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Advanced analysis of nonlinear
stability of two horizontal
interfaces separating three-
stratified non-Newtonian liquids
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The nonlinear stability of two horizontal interfaces of three-layered stratified non-Newtonian

fluids plays a pivotal role in advanced engineering applications. This phenomenon encompasses
temperature management systems, microfluidic devices, and precise coating technologies. In an
existing study, a multilayer system is considered wherein a central Casson liquid (CL) layer is bounded
above and below by Powell-Eyring liquids (PELs). The impact of a uniform tangential electric field
(EF) and surface tension is explored within a porous medium. To avoid the mathematical complexity,
the viscous potential flow (VPF) is used to simplify the governing hydrodynamic formulations. The
model involves Navier-Stokes and Maxwell equations under the quasi-static assumption. To obtain

a nonlinear formulation, the linearized regulator equations are derived subject to appropriate
nonlinear boundary conditions. The plan interfaces are presumed to propagate horizontally. To
handle the nonlinear ordinary differential equations (ODEs) arising from the analysis, He's frequency
formula (HFF) is applied, transforming the problem into linear forms suitable for a non-perturbative
approach (NPA). A non-dimensional analysis introduces key dimensionless collections, which help to
characterize underlying fluid behavior and reduce system intricacy. A brief methodological summary
of NPA is included to support reproducibility and clarity. The numerical calculations indicate that the
stability can be evidently improved by the orientation of the tangential EF in relation to the horizontal
wavenumber. PolarPlots are employed to imagine the influence of varying parameters, offering
valuable insights into the mechanisms of the governing interfacial stability.

Keywords Nonlinear stability, Electrohydrodynamics, Casson liquid, Powell-Eyring liquid, Viscous
potential flow, Non-perturbative approach

Abbreviations

CL Casson liquid

PEL Powell-Eyring liquid

EF Electric field

VPF Viscous potential flow

ODE  Ordinary differential equation
HFF He’s frequency formula

NPA Non-perturbative approach
EHD  Electrohydrodynamics

RTI Rayleigh-Taylor instability
KHI Kelvin-Helmholtz instability
HPM  Homotopy perturbation method

BCs Boundary conditions

ICs Initial conditions

List of symbols

A, B Initial amplitudes

By Bond numeral

c.c. Complex conjugate of former terms
D, Darcy numeral

Department of Mathematics, Faculty of Education, Ain Shams University, Roxy, Cairo, Egypt. ““email:

Scientific Reports|  (2025) 15:40396 | https://doi.org/10.1038/s41598-025-24182-6 nature portfolio


http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-025-24182-6&domain=pdf&date_stamp=2025-11-15

www.nature.com/scientificreports/

P. Powell-Eyring factor
e, Unit vector along the x-axis
€y Unit vector along the y-axis
g Gravitational acceleration (L T2)
E3 Electric intensity
k Wave numeral (L™1)
N (—a) Two interface units outward normal
Dj Hydrostatic pressure (Newton/L?)
Dy Yield stress
S Stable area
Sa, (—a) Surface profile of interfaces
t Time (T)
U Unstable area
' Liquid velocity (L T~
(z,y) Cartesian coordinates
Oh Ohnesorge numeral
Greek symbols
o Darcy’s coefficients (M L7 T
Be Casson factor
S, Y Powell-Eyring constants
04 Kronecker delta
€j Dielectric constants
g Dynamic viscosities (M L™ T-1)
Py, Liquid densities (M L)

Wydro Total stress tensor

G Viscous stress tensor
Oij Electric stress tensor
n, & Surface displacement of interfaces (L)
Te Critical deformation rate amount
oy Potential function of velocities (L2 T~1)
(o Electric potential (Ampere)
w1,2 Total frequencies

Electrohydrodynamics (EHD) plays a vital role across various scientific and industrial applications. They affect
hydrodynamics, droplet and bubble dynamics, atmospheric phenomena, and thunderstorm electrostatics’.
Numerous studies have explored mechanisms driving EHD instabilities. For instance, the influence of an oblique
magnetic field on Rayleigh-Taylor instability (RTI) in viscous, electrically conducting fluids revealed that the
strength and the fluid layer’s thickness significantly affect stability®. Kelvin-Helmholtz instability (KHI) under
mass and heat transfer constraints under oblique EFs was modelled mathematically’. Field-induced surface
waves have also been observed at fluid interfaces under externally applied EFs*. The linear capillary instability of
a cylindrical interface between two viscous dielectric fluids subjected to an axial EF was examined®. Additional
studies addressed EHD instabilities in viscous liquids within cylindrical tubes subjected to perpendicular
EFs® and the linear surface wave behavior in leaky dielectric systems over finite fluid layers under varying
EFs’. Experimental work using horizontal capacitors demonstrated distinct modes of EHD motion in low-
conductivity fluids®. The methodology of the current work is entirely distinct from all prior research. The present
study examines the weakly nonlinear stability of coupled interfaces using a novel technique referred to as NPA,
as previously indicated in the Abstract.

The increasing technological relevance of non-Newtonian fluids stems from their greater ability to represent
complex fluid behavior more accurately than Newtonian models. Viscoelastic fluids exhibit both viscous and
elastic responses; they are critical in industries such as food processing, paper production, and petroleum
recovery’. The stability of interfaces between such fluids is of particular interest due to its implications in
multilayer flow systems across diverse applications. Several studies address interfacial stability in second-order
and viscoelastic fluids, often under the influence of horizontal magnetic fields, employing non-Newtonian
models such as Walters’ B fluid'’. The development of more generalized models, particularly of polymeric and
glass-forming fluids, was reported!!. The Oldroyd-B fluid model, due to its wide applicability across geophysics,
biomedicine, chemistry, and petroleum engineering, was extensively employed'2. Energy transfer mechanisms
reveal that traditional approaches may sometimes violate theoretical energy bounds. Further research has
investigated the linear stability of electrified interfaces between coaxial Oldroyd-B fluids, incorporating effects
of interfacial surfactants and surface charge distributions'. The present analysis precisely investigates complex
rheological properties of non-Newtonian fluids, differentiating it from earlier research that mostly focused on
Newtonian or mildly viscous flow models. This study distinguishes itself from prior studies by incorporating
nonlinear constitutive relations pertinent to non-Newtonian fluids, which were omitted in earlier analyses
predicated on simplistic Newtonian assumptions.

The concept of VPF in viscous liquids was first introduced by Stokes in 1851. His work focused on the
impact of viscosity on the damping of small-amplitude waves at the liquid-gas interface. All relevant assertions
from his study are referenced herein. Stokes’ issue was accurately addressed by employing linearized Navier-
Stokes equations without the explicit proposition of VPE, as previously demonstrated!-!¢. Traditional potential
inflow models, which presume perfect performance, are known to overestimate resonance impacts in water
wave issues due to their cancellation of viscous dissipation. To address this, a modified potential influx model
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that incorporates viscous damping influences was proposed and validated'”. A method of evaluating propeller-
effective wakes in oblique inflow constraints was developed'®. Furthermore, a hybrid model combining the
boundary element method of wave-making resistance, empirical formulas of viscous resistance, and boundary
layer theory was established to accurately predict the performance of water jet propulsion systems!®. The
nonlinear KHI of Rivlin-Ericksen viscoelastic electrified fluid—particle mixtures saturating porous media was
explored?’. The analysis considered the combined impacts of fluid elasticity, particle interactions, and porosity
under an applied EF. The existing study examines VPF through the NPA, setting it apart from all earlier works.

Nonlinear oscillations play a pivotal role in understanding a wide range of complex phenomena across
physics, electrical engineering, and modern manufacturing. Their solutions are often embedded in central
physical principles and are closely linked to various natural and engineering processes. In recent years,
iterative techniques such as the Homotopy perturbation method (HPM) have gained importance in producing
approximate solutions of nonlinear problems with high accuracy, often approaching exact analytical results?'.
However, due to the inherent complexity of nonlinear systems, obtaining accurate or semi-analytical solutions
of many nonlinear ODEs remains a significant challenge. Subsequent studies have addressed damped ODEs with
higher-order nonlinearities using both computational and analytical methodologies?. The frequency-amplitude
relationship in such systems can be explored via HFF, which was compared against its variants through residual
analysis?®. Various strategies of residual minimization were proposed to accurately determine the frequency of
nonlinear oscillators, with outcomes closely tied to the reliability of HFF?%. While the method yields satisfactory
frequency predictions, there remains an opportunity for further modification?®. Notably, HFF was successfully
applied to an un-damped Duffing oscillator as well*>. More recently, NPA has emerged as a powerful tool in
both dynamical system analysis and hydrodynamic stability research?’-3°. Given the characteristic difficulties
in analyzing similar nonlinear systems, the continued development and application of methods like NPA are
essential. Accordingly, the present study adopts NPA as a suitable and robust framework for investigating
nonlinear oscillatory behavior.

The nonlinear stability of two horizontal interfaces separating three stratified non-Newtonian fluids holds
substantial experimental and practical significance across a range of scientific and engineering applications. This
analysis is especially pertinent in microfluidic systems. These encompass lab-on-a-chip technologies utilized
in biochemical tests, targeted medication administration, and diagnostics. In these systems, the regulation and
stability of immiscible, stratified non-Newtonian fluids are essential in maintaining dependable performance
during disturbances. In petroleum engineering, this research supports advanced oil recovery techniques where
nanofluids are injected into layered reservoirs. Now, controlled interfacial instability can enhance mixing and
mobilize trapped hydrocarbons. In thermal management technologies such as nanofluid-based heat exchangers,
it is essential to maintain stable stratification. This stability aids in averting weakening in heat transfer efficiency
due to interfacial disturbances. Furthermore, nonlinear stability analysis aids in the design of energy systems.
It guarantees the structural integrity of stratified fluids under dynamic operational conditions. The theoretical
insights gained directly support the development of efficient, stable, and adaptable fluid systems across
industries. Experimentally, this investigation enables a deeper understanding of complex interfacial dynamics
in systems dominated by non-Newtonian behavior. By examining nonlinear mechanisms governing stability
under complex rheological conditions, this study aims to enhance prediction, control, and innovation in both
theoretical and applied fluid dynamics. Accordingly, this work addresses the following key research queries:

What methods can be employed to derive the formulas of nonlinear stability of double interfaces?
What is the technique of the nonlinear algorithm in analyzing two degrees of freedom?

What is the current status of validation of the developed NPA?

What is the total number of non-dimensional physical quantities?

What are the prerequisites for the nonlinear stability of the double interfaces?

What is the impact of the non-dimensional physical numbers on the stability configuration?

R L

The main objective of this work is to explore the nonlinear stability of two horizontal interfaces separating three
stratified non-Newtonian fluid layers. The problem has been rarely explored compared to single-interface or
Newtonian fluid cases. By employing a combined NPA and HFF, the study introduces a systematic algorithm
that transforms nonlinear governing equations into manageable linear forms, providing deeper insights into the
dynamics of multi-interface systems. Physically, the work captures the complex interplay between yield stress,
shear thinning, and stress-limited viscosity in CL and PEL, thereby revealing essential conditions in maintaining
or destabilizing stratification. The applications are broad and significant: in microfluidic technologies such as
lab-on-a-chip platforms, controlled interfacial stability ensures reliable biochemical testing and targeted drug
delivery; in nanofluid-based thermal management systems, sustaining stable interfaces prevents deterioration of
heat transfer efficiency. Despite extensive studies on two-layer configurations and Newtonian or single-type of
non-Newtonian fluids, the nonlinear stability of three-layer systems involving Casson and Powell-Eyring fluids
under the influence of a tangential EF has not yet been systematically examined. This research gap provides the
primary motivation of the present study. To clarify the manuscript’s organization, the structure is outlined as
follows: A flowchart illustrating NPA is presented prior to § 2. It introduces the theoretical framework of the
study. § 3 provides a detailed analysis of the nonlinear characteristics of the governing ODEs. § 4 focuses on the
investigation of nonlinear stability. § 5 presents Tabulated and graphical validations, along with a comprehensive
discussion of the results. § 6 provides a discussion of the outcomes. Lastly, § 7 summarizes the key findings and
conclusions.

To improve clarity and aid comprehension, the NPA procedure is presented in the following step-by-step
flowchart. This visual representation highlights key stages of methodology, focusing on processes that streamline
and enhance strategy of problem-solving strategy. Therefore, Fig. 1 elucidates this comprehensive flowchart,
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Fig. 1. Schematic representation of the procedure, illustrating the integration of NPA with HFE.

detailing the systematic approach employed to examine a nonlinear ODE through NPA combined with HFF.
The procedure is designed to transform nonlinear ODEs into equivalent linear ones, simplifying the analysis.
This transformation begins by proposing a trial solution, which is then thoroughly evaluated through numerical
simulations and summarized employing Tabulated data. The subsequent points outline particular characteristics
of this methodology:
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1. NPA is fundamentally different from any perturbation technique, including multiple time scales or HPM.

The NPA serves exclusively as an alternate tactic.

The concept is objective and originates from HFFE. Certainly, ancient Chinese mathematicians were the fore-

runners of this discovery.

The objective of this concept is to achieve a linear ODE that corresponds to the nonlinear one.

The numerical compatibility of ODEs ensures their consistency.

The linear ODE includes all parameters that are found in the nonlinear ODE.

NPA did not highlight that it had analytically resolved the nonlinear ODE.

NPA employs a distinctive methodology in addressing restoring forces, diverging from the conventional

perturbation approach; it is not classified as a perturbation technique.

8. Taylor expansion is employed to facilitate the calculation of restoring forces in all perturbation methods,
including the innovative multiple time scale technique. The NPA disregarded this risk.

9. The subsequent research utilized NPA to analyze the coupled systems, recognizing their importance.

>

N W

Theoretical framework
For more clarification, this section will be divided as follows:

Mathematical description

The nonlinear stability of double interfaces separating three immiscible liquids, PEL, CL, and PEL, is formulated
to examine the evolution and stability of interfacial perturbations. The perturbations in each liquid layer are
governed by nonlinear equations of movement, which include surface tension influences. In the steady-state
(equilibrium) configuration, the system features two distinct, flat interfaces, which are located at y = a and
y = —a and separating three liquid non-Newtonian layers. As demonstrated in Fig. 2, the upper and lower
layers consist of a shear-thinning liquid modeled by PEL, characterized by a viscosity that diminishes with
escalating shear rate. The middle layer comprises a yield-stress liquid represented by the CL model. This liquid
behaves as a solid until the applied stress surpasses a critical threshold, after which it flows. Such characteristics
are common in materials like pastes and observed in biological and industrial liquids such as blood and paints.
A uniform tangential EF is applied horizontally, introducing an EHD impact that further modifies the interface
dynamics and stability conduct of the system. The gravity g = —ge, acts vertically downward in the direction of
the y-axis. The three liquids are confined within a permeable medium, where the flow performance is governed
by Darcy’s law. This empirical law relates fluid velocity to pressure gradient across a medium, accounting for the
permeability of the medium and viscosity of the liquid. Darcy’s law governs the transition of liquids through
porous structures, linking micro-scale fluid-solid interactions to macroscale inflow dynamics. Accordingly, it
plays a vital role in bridging fluid dynamics with underlying physiological and industrial processes. This analysis
is conducted within a Cartesian coordinate framework (z, y). In this setting, the subscripts 1, 2, and 3 are
applied to denote the constraints corresponding to upper, central, and lower liquids, respectively, which are
adjacent to the fixed boundary surfaces.

3/
— L PEL P, 1y, &
//l_f_\\ y=a
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Fig. 2. Schematic representation of the theoretical model.
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Fig. 3. Representation of a real-world application featuring three distinct liquid layers.
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Fig. 4. Geological mechanisms underlying oil and gas accumulation.

Elucidation of physical mechanism

The study of interface stability examines systems in which two liquid layers are separated by distinct boundaries,
each defined by different physical properties such as density or velocity. Gaining insight into the stability of these
interfaces is crucial for numerous engineering and biological applications. Prominent examples include enhanced
oil recovery, blood perfusion in tissues, targeted drug delivery systems, soft robotics, and the manufacturing of
paints and coatings. Consequently, the concept of interfacial stability plays a vital role across a wide spectrum of
scientific and technological fields, including the following applications:

Medical applications

Figure 3 shows a depiction of a developing human embryo within the uterus, enclosed by the chorioamniotic
membrane. This membrane is composed of two primary layers: the outer chorion, which interfaces with maternal
cells, and the inner amniotic membrane, which directly surrounds the embryo. A gelatinous matrix separates
these two layers. The amniotic membrane itself is structured into three sub-layers: the epithelium, the basement
membrane, and the stroma. The stroma is further differentiated into compact, fibroblast, and sponge layers®!.

Geological applications

The investigation of double interfaces holds particular importance in groundwater management and geothermal
energy systems. In groundwater contexts, these interfaces separate contaminants, clean water, and geological
fluids, thereby influencing the migration of pollutants. Understanding these interactions supports the prediction
of contaminant behavior and the development of remediation strategies such as filtration or chemical treatment.
In geothermal systems, interfaces arise between hot geothermal fluids and cooler extraction fluids, directly
affecting heat transfer and fluid inflow. Insights into these mechanisms contribute to optimizing energy recovery
and maintaining reservoir stability. Furthermore, Fig. 4 exhibits the natural accumulation of oil and gas
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through the coordinated interaction of geological elements, source rocks, reservoirs, seals, and traps, governing
hydrocarbon migration, storage, and entrapment?2.

Mathematical modelling framework

The displaced boundaries can be expressed as?”?’:
y=a+n(z;t), (1a)
and
y=—a+&(z;t). (1b)
Any function subjected to perturbation can be formulated as®”?%
M(z, y;t) = M(y;t)Exp(ikz). (2
The liquid’s momentum formula can be given as?’3:
P (Q + (Z-V)) V=-VP-pge, -2V, 3)
ot voa?

where the third term on the right-hand side, — %K, represents the Darcy resistance associated with the porous
structure. In the present formulation, the EHD force does not appear as a bulk body force but rather enters
through the modified interfacial BCs via Maxwell stresses. The pressure gradient is represented by —V P, and
various physical quantities are previously defined in the Nomenclature Table.

Theoretical limitations of the issue
The limitations of both the VPF model and NPA can be clarified in more precise terms as follows:

1. Limitations of the VPF model

The VPF framework suffers from several fundamental drawbacks that arise from its central assumption of an
inviscid flow field, which restricts its validity. In this model,

« Viscosity is only incorporated indirectly through normal stresses in the dynamic BC; meanwhile, its influence
on the bulk fluid motion and tangential stresses is completely neglected.
« This simplification prevents VPF from accurately representing critical viscous flow features such as:

a. Boundary-layer development,
b. Flow separation,
c. Vortex shedding.

« The models accuracy deteriorates significantly at:

1. High Reynolds numbers,
2. Strongly rotating flows,
3. Turbulent regimes,

where vorticity generation and viscous dissipation are dominant.

« VPF fails to predict long-term energy dissipation and complex near-wall structures.

Consequently, it is only suitable for cases where viscosity exerts a minimal influence on the overall flow field.
2. Limitations of NPA

While NPA provides a sophisticated tool for analyzing nonlinear systems, its scope is also constrained by several
factors:

1. Applicability: The method is specifically tailored for weakly nonlinear oscillators that can be described by a
second-order ODE. It cannot be readily extended to strongly nonlinear systems or to higher-order dynami-
cal models.

2. ICs: The technique inherently assumes that ICs remain fixed throughout the analysis, limiting flexibility in
exploring broader ranges of dynamical responses.

3. Amplitude restriction: For the method to yield accurate and convergent results, the initial amplitude of os-
cillations must be less than unity. When this condition is not satisfied, the precision of the approach is com-
promised.

Accordingly, presupposing an irrotational influx and employing VPE a velocity potential can be defined as
w; = @;(z,y;t) which can follows Laplace’s formula as:
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v, :Vgoj,V.X:0:>V2g0j =0,a+n<y<-—-a+¢
Subsequently, one gets:
1(@,y;t) = Ar (8) Y,
2(x, 1) = Az () €Y 4 Ag(2) M),
and
(@, y;t) = Au (8) 05,

where the constants A1 (¢) — A4(t) are provided in the Appendix.
Employing VPE P; can be given as:

1
Pi = =pjpit = pigy = "5

(52)

(5b)

(50)

(6)

Under the framework of EHD analysis, it is widely recognized that the quasi-static approximation is applicable,
whereby the impacts of magnetic forces are deemed negligible. Accordingly, EF must be an irrotational, allowing
the definition of electric scalar potentials 1;(X, y,; t). Within liquid sheets E = Ege, — V;, EF behaves
accordingly. At the initial state, the free charge density within both liquids is presupposed to be zero, and this
constraint remains constant over time. Based on Gauss’s law, the electric potentials are required to satisfy

Laplace’s formula, as referenced in?’~.

Vi =0, a+n<y<-a+é
Thereby, one gets:
Yz, yit) = By () 0779,
a(x,y;t) = Ba (£) 0T 4 By(t) eF07 Y,
and
U1 (x,y;t) = Ba (1) F"HY),

where Bi(t) — Ba(t) are moved to the Appendix.
The equations of S,, and S_, are expressed as follows:

Sa(z, y,;t) =y —a—n(z; ) =0,
and
S oz, y,5t) =y+a—E&(x; t) =0.

The equations of n,, and n(_,y can be computed by:

VS, o\ —1/2
=22 — (—p, 1) (1 - ,
ne = o5 = (7 ) (1+ (n2)*)
and
VS_.

-1/2

n,= gy = (e D))

The potentials ¢;, and 1/; can be evaluated by employing the corresponding BCs?8-%°.

1. The kinematic constraints:

DS, _ on n 091 (3¢1> on

Dt — ot Oy Oz ) Ox ’
DS, _n 26 (0000 _,
Dt ot oy oz ) Oz
DS, o€ omn_(v6ny 0t _,
Dt ~— 0t Oy oxr ) ox

(8¢)

(10a)

(10b)

(11a)

(11b)

(11¢)
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and

DSa _0C, 005 (%) % _o (11d)

Dt ot 9y \ox/)or

2. Continuity of tangential EF across interfaces must be kept, which can be mathematically formulated as:

on y=a+n = ﬂ(L A HEOH = Q7 (123.)

and

E0j|y:7a+§ = ﬂ(_a) A HEOH = Q (lzb)

3. Continuity of normal EF across interfaces is required and can be expressed mathematically as:

=na. [[eE| =0, (13a)

E,| -
% ly=a+n

and

“lleEy = 0. (13b)

Eojlye—are = -a)

The following section highlights the normal component of the stress tensor employed to evaluate the stability
characteristics of the structure.

Nonlinear BCs
For dynamic constraints, normal stresses must remain continuous across the disturbed boundaries, which are

mathematically formulated as follows?®°:
n,. (G,) =TsV.n,, aty=a+n, (14a)
and
n_,. (Q_a) =T,Vn_,, aty=—-a+¢, (14b)
where G; can be given as follows:
J . .
G = 9 Tou ( My ) (15)
- ( Oha  Oyyj Tyj
The expressions of Uﬁ;’t“l, aijdro, and af;“t"'o can be given as follows?®3?:
U;;tal _ O_lhjydro + Ufj{ectro7 (1621)
U?jydro = —Pj&;j + S»;j, (16b)
and
. 1
Uf;ecno = EonZ'on — *8ng(5ij4 (17)

2
This study explores three types of immiscible liquids, which can be described as follows:

PEL in first and third layer
The PEL model reflects a category of non-Newtonian fluids that demonstrate both viscous and elastic
characteristics, effectively capturing the complex mechanical behavior of many real-life matters. From a physical
view, the model elucidates the dual performance of materials: under low shear stress, the substance resists inflow
and acts like a solid; meanwhile, escalating stress induces a gradual shift toward fluid-like behavior. This stress-
dependent response, commonly referred to as shear-thinning or pseudo-plasticity, is marked by a decrease
in apparent viscosity with rising shear rate. Embedded in Eyring’s inflow theory, the PEL model accounts for
the progressive yielding seen in complex fluids, unlike traditional Newtonian models, which presume a fixed
viscosity. Its flexible structure makes it especially effective in modeling materials that transition smoothly from
a solid-like to a liquid-like state, rather than exhibiting a distinct yield point.

To strengthen the theoretical framework, the constitutive equation for the PEL model may be formulated

as33—36:
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Sper = e (VY4 (VE)) + Zsinh™ (£ (VY + (V1)) i = 13,
, 18)

L T
‘E(VZJF(VK) )’ << 1,

where S5 is the stress deviator, ¢, -y are defined as the material constants of the PEL model,

Specific cases of the PEL model
The special situations of the PEL model are given as:

1. Atvery high shear rates, the liquid conduct may approximate that of a Newtonian liquid with lower viscosity.
2. Atlow shear rates, the liquid may appear nearly solid.

These limiting performances provide useful approximations for tailoring the model to specific materials and
constraints.

In terms of practical applications, the PEL model is highly relevant in describing complex biological and
industrial fluids. It effectively captures the rheological behavior of blood, where the combination of plasma and
suspended cells gives rise to distinct non-Newtonian characteristics. The model is also suitable for polymer melts
and solutions, which deform under applied stress due to molecular entanglements. In biomedical contexts, it
aids in simulating the mechanical response of soft tissues, where both viscous and elastic properties are critical to
physiological function. Moreover, the PEL framework is valuable in various industrial processes, such as inkjet
printing, food processing, and lubrication, where precise control of fluid flow is essential.

CL in middle-layer

The CL model represents a category of non-Newtonian fluids distinguished by the presence of a yield stress,
a critical threshold below which the material resists flow and behaves like a solid. Flow initiates only when
applied shear stress surpasses this yield point, at which stage the material transitions into a viscous, flowing state.
This behavior is particularly relevant to materials with internal microstructures, such as particle suspensions or
cellular matrices, which withstand deformation until an adequate force is applied.

Mathematically, CL describes a nonlinear relationship between shear stress and shear rate. Once the yield
stress is exceeded, shear stress becomes proportional to the square root of the shear rate. This framework
effectively captures both initial rigidity and subsequent viscous response, making it a robust model for complex
fluids that remain stationary under low stresses but flow readily once activated.

To further clarify the rheological framework, the constitutive equation for CL is given explicitly as®’~4:

2 p2 + Py le 1>,

_ /271_ b )
§CL - 9 1o ¥ Py . < (19)
/2ﬂ, bl (&)

where m = e - e = e;; ey; is the product of the component of deformation rate, 7. is a critical value of this
product based on a non-Newtonian model, j2 is the plastic dynamic viscosity of the non-Newtonian fluid, and
Dy is the yield stress of the fluid.

Specific cases of the CL
The special situations of CL can be outlined as:

1. At very high shear rates, CL approximates Newtonian performance, as yield stress diminishes and fluid in-
fluxes more freely.

2. When liquid demonstrates a consistent increase in shear stress with shear rate after exceeding yield stress, the
model approaches Bingham plastic performance.

3. CL is well-suited for fluids that exhibit yield stress, offering a realistic and flexible representation of such
materials.

From a practical standpoint, CL is widely employed in both biological and industrial contexts. In hematology,
it has been extensively used to simulate the rheological behavior of blood, where yield stress arises due to red
blood cell aggregation, particularly under low shear conditions (e.g., in capillaries or at rest). This makes the
model highly valuable in cardiovascular simulations and the design of medical devices such as blood pumps.
In industry, CL is equally effective in describing pastes, emulsions, and suspensions, including chocolate,
printing inks, cosmetics, and toothpaste, where material must resist flow when undisturbed but flow easily when
processed or applied.

Nonlinear characteristic equations
For the sake of simplicity, in the current case, temporal instability is explored by reducing PDEs to ODEs by
applying perturbations on 7, £ as?®?%

n(z;t) = n(t) ™, (202)

and

Scientific Reports |

(2025) 15:40396 | https://doi.org/10.1038/s41598-025-24182-6 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

E(ast) = £(t) ™. (20b)

To examine nonlinear dynamics, analysis is conducted within a wave-attached reference system, where
deformable interfaces are tackled purely as time-dependent. Presuming small surface disturbances, a binomial
expansion is applied to simplify the nonlinear terms. While the algebra involved is extensive, the procedure
follows a clear and logical structure. This approach leads to the derivation of nonlinear equations in terms of 7
and £ and their time derivatives, accurate up to third-order terms. Consequently, one finds:

it 4+ 71E + an) + r3€ + Tan + 15 + remit + 7768 + ané
+ 79l 4 10N + T11n€ + T12mn) + T13EE + T1an’ + T15E°

. . (21)
=+ T16ﬁf + ’1“17773 + T’18§3 + T197]2ﬁ + 7‘20525 + 7'215277
+ 79902 E + 12301 + 124E%E + 195670 + Toen’E = 0,
and
€+ s17) + 526 + 537 + 84 + 55E€ + seni) + s70é
+ 58E7) 4 Somé + 51060 + 5116€ + 51977 + 513E° + 51477 (22)

+ 5157 + 516E° 4 s5177° + 518E°€ + 519777 + 5201
+ S21§2ﬁ + 822525 + 5237]277 + 8247725 + 525527'7 =0,

where dashes reflect time derivatives. Further, coefficients 71 — 126 and s1 — s25 are moved to the Appendix.
For analytical clarity and to better capture governing physical effects, primary variables are expressed in
dimensionless form. This transformation is carried out using a representative characteristic length, denoted
as . Employing this scale, the following non-dimensional factors are outlined to facilitate the interpretation of
findings.
@' =afl,—a" = (=a) [l A= 1+ 87",k = k/ln* =n/l, & = &I, B§? = 122 B3/T, } = pj/ps
t* = \/Ts/p213t,e] = €;/e2,and pj = 15/ 12, where the symbol asterisk is excluded for brevity.

Physically, expressing variables in dimensionless form eliminates unit dependence and highlights the balance
of dominant physical mechanisms. This makes it possible to generalize results across systems of different scales
and fluids, allowing predictions to be transferred from theory to experiments and applications.

Additionally, the non-dimensional physical parameters may be listed as:

« The Darcy number D,, = o/I? represents the relative ease with which a fluid can flow through a porous
medium compared to the viscous resistance of the fluid. A high Darcy number indicates high permeability;
meanwhile, a low value indicates that the porous medium strongly restricts fluid motion.

 Ohnesorge number Oh = p2/+/p2 T | compares viscous forces to the combined effects of inertial and sur-
face tension forces. It is particularly important in understanding droplet formation, breakup, and interfacial
stability, since a high value means viscous damping dominates the system’s dynamics.

« Bond number By = p2 g I?/Ts compares the influence of gravitational forces to the effect of surface tension
forces acting on a fluid interface. A large Bond number means gravity dominates, leading to deformation or
destabilization of the interface; meanwhile, a small Bond number means surface tension dominates, helping
to maintain a stable and curved interface.

o EPL parameter P. = 1/¢7yu2 characterizes how the viscosity of a non-Newtonian fluid becomes limited un-
der stress. It reflects the degree of shear-thinning behavior and helps describe how a fluid’s resistance to flow
decreases as stress increases.

 CL factor 8. = p, 1,ug V2. used to describe the role of yield stress in the flow behavior of non-Newtonian
fluids. It distinguishes between regions where fluid behaves like a solid, resisting motion until a threshold
stress is exceeded, and regions where fluid flows once that yield stress is overcome.

Nonlinear stability analysis

This section focuses on extending the previously established NPA to address nonlinear ODEs, as discussed in
earlier studies?”*. Our analysis centers on Egs. (21) and (22), which form a coupled nonlinear system. Due
to the inherent complexity of these equations, we simplify the procedure by introducing specific substitution
relationships. In particular, in Eq. (21), we replace the relevant terms with their corresponding expressions,
and similarly, in Eq. (22), we substitute the necessary terms 7 = A coswi1t,§ = Bcoswit in Eq. (21) and
n = Acoswat, £ = B coswat in Eq. (22). This approach is implemented under the ICs, which will be defined
as follows:

1(0) = A, £(0) = B, 1/'(0) = 0 and §'(0) = 0. (23)
These steps simplify the process and make it easier to tackle the equations. Subsequently, one finds:
0"+ N, 0,6, €) + Na(n, n',n", €, €,€7) =0, (24a)

and
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&'+ Di(&,& n,m") + Da(€, €6 m, ' ,n") =0, (24b)
where

Ni(n, n',n", & €,&") =ran’ + 13 +r10&n’ + riang’ + riamm’

(25)
+ri3€é’ +ren'e + T2377277/ +ros82€6 + 7“255277/ + 7’26772‘5,7
No(n, n',n", &, €,6") = ri&" + ran +rs& + rem’” + r768" + rsng” + rofn’ + rian’? 26)
+ 71582 4+ 17”4 7188 + 1007 + 1202”4 121 €20 + roan’E”,
Di(& &€ ', n") = s2€' + san’ + soné + 51060 + s11€8 27)
+ 51277 + 5156’ + 52262 + 523071 + 524m°E + 525E77),
and
Da(&, €€  m,n'sn") = s1n” + sa€ + 556€" + somm” + stn€” + ssén” + s13€” 28)
+ 514m° + 5168° 4 5170° + 518676 + s100°0" + 5200°E" + 521670
As formerly reported?’=3%, u and v ensure that:
u’ +xau + F% u =0, (29)
and
v 4 xev +T5 v =0, (30)
where
27 /w1 2m /w1
Y1 = / @' Ny (a, @', a0, o', 8")dt/ / @' dt, (31a)
0 0
27 /o 2m /w2
X2 = / o Di(a, @, a0, v, 0")dt/ / ' dt, (31b)
0 0
27 /w1 27 /w1
= / @No(a, @, a0, 0 ,0")dt/ / a?dt, (32a)
0 0
and
21 /w2 2 /w2
ri= / 0 Do(3, ¥, 0", 4, @, @ )dt) / 2 dt. (32b)
0 0

Equations (29) and (30) may be transformed to standard simple harmonic motions via the following standard
normal forms:

u(t) = aExp(—x1t/2), (33)
and
v(t) = PExp(—x2t/2). (34)
Thereby,
i’ + wia =0, (35)
and
3" + @t = 0. (36)
Consequently, wr=I7— ixf, andw? =132 — ixg.

The stability restrictions can be regarded as:
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Time | Actual “NS” | NPA | Absolute error | Relative absolute error (%)

0 0.2 0.2 ]10.0 0

0.199981 0.2 | 0.0000185737 | 0.0092877
0.199962 0.2 |0.0000375674 | 0.0187872
9 0.199943 0.2 ]0.0000565593 | 0.0282877
12 0.199924 0.2 | 0.0000755496 | 0.0377891
15 0.199905 0.2 |0.000094539 |0.0472918
18 0.199886 0.2 ]0.000113527 | 0.0567956
21 0.199867 | 0.2 | 0.000132513 | 0.0663004
24 0.199849 0.2 ]0.000151497 | 0.0758061
27 0.19983 0.2 ]0.00017048 0.0853128
30 0.199811 0.2 ]0.000189461 | 0.0948205

Table 1. Comparison of “actual” (numerical) and “approximate” (analytical) solutions at selected times. Errors
are small (<0.1%) and increase gradually with time, consistent with the expected accumulation in reduced-
order approximations.

Time | Actual “NS” | NPA Absolute error | Relative absolute error (%)
0.2 0.2 0.0 0
0.199981 0.2 0.0000183187 | 0.00916022

0.199962 0.199999 | 0.0000365468 | 0.0182768
0.199943 0.199998 | 0.0000542717 | 0.0271435
12 0.199924 0.199996 | 0.0000715013 | 0.0357642
15 0.199905 0.199994 | 0.0000882469 | 0.0441443
18 0.199886 0.199991 | 0.000104516 | 0.0522878
21 0.199867 | 0.199988 | 0.000120318 | 0.0601988
24 0.199848 0.199984 | 0.00013566 0.0678813
27 0.199829 0.19998 | 0.000150551 | 0.0753396
30 0.199811 0.199976 | 0.000164999 | 0.0825776

Table 2. Comparison of “actual” (numerical) and “approximate” (analytical) solutions at selected times. Errors
are small (<0.1%) and increase gradually with time, consistent with the expected accumulation in reduced-
order approximations.

@i >0, and x1 > 0, (37)
and
wi >0, and x2 > 0. (38)

The obtained stability conditions imply that stability is achieved when all eigenvalues of the governing matrix
have negative real parts, ensuring that any perturbation at the interface decays with time. Physically, this means
that the system naturally suppresses disturbances and prevents oscillations from growing uncontrollably.
Instead, excess energy introduced by small perturbations is gradually dissipated through viscous, elastic, and
porous resistance mechanisms. Accordingly, the interface is restored to equilibrium, ensuring predictable and
well-regulated behavior. From a practical perspective, such stability is essential in both biomedical and industrial
applications. In biomedical contexts, it underpins the reliability of microfluidic devices, drug delivery systems,
and EHD printing of tissue engineering, where uncontrolled oscillations could compromise precision or safety.
Similarly, in industrial processes such as inkjet printing, coating technologies, lubrication systems, and food
processing, maintaining stable interfaces is crucial in achieving consistent performance, preventing defects, and
ensuring high product quality.

Validation analysis
Tabular validation (error analysis and convergence validation)
In what follows, Tables 1 and 2 present a detailed error analysis, comparing the NS of the coupled system given
in Egs. (21)-(22) with the analytical results obtained via NPA in Egs. (29)-(30). The minimal discrepancies
observed confirm the high accuracy and consistency of both methods, highlighting the effectiveness of the
proposed approach in modeling complex dynamical systems.

The tables provide a point sensible comparison of actual (numerical) and approximate (analytical) solutions
over the interval ¢ € [0, 30], together with absolute and relative errors. This enables a clear assessment of the
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accuracy and reliability of the approximation technique while also revealing the temporal evolution of deviations,
which may arise from truncation effects, model simplifications, or computational limitations. Such an evaluation
is particularly critical in applications such as fluid dynamics, biomedical simulations, and EHD, where even
small deviations can significantly affect predictive reliability.

To ensure numerical robustness, convergence was verified by progressively refining temporal resolution
until the maximum absolute difference between successive solutions fell below 1076. Specifically, the maximum
absolute error between NS and NPA for u(t) was only (5 x 10™%), with maximum relative error not exceeding
0.0948%. As well, the maximum absolute error between NS and NPA for v(¢) was only 0.000343544, with a
maximum relative error of 0.0826%. These discrepancies are well below 1%, demonstrating that the analytical
approximation closely reproduces the numerical solution. Hence, NPA can be confidently applied as an efficient
analytical tool of the present nonlinear model.

The “Actual” values reported in Tables 1, 2 are obtained by direct numerical integration of the full nonlinear
coupled system in Eqgs. (21) and (22) using MS. The approximate values correspond to reduced linearized model
Egs. (29) and (30), solved under identical conditions. The comparison, therefore, directly validates analytical
approximation against a high-accuracy numerical solution of the full nonlinear problem. Representative non-
dimensional parameter values used for validation for Tables 1, 2 are:

B = 02, A= 02, p3 = 3, p1L = 1“LL1 = 1,/L5 = 2, D, = 0.05,81 = 0002,
€3 =0.005, P. =5,8. =2,a=0.8,
Ey = 0.5, k = 0.00095, By = 10,and Oh = 1.0.

Due to the inherent complexity of the problem, specific simplifications, namely VPF approximation and NPA,
are employed. A careful comparison has also been made with relevant studies in the literature that adopt similar
methodologies. However, a direct comparison with results derived from solving the full governing equations of
fluid motion is not feasible and lies beyond the intended scope of this work.

Schematic validation
Figures 5 and 6 provide a direct comparison between NS of nonlinear coupled Egs. (21) and (22) and the
corresponding approximate solutions obtained via NPA, formulated in Egs. (29) and (30). This comparison
highlights the accuracy and effectiveness of NPA in reproducing the nonlinear dynamics of the system. Although
primarily introduced as an analytical tool of nonlinear stability analysis, NPA demonstrates broad potential as
a reliable and efficient alternative to purely numerical methods in complex physical and engineering contexts.

In Fig. 5, the red curve represents NS of Eq. (21); meanwhile, the brown curve corresponds to NPA solution
derived from Eq. (29). The close overlap between the two solutions, with a maximum deviation of only
0.000500803, confirms the high accuracy of NPA in capturing the dynamic response of the system. Similarly,
Fig. 6 compares NS of Eq. (22) (yellow curve) with the corresponding NPA result (purple curve). Once again,
the two solutions show excellent consistency, with a negligible deviation of just 0.000343544. These minimal
discrepancies, well below 1%, underscore the robustness and precision of the developed analytical approach in
modeling nonlinear dynamics with reliability.

Finally, the combined evidence from Tables 1, 2 and Figs. 5 and 6 provide a strong validation of the adopted
methodology. The excellent agreement between NS and NPA confirms that the developed framework ensures
accuracy, convergence, and physical reliability, thereby justifying its use in subsequent stability and parametric

investigations.
0.06} ;
_ o0.04f
é 0.02: l NPA of Eq. (29)
= )
- 41 W NS of Eq.(21)
0.00f .
—0.02}
5 10 15 20 25 30
Time (t)

Fig. 5. Shows a comparative response between the numerical NS of Eq. (21) and the approximate
solution NPA from Eq. (29). The non-dimensional parameters that were held constant are:
B=0.09,p3=3,p1=1,1 =13 =2A4=0.07,D, =0.5,61 = 0.002,e3 = 0.005,

P. =25,.6. =2,a=1.6,Ey = 0.5, k=1.15, Bq = 0.005, and Oh = 0.022.
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Fig. 6. Displays a comparison between the NS of Eq. (22) and the approximate solution NPA from Eq. (30).
The non-dimensional parameters that were held constant are as in Fig. 5a, except 3 = 3, and P = 25.

Beyond numerical accuracy, these results carry clear physical significance. The ability of NPA to realistically
reproduce system dynamics ensures that subtle features such as interfacial instabilities and oscillatory damping
are correctly predicted. This reliability is critical in practical contexts, where small deviations may lead to
large-scale impacts. For instance, in predicting EHD instabilities in biomedical fluids, enhancing drug delivery
precision through controlled interfacial motion, and improving adaptive damping strategies in soft robotics
and biomedical imaging systems. Accordingly, validation provided by Figs. 5 and 6 not only strengthens the
credibility of the present analysis but also confirms the potential of NPA as a practical modeling tool for advanced
electrofluidic applications.

A limited situation is examined to validate the current formulation. When Casson and Powell-Eyring
parameters are invalidated, the system simplifies to a Newtonian two-layer structure. This classical case was
extensively examined in the literature. Our model was directly compared to our prior results?’. Therefore, the
comparison demonstrates a strong concordance with the published analysis.

Results and discussion

Figures 7, 8, 9, 10, 11, 12 depict the stability charts based on the constraints defined in Egs. (37) and (38). These
constraints include essential parameters such as PEL numeral Pe, CL factor 8., Darcy numeral D,,, dielectric
constant €1, and Ohnesorge numeral Oh. The frequenciesw; &3, and initial amplitudes A & B, are also
included to reflect the system’ stability behavior. The darker regions above each curve point out stable regions
in these plots. Conversely, lighter zones below curves reflect regions of instability. Each subfigure investigates
how variations in a specific parameter influence the system’s response. The horizontal axis typically shows wave
numeral k; meanwhile, vertical axis reflects EF number, often presented in logarithmic form log EZ. These
graphs reveal how changes in physical forces impact the balance of stability and instability in the interface. The
physical interpretation lies in the interaction between competing forces, capillary tension, EF influences, and
viscous or inertial contributions. These forces together shape the dynamic movement and deformation of the
liquid interface. Collectively, dimensionless parameters utilized in this analysis encapsulate the essential physical
performances of the liquid system, enabling a generalized interpretation of its performance across diverse spatial
scales and engineering applications.

In a horizontal plane configuration comprising three immiscible liquid layers, Fig. 7 examines the stability
profile of two interfacial boundaries by plotting log E3 versus & to describe stable and unstable areas. The three
non-Newtonian fluids are stratified, formmg dual interfaces: the upper interface, between the first and second
liquids, is described by the function log F; , meanwhile the lower interface, between the second and third
fluids, is expressed by log E3. These curves reflect the dynamic response of each interface to small disturbances.
Stability regions of upper and lower interfaces are identified as S1 and S3, respectivel by whereas the corresponding
unstable zones are symbolized as Ul and U3. The regions above the curve log £, exhibit more uniform and
smoother stability profiles compared to those associated with log Egs, indicating that the outer (upper) interface
exerts a more significant influence on the system’s global stability. This performance recommends that log F
acts as the dominant curve governing the system’s overall dynamical conduct. The analysis further incorporates
influences of nonlinear interactions between the interfaces, accounting for the influence of critical dimensionless
numerals such as Darcy, PEL, and Ohnesorge numbers. These quantities collectively modulate interfacial
response, shaping boundaries between stability and instability across the system?°.

Figure 8 reflects the influence of PEL numeral P on stability boundaries of the system, outlined by the
variation of log E3 against k. As the PEL numeral enlarges from 0.0 to 12, a notable expansion of the unstable
area U is noticed; meanwhile, the stable zone S diminishes correspondingly. This shift emphasizes a pronounced
destabilizing conduct imparted by non-Newtonian rheological performance captured by PEL. From a physical
view, the PEL number reflects the extent of shear-thinning conduct in non-Newtonian fluids, where viscosity
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Fig. 7. Shows stability boundaries of two liquid interfaces: upper interface log Eg; and lower interface

log E2; plotted against wave number . Stable regions (S1, $3) and unstable regions (U1, U3) are
indicated. The non-dimensional parameters held constant: are: B = 0.7, p3 = 0.0006, D,, = 0.005,
A=0.7, p3 =5, p1 =0.0005, 41 = 3,Bg = 1.05,8. = 0.5, a = 1,61 = 0.72,e3 = 3.5, P. =15and
Oh = 2.05.
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Fig. 8. Displays the effect of PEL number P. on stability boundaries (log £3 vs. k), P. varies from 0.0 to 12,
while other parameters remain fixed. Stable (S) and unstable (U) regions are indicated. The non-dimensional
parameters held constant are as in Fig. 7, except D, = 1.00.
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Fig. 9. Demonstrates the impact of the CL factor 3. on stability boundaries (log Eg vs. k). rises from 0.05
to 0.09, meanwhile other parameters remain fixed. Stable (S) and unstable (U) regions are indicated. The non-
dimensional parameters held constant are as in Fig. 7, except D,, = 1.005, and P. = 0.5

o

12

U

r‘ “sfflifiggavTrrrrrrrYra I vy
1

1
08 10 1.2 14

Wave number (k)

‘olllllllllll

1
02 04 08

Fig. 10. Depicts the influence of the Ohnesorge number Oh on stability boundaries (log Eg vs. k), Oh
changes from 0.5 to 0.8, meanwhile other parameters remain fixed. Stable (S) and unstable (U) regions are
indicated. The non-dimensional parameters held constant are as in Fig. 7, except P. = 10.
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Fig. 11. Exhibits variation of stability boundaries (log E3 vs. k) with Darcy number D,, Curves plotted for
diverse values of Dy, while other parameters remain fixed. Stable (S) and unstable (U) regions are indicated.
The non-dimensional parameters held constant are as Fig. 7, except P. = 10.
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Fig. 12. Reflects the effect of dielectric constant €1 on stability boundaries (log E¢ vs. k). Curves show 1
increasing progressively from 0.5 to 0.8; meanwhile, other parameters remain fixed. Stable (S) and unstable (U)
regions are indicated. The non-dimensional parameters held constant are as in Fig. 7, except ez = 1.5, and

P, = 10.
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diminishes with escalating shear rate. As PEL rises, the fluid becomes more sensitive to velocity gradients,
reducing viscous damping and weakening the system’s resistance to disturbances, thus promoting instability.
This performance stems from a shift in balance between inertia and internal resistance; at high PEL amounts,
inertia prevails, allowing interfacial waves to grow unchecked. Practically, the destabilizing impact of high PEL
is critical in electrofluid applications. It can disrupt drug delivery, cause turbulence in microcirculation, and
impair stability in EHD devices. Managing PEL is essential in ensuring uniform inflow and system reliability>.

Figure 9 highlights the influence of the CL factor on nonlinear stability characteristics of the system, as
depicted by the relationship between log E3 and k. As the CL factor escalates from 0.05 to 0.09, the plotted
curves exhibit a noticeable upward shift in the stability zone. This indicates a contraction in stable region S and
a corresponding expansion of unstable one U, underscoring the system’s increased susceptibility to disturbances.
Physically, higher CL values reduce effective viscosity beyond yield stress, steepening velocity gradients and
lowering damping, which enhances instability under EFs. Practically, this matters in EHD systems like inkjet
printing, microfluidics, and biomedical flows, where elevated CL can cause irregular flow or wave growth.
Managing CL is the key to maintaining precision and stability in such applications®’.

Figure 10 demonstrates the destabilizing impact of the Ohnesorge numeral Oh on nonlinear stability
that characterizes viscoelastic electron fluids, as depicted by the relationship between log E§ and k. The
plotted curves correspond to escalating Oh amounts (0.5, 0.6, 0.7, and 0.8), exhibiting a consistent upward
shift in the critical stability zone. This progression reveals that as Oh improvements, stable region S contracts
significantly, meanwhile unstable domain U broadens across the entire wave numeral spectrum. In a physical
context, increased viscosity disturbs the equilibrium between shear-thinning and inertia, resulting in reduced
damping. This renders the system more susceptible to instabilities, particularly under intense EFs in micro-
scale environments. This is critical of EHD applications like electro-spraying, droplet formation, and lab-on-
chip devices. In biomedical systems, high viscosity may destabilize drug droplets or hinder influx in synthetic
biofluids, affecting treatment or sensor function. Managing this influence is a key to stable performance in high-
viscosity, electrically driven systems?”.

Figure 11 underlines the influence of Darcy numeral D,, on the nonlinear stability of a two-plane interface
system within viscoelastic electrofluids, by depicting the variation of log E3 against k. The curves correspond to
different D,, measures that escalate, and curves shift downward, signifying a decrease in the critical threshold of
stability. Consequently, S becomes broader, meanwhile U is progressively diminished, indicating a pronounced
stabilizing performance as permeability enriches. Physiologically, the Darcy number outlines the permeability of
a porous medium. A higher amount indicates greater permeability, allowing smoother fluid influx and enhanced
energy dissipation, which helps dampen disturbances and delay interfacial instability. This has important
applications in EHD systems involving porous media, such as filtration, tissue fluid transport, and microfluidics.
In biomedical engineering, optimizing Darcy numbers aids in modeling fluid inflow through tissue scaffolds or
drug diffusion in membranes. In geophysics, it informs subsurface flow predictions, while in industry, tuning it
improves stability in systems like porous electrodes?”-%%.

Figure 12 clarifies the performance of the dielectric constant €1 on nonlinear stability characteristics of two-
plane interfaces in viscoelastic electrofluids. The plot shows variation of log Eg vs k. As the dielectric constant €1
escalates, stability curves shift downward, thereby shrinking S and expanding U. This pattern clearly indicates a
destabilizing influence of higher dielectric contrast within the system. From a physical standpoint, the dielectric
constant determines how strongly a liquid responds to an EF through polarization. Higher values increase
electric stresses at the interface, promoting deformation and dwindling stability thresholds. This enhances the
risk of instability by lowering the energy barrier of perturbation growth. In EHD systems, such as microfluidics,
drug delivery, inkjet printing, and liquid lenses, elevated dielectric constants can improve actuation but also
heighten susceptibility to interfacial breakdown. Consequently, controlling dielectric properties is crucial in
maintaining system stability and performance?”-%.

In what follows, Table 3 summarizes complex interactions among key physical parameters and their impact
on the stability of viscoelastic electrofluid interfaces under EFs. Each parameter represents a distinct mechanistic
pathway governing interfacial dynamics.

Figure 13 presents polar trajectories that display the relationship of @ (t) = A cos wat vs. 0(t) = B cos wat
of diverse amounts of the Casson factor (.. The influence of the Casson parameter /3. on the system’s dynamics

Parameter | Performance Physical Mechanism Practical applications
P Elevated standards promote %Eﬁiﬁ;gsg;ﬁiﬁ? mz;: dsi}elxelat\:-;Ezlncrllilx?qginci(;}r:Sgifti’slce;fsmg Triggers inflow irregularities in blood vessels, disrupts controlled drug
e interfacial destabilization damping Y8 dispersion, and affects nutrient transport across biological membranes
8 Increasing measures tend to | Elevates yield stress threshold, causing delayed inflow Critical in modeling blood rheology, influencing polymer solution
€ destabilize liquid interfaces | initiation and nonlinear resistance to deformation inflows, and regulating resistance in tissue-engineered microfluidics
Higher amounts reduce A lower viscous-to-inertial ratio limits damping, enhancing | This leads to droplet breakup in drug delivery systems, instability in
Oh interface stability the amplitude of surface-tension-induced oscillations respiratory mucus layers, and inaccuracies in biomedical inkjet printing
Increased amounts enhance | Higher permeability diminishes internal liquid resistance, Pivotal for optimizing perfusion In porous tissues, coptrolllqg
D . s : L - ; transdermal drug delivery, and maintaining uniform inflow in
" interface stability dampening convective inflows and suppressing perturbations |, . .
biological scaffolds
Amplifies destabilization Enlarges EHD stresses by escalating charge accumulation at Inﬂugpces electroﬂu;dﬁp@a;:oni affectshmteljface stablllltfyb{nllab_- 1
£1 ith lated . faces, leadi 1 imbal N on-chip systems, and aids in the electrophoretic control of biologica
with escalated measures interfaces, leading to stronger normal stress imbalances particles

Table 3. Key factors influencing fluid stability.
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is clearly reflected in polar phase portraits. For smaller amounts of /3., trajectories are tightly wound and nearly
circular, indicating that oscillatory behavior remains close to Newtonian dynamics with regular and symmetric
displacement patterns. As 3. escalates, however, the role of yield stress becomes dominant, introducing stronger
nonlinearities into motion. This shift is visible through the development of lobed or flower-like trajectories,
which signify partial energy trapping and a departure from purely harmonic responses. From a physical
standpoint, this performance arises from additional resistance in Casson-type fluids once the yield threshold is
exceeded, which alters the balance between inertia and damping. Such insights are highly relevant in biomedical
applications, particularly in modeling blood flow, as well as in engineering contexts such as electrofluidic devices
and micro-actuators, where precise control of non-Newtonian interfaces is required?”*°.

Figure 14 highlights the polar diagrams between @(t) = Acoswit and 0(t) = B cosw:it of varying
Ohnesorge numeral Oh = 0.12, 0.15, 0.17, which quantify the influence of viscous damping relative to inertial
and capillary forces in fluid systems. The effect of the Ohnesorge number Oh on system response is illustrated
in polar phase portraits. For relatively small Oh amounts (e.g., Oh = 0.12), trajectories display sharp, multi-
lobed structures, which reflect predominance of inertial and surface tension influences over viscous damping.
As Oh enlarges to moderate values (e.g., Oh = 0.15), phase trajectories become smoother and more symmetric,
signalling growing influence of viscosity in moderating oscillations. At higher Oh (e.g., Oh = 0.17), trajectories
exhibit diffused, intertwined patterns, where viscous effects dominate and energy dissipation reduces the
regularity of oscillatory motion. From a physical standpoint, this transition highlights the balance between inertia
and viscosity: lower Oh values favour pronounced oscillations with higher energy retention, while higher Oh
amounts promote damping and suppression of oscillatory instabilities. These insights are particularly relevant
to applications involving droplet dynamics, inkjet printing, spray cooling, and biomedical microfluidics, where
precise control over the interplay between viscous, inertial, and surface tension forces is essential for stability and
performance. From a physical standpoint, this trend emphasizes the central role of liquid viscosity in shaping
the nonlinear behavior of interfacial motion, especially in multilayer systems. Such understanding is vital in
EHD and microfluidic applications. Examples include lab-on-chip devices, droplet generation, and biomedical
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actuators. In these systems, interface damping must be carefully managed. The Ohnesorge number provides a
useful tool in improving fluid control in non-Newtonian or multiphase liquids under electrostatic influence?’~%.

From an application standpoint, these results inform design choices: for example, to avoid interfacial mixing or
unwanted oscillations in microfluidics, one would operate in parameter windows that produce small, symmetric
loops (low higher-harmonic content and strong damping); conversely, if one needs enhanced interfacial mixing,
operating near parameters that produce lobed, nonlinear trajectories may be advantageous.

Concluding thoughts

The analysis of nonlinear stability in double horizontal interfaces segmented by three-stratified non-Newtonian
liquids is crucial for advanced management, microfluidics, and coating technologies, as it explores unique
thermal and rheological properties. The incorporation of non-Newtonian liquids demonstrates distinct
rheological characteristics, requiring an in-depth analysis of their impact on interfacial instabilities in multilayer
systems. The central component included a CL; meanwhile, the upper and lower regions were occupied by PELs.
The influence of an unchanged tangential EF and surface tension was examined in porous media. VPF was
employed to enable mathematical applications. The problem chiefly concerned the integration of fundamental
hydrodynamic governing equations with Maxwell’s equations in a quasi-static approach. The linearized control
equations were developed to obtain a nonlinear expression under designated nonlinear BCs. The impacts of
viscoelasticity were accordingly neglected in the solution of equations of motion. Consequently, the planar axis
and interface perturbation were interacting laterally. HFF converted traditional nonlinear ODEs into linear ones,
which were analyzed by NPA. The non-dimensional physical properties can be employed to analyze fundamental
characteristics of a liquid system. Moreover, they lowered the number of qualities necessary to understand the
structure. An abridged summary of the NPA was provided. The numerical simulations demonstrated that the
entire system was stabilized by different configurations of tangential EF in relation to horizontal wavenumber.
Polar diagrams were designed via the PolarPlot command to elucidate the impacts of diverse causes and ensure
the consistency of replies. The core outcomes derived from this investigation are outlined as follows:

1. The developed model, consisting of a pair of coupled nonlinear ODEs, effectively captures the dynamics of a
dual-interface system with two degrees of freedom.

2. Numerical simulations demonstrated good agreement between NPA and NS outcomes, supported by struc-
tured comparisons through tables and schematic visualizations.

3. Certain parameters exhibited a destabilizing influence; meanwhile, an escalation in Darcy number signifi-
cantly improved stability.

4. PolarPlot visualizations revealed the influence of various physical parameters on system performance, with
unstable solutions excluded from plots to ensure physical relevance.

Limitations

1. The first consideration concerns the application of VPE which treats viscous or viscoelastic liquids as ideal-
ized flows. By imposing ideal inflow constraints, the method enables the construction of a relatively simple
mathematical expression to represent the time-dependent displacement of the interface. Without this as-
sumption, governing equations would become considerably more complex, demanding advanced and com-
putationally intensive solution techniques. Consequently, adopting ideal inflow constraints is essential, as
it allows the elimination of pressure terms from the momentum equation via Bernoulli’s principle, thereby
simplifying the analysis and improving tractability. Additionally, the theory of VPE, which enhances classical
potential flow by incorporating viscous normal stresses while disregarding vorticity, becomes progressively
unsuitable at elevated Reynolds numbers due to the predominance of thin boundary layers, shear layers, and
turbulence, where vorticity and nonlinear viscous effects are essential.

2. The second consideration involves the choice of initial amplitude in NPA. To maintain a reasonable level
of accuracy when comparing the nonlinear and linear ODEs, the initial perturbation amplitude must re-
main small, specifically less than unity. If the amplitude is too large, the validity of the linear approximation
deteriorates, causing divergence between nonlinear and linear models. Therefore, constraining the initial
amplitude ensures that the linear model remains a reliable representation of the system’s behavior under
perturbation.

Future work

Investigating the nonlinear stability of double interfaces subjected to periodic EFs is crucial, as these systems
occur in various physical and technical domains, such as EHD fluxes, microfluidics, thin film technologies,
and plasma confinement. Double interfaces create intricate mode interactions, wherein instabilities may pair
and develop nonlinearly, resulting in diverse dynamical phenomena such as pattern generation, resonance,
or instability suppression, contingent upon frequency and amplitude of applied EF. Comprehending these
nonlinear dynamics is crucial in forecasting long-term system behavior, regulating interface morphology, and
engineering devices that leverage or alleviate instability consequences. Furthermore, periodic forcing induces
parametric resonances that may either stabilize or destabilize the interfaces, rendering this study essential for the
advancement of theoretical models and practical applications dependent on precise interface regulation.

Data availability
All data generated or analyzed during this study are included in this published article.
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