | 0.4583 | 0.5396 | 0.3332 | 0.4570 | 0.5061 |0.3416 |0.5332 | 0.4781 | 0.3537 | 0.1767 | 0.1896 | 0.2426 | 0.2058
200 | 0.3863 0.3329 |0.3127 |0.3127 |0.3664 | 0.2349 | 0.3125 | 0.3519 |0.2555 | 0.3661 | 0.3394 | 0.2672 | 0.1393 | 0.1488 | 0.1836 | 0.1585
300 | 0.2693 0.2401 |0.2253 | 0.2253 | 0.2592 | 0.1693 | 0.2258 | 0.2511 | 0.1905 | 0.2597 | 0.2449 | 0.2027 | 0.1075 | 0.1111 | 0.1232 | 0.1136
400 | 0.1980 0.1895 |0.1827 |0.1827 |0.1938 | 0.1277 |0.1828 | 0.1873 |0.1479 |0.1932 | 0.1849 | 0.1595 | 0.0948 | 0.0959 | 0.0898 | 0.1024
0.85 | 50 | 7.8202 53076 | 4.7770 |4.7770 |2.4711 | 1.6676 |4.7630 | 5.1508 | 1.0122 | 1.6948 | 1.6988 | 1.7863 | 0.5035 | 0.5652 | 0.8339 | 0.7490
100 | 1.1477 0.9346 | 0.7998 |0.7998 |0.9725 | 0.5824 | 0.8213 | 0.8691 |0.5162 |0.9124 | 0.7630 | 0.5363 | 0.2580 | 0.2931 | 0.3774 | 0.3305
150 | 0.8676 0.6950 | 0.5965 | 0.5965 |0.7608 | 0.4585 | 0.6205 | 0.6954 |0.4312 |0.7366 | 0.6335 | 0.4446 | 0.1868 | 0.1879 | 0.2488 | 0.2139
200 | 0.5302 0.4221 |0.3749 |0.3749 |0.4855 | 0.3101 | 0.3790 |0.4563 |0.3177 |0.4872 | 0.4375 | 0.3270 | 0.1554 | 0.1703 | 0.2464 | 0.1960
300 | 0.3154 0.2963 |0.2826 |0.2826 |0.3043 | 0.1914 | 0.2828 | 0.2906 |0.2137 |0.3020 | 0.2823 | 0.2279 | 0.1094 | 0.1104 | 0.1030 | 0.1137
400 | 0.2779 0.2654 |0.2563 | 0.2563 |0.2702 | 0.1700 | 0.2564 | 0.2595 | 0.1945 | 0.2682 | 0.2525 | 0.2090 | 0.0925 | 0.0970 | 0.0869 | 0.1085
0.90 | 50 |5.9029 3.7296 | 29772 |2.9772 |2.4956 | 1.7694 |3.6752 | 3.5626 | 1.0339 | 1.6834 | 1.5897 | 1.5697 | 0.5516 | 0.5983 | 0.8830 | 0.8126
100 | 2.2916 1.6298 | 1.2516 | 1.2516 |1.6366 |1.0745 | 1.4578 |1.5253 |0.7825 | 1.3880 | 1.1410 | 0.8446 | 0.3784 | 0.3644 | 0.5540 | 0.5051
150 | 1.3322 1.0759 | 0.8690 | 0.8690 | 1.1143 | 0.6926 |0.9237 |0.9682 |0.5796 |1.0251 | 0.8445 | 0.5832 | 0.2622 | 0.1983 | 0.2576 | 0.2309
200 | 1.0541 0.8927 |0.7354 |0.7354 |0.9238 | 0.5883 | 0.7592 | 0.8054 |0.5188 |0.8695 | 0.7508 | 0.5136 | 0.2350 | 0.1540 | 0.1785 | 0.1607
300 | 0.6192 0.5526 | 0.4958 | 0.4958 |0.5725 | 0.3532 | 0.4983 | 0.5264 |0.3511 | 0.5590 | 0.4978 | 0.3606 | 0.1481 | 0.1062 | 0.0994 | 0.1001
400 | 0.4097 0.3451 | 0.3045 |0.3045 |0.3844 | 0.2443 | 0.3086 | 0.3667 |0.2628 | 0.3862 | 0.3557 | 0.2770 | 0.1083 | 0.0917 | 0.0990 | 0.0972
0.95 | 50 | 10.5843 | 7.0806 |5.9125 |5.9125 |3.8011 |2.8498 |6.9864 | 6.4531 |1.3367 | 1.7615 | 1.8616 | 2.6896 | 0.8338 | 0.5889 | 0.9031 | 0.8234
100 | 3.9217 2.7952 | 2.1136 | 2.1136 |2.4471 | 1.7547 | 2.5055 |2.4785 |1.0480 | 1.7062 | 1.3859 | 1.2694 | 0.6122 | 0.3425 | 0.5792 | 0.5387
150 | 2.6906 2.1520 | 1.6390 | 1.6390 |1.9883 | 1.3176 | 1.8054 | 1.7437 |0.8875 |1.5214 | 1.2302 | 0.9509 | 0.4792 | 0.1986 | 0.2902 | 0.2718
200 | 1.7517 1.4372 | 1.1145 | 1.1145 |1.4214 | 09307 |1.1920 |1.2053 |0.7097 | 1.2315 | 0.9964 | 0.7079 | 0.3597 | 0.1378 | 0.1806 | 0.1665
300 | 1.0475 0.8044 |0.6329 | 0.6329 |0.8934 | 0.5876 | 0.6839 | 0.8076 |0.5138 |0.8666 | 0.7370 | 0.5092 | 0.2225 | 0.0966 | 0.1284 | 0.1143
400 | 0.8092 0.6313 | 0.5098 | 0.5098 |0.7156 | 0.4700 | 0.5394 | 0.6577 |0.4393 |0.7082 | 0.6198 | 0.4408 | 0.1808 | 0.0805 | 0.0957 | 0.0885
0.99 | 50 | 63.1640 | 39.9406 | 33.0709 | 33.0709 | 4.2545 | 12.5910 | 40.6951 | 37.4582 | 1.5280 | 0.4250 | 1.1941 | 13.5719 | 0.7797 | 0.5791 | 1.2742 | 1.1157
100 | 19.6837 | 13.3269 | 10.4364 | 10.4364 | 4.9210 | 6.0585 | 12.7453 | 11.8404 | 1.5031 | 0.9308 | 1.4385 | 5.0314 | 0.9795 | 0.2323 | 0.6602 | 0.5736
150 | 12.7634 | 8.3207 |6.2424 | 6.2424 | 3.9310 | 44185 |7.9100 |7.6234 |1.3548 | 1.1547 | 1.4043 | 3.2993 | 0.8687 | 0.1587 | 0.4670 | 0.4159
200 | 8.7063 5.0538 | 3.5677 |3.5677 |3.1355 | 3.3136 |4.9629 |5.1701 | 1.2420 | 1.4011 | 1.3747 | 2.3261 | 0.7758 | 0.1285 | 0.4192 | 0.3815
300 | 5.3728 3.3092 | 2.2601 |2.2601 |2.7869 |2.4599 |3.0419 |3.2663 | 1.2150 | 1.7226 | 1.4843 | 1.6332 | 0.7372 | 0.0702 | 0.2124 | 0.2002
400 | 4.0594 2.8981 | 1.9895 | 1.9895 |2.5001 | 1.9594 |2.4366 |2.4998 |1.1080 |1.6942 | 1.3881 |1.3062 | 0.7798 | 0.0526 | 0.1050 | 0.1003

Table 5. Estimated MSE values for different estimators at p = 7 and ¢ = 0.5. Bold values indicate the
minimum MSE.

ki, demonstrate remarkable robustness, maintaining stable and low MSE by effectively shrinking the
coefficients and controlling variance, even when the correlation between predictors approaches 0.99.
While the performance gap narrows under moderate multicollinearity, the GPRRE variants still con-
sistently achieve a lower MSE than the GPMLE. This advantage is most evident for smaller sample sizes
(n = 50, 100), where the data provides less information to stabilize the MLE.

2. Effect of sample size:

The benefits of the ridge approach are most acute in “small n” situations, which are common in modern
statistical applications.

For small n = 50, 100, the GPMLE is highly unstable. The GPRRE provides dramatic improvements in
these settings, often reducing the MSE by half or more. This confirms that ridge regression is an essential
tool for preventing overfitting when data is scarce.

As the sample size increases (n = 300, 400), the performance of all estimators improves, and the relative
advantage of the GPRRE diminishes. This is consistent with theoretical expectations, as the GPMLE is
asymptotically unbiased. However, even with n = 400, the GPRRE often retains a slight edge, especially
under high multicollinearity.

3. Effect of number of explanatory variables:

The benefits of the ridge approach are most acute in “large p” situations, which are common in modern
statistical applications.

The challenge of estimation increases with the number of explanatory variables. The GPRRE shows a clear
and growing advantage over the GPMLE as p increases from 4 to 10, effectively managing the added com-
plexity and severe multicollinearity.
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GPMLE | GPRRE
p |n |- ky k3 k3 k3 kg kg k7 ky ks |kl |k |kix  |[kis |kla kg
0.80 | 50 |16.1732 |8.0728 7.2716 7.2716 2.7418 | 1.8034 | 9.4390 8.3400 1.2007 | 1.8469 | 1.5786 | 2.6585 | 0.8037 | 1.0956 | 1.3595 | 1.2575
100 | 2.4058 1.7802 1.4759 1.4759 1.5857 [ 0.9128 | 1.6242 1.6113 0.7244 | 1.3013 | 0.8854 | 0.8341 | 0.5529 | 0.7998 | 0.9848 | 0.9005
150 | 1.5092 1.1371 0.9427 0.9427 1.1621 | 0.6966 | 1.0098 1.0701 0.5971 | 1.0394 | 0.7412 | 0.6214 | 0.3683 | 0.5256 | 0.7076 | 0.6377
200 | 0.8858 0.7169 0.6257 0.6257 0.7779 | 0.4843 | 0.6261 0.6950 0.4576 | 0.7438 | 0.5679 | 0.4548 | 0.2949 | 0.3949 | 0.5446 | 0.4707
300 | 0.5869 0.4888 0.4318 0.4318 0.5395 | 0.3496 | 0.4355 0.4928 0.3513 | 0.5295 | 0.4362 | 0.3482 | 0.2164 | 0.2833 | 0.3714 | 0.3060
400 | 0.4116 0.3742 0.3509 0.3509 0.3920 | 0.2557 | 0.3510 0.3677 0.2694 | 0.3855 | 0.3367 | 0.2731 | 0.1835 | 0.2126 |0.2331 | 0.1925
0.85 | 50 | 44.5253 | 19.2054 | 17.7375 | 17.7375 |3.2841 | 4.8726 |87.8744 |20.5468 | 1.3894 | 1.7603 | 1.8163 | 5.6880 |0.9071 | 1.1960 | 1.4980 | 1.3740
150 | 3.2801 2.2984 1.8786 1.8786 1.9107 | 1.1435 | 2.1526 2.1340 0.8296 | 1.4693 | 1.0039 | 1.0353 | 0.5275 | 0.7466 | 0.9901 | 0.9066
150 | 2.0796 1.4872 1.1718 1.1718 1.4862 | 0.9178 | 1.3304 1.3993 0.6979 | 1.2701 | 0.8470 | 0.7608 | 0.3865 | 0.5428 | 0.7493 | 0.6796
200 | 1.1694 0.8629 0.7306 0.7306 0.9703 | 0.6121 | 0.7587 0.8777 0.5458 |0.9263 | 0.6919 | 0.5439 | 0.3351 | 0.4779 | 0.6799 | 0.6020
300 | 0.6897 0.6049 0.5356 0.5356 0.6328 | 0.3946 | 0.5422 0.5693 0.3864 | 0.6110 | 0.4928 | 0.3847 | 0.2163 | 0.2621 | 0.3011 | 0.2546
400 | 0.5908 0.5395 0.4927 0.4927 0.5541 | 0.3477 | 0.4946 0.5049 0.3484 | 0.5356 | 0.4408 | 0.3511 | 0.1758 | 0.1916 | 0.1957 | 0.1690
0.90 | 50 |26.6443 |12.8660 | 11.3970 | 11.3970 |3.1424 |2.7380 | 15.2469 |13.2616 | 1.2917 | 1.6274 | 1.5598 | 4.0495 | 0.8801 | 1.1796 | 1.4996 | 1.3943
150 | 6.3980 4.2367 3.4625 3.4625 2.7218 | 1.7854 | 4.1330 3.9512 1.0399 | 1.6638 | 1.2103 | 1.6834 | 0.6607 | 0.8795 | 1.1795 | 1.0958
150 | 3.1826 2.3064 1.7719 1.7719 1.9998 | 1.2619 | 2.0536 2.0021 0.8280 | 1.4781 | 0.9561 | 0.9837 | 0.4810 | 0.5551 |0.7791 | 0.7209
200 | 2.3122 1.7464 1.3433 1.3433 1.6688 | 1.0504 | 1.5099 1.5241 0.7569 | 1.3561 | 0.9151 | 0.8133 | 0.4105 | 0.4528 | 0.6259 | 0.5738
300 | 1.4348 1.1587 0.9133 0.9133 1.1909 | 0.7569 | 0.9774 1.0312 0.6226 | 1.0807 | 0.7633 | 0.6187 | 0.2995 | 0.2789 |0.3712 | 0.3313
400 | 0.8575 0.6629 0.5523 0.5523 0.7507 | 0.4830 | 0.5780 0.6862 0.4488 | 0.7352 | 0.5730 | 0.4392 | 0.2056 | 0.2186 |0.3167 | 0.2687
095 |50 |38.7926 |20.4570 |17.9864 |17.9864 |3.9621 |4.2892 |23.1129 |20.2791 |1.4289 | 1.4173 | 1.5132 |5.9982 | 0.9520 | 1.1485 | 1.5305 | 1.4264
150 | 8.8604 5.7931 4.5739 4.5739 3.2445 | 2.6658 | 5.6083 5.3304 1.1368 | 1.5757 | 1.1548 | 2.2290 | 0.6718 | 0.8339 | 1.2101 | 1.1164
150 | 6.3144 4.4583 3.4314 3.4314 3.0500 | 2.1912 | 4.0834 3.8861 1.0754 | 1.6363 | 1.1061 | 1.7558 | 0.6657 | 0.5983 | 0.9183 | 0.8451
200 | 3.9766 3.0092 2.2939 2.2939 2.5367 | 1.6674 | 2.6174 2.4998 0.9872 | 1.6719 | 1.0705 | 1.2511 | 0.6195 | 0.4113 | 0.6419 | 0.5853
300 |2.2919 1.6210 1.1845 1.1845 1.6415 | 1.1040 | 1.4012 1.5027 0.7759 | 1.3902 | 0.9011 | 0.8148 | 0.3986 | 0.2815 | 0.4622 | 0.4198
400 | 1.6893 1.1671 0.8611 0.8611 1.2913 | 0.8693 | 1.0021 1.1899 0.6771 | 1.1990 | 0.8267 | 0.6797 | 0.3163 | 0.2070 | 0.3557 | 0.3181
0.99 | 50 |293.3510 | 144.5770 | 130.8878 | 130.8878 | 3.1598 | 20.2619 | 169.9600 | 148.5945 | 1.6232 | 0.6247 | 0.9731 | 38.5042 | 0.7641 | 1.1852 | 1.7468 | 1.6240
150 | 56.0313 | 35.2408 | 29.2588 |29.2588 |3.9917 | 11.0812 | 36.0232 | 33.4683 | 1.3765 | 0.4765 | 0.6987 | 11.9138 | 0.6885 | 0.6918 | 1.3683 | 1.2176
150 | 35.4648 | 22.4000 | 17.9599 |17.9599 |4.1469 |8.7160 |22.5259 |21.1925 | 1.3732 |0.5730 | 0.6925 | 8.2405 | 0.6718 | 0.5411 | 1.1911 | 1.0531
200 |20.6019 | 11.5381 |8.6184 8.6184 3.4313 | 6.1718 | 11.9510 | 12.2228 | 1.3063 | 0.7933 | 0.7121 | 4.8790 | 0.5420 | 0.4630 | 1.0999 | 0.9923
300 | 12.3012 | 7.5286 5.4996 5.4996 3.7441 | 4.4425 | 7.2676 7.4877 1.3711 | 1.2109 | 0.8663 | 3.3271 | 0.8401 | 0.2577 | 0.7083 | 0.6403
400 | 9.2597 6.1726 4.4768 4.4768 3.6194 | 3.4974 | 5.6342 5.5786 1.2850 | 1.4149 | 0.9554 | 2.5114 | 0.9182 | 0.1848 | 0.4890 | 0.4398

Table 6. Estimated MSE values for different estimators at p = 7 and ¢ = 1. Bold values indicate the minimum
MSE.

4. Effect of dispersion parameter:

o The value of the dispersion parameter ¢ influences the scale of the MSE but does not alter the fundamental
ranking of the estimators. The relative performance of the different GPRRE variants remains consistent
across values of . Among the fifteen evaluated ridge estimators, ki3, k74, and k15 consistently emerge
as top performers. Their success is attributed to a more effective calibration of the shrinkage intensity, opti-
mally balancing the introduced bias against the reduction in variance to minimize the total MSE.

The results consistently demonstrate that the proposed GPRRE outperforms the conventional GPMLE across
virtually all simulated scenarios. The reduction in MSE is particularly pronounced, underscoring the efficacy
of introducing a bias-variance trade-off to manage the adverse effects of multicollinearity. The GPMLE, which
relies on asymptotic properties that are violated in the presence of high correlation among predictors and finite
samples, exhibits significantly inflated variance. In contrast, the GPRRE successfully stabilizes the coefficient
estimates, leading to a substantial decrease in MSE.

In summary, the simulation study provides robust empirical evidence that the GPRRE is a superior
alternative to the traditional maximum likelihood estimator in the presence of multicollinearity. Its performance
is particularly strong in finite samples, with high-dimensional data, and under severe correlation among
regressors. The proposed estimators k73 and k7, are recommended as reliable choices for practitioners, as they
consistently provide the most accurate and stable estimates across a wide range of challenging data conditions.
This demonstrates that the GPRRE is not merely a theoretical exercise but a practical and necessary enhancement
to the regression toolkit for overdispersed and multicollinear count data.
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GPMLE | GPRRE
p |n |- k3 k3 k3 ky k3 kg k3 ky ks |kl |kiy |kip |kis | Ri. | Kis
0.80 |50 |[1.4062 |1.2383 |1.1235 |1.1235 |1.2388 |0.6644 |1.1528 |1.1623 |0.6739 | 1.1984 |1.2199 |0.7064 |0.2753 |0.2754 |0.2726 | 0.2673
150 | 05650 | 0.5371 |0.5205 |0.5205 |0.5418 |0.3041 |[0.5206 |0.5219 |0.3507 | 0.5406 | 0.5335 | 0.3652 | 0.1569 |0.1562 | 0.1454 | 0.1653
150 | 0.3287 | 0.3063 |0.2990 |0.2990 |0.3185 |0.1768 |0.2994 |0.3146 |0.2216 |0.3217 | 0.3174 | 0.2441 | 0.1061 | 0.1123 | 0.1166 | 0.1388
200 |0.2295 |0.2246 |0.2230 |0.2230 |0.2256 |0.1322 |0.2230 |0.2232 |0.1693 | 0.2266 | 0.2245 | 0.1858 | 0.0873 | 0.0910 | 0.0973 | 0.1299
300 |0.1451 | 0.1428 |0.1420 |0.1420 |0.1433 | 0.0835 |0.1421 |0.1424 |0.1114 | 0.1440 | 0.1428 | 0.1248 | 0.0654 | 0.0666 | 0.0753 | 0.1014
400 01218 {0.1201 |0.1196 |0.1196 |0.1206 | 0.0741 |0.1196 |0.1200 | 0.0975 | 0.1210 | 0.1203 | 0.1078 | 0.0620 | 0.0622 | 0.0696 | 0.0909
0.85 |50 [2.0705 |1.6912 |1.4560 |1.4560 |1.6372 |0.8495 |1.5733 |1.5867 |0.7884 |1.5602 | 1.6396 | 0.8685 |0.2874 |0.2766 | 0.2978 |0.2729
150 | 0.8047 | 0.6826 |0.6201 |0.6201 |0.7378 |0.4146 |0.6358 |0.7126 |0.4474 | 0.7488 | 0.7420 | 0.4556 | 0.1640 | 0.1708 | 0.1797 | 0.1669
150 | 0.4192 | 0.4033 |0.3963 |0.3963 |0.4050 |0.2236 |0.3963 |0.3973 |0.2718 | 0.4076 | 0.4005 | 0.2938 | 0.1117 |0.1067 | 0.1063 | 0.1416
200 |0.3553 | 0.3400 |0.3333 | 03333 |0.3445 | 0.1947 |0.3334 |0.3385 |0.2395 | 0.3467 | 0.3419 | 0.2571 | 0.0981 |0.0961 | 0.0959 | 0.1264
300 | 0.2062 |0.2022 |0.2009 |0.2009 |0.2027 | 0.1146 |0.2009 |0.2007 |0.1510 | 0.2037 | 0.2018 | 0.1678 | 0.0683 | 0.0719 | 0.0836 | 0.1189
400 |0.1581 | 0.1556 |0.1548 |0.1548 | 0.1561 | 0.0904 |0.1548 |0.1550 |0.1215 | 0.1567 | 0.1554 | 0.1350 | 0.0574 | 0.0639 | 0.0757 | 0.1054
0.90 |50 |[3.7407 |2.9990 |2.4765 |2.4765 |2.4930 |1.4104 |2.6973 |2.5932 |1.1048 |2.1467 |2.4423 | 1.6389 |0.3976 |0.2697 | 0.2970 |0.2646
150 | 1.4160 | 1.1803 |0.9990 |0.9990 |[1.1983 |0.6501 |1.0485 |1.1210 |0.6055 | 1.1888 | 1.1956 | 0.6220 | 0.1938 |0.1718 |0.1781 |0.1597
150 | 0.6022 | 0.5618 |0.5397 |0.5397 |[0.5715 03259 [0.5399 |0.5572 |0.3695 | 0.5756 | 0.5686 | 0.3820 | 0.1397 |0.1029 |0.0986 | 0.1183
200 |0.5225 |0.4938 |0.4772 |0.4772 |0.4986 | 0.2806 |0.4773 |0.4855 |0.3241 | 0.5019 | 0.4946 | 0.3384 | 0.1232 | 0.0912 | 0.0887 | 0.1160
300 | 0.3405 | 03295 |0.3245 |0.3245 |0.3311 |0.1852 |0.3245 |0.3250 |0.2304 | 0.3327 | 0.3282 | 0.2479 | 0.0881 |0.0733 | 0.0812 | 0.1206
400 |0.2261 |0.2213 |02196 |02196 |0.2221 |0.1239 |0.2196 |0.2194 |0.1637 |0.2229 | 0.2207 | 0.1804 | 0.0650 | 0.0648 | 0.0784 | 0.1172
095 (50 [10.2149 |8.5428 |7.5293 |7.5293 |4.5904 |6.7328 |8.0403 |7.5675 |1.8907 |2.8028 |4.4658 | 5.4586 |0.7120 |0.2463 | 0.3533 | 0.3033
150 |2.5728 |2.1707 |1.7531 |1.7531 |2.0278 |1.1813 |1.8526 |[1.8837 |0.9390 | 1.8733 | 1.9465 | 0.9753 | 0.3553 | 0.1398 | 0.1595 | 0.1400
150 | 1.5011 [ 1.3211 |1.1547 |[1.1547 |1.3100 [0.7579 |1.1703 |1.2217 |0.6938 | 1.2833 | 1.2854 | 0.6816 | 0.2641 |0.0995 | 0.0990 | 0.0944
200 | 1.0722 {09911 |0.9175 |0.9175 |0.9797 | 0.5535 |0.9183 |0.9184 |0.5464 |0.9661 |0.9382 | 0.5399 |0.2004 |0.0744 | 0.0682 | 0.0808
300 | 0.6670 | 0.6326 |0.6110 |0.6110 |0.6320 | 0.3568 |0.6110 |0.6107 |0.3948 | 0.6326 | 0.6199 | 0.4028 | 0.1509 | 0.0624 | 0.0633 | 0.0926
400 | 04621 |0.4422 |04314 |0.4314 |0.4440 | 02481 |0.4314 |0.4331 |0.2927 |0.4463 | 0.4391 | 0.3079 |0.1086 |0.0585 | 0.0653 | 0.1031
0.99 |50 |[32.4039 |24.4047 | 19.7646 | 19.7646 | 8.7644 | 10.0134 | 22.9465 | 21.6112 | 2.9838 | 1.8059 | 6.4482 | 9.1490 | 1.6363 |0.1968 | 0.5256 | 0.4411
150 | 12.8321 |9.5508 |7.0341 |7.0341 |[5.1040 |5.1113 [8.4529 |8.1270 |1.9224 |2.3267 | 4.4613 |3.4463 | 1.1347 |0.1257 | 0.2843 | 0.2505
150 | 7.7078 | 6.9505 |5.5602 |5.5602 |4.3766 |3.2532 |9.8280 |5.5190 |1.6118 |2.7408 |3.7907 |2.2650 | 1.1277 |0.0763 | 0.1257 | 0.1069
200 |5.2463 | 44771 |3.4217 |3.4217 |3.5625 | 23493 |3.6828 |3.4454 |1.3930 |2.6048 |3.1553 | 1.6674 | 0.8815 |0.0548 | 0.0761 | 0.0667
300 |2.6472 | 2.3487 |1.9468 |1.9468 |2.1480 | 1.2806 |1.9737 |1.9370 |0.9957 | 1.9349 | 1.9984 |0.9788 |0.5707 |0.0373 | 0.0359 |0.0352
400 |2.2951 [2.0695 |1.7679 |1.7679 |1.9347 | 1.1649 |1.7822 |1.7425 |0.9505 | 1.7800 | 1.8098 | 0.9134 | 0.5115 |0.0327 | 0.0287 | 0.0310
Table 7. Estimated MSE values for different estimators at p = 10 and ¢ = 0.1. Bold values indicate the
minimum MSE.
Relative efficiency
Relative Efficiency (RE) is used to compare the performance of statistical estimators by measuring their
precision and reliability. This comparison relies on the MSE, which combines bias and variance, with a lower
MSE indicating better performance. The formula for RE is:

RE(Bk*l) = w7 (36)
where [+, represents the MSE of GPRRE with each parameter. The reference estimator, MSE(SapMmLE), is
often used as a benchmark due to its strong asymptotic properties.

Figures 1, 2, 3 and 4 present a comprehensive evaluation of RE was conducted to rigorously assess the
performance of the GPRRE under different shrinkage parameters, with RE plotted as a function of key statistical
parameters: sample size (n), population correlation (p), the number of predictor variables (p), and a measure of
dispersion (). The results demonstrate that the proposed GPRRE estimator consistently achieved the highest
relative efficiency across the vast majority of the investigated scenarios. This superior performance manifests as
a high RR, indicating that the GPRRE provides estimates with greater precision and stability that is, a smaller
variance and reduced susceptibility to bias compared to its competitors. The empirical evidence thus robustly
confirms that the GPRRE is the most efficient estimator within the defined class of models under study. This
dominance was particularly pronounced when compared to the estimator denoted as k13, k14, and k75, which
was consistently outperformed, often by a significant margin.

Application

This study investigates CO2 emissions from plug-in hybrid electric vehicles (PHEVSs) sold in Canada between

2020 and 2025. The primary dataset focuses on vehicles from this five-year period, though additional data for
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GPMLE | GPRRE
p |n |- k3 k3 k3 ky | kg kg k7 ky ks |kl |k [kl [kis | Rl. Kl
0.80 |50 |10.0413 |65984 |5.6933 [5.6933 |33771 |1.9264 |7.5501 |6.4572 | 13362 |2.5071 |3.7315 | 8.6925 |0.6424 |0.7781 | 0.9773 | 0.8511
150 | 1.7898 | 1.5391 |12726 |12726 | 14750 |0.7910 |1.3252 |13288 |0.7133 | 1.4068 | 1.1779 | 0.7170 |0.3250 | 0.4996 |0.5227 |0.4449
150 | 1.0541 | 0.8711 | 07401 |0.7401 | 0.9291 | 05143 |0.7716 | 0.8520 | 0.5187 | 0.9363 | 0.8098 |0.5084 |0.2273 | 03764 | 0.4125 |0.3334
200 | 0.6941 | 0.6362 |0.5880 |0.5880 | 0.6478 | 0.3576 |0.5902 | 0.6117 | 0.3941 | 0.6507 | 0.5853 | 0.3949 |0.1795 | 0.2471 | 0.2206 |0.1835
300 04091 | 03878 | 03694 |0.3694 |0.3944 | 0.2267 |0.3698 |0.3782 | 0.2687 | 0.3959 | 0.3691 | 0.2794 |0.1394 | 0.1691 | 0.1459 | 0.1401
400 {03359 |0.3194 | 03040 |0.3040 | 0.3250 | 0.1912 |0.3042 |0.3134 | 0.2296 | 0.3273 | 0.3096 | 0.2408 |0.1225 | 0.1448 | 0.1254 |0.1254
0.85 |50 |11.2624 |6.9740 |59049 |59049 | 33051 |2.0109 |7.2177 |6.8487 | 13386 |2.4649 | 2.4821 |2.2982 |0.5955 |0.8259 | 1.0479 | 0.9365
150 |3.0234 |2.0703 |15728 [15728 |2.0213 [12002 |1.9317 [2.0745 |0.9207 |1.9218 | 1.6007 | 1.0067 |0.3553 | 0.5881 | 0.7833 | 0.6891
150 | 1.2829 | 1.1406 | 0.9953 | 0.9953 | 11259 |0.6032 |1.0124 |1.0332 |0.5844 | 1.1077 [ 0.9241 | 0.5861 |0.2482 | 0.3447 |0.3312 | 0.2698
200 1.1445 |1.0240 | 0.8864 |0.8864 |1.0280 | 0.5791 |0.8971 |0.9324 | 0.5718 | 1.0175 | 0.8745 | 0.5568 | 0.2259 | 0.2840 | 0.2793 |0.2294
300 | 0.6448 | 0.6033 | 0.5651 |0.5651 | 0.6072 | 0.3361 |0.5656 |0.5751 | 0.3725 | 0.6087 | 0.5514 | 03796 |0.1492 |0.1621 | 0.1385 |0.1317
400 | 0.4413 | 0.4207 | 04007 |0.4007 | 0.4251 | 0.2426 |0.4008 | 0.4060 | 0.2871 | 0.4263 | 0.3963 | 0.2971 |0.1249 |0.1355 | 0.1170 | 0.1248
0.90 |50 |21.2886 |14.8412 |13.7362 |13.7362 |4.8245 |3.2693 |13.9964 |14.1815 |1.7533 |2.6035 |3.1982 |4.5273 | 0.8007 | 0.8366 | 1.1202 |0.9984
150 | 5.2755 |3.7706 | 2.8606 | 2.8606 | 2.8511 | 1.8235 |3.4791 |3.4300 | 1.1671 | 23215 | 1.9960 | 1.4843 |0.4349 | 0.6061 |0.8008 |0.7206
150 |2.2256 | 1.8223 | 14441 |1.4441 | 17593 |0.9923 |1.5524 |1.6225 |0.8258 | 1.6793 | 1.3836 | 0.8397 |0.3248 | 03312 | 0.3886 | 0.3278
200 {1.6677 | 14419 | 11726 |1.1726 |1.4070 | 0.8078 |1.2136 |1.2558 | 0.7098 | 1.3659 | 1.1189 | 0.6885 |0.2836 | 0.2831 | 0.3001 |0.2494
300 [0.9812 | 0.8908 |0.7858 | 0.7858 | 0.8934 | 0.5094 |0.7892 |0.8168 | 0.5111 |0.8894 | 0.7711 |0.4933 |0.1997 |0.1767 | 0.1638 |0.1402
400 | 0.6979 | 0.6552 | 0.6080 | 0.6080 | 0.6576 | 0.3736 | 0.6085 | 0.6134 | 0.4056 | 0.6560 | 0.5917 | 0.4035 |0.1561 |0.1244 | 0.1083 | 0.1108
0.95 |50 |46.2000 |29.1804 |25.2659 |25.2659 |5.4837 |5.8644 |30.2338 |28.4016 |2.0015 | 1.9057 |3.2731 | 21.5943 | 1.0508 | 0.8383 | 1.2761 |1.1310
150 |7.7996 |5.9213 | 45311 |45311 | 3.7790 | 27474 |5.2810 |5.0166 | 1.4398 | 2.5307 |2.1785 | 2.0708 |0.7427 |0.5808 | 0.8271 | 0.7487
150 |4.9747 |3.9420 | 29481 |29481 |3.1353 |2.0870 |3.3786 |3.2766 | 1.3085 |2.4907 |2.0358 | 1.5181 |0.6213 |0.3795 | 0.5363 | 0.4824
200 {27902 23894 | 1.8350 | 1.8350 | 2.1707 | 1.3487 | 1.9560 | 1.9215 | 0.9977 | 1.9515 | 1.4803 | 0.9913 | 0.4586 |0.2909 | 0.3492 |0.3010
300 {19752 | 17565 | 14396 | 14396 | 1.6631 | 0.9894 |1.4677 |14550 | 0.8212 | 1.5677 | 1.2487 | 0.7804 | 0.3680 | 0.1622 | 0.1709 |0.1474
400 (13726 |12224 | 1.0014 |1.0014 |1.2074 |0.7226 |1.0184 |1.0661 |0.6598 | 1.1884 | 1.0039 | 0.6259 |0.2731 |0.1312 | 0.1324 |0.1143
0.99 |50 |224.6266 |133.1416 | 117.7330 | 117.7330 | 6.4006 | 23.3219 | 145.6016 | 134.0307 | 2.7253 | 0.5511 | 2.4014 | 38.1833 | 1.0479 | 0.8056 | 1.5100 | 13295
150 | 45.6679 |32.1013 | 25.0650 |25.0650 | 54541 |12.3144 |30.2648 |29.2505 |2.0631 | 0.9091 | 1.8923 | 10.6451 | 1.2642 | 0.5692 | 1.1834 | 1.0402
150 | 26.6899 |21.1364 | 165910 | 165910 |6.3364 |8.4746 |18.6381 |17.0394 |2.0629 | 1.4275 |2.0042 | 6.5258 |1.7247 | 0.3591 | 0.7869 | 0.6792
200 165518 |12.9521 |9.6456 |9.6456 | 5.4292 |5.9350 |11.1317 | 103195 |1.9041 | 1.9134 | 2.0424 |4.1712 |1.2661 |0.2514 | 0.5495 |0.4835
300 [8.5828 [7.1642 | 53534 | 53534 | 4.6558 |3.6995 [59379 [54118 | 1.7028 | 2.5801 | 2.1512 | 2.4129 | 13575 |0.1367 | 0.2615 | 0.2337
400 67322 | 5.6428 | 41643 | 41643 |3.9672 | 2.9926 |4.6288 |4.2021 |1.5484 | 2.5519 | 2.0452 | 1.9070 |1.2166 |0.1068 | 0.1880 | 0.1731
Table 8. Estimated MSE values for different estimators at p = 10 and ¢ = 0.5. Bold values indicate the
minimum MSE.
other years is available through Open Canada. The dataset includes 245 vehicles, with CO2 emissions in grams
per kilometer (y) as the response variable and six explanatory variables: motor power in kilowatts (1), engine
size in liters (z2), number of cylinders (z3), city fuel consumption in liters per 100 kilometers (x4), highway fuel
consumption in liters per 100 kilometers (x5), and combined fuel consumption in liters per 100 kilometers (x¢).
Fuel consumption metrics are provided separately for city and highway driving, along with a combined rating
(55% city and 45% highway) expressed in both liters per 100 kilometers and miles per gallon. CO2 emissions are
derived from combined city and highway driving data and are reported in grams per kilometer.

Initially, the fit of the data to the chosen model is carefully evaluated using commonly used criteria such as
log-likelihood (LL), Akaike Information Criterion (AIC), and Bayesian Information Criterion (BIC). The best
model is selected based on having the highest LL value and the lowest values for both AIC and BIC. Based on the
results presented in Table 10, the GPRM model performs best in modeling this data, achieving the highest LL
value and the lowest values for both AIC and BIC.

The correlation plot (Fig. 5) indicated strong correlation among the variables, suggesting the presence of
multicollinearity. To assess this formally, variance inflation factors (VIFs) and the condition number (CN) were
calculated. The CN, defined as the ratio of the largest to the smallest eigenvalue, was 4557.855. The computed VIF
values were 1.28, 8.79, 10.38, 2873.80, 804.81, and 6496.13, which clearly demonstrate severe multicollinearity.
These results confirm that the variables are highly correlated, raising concerns about the stability and reliability
of subsequent regression analyses.

Table 11 compares the GPMLE and the GPRRE for a dataset with seven regression coefficients (8o to S¢).
The coeflicients are estimated using Eqs. (8) and (12), while the MSE is computed using Egs. (11) and (16),
respectively. The GPMLE yields an MSE of 29.2930, indicating poor performance likely due to multicollinearity.
In contrast, the GPRRE, evaluated using 15 ridge parameters (k7 to k75), demonstrates significantly lower MSE
values, with the best performance achieved by k7, (MSE = 1.3728). This substantial improvement highlights
the effectiveness of the ridge estimator in mitigating multicollinearity by stabilizing coefficient estimates and
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GPMLE GPRRE
e |n |- Mo le e e e e e e ks [kt [Rn [Rne |bne [k |ég
0.80 | 50 43.9419 24.0414 22.8368 22.8368 4.4846 | 3.5615 31.7292 25.2534 1.8394 | 2.7311 | 2.8121 | 14.8916 1.0697 | 1.3603 | 1.5806 | 1.4420
150 | 6.4898 4.4968 3.7773 3.7773 2.6913 | 1.4813 4.3489 4.0301 1.0811 | 2.1588 | 1.4694 | 1.4894 0.6453 | 1.0880 | 1.2134 | 1.1180
150 | 2.9094 2.2065 1.7685 1.7685 1.9340 | 1.0646 1.9890 1.9819 0.8720 | 1.7604 | 1.1886 | 0.9321 0.4685 | 0.8918 | 1.0132 | 0.9200
200 | 1.8857 1.5842 1.2773 1.2773 1.5143 | 0.8172 1.3579 1.3641 0.7241 | 1.4320 | 0.9814 | 0.7210 0.3704 | 0.6912 | 0.7456 | 0.6464
300 | 0.8863 0.7920 0.6941 0.6941 0.8091 | 0.4554 0.7041 0.7332 0.4707 | 0.8046 | 0.6434 | 0.4555 0.2771 | 0.4992 | 0.4913 | 0.3961
400 | 0.7087 0.6395 0.5684 0.5684 0.6584 | 0.3868 0.5734 0.6065 0.4111 | 0.6590 | 0.5551 | 0.3968 0.2388 | 0.4170 | 0.4034 | 0.3224
0.85 | 50 51.2366 26.2680 24.0040 24.0040 4.1655 | 507.8358 | 29.1396 27.7856 1.7760 | 2.5333 | 2.6531 | 8.7187 1.0204 | 1.3795 | 1.6148 | 1.4918
150 | 12.1771 7.7588 6.5989 6.5989 3.4575 | 2.2944 7.9762 7.5613 1.3622 | 2.4683 | 1.8194 | 2.5646 0.7606 | 1.1845 | 1.4128 | 1.3114
150 | 3.6171 2.8546 2.2705 2.2705 2.2510 | 1.2269 2.5159 2.4169 0.9150 | 1.9513 | 1.1892 | 1.0698 0.4788 | 0.8718 | 0.9816 | 0.8710
200 | 2.6577 2.1716 1.6957 1.6957 1.9945 | 1.1324 1.8540 1.8306 0.8936 | 1.8000 | 1.1825 | 0.9035 0.4247 | 0.7397 | 0.8374 | 0.7483
300 | 1.5448 1.3575 1.1086 1.1086 1.3302 | 0.7505 1.1457 1.1546 0.6767 | 1.2751 | 0.9190 | 0.6463 0.2990 | 0.4809 | 0.5020 | 0.4232
400 | 0.9851 0.8918 0.7834 0.7834 0.8962 | 0.5042 0.7919 0.8124 0.5098 | 0.8872 | 0.7003 | 0.4933 0.2457 | 0.4019 | 0.3841 | 0.3105
0.90 | 50 85.4574 454213 42.0775 42.0775 5.2160 | 5.6672 52.0209 47.3936 2.0616 | 2.6698 | 3.0893 | 13.0073 1.2579 | 1.3704 | 1.6454 | 1.5057
150 | 17.4779 11.2047 9.4451 9.4451 3.9037 | 2.8437 11.4164 10.6959 1.4504 | 2.3276 | 1.8647 | 3.4581 0.7999 | 1.1961 | 1.4560 | 1.3494
150 | 7.8280 5.7391 4.6553 4.6553 3.4554 | 2.1673 5.3750 5.1165 1.3159 | 2.4686 | 1.5645 | 1.9888 0.6329 | 0.8680 | 1.0941 | 1.0019
200 | 4.1110 3.2349 2.4796 2.4796 2.5920 | 1.5697 2.8052 2.7231 1.0702 | 2.1852 | 1.3371 | 1.2183 0.5024 | 0.7535 | 0.9032 | 0.8181
300 | 2.3133 1.9535 1.5203 1.5203 1.8224 | 1.0549 1.6262 1.6314 0.8440 | 1.6991 | 1.1110 | 0.8301 0.3724 | 0.5407 | 0.6110 | 0.5298
400 | 1.4976 1.3322 1.1042 1.1042 1.2996 | 0.7510 1.1277 1.1343 0.6735 | 1.2566 | 0.9227 | 0.6314 0.2849 | 0.3776 | 0.3831 | 0.3212
0.95 | 50 202.3284 108.4413 | 114.3752 | 114.3752 | 5.3887 | 10.8222 118.8485 | 114.3699 | 2.4270 | 1.5071 | 3.0951 | 136.3603 | 1.1029 | 1.3907 | 1.7543 | 1.6204
150 | 24.0414 16.0191 13.2113 13.2113 5.0109 | 5.0292 15.8748 14.6336 1.6450 | 2.0407 | 1.6839 | 4.7445 0.9850 | 1.1917 | 1.5089 | 1.4045
150 | 13.2234 9.6023 7.6636 7.6636 4.3308 | 3.4118 8.9754 8.4137 1.5173 | 2.3241 | 1.6254 | 3.0560 0.9286 | 0.9334 | 1.2421 | 1.1462
200 | 6.2824 5.0350 3.8973 3.8973 3.4608 | 2.2541 4.3478 4.0954 1.2274 | 2.4656 | 1.3977 | 1.7045 0.6826 | 0.7811 | 0.9907 | 0.8818
300 | 4.6646 3.8960 29911 2.9911 3.0593 | 1.9392 3.2716 3.0550 1.2173 | 2.3697 | 1.3611 | 1.3896 0.6735 | 0.5267 | 0.6691 | 0.6067
400 | 2.8593 2.3807 1.7980 1.7980 2.1443 | 1.3153 1.9456 1.9745 0.9732 | 1.9688 | 1.2805 | 0.9731 0.4700 | 0.4314 | 0.5197 | 0.4561
0.99 | 50 1016.4337 | 521.0672 | 479.1481 | 479.1481 | 4.5520 | 54.7318 597.0681 | 545.1915 | 3.1899 | 0.7824 | 1.6398 | 138.3801 | 0.8867 | 1.3948 | 1.8611 | 1.7616
150 | 148.3388 94.5453 79.9782 79.9782 3.7671 | 21.8796 96.8118 89.2753 2.0481 | 0.5560 | 0.9642 | 25.0264 0.6954 | 1.1844 | 1.7162 | 1.5920
150 | 70.4286 51.4349 41.6901 41.6901 5.5590 | 16.0473 48.1100 43.1926 2.0389 | 0.6651 | 0.9603 | 14.1791 1.0333 | 0.9111 | 1.4824 | 1.3405
200 | 46.2591 34.5278 27.4815 27.4815 5.4063 | 11.9639 31.7283 29.2801 1.9306 | 0.9042 | 0.9515 | 10.2964 1.2540 | 0.7319 | 1.3018 | 1.1534
300 | 21.6349 17.2964 13.5154 13.5154 5.9929 | 6.9744 15.1198 13.7596 1.8851 | 1.6330 | 1.1961 | 5.3072 1.8774 | 0.4880 | 0.9212 | 0.8144
400 | 14.3064 11.4588 8.5342 8.5342 5.1806 | 5.2026 9.6996 8.7160 1.7196 | 1.9678 | 1.3351 | 3.4466 1.7150 | 0.3963 | 0.7279 | 0.6543

Table 9. Estimated MSE values for different estimators at p = 10 and ¢ = 1. Bold values indicate the
minimum MSE.

reducing overfitting. The consistent performance of GPRRE across various ridge parameters underscores its
robustness, making it a superior choice for datasets affected by multicollinearity.

Figure (6) compares the performance of the GPMLE and GPRRE estimators based on MSE values across a
range of ridge parameters (k™). The graph illustrates that GPRRE significantly outperforms GPMLE in reducing
MSE, particularly as k™ increases. The MSE associated with the GPRRE demonstrates a substantial reduction,
achieving its minimum at higher values of the ridge parameter k*. In contrast, the MSE for the Generalized
Poisson Maximum Likelihood Estimator (GPMLE) remains consistently larger across the entire range of
k* values. This performance improvement is attributed to the ridge estimator’s mechanism for mitigating
multicollinearity, which stabilizes coefficient estimates and reduces their variance through the introduction of
a penalty term contingent upon k*. Furthermore, the accompanying figure delineates the bias-squared and
variance components of the GPRRE, illustrating how the estimator successfully negotiates a trade-off between
these two elements. Although the squared bias experiences a marginal increase, it is offset by a considerable
reduction in variance, culminating in a net decrease in the overall MSE. These findings underscore the efficacy
of the GPRRE in enhancing predictive performance, particularly in contexts where the data exhibit pronounced
multicollinearity.

Table 12 presents the results of the verification process for the necessary condition associated with Theorem 2
under the GPRRE. The analysis evaluates this condition across a range of proposed ridge parameters (k;) and for
each of the seven coefficients (A1 to A7). The computed values of the condition are consistently positive for all
combinations of k* and A, thereby confirming that the requisite condition is satisfied. This uniform positivity
demonstrates the efficacy of the GPRRE in stabilizing the model and reducing estimation variance, even in the
presence of significant multicollinearity. Consequently, these results underscore the capability of the GPRRE to
manage complex data structures while simultaneously enhancing model performance and reliability.
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Fig. 1. Estimated MSE of the GPRRE under different parameter settings and sample sizes.
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Fig. 2. Estimated MSE of the GPRRE under different parameter settings and multicollinearity level.

Conclusion

The GPRM serves as a robust framework for analyzing count data, particularly in cases of overdispersion
or underdispersion. While the GPMLE is widely employed, its efficacy is compromised in the presence of
multicollinearity among explanatory variables. To mitigate this issue, this study introduces ridge estimators
within the generalized GPRRE framework and explores methodologies for optimal ridge parameter selection.
The theoretical properties of the ridge estimator are rigorously derived, and its performance is assessed
using both MMSE and MSE criteria. A detailed Monte Carlo simulation study is conducted, examining
various parametric configurations, including sample sizes, numbers of predictor variables, dispersion levels,
and degrees of multicollinearity. Furthermore, the proposed estimators are applied to a real-world dataset
concerning carbon dioxide emissions. The results from both the simulation study and the empirical application
consistently demonstrate that the GPRRE, particularly when paired with an optimally selected ridge parameter,
significantly outperforms the GPMLE in reducing MSE under conditions of severe multicollinearity, especially
for parameter values ki3 and k7,. These findings underscore the GPRRE as a superior estimation technique
for addressing multicollinearity in overdispersed count data. Despite the positive results of this study, it is not
without limitations. The performance of the GPRRE method depends primarily on selecting the optimal value
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Fig. 4. Estimated MSE of the GPRRE under different parameter settings and dispersion parameter.

Criteria | GPRM PRM NBRM PIGRM | DPORM | GERM CMPRM
AIC 2278.56 | 3533.44 2288.82 2301.36 2328.97 2730.21 5531.51
BIC 2310.07 | 3561.45 2320.33 2332.87 2360.48 2758.22 5563.02
LL -1130.28 | —1758.72 | —1135.41 | —1141.68 | — 115549 | — 1357.10 | — 2756.75

Table 10. Comparison of model performance for the dataset.

for the shrinkage parameter (k*), which is highly sensitive and balances bias and variance. Furthermore, the
high dimensionality of the data increases the complexity of the calculations and poses significant challenges
that require further research and improvement. Additionally, the current application of this method is limited
to addressing multicollinearity in the Generalized Poisson Regression Model (GPRM), which opens promising
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Fig. 5. Correlation matrix illustrating the relationships between explanatory variables in the dataset.

Estimator Bo B1 B2 Bs Ba Bs Be MSE
GPMLE |- |3.1606 | —0.0034 | —0.0161 | —0.0147 | 0.0864 | 0.1021 | 0.0128 |29.2930
k¥ |3.0143 | -0.0034 | -0.0273 | 0.0007 |0.0528 | 0.1127 |0.0487 |2.7943
k% 129869 | -0.0034 | -0.0292 | 0.0035 |0.0491 |0.1167 |0.0508 |2.3287
k3 |29869 | -0.0034 | —0.0292 |0.0035 |0.0491 |0.1167 | 0.0508 |2.3287
k; |3.1597 | -0.0034 | -0.0162 | —0.0146 | 0.0859 | 0.1019 | 0.0136 |28.4057
k% |3.1080 | -0.0034 | -0.0202 | —0.0092 | 0.0687 | 0.1014 |0.0359 |8.0755
k% 131073 | -0.0034 | -0.0203 | —0.0091 | 0.0686 | 0.1014 | 0.0360 |7.9869

; 3.1576 | —0.0034 | —0.0163 | —0.0144 | 0.0848 | 0.1015 | 0.0152 | 26.3976

GPRRE /Acg 3.0658 | —0.0034 | —0.0235 | —0.0047 | 0.0606 | 0.1057 | 0.0433 | 4.4871

kg | 3.0900 | -0.0034 | -0.0216 | —0.0073 | 0.0650 |0.1030 | 0.0396 |6.0952

fci‘o 3.1605 | —0.0034 | -0.0161 | -0.0147 | 0.0863 | 0.1020 | 0.0129 | 29.1616

f@i‘l 3.1432 | - 0.0034 | -0.0175 | —0.0129 | 0.0786 | 0.1003 | 0.0240 | 17.1243

EIZ 2.8888 | —0.0034 | —0.0360 |0.0136 0.0370 | 0.1319 | 0.0563 | 1.5296

1%1‘3 2.9429 | -0.0034 | -0.0323 | 0.0081 0.0435 | 0.1234 | 0.0535 | 1.8580

ki, |2.8458 | —0.0034 | - 0.0387 | 0.0179 | 0.0320 | 0.1388 | 0.0581 | 1.3728

l;:ir) 2.9580 | —0.0034 | —0.0313 | 0.0065 0.0454 | 0.1211 | 0.0527 | 1.9912

Table 11. Estimated MSE and coefficient of GPMLE and GPRRE for the dataset.

avenues for future development to address other issues, such as outliers, building upon previous research, such
as the study by Dawoud et al.**, Abonazel and Dawoud*®, Mohammad et al.*’, and Alghamdi et al.*.
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Estimator Condition A1 A2 A3 s s Qe A7

kY | @kF + 20X — kfAal | 5.53E409 | 230E+07 | 5.26E+05 | 2.46E+05 | 2.17E+04 | 8.61E+03 | 6.44E+02

k3 | @k3 + 26X — k3Aal | 5.53E409 | 230E+07 | 5.26E+05 | 2.45E+05 | 2.15E+04 | 7.52E+03 | 7.19E+02

k3 ¢k§+2¢>\—k‘§x\a§ 5.53E+09 | 2.30E+07 | 5.26E+05 | 2.45E+05 | 2.15E+04 | 7.52E+03 | 7.19E+02

kj ¢k2+2¢>\—k2/\a§ 5.54E+09 | 2.31E+07 | 5.27E+05 | 2.51E+05 | 2.25E+04 | 1.41E+04 | 2.69E+02

ki ¢k§+2¢>>\—k§/\a§ 5.54E+09 | 2.31E+07 | 5.27E+05 | 2.49E+05 | 2.22E+04 | 1.22E+04 | 3.98E+02

kg ¢k§+2¢>>\7k§/\a§ 5.54E+09 | 2.31E+07 | 5.27E+05 | 2.49E+05 | 2.22E+04 | 1.22E+04 | 4.00E+02

ks | k3 + 20X —kiXal | 554E+09 | 231E+07 | 5.27E+05 | 2.50E+05 | 2.25E+04 | 1.40E+04 | 2.74E+02

GPRRE | k3 | pkf + 20X — kiAal | 553E+09 | 230E+07 | 5.27E+05 | 2.47E+05 | 2.20E+04 | 1.06E+04 | 5.07E+02

by | @kg + 20X — kgAal | 553E+09 | 2.30E+07 | 5.27E+05 | 2.48E+05 | 2.21E+04 | LISE+04 | 4.44E+02

ko ¢k§0+2¢>k—k1‘0>\a§ 5.54E+09 | 2.31E+07 | 5.27E+05 | 2.51E+05 | 2.25E+04 | 1.41E+04 | 2.67E+02

kY | @k%1 + 26X — kiyAal | 5.54E409 | 231E+07 | 5.27E+05 | 2.50E+05 | 2.24E+04 | 1.35E+04 | 3.09E+02

kY, | @kTs + 20X — kfahal | 5536409 | 2.29E+07 | 5.26E+05 | 2.41E+05 | 2.08E+04 | 3.41E+03 | 1.00E+03

kg @kf3+2¢>\—ki‘3>\a§ 5.53E+09 | 2.30E+07 | 5.26E+05 | 2.43E+05 | 2.12E+04 | 5.71E+03 | 8.43E+02

Eyy | #kTs 420X — ki,Aa7 | 5.53E+09 | 229E+07 | 5.25E+05 | 2.39E+05 | 2.05E+04 | 1.51E+03 | 1.13E+03

ks | #kTs + 20X — kigAa | 553E+09 | 230E+07 | 5.26E+05 | 2.44E+05 | 2.13E+04 | 6.33E+03 | 8.00E+02

Table 12. Results confirming the necessary condition for Theorem 2.

Data availability
The data that supports the findings of this study are available within the article.
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