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The nonlinear stability of two horizontal interfaces of three-layered stratified non-Newtonian 
fluids plays a pivotal role in advanced engineering applications. This phenomenon encompasses 
temperature management systems, microfluidic devices, and precise coating technologies. In an 
existing study, a multilayer system is considered wherein a central Casson liquid (CL) layer is bounded 
above and below by Powell–Eyring liquids (PELs). The impact of a uniform tangential electric field 
(EF) and surface tension is explored within a porous medium. To avoid the mathematical complexity, 
the viscous potential flow (VPF) is used to simplify the governing hydrodynamic formulations. The 
model involves Navier–Stokes and Maxwell equations under the quasi-static assumption. To obtain 
a nonlinear formulation, the linearized regulator equations are derived subject to appropriate 
nonlinear boundary conditions. The plan interfaces are presumed to propagate horizontally. To 
handle the nonlinear ordinary differential equations (ODEs) arising from the analysis, He’s frequency 
formula (HFF) is applied, transforming the problem into linear forms suitable for a non-perturbative 
approach (NPA). A non-dimensional analysis introduces key dimensionless collections, which help to 
characterize underlying fluid behavior and reduce system intricacy. A brief methodological summary 
of NPA is included to support reproducibility and clarity. The numerical calculations indicate that the 
stability can be evidently improved by the orientation of the tangential EF in relation to the horizontal 
wavenumber. PolarPlots are employed to imagine the influence of varying parameters, offering 
valuable insights into the mechanisms of the governing interfacial stability.
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Abbreviations
CL	� Casson liquid
PEL	� Powell–Eyring liquid
EF	� Electric field
VPF	� Viscous potential flow
ODE	� Ordinary differential equation
HFF	� He’s frequency formula
NPA	� Non-perturbative approach
EHD	� Electrohydrodynamics
RTI	� Rayleigh–Taylor instability
KHI	� Kelvin–Helmholtz instability
HPM	� Homotopy perturbation method
BCs	� Boundary conditions
ICs	� Initial conditions
List of symbols
A , B	� Initial amplitudes
Bd	� Bond numeral
c.c.	� Complex conjugate of former terms
Dn	� Darcy numeral
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Pe	� Powell–Eyring factor
ex	� Unit vector along the x-axis
ey 	� Unit vector along the y-axis
g	� Gravitational acceleration (L T−2)
E2

0 	� Electric intensity
k	� Wave numeral (L−1)
na,(−a)	� Two interface units outward normal
pj 	� Hydrostatic pressure (Newton/L2)
py 	� Yield stress
S	� Stable area
Sa, (−a)	� Surface profile of interfaces
t	� Time (T)
U 	� Unstable area
V j 	� Liquid velocity (L T−1)
(x, y)	� Cartesian coordinates
Oh	� Ohnesorge numeral
Greek symbols
α	� Darcy’s coefficients (M L−3 T−1)
βc	� Casson factor
ς, γ	� Powell–Eyring constants
δij 	� Kronecker delta
εj 	� Dielectric constants
µj 	� Dynamic viscosities (M L−1 T−1) 
pj 	� Liquid densities (M L−3) 
σtotal

ij 	� Total stress tensor
σhydro

ij 	� Viscous stress tensor
σelectro

ij 	� Electric stress tensor
η, ξ	� Surface displacement of interfaces (L)
πc	� Critical deformation rate amount
φj 	� Potential function of velocities (L2 T−1)
ψj 	� Electric potential (Ampere)
ϖ1,2	� Total frequencies

Electrohydrodynamics (EHD) plays a vital role across various scientific and industrial applications. They affect 
hydrodynamics, droplet and bubble dynamics, atmospheric phenomena, and thunderstorm electrostatics1. 
Numerous studies have explored mechanisms driving EHD instabilities. For instance, the influence of an oblique 
magnetic field on Rayleigh–Taylor instability (RTI) in viscous, electrically conducting fluids revealed that the 
strength and the fluid layer’s thickness significantly affect stability2. Kelvin–Helmholtz instability (KHI) under 
mass and heat transfer constraints under oblique EFs was modelled mathematically3. Field-induced surface 
waves have also been observed at fluid interfaces under externally applied EFs4. The linear capillary instability of 
a cylindrical interface between two viscous dielectric fluids subjected to an axial EF was examined5. Additional 
studies addressed EHD instabilities in viscous liquids within cylindrical tubes subjected to perpendicular 
EFs6 and the linear surface wave behavior in leaky dielectric systems over finite fluid layers under varying 
EFs7. Experimental work using horizontal capacitors demonstrated distinct modes of EHD motion in low-
conductivity fluids8. The methodology of the current work is entirely distinct from all prior research. The present 
study examines the weakly nonlinear stability of coupled interfaces using a novel technique referred to as NPA, 
as previously indicated in the Abstract.

The increasing technological relevance of non-Newtonian fluids stems from their greater ability to represent 
complex fluid behavior more accurately than Newtonian models. Viscoelastic fluids exhibit both viscous and 
elastic responses; they are critical in industries such as food processing, paper production, and petroleum 
recovery9. The stability of interfaces between such fluids is of particular interest due to its implications in 
multilayer flow systems across diverse applications. Several studies address interfacial stability in second-order 
and viscoelastic fluids, often under the influence of horizontal magnetic fields, employing non-Newtonian 
models such as Walters’ B fluid10. The development of more generalized models, particularly of polymeric and 
glass-forming fluids, was reported11. The Oldroyd-B fluid model, due to its wide applicability across geophysics, 
biomedicine, chemistry, and petroleum engineering, was extensively employed12. Energy transfer mechanisms 
reveal that traditional approaches may sometimes violate theoretical energy bounds. Further research has 
investigated the linear stability of electrified interfaces between coaxial Oldroyd-B fluids, incorporating effects 
of interfacial surfactants and surface charge distributions13. The present analysis precisely investigates complex 
rheological properties of non-Newtonian fluids, differentiating it from earlier research that mostly focused on 
Newtonian or mildly viscous flow models. This study distinguishes itself from prior studies by incorporating 
nonlinear constitutive relations pertinent to non-Newtonian fluids, which were omitted in earlier analyses 
predicated on simplistic Newtonian assumptions.

The concept of VPF in viscous liquids was first introduced by Stokes in 1851. His work focused on the 
impact of viscosity on the damping of small-amplitude waves at the liquid–gas interface. All relevant assertions 
from his study are referenced herein. Stokes’ issue was accurately addressed by employing linearized Navier–
Stokes equations without the explicit proposition of VPF, as previously demonstrated14–16. Traditional potential 
inflow models, which presume perfect performance, are known to overestimate resonance impacts in water 
wave issues due to their cancellation of viscous dissipation. To address this, a modified potential influx model 

Scientific Reports |        (2025) 15:40396 2| https://doi.org/10.1038/s41598-025-24182-6

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


that incorporates viscous damping influences was proposed and validated17. A method of evaluating propeller-
effective wakes in oblique inflow constraints was developed18. Furthermore, a hybrid model combining the 
boundary element method of wave-making resistance, empirical formulas of viscous resistance, and boundary 
layer theory was established to accurately predict the performance of water jet propulsion systems19. The 
nonlinear KHI of Rivlin–Ericksen viscoelastic electrified fluid–particle mixtures saturating porous media was 
explored20. The analysis considered the combined impacts of fluid elasticity, particle interactions, and porosity 
under an applied EF. The existing study examines VPF through the NPA, setting it apart from all earlier works.

Nonlinear oscillations play a pivotal role in understanding a wide range of complex phenomena across 
physics, electrical engineering, and modern manufacturing. Their solutions are often embedded in central 
physical principles and are closely linked to various natural and engineering processes. In recent years, 
iterative techniques such as the Homotopy perturbation method (HPM) have gained importance in producing 
approximate solutions of nonlinear problems with high accuracy, often approaching exact analytical results21. 
However, due to the inherent complexity of nonlinear systems, obtaining accurate or semi-analytical solutions 
of many nonlinear ODEs remains a significant challenge. Subsequent studies have addressed damped ODEs with 
higher-order nonlinearities using both computational and analytical methodologies22. The frequency–amplitude 
relationship in such systems can be explored via HFF, which was compared against its variants through residual 
analysis23. Various strategies of residual minimization were proposed to accurately determine the frequency of 
nonlinear oscillators, with outcomes closely tied to the reliability of HFF24. While the method yields satisfactory 
frequency predictions, there remains an opportunity for further modification25. Notably, HFF was successfully 
applied to an un-damped Duffing oscillator as well26. More recently, NPA has emerged as a powerful tool in 
both dynamical system analysis and hydrodynamic stability research27–30. Given the characteristic difficulties 
in analyzing similar nonlinear systems, the continued development and application of methods like NPA are 
essential. Accordingly, the present study adopts NPA as a suitable and robust framework for investigating 
nonlinear oscillatory behavior.

The nonlinear stability of two horizontal interfaces separating three stratified non-Newtonian fluids holds 
substantial experimental and practical significance across a range of scientific and engineering applications. This 
analysis is especially pertinent in microfluidic systems. These encompass lab-on-a-chip technologies utilized 
in biochemical tests, targeted medication administration, and diagnostics. In these systems, the regulation and 
stability of immiscible, stratified non-Newtonian fluids are essential in maintaining dependable performance 
during disturbances. In petroleum engineering, this research supports advanced oil recovery techniques where 
nanofluids are injected into layered reservoirs. Now, controlled interfacial instability can enhance mixing and 
mobilize trapped hydrocarbons. In thermal management technologies such as nanofluid-based heat exchangers, 
it is essential to maintain stable stratification. This stability aids in averting weakening in heat transfer efficiency 
due to interfacial disturbances. Furthermore, nonlinear stability analysis aids in the design of energy systems. 
It guarantees the structural integrity of stratified fluids under dynamic operational conditions. The theoretical 
insights gained directly support the development of efficient, stable, and adaptable fluid systems across 
industries. Experimentally, this investigation enables a deeper understanding of complex interfacial dynamics 
in systems dominated by non-Newtonian behavior. By examining nonlinear mechanisms governing stability 
under complex rheological conditions, this study aims to enhance prediction, control, and innovation in both 
theoretical and applied fluid dynamics. Accordingly, this work addresses the following key research queries:

	1.	 What methods can be employed to derive the formulas of nonlinear stability of double interfaces?
	2.	 What is the technique of the nonlinear algorithm in analyzing two degrees of freedom?
	3.	 What is the current status of validation of the developed NPA?
	4.	 What is the total number of non-dimensional physical quantities?
	5.	 What are the prerequisites for the nonlinear stability of the double interfaces?
	6.	 What is the impact of the non-dimensional physical numbers on the stability configuration?

The main objective of this work is to explore the nonlinear stability of two horizontal interfaces separating three 
stratified non-Newtonian fluid layers. The problem has been rarely explored compared to single-interface or 
Newtonian fluid cases. By employing a combined NPA and HFF, the study introduces a systematic algorithm 
that transforms nonlinear governing equations into manageable linear forms, providing deeper insights into the 
dynamics of multi-interface systems. Physically, the work captures the complex interplay between yield stress, 
shear thinning, and stress-limited viscosity in CL and PEL, thereby revealing essential conditions in maintaining 
or destabilizing stratification. The applications are broad and significant: in microfluidic technologies such as 
lab-on-a-chip platforms, controlled interfacial stability ensures reliable biochemical testing and targeted drug 
delivery; in nanofluid-based thermal management systems, sustaining stable interfaces prevents deterioration of 
heat transfer efficiency. Despite extensive studies on two-layer configurations and Newtonian or single-type of 
non-Newtonian fluids, the nonlinear stability of three-layer systems involving Casson and Powell–Eyring fluids 
under the influence of a tangential EF has not yet been systematically examined. This research gap provides the 
primary motivation of the present study. To clarify the manuscript’s organization, the structure is outlined as 
follows: A flowchart illustrating NPA is presented prior to § 2. It introduces the theoretical framework of the 
study. § 3 provides a detailed analysis of the nonlinear characteristics of the governing ODEs. § 4 focuses on the 
investigation of nonlinear stability. § 5 presents Tabulated and graphical validations, along with a comprehensive 
discussion of the results. § 6 provides a discussion of the outcomes. Lastly, § 7 summarizes the key findings and 
conclusions.

To improve clarity and aid comprehension, the NPA procedure is presented in the following step-by-step 
flowchart. This visual representation highlights key stages of methodology, focusing on processes that streamline 
and enhance strategy of problem-solving strategy. Therefore, Fig.  1 elucidates this comprehensive flowchart, 
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detailing the systematic approach employed to examine a nonlinear ODE through NPA combined with HFF. 
The procedure is designed to transform nonlinear ODEs into equivalent linear ones, simplifying the analysis. 
This transformation begins by proposing a trial solution, which is then thoroughly evaluated through numerical 
simulations and summarized employing Tabulated data. The subsequent points outline particular characteristics 
of this methodology:

Fig. 1.  Schematic representation of the procedure, illustrating the integration of NPA with HFF.

 

Scientific Reports |        (2025) 15:40396 4| https://doi.org/10.1038/s41598-025-24182-6

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


	1.	 NPA is fundamentally different from any perturbation technique, including multiple time scales or HPM. 
The NPA serves exclusively as an alternate tactic.

	2.	 The concept is objective and originates from HFF. Certainly, ancient Chinese mathematicians were the fore-
runners of this discovery.

	3.	 The objective of this concept is to achieve a linear ODE that corresponds to the nonlinear one.
	4.	 The numerical compatibility of ODEs ensures their consistency.
	5.	 The linear ODE includes all parameters that are found in the nonlinear ODE.
	6.	 NPA did not highlight that it had analytically resolved the nonlinear ODE.
	7.	 NPA employs a distinctive methodology in addressing restoring forces, diverging from the conventional 

perturbation approach; it is not classified as a perturbation technique.
	8.	 Taylor expansion is employed to facilitate the calculation of restoring forces in all perturbation methods, 

including the innovative multiple time scale technique. The NPA disregarded this risk.
	9.	 The subsequent research utilized NPA to analyze the coupled systems, recognizing their importance.

Theoretical framework
For more clarification, this section will be divided as follows:

Mathematical description
The nonlinear stability of double interfaces separating three immiscible liquids, PEL, CL, and PEL, is formulated 
to examine the evolution and stability of interfacial perturbations. The perturbations in each liquid layer are 
governed by nonlinear equations of movement, which include surface tension influences. In the steady-state 
(equilibrium) configuration, the system features two distinct, flat interfaces, which are located at y = a and 
y = −a and separating three liquid non-Newtonian layers. As demonstrated in Fig.  2, the upper and lower 
layers consist of a shear-thinning liquid modeled by PEL, characterized by a viscosity that diminishes with 
escalating shear rate. The middle layer comprises a yield-stress liquid represented by the CL model. This liquid 
behaves as a solid until the applied stress surpasses a critical threshold, after which it flows. Such characteristics 
are common in materials like pastes and observed in biological and industrial liquids such as blood and paints. 
A uniform tangential EF is applied horizontally, introducing an EHD impact that further modifies the interface 
dynamics and stability conduct of the system. The gravity g = −gey  acts vertically downward in the direction of 
the y-axis. The three liquids are confined within a permeable medium, where the flow performance is governed 
by Darcy’s law. This empirical law relates fluid velocity to pressure gradient across a medium, accounting for the 
permeability of the medium and viscosity of the liquid. Darcy’s law governs the transition of liquids through 
porous structures, linking micro-scale fluid–solid interactions to macroscale inflow dynamics. Accordingly, it 
plays a vital role in bridging fluid dynamics with underlying physiological and industrial processes. This analysis 
is conducted within a Cartesian coordinate framework (x, y). In this setting, the subscripts 1, 2, and 3 are 
applied to denote the constraints corresponding to upper, central, and lower liquids, respectively, which are 
adjacent to the fixed boundary surfaces.

Fig. 2.  Schematic representation of the theoretical model.
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Elucidation of physical mechanism
The study of interface stability examines systems in which two liquid layers are separated by distinct boundaries, 
each defined by different physical properties such as density or velocity. Gaining insight into the stability of these 
interfaces is crucial for numerous engineering and biological applications. Prominent examples include enhanced 
oil recovery, blood perfusion in tissues, targeted drug delivery systems, soft robotics, and the manufacturing of 
paints and coatings. Consequently, the concept of interfacial stability plays a vital role across a wide spectrum of 
scientific and technological fields, including the following applications:

Medical applications
Figure 3 shows a depiction of a developing human embryo within the uterus, enclosed by the chorioamniotic 
membrane. This membrane is composed of two primary layers: the outer chorion, which interfaces with maternal 
cells, and the inner amniotic membrane, which directly surrounds the embryo. A gelatinous matrix separates 
these two layers. The amniotic membrane itself is structured into three sub-layers: the epithelium, the basement 
membrane, and the stroma. The stroma is further differentiated into compact, fibroblast, and sponge layers31.

Geological applications
The investigation of double interfaces holds particular importance in groundwater management and geothermal 
energy systems. In groundwater contexts, these interfaces separate contaminants, clean water, and geological 
fluids, thereby influencing the migration of pollutants. Understanding these interactions supports the prediction 
of contaminant behavior and the development of remediation strategies such as filtration or chemical treatment. 
In geothermal systems, interfaces arise between hot geothermal fluids and cooler extraction fluids, directly 
affecting heat transfer and fluid inflow. Insights into these mechanisms contribute to optimizing energy recovery 
and maintaining reservoir stability. Furthermore, Fig.  4 exhibits the natural accumulation of oil and gas 

Fig. 4.  Geological mechanisms underlying oil and gas accumulation.

 

Fig. 3.  Representation of a real-world application featuring three distinct liquid layers.
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through the coordinated interaction of geological elements, source rocks, reservoirs, seals, and traps, governing 
hydrocarbon migration, storage, and entrapment32.

Mathematical modelling framework
The displaced boundaries can be expressed as27,29:

	 y = a + η(x; t),� (1a)

and

	 y = −a + ξ(x; t).� (1b)

Any function subjected to perturbation can be formulated as27,29:

	 M(x, y; t) = M̃(y; t)Exp(ikx).� (2)

The liquid’s momentum formula can be given as27,28:

	
ρ

(
∂

∂t
+ (V .∇)

)
V = −∇P − ρgey − µj

α
V j ,� (3)

where the third term on the right-hand side, − µj

α
V , represents the Darcy resistance associated with the porous 

structure. In the present formulation, the EHD force does not appear as a bulk body force but rather enters 
through the modified interfacial BCs via Maxwell stresses. The pressure gradient is represented by −∇P , and 
various physical quantities are previously defined in the Nomenclature Table.

Theoretical limitations of the issue
The limitations of both the VPF model and NPA can be clarified in more precise terms as follows:

	1.	 Limitations of the VPF model

The VPF framework suffers from several fundamental drawbacks that arise from its central assumption of an 
inviscid flow field, which restricts its validity. In this model,

•	 Viscosity is only incorporated indirectly through normal stresses in the dynamic BC; meanwhile, its influence 
on the bulk fluid motion and tangential stresses is completely neglected.

•	 This simplification prevents VPF from accurately representing critical viscous flow features such as:

	 a.	 Boundary-layer development,
	 b.	 Flow separation,
	 c.	 Vortex shedding.

•	 The model’s accuracy deteriorates significantly at:

	 1.	 High Reynolds numbers,
	 2.	 Strongly rotating flows,
	 3.	 Turbulent regimes,

where vorticity generation and viscous dissipation are dominant.

•	 VPF fails to predict long-term energy dissipation and complex near-wall structures.

Consequently, it is only suitable for cases where viscosity exerts a minimal influence on the overall flow field.

	2.	 Limitations of NPA

While NPA provides a sophisticated tool for analyzing nonlinear systems, its scope is also constrained by several 
factors:

	1.	 Applicability: The method is specifically tailored for weakly nonlinear oscillators that can be described by a 
second-order ODE. It cannot be readily extended to strongly nonlinear systems or to higher-order dynami-
cal models.

	2.	 ICs: The technique inherently assumes that ICs remain fixed throughout the analysis, limiting flexibility in 
exploring broader ranges of dynamical responses.

	3.	 Amplitude restriction: For the method to yield accurate and convergent results, the initial amplitude of os-
cillations must be less than unity. When this condition is not satisfied, the precision of the approach is com-
promised.

Accordingly, presupposing an irrotational influx and employing VPF, a velocity potential can be defined as 
φj = φj(x, y; t) which can follows Laplace’s formula as:
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	 Vj = ∇φj , ∇.V = 0 ⇒ ∇2φj = 0, a + η < y < −a + ξ.� (4)

Subsequently, one gets:

	 φ1(x, y; t) = A1 (t) ek(ix−y),� (5a)

	 φ2(x, y; t) = A2 (t) ek(ix+y) + A3(t) ek(ix−y),� (5b)

and

	 φ3(x, y; t) = A4 (t) ek(ix+y),� (5c)

where the constants A1(t) − A4(t) are provided in the Appendix.
Employing VPF, Pj  can be given as:

	
Pj = −ρjφjt − ρjg y − µj

α
φj .� (6)

Under the framework of EHD analysis, it is widely recognized that the quasi-static approximation is applicable, 
whereby the impacts of magnetic forces are deemed negligible. Accordingly, EF must be an irrotational, allowing 
the definition of electric scalar potentials ψj(X, y, ; t) . Within liquid sheets E = E0ex − ∇ψj , EF behaves 
accordingly. At the initial state, the free charge density within both liquids is presupposed to be zero, and this 
constraint remains constant over time. Based on Gauss’s law, the electric potentials are required to satisfy 
Laplace’s formula, as referenced in27–30.

	 ∇2ψj = 0, a + η < y < −a + ξ.� (7)

Thereby, one gets:

	 ψ1(x, y; t) = B1 (t) ek(ix−y),� (8a)

	 ψ2(x, y; t) = B2 (t) ek(ix+y) + B3(t) ek(ix−y),� (8b)

and

	 ψ1(x, y; t) = B4 (t) ek(ix+y),� (8c)

where B1(t) − B4(t) are moved to the Appendix.
The equations of Sa, and S−a are expressed as follows:

	 Sa(x, y, ; t) = y − a − η(x; t) = 0,� (9a)

and

	 S−a(x, y, ; t) = y + a − ξ(x; t) = 0.� (9b)

The equations of na and n(−a) can be computed by:

	
na = ∇Sa

|∇Sa| = (−ηx, 1)
(
1 + (ηx)2)−1/2

,� (10a)

and

	
n−a = ∇S−a

|∇S−a| = (−ξx, 1)
(
1 + (ξx)2)−1/2

.� (10b)

The potentials ϕj , and ψj  can be evaluated by employing the corresponding BCs28–30.

	1.	 The kinematic constraints:

	
DSa

Dt
= ∂η

∂t
+ ∂ϕ1

∂y
−

(
∂ϕ1

∂x

)
∂η

∂x
= 0,� (11a)

	
DSa

Dt
= ∂η

∂t
+ ∂ϕ2

∂y
−

(
∂ϕ2

∂x

)
∂η

∂x
= 0,� (11b)

	
DS−a

Dt
= ∂ξ

∂t
+ ∂ϕ2

∂y
−

(
∂ϕ2

∂x

)
∂ξ

∂x
= 0,� (11c)
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	and

	
DS−a

Dt
= ∂ξ

∂t
+ ∂ϕ3

∂y
−

(
∂ϕ3

∂x

)
∂ξ

∂x
= 0.� (11d)

	2.	 Continuity of tangential EF across interfaces must be kept, which can be mathematically formulated as:

	 Eoj

∣∣
y=a+η

= na ∧ ∥E0∥ = 0,� (12a)

	and

	 Eoj

∣∣
y=−a+ξ

= n(−a) ∧ ∥E0∥ = 0.� (12b)

	3.	 Continuity of normal EF across interfaces is required and can be expressed mathematically as:

	 Eoj

∣∣
y=a+η

= n a. ∥εE0∥ = 0,� (13a)

	and

	 Eoj

∣∣
y=−a+ξ

= n(−a) · ∥εE0∥ = 0.� (13b)

 The following section highlights the normal component of the stress tensor employed to evaluate the stability 
characteristics of the structure.

Nonlinear BCs
For dynamic constraints, normal stresses must remain continuous across the disturbed boundaries, which are 
mathematically formulated as follows28,30:

	 na. (Ga) = Ts∇.na, at y = a + η,� (14a)

and

	 n−a.
(
G−a

)
= Ts∇.n−a, at y = −a + ξ,� (14b)

where Gj  can be given as follows:

	
Gj =

(
σj

xx σxyj

σj
yx σyyj

) (
nxj

nyj

)
.� (15)

The expressions of σtotal
ij , σhydro

ij , and σelectro
ij  can be given as follows28,30:

	 σtotal
ij = σhydro

ij + σelectro
ij ,� (16a)

	 σhydro
ij = −Pjδij + Sij ,� (16b)

and

	
σelectro

ij = εjE0iE0j − 1
2εjE2

0δij .� (17)

This study explores three types of immiscible liquids, which can be described as follows:

PEL in first and third layer
The PEL model reflects a category of non-Newtonian fluids that demonstrate both viscous and elastic 
characteristics, effectively capturing the complex mechanical behavior of many real-life matters. From a physical 
view, the model elucidates the dual performance of materials: under low shear stress, the substance resists inflow 
and acts like a solid; meanwhile, escalating stress induces a gradual shift toward fluid-like behavior. This stress-
dependent response, commonly referred to as shear-thinning or pseudo-plasticity, is marked by a decrease 
in apparent viscosity with rising shear rate. Embedded in Eyring’s inflow theory, the PEL model accounts for 
the progressive yielding seen in complex fluids, unlike traditional Newtonian models, which presume a fixed 
viscosity. Its flexible structure makes it especially effective in modeling materials that transition smoothly from 
a solid-like to a liquid-like state, rather than exhibiting a distinct yield point.

To strengthen the theoretical framework, the constitutive equation for the PEL model may be formulated 
as33–36:
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SP EL = µi

(
∇V + (∇V )T

)
+ 1

γ
sinh−1

(1
ς

(
∇V + (∇V )T

))
, i = 1, 3,

∣∣∣1
ς

(
∇V + (∇V )T

)∣∣∣ << 1,

,� (18)

where SP EL is the stress deviator, ς, γ are defined as the material constants of the PEL model,

Specific cases of the PEL model
The special situations of the PEL model are given as:

	1.	 At very high shear rates, the liquid conduct may approximate that of a Newtonian liquid with lower viscosity.
	2.	 At low shear rates, the liquid may appear nearly solid.

These limiting performances provide useful approximations for tailoring the model to specific materials and 
constraints.

In terms of practical applications, the PEL model is highly relevant in describing complex biological and 
industrial fluids. It effectively captures the rheological behavior of blood, where the combination of plasma and 
suspended cells gives rise to distinct non-Newtonian characteristics. The model is also suitable for polymer melts 
and solutions, which deform under applied stress due to molecular entanglements. In biomedical contexts, it 
aids in simulating the mechanical response of soft tissues, where both viscous and elastic properties are critical to 
physiological function. Moreover, the PEL framework is valuable in various industrial processes, such as inkjet 
printing, food processing, and lubrication, where precise control of fluid flow is essential.

CL in middle-layer
The CL model represents a category of non-Newtonian fluids distinguished by the presence of a yield stress, 
a critical threshold below which the material resists flow and behaves like a solid. Flow initiates only when 
applied shear stress surpasses this yield point, at which stage the material transitions into a viscous, flowing state. 
This behavior is particularly relevant to materials with internal microstructures, such as particle suspensions or 
cellular matrices, which withstand deformation until an adequate force is applied.

Mathematically, CL describes a nonlinear relationship between shear stress and shear rate. Once the yield 
stress is exceeded, shear stress becomes proportional to the square root of the shear rate. This framework 
effectively captures both initial rigidity and subsequent viscous response, making it a robust model for complex 
fluids that remain stationary under low stresses but flow readily once activated.

To further clarify the rheological framework, the constitutive equation for CL is given explicitly as37–40:

	

SCL =


 2

(
µ2 + py√

2π

)
e, π > πc,

2
(

µ2 + py√
2π

)
e, π < πc,

� (19)

where π = e · e = eij eij  is the product of the component of deformation rate, πc is a critical value of this 
product based on a non-Newtonian model, µ2 is the plastic dynamic viscosity of the non-Newtonian fluid, and 
py  is the yield stress of the fluid.

Specific cases of the CL
The special situations of CL can be outlined as:

	1.	 At very high shear rates, CL approximates Newtonian performance, as yield stress diminishes and fluid in-
fluxes more freely.

	2.	 When liquid demonstrates a consistent increase in shear stress with shear rate after exceeding yield stress, the 
model approaches Bingham plastic performance.

	3.	 CL is well-suited for fluids that exhibit yield stress, offering a realistic and flexible representation of such 
materials.

From a practical standpoint, CL is widely employed in both biological and industrial contexts. In hematology, 
it has been extensively used to simulate the rheological behavior of blood, where yield stress arises due to red 
blood cell aggregation, particularly under low shear conditions (e.g., in capillaries or at rest). This makes the 
model highly valuable in cardiovascular simulations and the design of medical devices such as blood pumps. 
In industry, CL is equally effective in describing pastes, emulsions, and suspensions, including chocolate, 
printing inks, cosmetics, and toothpaste, where material must resist flow when undisturbed but flow easily when 
processed or applied.

Nonlinear characteristic equations
For the sake of simplicity, in the current case, temporal instability is explored by reducing PDEs to ODEs by 
applying perturbations on η, ξ as28,29:

	 η(x; t) = η(t) eikx,� (20a)

and
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	 ξ(x; t) = ξ(t) eikx.� (20b)

To examine nonlinear dynamics, analysis is conducted within a wave-attached reference system, where 
deformable interfaces are tackled purely as time-dependent. Presuming small surface disturbances, a binomial 
expansion is applied to simplify the nonlinear terms. While the algebra involved is extensive, the procedure 
follows a clear and logical structure. This approach leads to the derivation of nonlinear equations in terms of η 
and ξ and their time derivatives, accurate up to third-order terms. Consequently, one finds:

	

η̈ + r1ξ̈ + r2η̇ + r3ξ̇ + r4η + r5ξ + r6ηη̈ + r7ξξ̈ + r8ηξ̈

+ r9ξη̈ + r10ξη̇ + r11ηξ̇ + r12ηη̇ + r13ξξ̇ + r14η2 + r15ξ2

+ r16η̇ξ̇ + r17η3 + r18ξ3 + r19η2η̈ + r20ξ2ξ̈ + r21ξ2η̈

+ r22η2ξ̈ + r23η2η̇ + r24ξ2ξ̇ + r25ξ2η̇ + r26η2ξ̇ = 0,

� (21)

and

	

ξ̈ + s1η̈ + s2ξ̇ + s3η̇ + s4ξ + s5ξξ̈ + s6ηη̈ + s7ηξ̈

+ s8ξη̈ + s9ηξ̇ + s10ξη̇ + s11ξξ̇ + s12ηη̇ + s13ξ2 + s14η2

+ s15η̇ξ̇ + s16ξ3 + s17η3 + s18ξ2ξ̈ + s19η2η̈ + s20η2ξ̈

+ s21ξ2η̈ + s22ξ2ξ̇ + s23η2η̇ + s24η2ξ̇ + s25ξ2η̇ = 0,

� (22)

where dashes reflect time derivatives. Further, coefficients r1 → r26 and s1 → s25 are moved to the Appendix.
For analytical clarity and to better capture governing physical effects, primary variables are expressed in 

dimensionless form. This transformation is carried out using a representative characteristic length, denoted 
as . Employing this scale, the following non-dimensional factors are outlined to facilitate the interpretation of 
findings.

a∗ = a/l, −a∗ = (−a) /l, Λ = 1 + β−1
c , k∗ = k/l, η∗ = η/l, ξ∗ = ξ/l, E∗2

0 = l ε2 E2
0/T , ρ∗

j = ρj/ρ2, 
t∗ =

√
Ts/ρ2 l3t,ε∗

j = εj/ε2, and µ∗
j = µj/µ2, where the symbol asterisk is excluded for brevity.

Physically, expressing variables in dimensionless form eliminates unit dependence and highlights the balance 
of dominant physical mechanisms. This makes it possible to generalize results across systems of different scales 
and fluids, allowing predictions to be transferred from theory to experiments and applications.

Additionally, the non-dimensional physical parameters may be listed as:

•	 The Darcy number Dn = α/l2 represents the relative ease with which a fluid can flow through a porous 
medium compared to the viscous resistance of the fluid. A high Darcy number indicates high permeability; 
meanwhile, a low value indicates that the porous medium strongly restricts fluid motion.

•	 Ohnesorge number Oh = µ2/
√

ρ2 Ts l compares viscous forces to the combined effects of inertial and sur-
face tension forces. It is particularly important in understanding droplet formation, breakup, and interfacial 
stability, since a high value means viscous damping dominates the system’s dynamics.

•	 Bond number Bd = ρ2 g l2/Ts compares the influence of gravitational forces to the effect of surface tension 
forces acting on a fluid interface. A large Bond number means gravity dominates, leading to deformation or 
destabilization of the interface; meanwhile, a small Bond number means surface tension dominates, helping 
to maintain a stable and curved interface.

•	 EPL parameter Pe = 1/ςγµ2 characterizes how the viscosity of a non-Newtonian fluid becomes limited un-
der stress. It reflects the degree of shear-thinning behavior and helps describe how a fluid’s resistance to flow 
decreases as stress increases.

•	 CL factor βc = p−1
y µ2

√
2πc used to describe the role of yield stress in the flow behavior of non-Newtonian 

fluids. It distinguishes between regions where fluid behaves like a solid, resisting motion until a threshold 
stress is exceeded, and regions where fluid flows once that yield stress is overcome.

Nonlinear stability analysis
This section focuses on extending the previously established NPA to address nonlinear ODEs, as discussed in 
earlier studies27,30. Our analysis centers on Eqs. (21) and (22), which form a coupled nonlinear system. Due 
to the inherent complexity of these equations, we simplify the procedure by introducing specific substitution 
relationships. In particular, in Eq.  (21), we replace the relevant terms with their corresponding expressions, 
and similarly, in Eq.  (22), we substitute the necessary terms η = A cos ϖ1t,ξ = B cos ϖ1t in Eq.  (21) and 
η = A cos ϖ2t, ξ = B cos ϖ2t in Eq. (22). This approach is implemented under the ICs, which will be defined 
as follows:

	 η(0) = A, ξ(0) = B, η′(0) = 0 and ξ′(0) = 0.� (23)

These steps simplify the process and make it easier to tackle the equations. Subsequently, one finds:

	 η′′ + N1(η, η′, ξ, ξ′) + N2(η, η′, η′′, ξ, ξ′, ξ′′) = 0,� (24a)

and
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	 ξ′′ + D1(ξ, ξ′, η, η′) + D2(ξ, ξ′, ξ′′, η, η′, η′′) = 0,� (24b)

where

	

N1(η, η′, η′′, ξ, ξ′, ξ′′) = r2η′ + r3ξ′ + r10ξη′ + r11ηξ′ + r12ηη′

+ r13ξξ′ + r16η′ξ′ + r23η2η′ + r24ξ2ξ′ + r25ξ2η′ + r26η2ξ′,
� (25)

	

N2(η, η′, η′′, ξ, ξ′, ξ′′) = r1ξ′′ + r4η + r5ξ + r6ηη′′ + r7ξξ′′ + r8ηξ′′ + r9ξη′′ + r14η2

+ r15ξ2 + r17η3 + r18ξ3 + r19η2η′′ + r20ξ2ξ′′ + r21ξ2η′′ + r22η2ξ′′,
� (26)

	

D1(ξ, ξ′, ξ′′, η, η′, η′′) = s2ξ′ + s3η′ + s9ηξ̇ + s10ξη̇ + s11ξξ̇

+ s12ηη̇ + s15ξ′η′ + s22ξ2ξ̇ + s23η2η̇ + s24η2ξ̇ + s25ξ2η̇,
� (27)

and

	

D2(ξ, ξ′, ξ′′, η, η′, η′′) = s1η′′ + s4ξ + s5ξξ′′ + s6ηη′′ + s7ηξ′′ + s8ξη′′ + s13ξ2

+ s14η2 + s16ξ3 + s17η3 + s18ξ2ξ′′ + s19η2η′′ + s20η2ξ′′ + s21ξ2η′′.
� (28)

As formerly reported27–30, u and v ensure that:

	 u′′ + χ1u′ + Γ2
1 u = 0,� (29)

and

	 v′′ + χ2v′ + Γ2
2 v = 0,� (30)

where

	

χ1 =
2π/ϖ1ˆ

0

ũ′N1(ũ, ũ′, ũ′′, ṽ, ṽ′, ṽ′′)dt/

2π/ϖ1ˆ

0

ũ′2 dt,� (31a)

	

χ2 =
2π/ϖ2ˆ

0

ṽ′ D1(ũ, ũ′, ũ′′, ṽ, ṽ′, ṽ′′)dt/

2π/ϖ2ˆ

0

ṽ′2 dt,� (31b)

	

Γ2
1 =

2π/ϖ1ˆ

0

ũ N2(ũ, ũ′, ũ′′, ṽ, ṽ′, ṽ′′)dt/

2π/ϖ1ˆ

0

ũ 2 dt,� (32a)

and

	

Γ2
2 =

2π/ϖ2ˆ

0

ṽ D2(ṽ, ṽ′, ṽ′′, ũ, ũ′, ũ′′)dt/

2π/ϖ2ˆ

0

ṽ2 dt.� (32b)

Equations (29) and (30) may be transformed to standard simple harmonic motions via the following standard 
normal forms:

	 u(t) = ũExp(−χ1 t/2),� (33)

and

	 v(t) = ṽExp(−χ2 t/2).� (34)

Thereby,

	 ũ′′ + ϖ2
1ũ = 0,� (35)

and

	 ṽ′′ + ϖ2
2 ṽ = 0.� (36)

Consequently, ϖ2
1 = Γ2

1 − 1
4 χ2

1, and ϖ2
2 = Γ2

2 − 1
4 χ2

2.
The stability restrictions can be regarded as:
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	 ϖ2
1 > 0, and χ1 > 0,� (37)

and

	 ϖ2
2 > 0, and χ2 > 0.� (38)

The obtained stability conditions imply that stability is achieved when all eigenvalues of the governing matrix 
have negative real parts, ensuring that any perturbation at the interface decays with time. Physically, this means 
that the system naturally suppresses disturbances and prevents oscillations from growing uncontrollably. 
Instead, excess energy introduced by small perturbations is gradually dissipated through viscous, elastic, and 
porous resistance mechanisms. Accordingly, the interface is restored to equilibrium, ensuring predictable and 
well-regulated behavior. From a practical perspective, such stability is essential in both biomedical and industrial 
applications. In biomedical contexts, it underpins the reliability of microfluidic devices, drug delivery systems, 
and EHD printing of tissue engineering, where uncontrolled oscillations could compromise precision or safety. 
Similarly, in industrial processes such as inkjet printing, coating technologies, lubrication systems, and food 
processing, maintaining stable interfaces is crucial in achieving consistent performance, preventing defects, and 
ensuring high product quality.

Validation analysis
Tabular validation (error analysis and convergence validation)
In what follows, Tables 1 and 2 present a detailed error analysis, comparing the NS of the coupled system given 
in Eqs. (21)–(22) with the analytical results obtained via NPA in Eqs. (29)–(30). The minimal discrepancies 
observed confirm the high accuracy and consistency of both methods, highlighting the effectiveness of the 
proposed approach in modeling complex dynamical systems.

The tables provide a point sensible comparison of actual (numerical) and approximate (analytical) solutions 
over the interval t ∈ [0, 30], together with absolute and relative errors. This enables a clear assessment of the 

Time Actual “NS” NPA Absolute error Relative absolute error (%)

0 0.2 0.2 0.0 0
3 0.199981 0.2 0.0000183187 0.00916022

6 0.199962 0.199999 0.0000365468 0.0182768

9 0.199943 0.199998 0.0000542717 0.0271435

12 0.199924 0.199996 0.0000715013 0.0357642

15 0.199905 0.199994 0.0000882469 0.0441443

18 0.199886 0.199991 0.000104516 0.0522878

21 0.199867 0.199988 0.000120318 0.0601988

24 0.199848 0.199984 0.00013566 0.0678813

27 0.199829 0.19998 0.000150551 0.0753396

30 0.199811 0.199976 0.000164999 0.0825776

Table 2.  Comparison of “actual” (numerical) and “approximate” (analytical) solutions at selected times. Errors 
are small (< 0.1%) and increase gradually with time, consistent with the expected accumulation in reduced-
order approximations.

 

Time Actual “NS” NPA Absolute error Relative absolute error (%)

0 0.2 0.2 0.0 0
3 0.199981 0.2 0.0000185737 0.0092877

6 0.199962 0.2 0.0000375674 0.0187872

9 0.199943 0.2 0.0000565593 0.0282877

12 0.199924 0.2 0.0000755496 0.0377891

15 0.199905 0.2 0.000094539 0.0472918

18 0.199886 0.2 0.000113527 0.0567956

21 0.199867 0.2 0.000132513 0.0663004

24 0.199849 0.2 0.000151497 0.0758061

27 0.19983 0.2 0.00017048 0.0853128

30 0.199811 0.2 0.000189461 0.0948205

Table 1.  Comparison of “actual” (numerical) and “approximate” (analytical) solutions at selected times. Errors 
are small (< 0.1%) and increase gradually with time, consistent with the expected accumulation in reduced-
order approximations.
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accuracy and reliability of the approximation technique while also revealing the temporal evolution of deviations, 
which may arise from truncation effects, model simplifications, or computational limitations. Such an evaluation 
is particularly critical in applications such as fluid dynamics, biomedical simulations, and EHD, where even 
small deviations can significantly affect predictive reliability.

To ensure numerical robustness, convergence was verified by progressively refining temporal resolution 
until the maximum absolute difference between successive solutions fell below 10−6. Specifically, the maximum 
absolute error between NS and NPA for u(t) was only (5 × 10−4), with maximum relative error not exceeding 
0.0948%. As well, the maximum absolute error between NS and NPA for v(t) was only 0.000343544, with a 
maximum relative error of 0.0826%. These discrepancies are well below 1%, demonstrating that the analytical 
approximation closely reproduces the numerical solution. Hence, NPA can be confidently applied as an efficient 
analytical tool of the present nonlinear model.

The “Actual” values reported in Tables 1, 2 are obtained by direct numerical integration of the full nonlinear 
coupled system in Eqs. (21) and (22) using MS. The approximate values correspond to reduced linearized model 
Eqs. (29) and (30), solved under identical conditions. The comparison, therefore, directly validates analytical 
approximation against a high-accuracy numerical solution of the full nonlinear problem. Representative non-
dimensional parameter values used for validation for Tables 1, 2 are:

	

B = 0.2, A = 0.2, ρ3 = 3, ρ1 = 1, µ1 = .1, µ3 = 2, Dn = 0.05, ε1 = 0.002,

ε3 = 0.005 , Pe = 5, βc = 2, a = 0.8,

E0 = 0.5, k = 0.00095, Bd = 10, and Oh = 1.0.

Due to the inherent complexity of the problem, specific simplifications, namely VPF approximation and NPA, 
are employed. A careful comparison has also been made with relevant studies in the literature that adopt similar 
methodologies. However, a direct comparison with results derived from solving the full governing equations of 
fluid motion is not feasible and lies beyond the intended scope of this work.

Schematic validation
Figures  5 and 6 provide a direct comparison between NS of nonlinear coupled Eqs.  (21) and (22) and the 
corresponding approximate solutions obtained via NPA, formulated in Eqs. (29) and (30). This comparison 
highlights the accuracy and effectiveness of NPA in reproducing the nonlinear dynamics of the system. Although 
primarily introduced as an analytical tool of nonlinear stability analysis, NPA demonstrates broad potential as 
a reliable and efficient alternative to purely numerical methods in complex physical and engineering contexts.

In Fig. 5, the red curve represents NS of Eq. (21); meanwhile, the brown curve corresponds to NPA solution 
derived from Eq.  (29). The close overlap between the two solutions, with a maximum deviation of only 
0.000500803, confirms the high accuracy of NPA in capturing the dynamic response of the system. Similarly, 
Fig. 6 compares NS of Eq. (22) (yellow curve) with the corresponding NPA result (purple curve). Once again, 
the two solutions show excellent consistency, with a negligible deviation of just 0.000343544. These minimal 
discrepancies, well below 1%, underscore the robustness and precision of the developed analytical approach in 
modeling nonlinear dynamics with reliability.

Finally, the combined evidence from Tables 1, 2 and Figs. 5 and 6 provide a strong validation of the adopted 
methodology. The excellent agreement between NS and NPA confirms that the developed framework ensures 
accuracy, convergence, and physical reliability, thereby justifying its use in subsequent stability and parametric 
investigations.

Fig. 5.  Shows a comparative response between the numerical NS of Eq. (21) and the approximate 
solution NPA from Eq. (29). The non-dimensional parameters that were held constant are:  
B = 0.09, ρ3 = 3, ρ1 = 1, µ1 = 1, µ3 = 2,A = 0.07,Dn = 0.5, ε1 = 0.002, ε3 = 0.005,
Pe = 25, .βc = 2, a = 1.6,E0 = 0.5, k = 1.15, Bd = 0.005, and Oh = 0.022.
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Beyond numerical accuracy, these results carry clear physical significance. The ability of NPA to realistically 
reproduce system dynamics ensures that subtle features such as interfacial instabilities and oscillatory damping 
are correctly predicted. This reliability is critical in practical contexts, where small deviations may lead to 
large-scale impacts. For instance, in predicting EHD instabilities in biomedical fluids, enhancing drug delivery 
precision through controlled interfacial motion, and improving adaptive damping strategies in soft robotics 
and biomedical imaging systems. Accordingly, validation provided by Figs. 5 and 6 not only strengthens the 
credibility of the present analysis but also confirms the potential of NPA as a practical modeling tool for advanced 
electrofluidic applications.

A limited situation is examined to validate the current formulation. When Casson and Powell–Eyring 
parameters are invalidated, the system simplifies to a Newtonian two-layer structure. This classical case was 
extensively examined in the literature. Our model was directly compared to our prior results27. Therefore, the 
comparison demonstrates a strong concordance with the published analysis.

Results and discussion
Figures 7, 8, 9, 10, 11, 12 depict the stability charts based on the constraints defined in Eqs. (37) and (38). These 
constraints include essential parameters such as PEL numeral Pe, CL factor βc, Darcy numeral Dn, dielectric 
constant ε1, and Ohnesorge numeral Oh. The frequenciesϖ2

1  &ϖ2
2 , and initial amplitudes A & B, are also 

included to reflect the system’s stability behavior. The darker regions above each curve point out stable regions 
in these plots. Conversely, lighter zones below curves reflect regions of instability. Each subfigure investigates 
how variations in a specific parameter influence the system’s response. The horizontal axis typically shows wave 
numeral k; meanwhile, vertical axis reflects EF number, often presented in logarithmic form log E2

0 . These 
graphs reveal how changes in physical forces impact the balance of stability and instability in the interface. The 
physical interpretation lies in the interaction between competing forces, capillary tension, EF influences, and 
viscous or inertial contributions. These forces together shape the dynamic movement and deformation of the 
liquid interface. Collectively, dimensionless parameters utilized in this analysis encapsulate the essential physical 
performances of the liquid system, enabling a generalized interpretation of its performance across diverse spatial 
scales and engineering applications.

In a horizontal plane configuration comprising three immiscible liquid layers, Fig. 7 examines the stability 
profile of two interfacial boundaries by plotting log E2

0  versus k to describe stable and unstable areas. The three 
non-Newtonian fluids are stratified, forming dual interfaces: the upper interface, between the first and second 
liquids, is described by the function log E2

01 , meanwhile the lower interface, between the second and third 
fluids, is expressed by log E2

03. These curves reflect the dynamic response of each interface to small disturbances. 
Stability regions of upper and lower interfaces are identified as S1 and S3, respectively, whereas the corresponding 
unstable zones are symbolized as U1 and U3. The regions above the curve log E2

01 exhibit more uniform and 
smoother stability profiles compared to those associated with log E2

03, indicating that the outer (upper) interface 
exerts a more significant influence on the system’s global stability. This performance recommends that log E2

01 
acts as the dominant curve governing the system’s overall dynamical conduct. The analysis further incorporates 
influences of nonlinear interactions between the interfaces, accounting for the influence of critical dimensionless 
numerals such as Darcy, PEL, and Ohnesorge numbers. These quantities collectively modulate interfacial 
response, shaping boundaries between stability and instability across the system30.

Figure  8 reflects the influence of PEL numeral Pe on stability boundaries of the system, outlined by the 
variation of log E2

0  against k. As the PEL numeral enlarges from 0.0 to 12, a notable expansion of the unstable 
area U is noticed; meanwhile, the stable zone S diminishes correspondingly. This shift emphasizes a pronounced 
destabilizing conduct imparted by non-Newtonian rheological performance captured by PEL. From a physical 
view, the PEL number reflects the extent of shear-thinning conduct in non-Newtonian fluids, where viscosity 

Fig. 6.  Displays a comparison between the NS of Eq. (22) and the approximate solution NPA from Eq. (30). 
The non-dimensional parameters that were held constant are as in Fig. 5a, except µ3 = 3, and Pe = 25.
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Fig. 8.  Displays the effect of PEL number Pe on stability boundaries (log E2
0 vs. k), Pe varies from 0.0 to 12, 

while other parameters remain fixed. Stable (S) and unstable (U) regions are indicated. The non-dimensional 
parameters held constant are as in Fig. 7, except Dn = 1.00.

 

Fig. 7.  Shows stability boundaries of two liquid interfaces: upper interface log E2
01 and lower interface 

log E2
03 plotted against wave number k. Stable regions (S1, S3) and unstable regions (U1, U3) are 

indicated. The non-dimensional parameters held constant: are: B = 0.7, µ3 = 0.0006, Dn = 0.005,
A = 0.7, ρ3 = 5, ρ1 = 0.0005, µ1 = 3,Bd = 1.05,βc = 0.5, a = 1,ε1 = 0.72,ε3 = 3.5 , Pe = 15 and 
Oh = 2.05.
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Fig. 10.  Depicts the influence of the Ohnesorge number Oh on stability boundaries (log E2
0 vs. k), Oh 

changes from 0.5 to 0.8, meanwhile other parameters remain fixed. Stable (S) and unstable (U) regions are 
indicated. The non-dimensional parameters held constant are as in Fig. 7, except Pe = 10.

 

Fig. 9.  Demonstrates the impact of the CL factor βc on stability boundaries (log E2
0 vs. k)βc rises from 0.05 

to 0.09, meanwhile other parameters remain fixed. Stable (S) and unstable (U) regions are indicated. The non-
dimensional parameters held constant are as in Fig. 7, except Dn = 1.005, and Pe = 0.5
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Fig. 12.  Reflects the effect of dielectric constant ε1 on stability boundaries (log E2
0 vs. k). Curves show ε1 

increasing progressively from 0.5 to 0.8; meanwhile, other parameters remain fixed. Stable (S) and unstable (U) 
regions are indicated. The non-dimensional parameters held constant are as in Fig. 7, except ε3 = 1.5 ,  and 
Pe = 10.

 

Fig. 11.  Exhibits variation of stability boundaries (log E2
0 vs. k) with Darcy number Dn . Curves plotted for 

diverse values of Dn, while other parameters remain fixed. Stable (S) and unstable (U) regions are indicated. 
The non-dimensional parameters held constant are as Fig. 7, except Pe = 10.
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diminishes with escalating shear rate. As PEL rises, the fluid becomes more sensitive to velocity gradients, 
reducing viscous damping and weakening the system’s resistance to disturbances, thus promoting instability. 
This performance stems from a shift in balance between inertia and internal resistance; at high PEL amounts, 
inertia prevails, allowing interfacial waves to grow unchecked. Practically, the destabilizing impact of high PEL 
is critical in electrofluid applications. It can disrupt drug delivery, cause turbulence in microcirculation, and 
impair stability in EHD devices. Managing PEL is essential in ensuring uniform inflow and system reliability33.

Figure  9 highlights the influence of the CL factor on nonlinear stability characteristics of the system, as 
depicted by the relationship between log E2

0  and k. As the CL factor escalates from 0.05 to 0.09, the plotted 
curves exhibit a noticeable upward shift in the stability zone. This indicates a contraction in stable region S and 
a corresponding expansion of unstable one U, underscoring the system’s increased susceptibility to disturbances. 
Physically, higher CL values reduce effective viscosity beyond yield stress, steepening velocity gradients and 
lowering damping, which enhances instability under EFs. Practically, this matters in EHD systems like inkjet 
printing, microfluidics, and biomedical flows, where elevated CL can cause irregular flow or wave growth. 
Managing CL is the key to maintaining precision and stability in such applications37.

Figure  10 demonstrates the destabilizing impact of the Ohnesorge numeral Oh on nonlinear stability 
that characterizes viscoelastic electron fluids, as depicted by the relationship between log E2

0  and k. The 
plotted curves correspond to escalating Oh amounts (0.5, 0.6, 0.7, and 0.8), exhibiting a consistent upward 
shift in the critical stability zone. This progression reveals that as Oh improvements, stable region S contracts 
significantly, meanwhile unstable domain U broadens across the entire wave numeral spectrum. In a physical 
context, increased viscosity disturbs the equilibrium between shear-thinning and inertia, resulting in reduced 
damping. This renders the system more susceptible to instabilities, particularly under intense EFs in micro-
scale environments. This is critical of EHD applications like electro-spraying, droplet formation, and lab-on-
chip devices. In biomedical systems, high viscosity may destabilize drug droplets or hinder influx in synthetic 
biofluids, affecting treatment or sensor function. Managing this influence is a key to stable performance in high-
viscosity, electrically driven systems27.

Figure 11 underlines the influence of Darcy numeral Dn on the nonlinear stability of a two-plane interface 
system within viscoelastic electrofluids, by depicting the variation of  log E2

0  against k. The curves correspond to 
different Dn measures that escalate, and curves shift downward, signifying a decrease in the critical threshold of 
stability. Consequently, S becomes broader, meanwhile U is progressively diminished, indicating a pronounced 
stabilizing performance as permeability enriches. Physiologically, the Darcy number outlines the permeability of 
a porous medium. A higher amount indicates greater permeability, allowing smoother fluid influx and enhanced 
energy dissipation, which helps dampen disturbances and delay interfacial instability. This has important 
applications in EHD systems involving porous media, such as filtration, tissue fluid transport, and microfluidics. 
In biomedical engineering, optimizing Darcy numbers aids in modeling fluid inflow through tissue scaffolds or 
drug diffusion in membranes. In geophysics, it informs subsurface flow predictions, while in industry, tuning it 
improves stability in systems like porous electrodes27,28.

Figure 12 clarifies the performance of the dielectric constant ε1 on nonlinear stability characteristics of two-
plane interfaces in viscoelastic electrofluids. The plot shows variation of  log E2

0  vs k. As the dielectric constant ε1 
escalates, stability curves shift downward, thereby shrinking S and expanding U. This pattern clearly indicates a 
destabilizing influence of higher dielectric contrast within the system. From a physical standpoint, the dielectric 
constant determines how strongly a liquid responds to an EF through polarization. Higher values increase 
electric stresses at the interface, promoting deformation and dwindling stability thresholds. This enhances the 
risk of instability by lowering the energy barrier of perturbation growth. In EHD systems, such as microfluidics, 
drug delivery, inkjet printing, and liquid lenses, elevated dielectric constants can improve actuation but also 
heighten susceptibility to interfacial breakdown. Consequently, controlling dielectric properties is crucial in 
maintaining system stability and performance27,28.

In what follows, Table 3 summarizes complex interactions among key physical parameters and their impact 
on the stability of viscoelastic electrofluid interfaces under EFs. Each parameter represents a distinct mechanistic 
pathway governing interfacial dynamics.

Figure 13 presents polar trajectories that display the relationship of ũ (t) = A cos ϖ2t vs. v̂(t) = B cos ϖ2t 
of diverse amounts of the Casson factor βc. The influence of the Casson parameter βc on the system’s dynamics 

Parameter Performance Physical Mechanism Practical applications

Pe
Elevated standards promote 
interfacial destabilization

Escalates non-Newtonian shear-thinning conduct, leading 
to intensified velocity gradients and diminished viscous 
damping

Triggers inflow irregularities in blood vessels, disrupts controlled drug 
dispersion, and affects nutrient transport across biological membranes

βc
Increasing measures tend to 
destabilize liquid interfaces

Elevates yield stress threshold, causing delayed inflow 
initiation and nonlinear resistance to deformation

Critical in modeling blood rheology, influencing polymer solution 
inflows, and regulating resistance in tissue-engineered microfluidics

Oh
Higher amounts reduce 
interface stability

A lower viscous-to-inertial ratio limits damping, enhancing 
the amplitude of surface-tension-induced oscillations

This leads to droplet breakup in drug delivery systems, instability in 
respiratory mucus layers, and inaccuracies in biomedical inkjet printing

Dn
Increased amounts enhance 
interface stability

Higher permeability diminishes internal liquid resistance, 
dampening convective inflows and suppressing perturbations

Pivotal for optimizing perfusion in porous tissues, controlling 
transdermal drug delivery, and maintaining uniform inflow in 
biological scaffolds

ε1
Amplifies destabilization 
with escalated measures

Enlarges EHD stresses by escalating charge accumulation at 
interfaces, leading to stronger normal stress imbalances

Influences electrofluidic precision, affects interface stability in lab-
on-chip systems, and aids in the electrophoretic control of biological 
particles

Table 3.  Key factors influencing fluid stability.
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is clearly reflected in polar phase portraits. For smaller amounts of βc, trajectories are tightly wound and nearly 
circular, indicating that oscillatory behavior remains close to Newtonian dynamics with regular and symmetric 
displacement patterns. As βc escalates, however, the role of yield stress becomes dominant, introducing stronger 
nonlinearities into motion. This shift is visible through the development of lobed or flower-like trajectories, 
which signify partial energy trapping and a departure from purely harmonic responses. From a physical 
standpoint, this performance arises from additional resistance in Casson-type fluids once the yield threshold is 
exceeded, which alters the balance between inertia and damping. Such insights are highly relevant in biomedical 
applications, particularly in modeling blood flow, as well as in engineering contexts such as electrofluidic devices 
and micro-actuators, where precise control of non-Newtonian interfaces is required27,30.

Figure  14 highlights the polar diagrams between û(t) = A cos ϖ1t  and v̂(t) = B cos ϖ1t of varying 
Ohnesorge numeral Oh = 0.12, 0.15, 0.17, which quantify the influence of viscous damping relative to inertial 
and capillary forces in fluid systems. The effect of the Ohnesorge number Oh on system response is illustrated 
in polar phase portraits. For relatively small Oh amounts (e.g., Oh = 0.12), trajectories display sharp, multi-
lobed structures, which reflect predominance of inertial and surface tension influences over viscous damping. 
As Oh enlarges to moderate values (e.g., Oh = 0.15), phase trajectories become smoother and more symmetric, 
signalling growing influence of viscosity in moderating oscillations. At higher Oh (e.g., Oh = 0.17), trajectories 
exhibit diffused, intertwined patterns, where viscous effects dominate and energy dissipation reduces the 
regularity of oscillatory motion. From a physical standpoint, this transition highlights the balance between inertia 
and viscosity: lower Oh values favour pronounced oscillations with higher energy retention, while higher Oh 
amounts promote damping and suppression of oscillatory instabilities. These insights are particularly relevant 
to applications involving droplet dynamics, inkjet printing, spray cooling, and biomedical microfluidics, where 
precise control over the interplay between viscous, inertial, and surface tension forces is essential for stability and 
performance. From a physical standpoint, this trend emphasizes the central role of liquid viscosity in shaping 
the nonlinear behavior of interfacial motion, especially in multilayer systems. Such understanding is vital in 
EHD and microfluidic applications. Examples include lab-on-chip devices, droplet generation, and biomedical 

Fig. 14.  Expounds a Polar diagram of trajectories showing the relationship between û(t) = A cos ϖ1t 
and v̂(t) = B cos ϖ1t impacted by Oh. The non-dimensional parameters held constant: 
are:A = 0.07, ρ3 = 3.0005, ρ1 = 1.0005, µ1 = 1.0005,Pe = 10B = 0.09, µ3 = 2.0006, Dn = 0.57,
Bd = 0.005,βc = 2,aa = 0.62,ε3 = 0.0005 , and ε1 = 0.0002.

 

Fig. 13.  Displays a Polar representation of trajectories showing the variation of ũ (t) = A cos ϖ2t 
vs. v̂(t) = B cos ϖ2t influenced by βc. The non-dimensional parameters held constant: are: 
A = 0.09, ρ3 = 3.0005, ρ1 = 1.0005, µ1 = 1.0005,B = 0.09, µ3 = 2.0006, Dn = 0.5,Bd = 1.05,
ε1 = 0.0002,a = 1.6,ε3 = 0.0005 , Pe = 10 and Oh = 0.15.
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actuators. In these systems, interface damping must be carefully managed. The Ohnesorge number provides a 
useful tool in improving fluid control in non-Newtonian or multiphase liquids under electrostatic influence27–30.

From an application standpoint, these results inform design choices: for example, to avoid interfacial mixing or 
unwanted oscillations in microfluidics, one would operate in parameter windows that produce small, symmetric 
loops (low higher-harmonic content and strong damping); conversely, if one needs enhanced interfacial mixing, 
operating near parameters that produce lobed, nonlinear trajectories may be advantageous.

Concluding thoughts
The analysis of nonlinear stability in double horizontal interfaces segmented by three-stratified non-Newtonian 
liquids is crucial for advanced management, microfluidics, and coating technologies, as it explores unique 
thermal and rheological properties. The incorporation of non-Newtonian liquids demonstrates distinct 
rheological characteristics, requiring an in-depth analysis of their impact on interfacial instabilities in multilayer 
systems. The central component included a CL; meanwhile, the upper and lower regions were occupied by PELs. 
The influence of an unchanged tangential EF and surface tension was examined in porous media. VPF was 
employed to enable mathematical applications. The problem chiefly concerned the integration of fundamental 
hydrodynamic governing equations with Maxwell’s equations in a quasi-static approach. The linearized control 
equations were developed to obtain a nonlinear expression under designated nonlinear BCs. The impacts of 
viscoelasticity were accordingly neglected in the solution of equations of motion. Consequently, the planar axis 
and interface perturbation were interacting laterally. HFF converted traditional nonlinear ODEs into linear ones, 
which were analyzed by NPA. The non-dimensional physical properties can be employed to analyze fundamental 
characteristics of a liquid system. Moreover, they lowered the number of qualities necessary to understand the 
structure. An abridged summary of the NPA was provided. The numerical simulations demonstrated that the 
entire system was stabilized by different configurations of tangential EF in relation to horizontal wavenumber. 
Polar diagrams were designed via the PolarPlot command to elucidate the impacts of diverse causes and ensure 
the consistency of replies. The core outcomes derived from this investigation are outlined as follows:

	1.	 The developed model, consisting of a pair of coupled nonlinear ODEs, effectively captures the dynamics of a 
dual-interface system with two degrees of freedom.

	2.	 Numerical simulations demonstrated good agreement between NPA and NS outcomes, supported by struc-
tured comparisons through tables and schematic visualizations.

	3.	 Certain parameters exhibited a destabilizing influence; meanwhile, an escalation in Darcy number signifi-
cantly improved stability.

	4.	 PolarPlot visualizations revealed the influence of various physical parameters on system performance, with 
unstable solutions excluded from plots to ensure physical relevance.

Limitations

	1.	 The first consideration concerns the application of VPF, which treats viscous or viscoelastic liquids as ideal-
ized flows. By imposing ideal inflow constraints, the method enables the construction of a relatively simple 
mathematical expression to represent the time-dependent displacement of the interface. Without this as-
sumption, governing equations would become considerably more complex, demanding advanced and com-
putationally intensive solution techniques. Consequently, adopting ideal inflow constraints is essential, as 
it allows the elimination of pressure terms from the momentum equation via Bernoulli’s principle, thereby 
simplifying the analysis and improving tractability. Additionally, the theory of VPF, which enhances classical 
potential flow by incorporating viscous normal stresses while disregarding vorticity, becomes progressively 
unsuitable at elevated Reynolds numbers due to the predominance of thin boundary layers, shear layers, and 
turbulence, where vorticity and nonlinear viscous effects are essential.

	2.	 The second consideration involves the choice of initial amplitude in NPA. To maintain a reasonable level 
of accuracy when comparing the nonlinear and linear ODEs, the initial perturbation amplitude must re-
main small, specifically less than unity. If the amplitude is too large, the validity of the linear approximation 
deteriorates, causing divergence between nonlinear and linear models. Therefore, constraining the initial 
amplitude ensures that the linear model remains a reliable representation of the system’s behavior under 
perturbation.

Future work
Investigating the nonlinear stability of double interfaces subjected to periodic EFs is crucial, as these systems 
occur in various physical and technical domains, such as EHD fluxes, microfluidics, thin film technologies, 
and plasma confinement. Double interfaces create intricate mode interactions, wherein instabilities may pair 
and develop nonlinearly, resulting in diverse dynamical phenomena such as pattern generation, resonance, 
or instability suppression, contingent upon frequency and amplitude of applied EF. Comprehending these 
nonlinear dynamics is crucial in forecasting long-term system behavior, regulating interface morphology, and 
engineering devices that leverage or alleviate instability consequences. Furthermore, periodic forcing induces 
parametric resonances that may either stabilize or destabilize the interfaces, rendering this study essential for the 
advancement of theoretical models and practical applications dependent on precise interface regulation.

Data availability
All data generated or analyzed during this study are included in this published article.
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