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Accurate identification of acute coronary syndrome (ACS) in the prehospital setting is important for 
timely treatments that reduce damage to the compromised myocardium. Current machine learning 
approaches lack sufficient performance to safely rule-in or rule-out ACS. Our goal is to identify a 
method that bridges this gap. To do so, we retrospectively evaluate two promising approaches, an 
ensemble of gradient boosted decision trees (GBDT) and selective classification (SC) on consecutive 
patients transported by ambulance to the ED with chest pain and/or anginal equivalents. On the task of 
ACS classification with 23 prehospital covariates, we found the fusion of the two (GBDT+SC) improves 
the best reported sensitivity and specificity by 8% and 23% respectively. Accordingly, GBDT+SC is safer 
than current machine learning approaches to rule-in and rule-out of ACS in the prehospital setting.

Accurate identification of acute coronary syndrome (ACS) in the prehospital setting is important for timely 
treatments that reduce damage to the compromised myocardium. Accordingly, the community has developed 
Machine Learning (ML) methods to improve the prediction of ACS with prehospital covariates1,2. Nevertheless, 
performance remains insufficient for safe rule-out or rule-in of ACS3. Current research in cardiovascular disease 
detection from ECG has observed a possible trade-off between performance and coverage (i.e. percentage 
of cases to automatically classify) as a viable way to mitigate errors4–6. This trade-off is known as selective 
classification7,8 and it provides more accurate predictions by identifying a subpopulation better suited for 
automatic classification4,5,9. The objective of this study is to evaluate the predictive performance of doing selective 
classification based on the predictive uncertainty of the ML model. We seek to answer, can selective classification 
improve the predictive performance in the early detection of ACS? We observe the answer is yes, and note a 8% 
increase in sensitivity and a 23% increase in specificity, at the cost of 25% coverage. More concretely, with respect 
to previous work, our advancements are: 

	1.	 Identification of a ML model (i.e. GBDT10) that improves the best reported ACS and NSTE-ACS prediction 
performance in the prehospital setting. [See Tables 1, 2, 4 and 5]

	2.	 Empirical evidence that selective classification (SC) further boosts sensitivity by 4% and specificity by 10% 
at the expense of 25% coverage in the prehospital detection of ACS; and 2% sensitivity and 8% specificity for 
NSTE-ACS. [See Tables 2 and 4]

	3.	 Empirical evidence the that over 20% of the population, the performance of GBDT+SC matches the perfor-
mance of the traditional HEART risk score without the expensive measurement of troponin. [See Fig. 1]
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Results
Patient characteristics and outcomes
Data were collected by Zègre-Hemsey and colleagues11,12. Patients enrolled (n=3646) over 21 years old, 
transported by ambulance to the ED with non-traumatic chest pain and/or anginal equivalents. Emergency 
healthcare personnel collected clinical information in the ambulance (i.e. Prehospital setting). The primary 
outcomes recorded any ACS event (i.e. the acute manifestation of coronary heart disease and include ST-
elevation myocardial infarction (STEMI), non-ST elevation myocardial infarction (NSTEMI), and unstable 
angina (UA)). The observed prevalence was ACS (20%), STEMI (14%), NSTE-ACS (7%) and unstable angina 
(3%). These events are within 30 days post ED admission.

Dataset derivation and preparation
We divide the dataset into two cohorts: An internal cohort (n=1756 cases before 06/2016) for training and 
validation, and an external cohort (n=1127 cases after 06/2016) for testing. The date was chosen to get a 
60%/40% internal/external split. Furthermore, we select 23 covariates (see Table 1) validated in the ACS 
symptom checklist13–15 and available in the prehospital setting16. We discarded patients with a missing initial 

Method Prevalence Coverage Sensitivity Specificity PPV NPV AUROC Accuracy

GBDT+SC 16 ± 2 75 ± 5 94 ± 2 96 ± 4 81 ± 10 99 ± 0 95 ± 2 95 ± 3
GBDT 18 ± 0 100 ± 0 90 ± 4 86 ± 3 59 ± 4 97 ± 1 88 ± 1 87 ± 2
Takeda2 48 100 86 73 74 86 82 79

Al-Zaiti1 18 100 77 ± 8 76 ± 4 43 ± 5 94 ± 2 82 ± 4 N/A

Table 2.  ACS classification performance on the external cohort. Reported is µ ± 2σ where the samples come 
from 5-fold stratified cross-validation. For (Al-Zaiti)1 and (Takeda)2 , the results presented are their reported 
results.

 

Characteristic Type Internal(n=1756) External(n=1127)

Age Numerical 61(±31) 60(±31)

Gender(male) Binary 936(53%) 629(55%)

Medical history

Hypercholesterolemia Binary 693(39%) 485(43%)

Hypertension Binary 943(53%) 803(71%)

Current Smoker Binary 368(20%) 283(25%)

Diabetes Binary 509(28%) 354(31%)

Prior MI Binary 303(17%) 245(21%)

Angina Binary 42(2%) 80(7%)

Prior CABG Binary 166(9%) 180(15%)

Prior PCI Binary 124(7%) 6(<1%)

CAD Binary 349(19%) 271(24%)

Family history of CV disease Binary 204(11%) 81(7%)

Symptoms

Other Binary 1753(99%) 1124(99%)

Chestpain Binary 992(56%) 644(57%)

Syncope Binary 103(5%) 69(6%)

Shortness of breath Binary 417(23%) 282(25%)

Diaphoresis Binary 114(6%) 89(7%)

Nausea and/or vomiting Binary 164(9%) 113(10%)

Palpitations Binary 226(12%) 164(14%)

Other symptoms Binary 873(49%) 618(54%)

ECG Interpretation

ST elevation {0, 1}11 329(18%) 170(15%)

ST depression {0, 1}11 500(28%) 217(19%)

T wave inversion {0, 1}11 252(14%) 180(15%)

Table 1.  Statistics of covariates used as input to the Machine Learning model GBDT. Statistics are calculated 
separately for the internal and external cohorts. For the ECG interpretations, type {0, 1}11 indicates a binary 
vector. The position corresponds to the ECG lead used for the interpretation.
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troponin value (25 total) or without an ECG date; less than 2% of patients had missing covariates imputed with 
a constant. Constant imputation is a theoretically sound approach to handle missingness17 that generalizes to 
any site. Nonetheless, we speculate the model’s performance may be negatively impacted if missingness pattern 
is different between training and evaluation sites. In such a case, there would be distribution shift and this is an 
open problem in machine learning.

Ensemble of gradient boosted decision trees (GBDT)
GBDT10 was proposed to improve predictive uncertainty estimates in tabular classification tasks. Accordingly, 
we chose this method because our data is tabular (See Table 1) and we use estimates of predictive uncertainty 
to filter-out patients unsuitable for automatic classification. Intuitively, this model considers a prediction 
uncertain if: (1) the input data is out-of-distribution or (2) the data is in-distribution but is ambiguous. The 
sum of this two sources of uncertainty is equal to the “total uncertainty”18 and is the quantity we use to filter-out 
patients. From a more formal Bayesian viewpoint, total uncertainty corresponds to the entropy of the posterior 
predictive distribution H (Y |X, D); where X is the test input covariates, Y is the unknown outcome (i.e. 
{ACS, ¬ACS}), D is our training split and H (·) is the entropy function. In our task, H (Y |X, D) will be 
highest when P(Y = ACS|X, D) is 0.5 and decrease monotonically as P(Y = ACS|X, D) is closer to 0 or 1. 
We approximate total uncertainty with a Monte-Carlo sample:

	 H (Y |X, D) =H
(
Eθ|D

[
P(Y |X, θ)

])
� (1)

	
Eθ|D

[
P(Y |X, θ)

]
≈ 1

M

M∑
m=1

P(Y |X, θ(m)) � (2)

Where {θ(m)}M
m=1 corresponds to an ensemble of M Gradient Boosted Trees (GBT) parametrized by θ(m). Each 

θ(m) is sampled i.i.d. from an approximate distribution q(θ) which converges weakly to a posterior distribution 
p(θ|D) during model training. The likelihood function P(Y |X, θ(m)) corresponds to the output of a modified 
GBT that guarantees the weak convergence. Please refer to Section 3 from the original paper10 for more details.

Selective classification
Selective classification (SC)7,8 filters-out cases at test time with the goal of improving predictive performance 
over the filtered-in subpopulation. In this work, our filter rule is “Total uncertainty greater than cutoff value’ (i.e. 
H (Y |X, D) > cutoff). We use the validation split (Dval), disjoint from D, to determine a total uncertainty 
cutoff such that 80% of the cases in Dval have smaller Total Uncertainty. This corresponds to the 0.8 quantile of 
{H (Y |X, D) : (X, Y ) ∈ Dval}. We deemed 80% the most appropriate coverage to remain clinically useful. 
However, coverage could be further traded for performance with smaller cutoff values.

Fig. 1.  AUROC performance for three different methods (GBDT, HEAR16, HEART13) as we exclude more 
uncertain cases. Performance is computed with the non-excluded cases. Uncertainty is the predictive 
uncertainty from GBDT (Eq. 1). Highlighted is the mean and shaded is two standard deviations from 
5-fold cross validation. For this experiment, GBDT uses less covariates than those in Table 1 to match the 
HEAR16 covariates. Traditional HEART13 requires troponin, in addition to the HEAR covariates. A troponin 
measurement is generally unavailable in the prehospital setting.
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Classification performance metrics and estimation
Classification performance is measured in terms of: Coverage, area under the receiver operating characteristic 
curve (AUROC), accuracy (ACC), positive predictive value (PPV), negative predictive value (NPV), sensitivity 
and specificity. These metrics were estimated by 5-fold stratified cross-validation in the internal cohort. 
More concretely, for each fold: the corresponding training set is used to estimate the model and the selective 
classification cutoff; the corresponding test set is used to estimate internal cohort performance (Table 3); and the 
entire external cohort is used to estimate external cohort performance (Table 2). This leads to a total of 5 samples 
of performance. For each metric, we report the mean (µ) and two times the standard error (2σ). For reference, 
we also reported the prevalence of ACS in the test data, as this affects PPV and NPV.

Classification performance of ACS
The label for this task is either presence or absence of ACS. ACS is the acute manifestation of coronary heart disease 
and includes ST-elevation myocardial infarction (STEMI), non-ST elevation myocardial infarction (NSTEMI), 
and unstable angina (UA). Table 2 compares the ACS predictive performance of GBDT10, GBDT+SC, and the 
reported performance from alternative methods1,2. GBDT provides better predictive performance as noted by 
24% improvement in sensitivity and 13% improvement in specificity. The rest of the metrics follow suit, with 
only PPV as the exception. The reason for the exception is that PPV can be arbitrarily high due to prevalence. 
In this case, even though (Takeda)2 discriminator is worse, their higher ACS prevalence masks this in the PPV. 
With respect to similar prevalence like (Al-Zaiti)1, our PPV is considerably better.

Selective classification (SC) further improves performance (see first row in Table 2) by filtering out uncertain 
cases (i.e. H(Y |X, D) > cutoff). For the filtered-in subpopulation of the external cohort, sensitivity and 
specificity improve by 4% and 10% points respectively, creating a considerable difference with respect to (Takeda)2 
and (Al-Zaiti)1. Table 3 showcases better performance for the internal cohort. This is expected as the model and 
cutoff are estimated from this cohort. In particular, GBDT improves performance over previous methods by 
12% in sensitivity and 8% in specificity. The addition of (SC) further improves the sensitivity and specificity of 
GBDT by 6% and 8% respectively. Furthermore, the PPV and NPV also increase by 19% and 2% respectively. 
Nonetheless, coverage decreases by 22% coverage. These results suggests machine learning uncertainty estimates 
correlate with predictive performance, and that constraining predictions to a subset of patients, may reassure 
the model’s prediction.

Classification performance of NSTE-ACS
The label for this task is either presence or absence of ACS derived from NSTE-ACS. Like (Al-Zaiti)1, we 
consider NSTE-ACS as the presence of non-ST elevation MI or unstable angina. Table 4 compares the NSTE-
ACS predictive performance of GBDT10 and the reported performance in (Al-Zaiti)1; (Takeda)2 did not report 
NSTE-ACS performance due to low prevalence (3.2%). For reference, we also included the prevalence of NSTE-
ACS in the test samples, as this inflates/deflates certain metrics (e.g. PPV and NPV). GBDT improves both 
sensitivity and specificity by 14% and 7% respectively.

Like the ACS task, selective classification further improves performance by reducing coverage to 80%. For 
this subpopulation of the test set, average sensitivity and average specificity improve by 2% and 8 % points 
respectively. Furthermore, on average, PPV improves by 14% while NPV stays the same at 99%. These results 
reinforce the notion that machine learned uncertainty estimates correlate with predictive performance, and that 
constraining predictions to a subset of patients may reassure us in the model’s prediction. This lead us to only 
suggest GBDT for this task if prevalence is close to 7%. Note this was not the case for the dataset used in (Al-
Zaiti)1 nor the dataset used in (Takeda)2.

Method Prevalence Coverage Sensitivity Specificity PPV NPV AUROC Accuracy

GBDT+SC 6 ± 2 80 ± 6 88 ± 10 91 ± 7 42 ± 11 99 ± 0 90 ± 2 91 ± 6
GBDT 7 ± 0 100 ± 0 86 ± 10 83 ± 4 28 ± 3 99 ± 1 85 ± 3 83 ± 3

Al-Zaiti1 15 100 72 ± 9 76 ± 4 36 ± 5 94 ± 1 82 ± 4 N/A

Takeda2 3.2 N/A N/A N/A N/A N/A N/A N/A

Table 4.  NSTE-ACS classification performance on the external cohort. Reported is µ ± 2σ where the samples 
come from 5-fold stratified cross-validation.

 

Method Prevalence Coverage Sensitivity Specificity PPV NPV AUROC Accuracy

GBDT+SC 17 ± 3 78 ± 6 94 ± 7 97 ± 3 87 ± 13 99 ± 1 95 ± 2 96 ± 2
GBDT 20 ± 0 100 ± 0 88 ± 7 89 ± 6 68 ± 12 97 ± 2 89 ± 4 89 ± 5
Takeda2 35 100 76 82 71 87 86 80

Al-Zaiti1 15 100 N/A N/A N/A N/A N/A N/A

Table 3.  ACS classification performance in the internal cohort. Reported is µ ± 2σ where the samples come 
from 5-fold cross-validation.
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Ablations
What impact do input covariates have on performance?
The more covariates we consider, the more performance improves. We ablate the impact that different sources of 
data have in the classification (See Table 5). Baseline corresponds to age, sex and ECG interpretations; Baseline 
+ Symptoms correponds to all the baseline covariates and the symptoms covariates in Table 1; Baseline + 
Symptoms + Medical History correponds to all baseline covariates, all symptoms covariates and all medical 
history covariates in Table 1. As expected, performance increases the more covariates we consider. However, we 
observe a larger increase in sensitivity when we include Medical History.

Does total uncertainty correlate with performance?
Figure 1, red line with squares, suggest a positive correlation between the average performance of GBDT (y-axis) 
and the percentage of uncertain samples excluded (x-axis). As expected since excluding uncertain samples 
should mitigate errors. Furthermore, the AUROC performance of unrelated methods (HEAR and HEART) 
correlates with the percentage of samples excluded. This assesses whether the excluded samples are deemed 
uncertain by other predictors. It is surprising that this is the case for both the HEAR and the HEART scores. 
This is important because we may use GBDT for patient selection and a different method for classification. For 
instance, the benefit of choosing HEAR and HEART as the classifier is that their prediction is explainable, a 
valuable feature for healthcare providers. Samples are excluded using the predictive uncertainty estimated from 
GBDT (Eq. 1). The larger the percentage of uncertain samples excluded, the higher performance we expect.

Does GBDT outperform other uncertainty quantification methods on ACS prediction?
We repeated the ACS classification experiment with two other popular approaches for uncertainty quantification 
(i.e. Deep Ensembles19 and MCDropout20). Results in Table 6 suggest GBDT performs best. Posterior predictive 
entropy (i.e. H(Y|X,  D) or total uncertainty) was used for selective classification across all methods. Note 
hyperparameter grid search was used for all methods.

Does GBDT outperform traditional scores?
Yes (See Table 7). We measure the predictive performance of GBDT, HEAR16, HEART13, each with and 
without SC on the task of NSTE-ACS in Fig. 1. HEART ourperforms HEAR because it considers Troponin (a 
measurement generally unavailable in the prehospital setting). It is important to point that, unlike GBDT, HEAR 
and HEART are both explainable and thus, on the chance of being correct, may inform decision making further. 
Since neither HEAR nor HEART consider ST-elevation in their prediction, we evaluate on NSTE-ACS to make 
a fair comparison with GBDT. To binarize the HEAR and HEART scores, we label intermediate risk cases as 
high risk. On the other hand, for both HEAR+SC and HEART+SC, we filter out the intermediate risk cases as 
uncertain. For the task of ACS, previous work21 observes HEART has better discriminative performance than 
other traditional clinical scores (e.g. GRACE).

Method Prevalence Coverage Sensitivity Specificity PPV NPV AUROC Accuracy

GBDT 18 ± 0 100 ± 0 90 ± 4 86 ± 3 59 ± 4 97 ± 1 88 ± 1 87 ± 2
GBDT+SC 16 ± 2 75 ± 5 94 ± 2 96 ± 4 81 ± 10 99 ± 0 95 ± 2 95 ± 3
DeepEnsemble 18 ± 0 100 ± 0 87 ± 6 84 ± 6 55 ± 8 97 ± 1 85 ± 2 84 ± 4
DeepEnsemble+SC 19 ± 2 76 ± 7 92 ± 4 90 ± 7 70 ± 15 98 ± 1 91 ± 4 91 ± 6
MCDropout 18 ± 0 100 ± 0 75 ± 26 90 ± 11 65 ± 16 95 ± 5 83 ± 9 87 ± 6
MCDropout+SC 14 ± 7 79 ± 5 82 ± 24 96 ± 8 79 ± 21 98 ± 2 89 ± 10 94 ± 6

Table 6.  ACS classification performance on the external cohort. Reported is µ ± 2σ where the samples come 
from 5-fold stratified cross-validation on the training set.

 

Metric (%) Baseline Baseline+Symptoms Baseline+Symptoms+MedicalHistory

Sensitivity 63 ± 5.1 67 ± 3.7 89 ± 4.4
Specificity 85 ± 4.7 86 ± 5.0 88 ± 3.3
PPV 51 ± 7.3 54 ± 8.7 64 ± 9.5
NPV 90 ± 2.9 92 ± 2.4 97 ± 1.5
AUROC 74 ± 4.2 77 ± 2.1 88 ± 1.4
Accuracy 81 ± 4.8 83 ± 3.9 88 ± 2.0

Table 5.  ACS classification performance for different input covariates: Baseline (i.e. ECG interpretations, Age 
and Sex); Baseline and Symptoms; Baseline, Symptoms and Medical History. Reported is µ ± 2σ where the 
samples come from 5-fold cross-validation.
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Does GBDT outperform other prediction methods?
It depends (See Table 8). If we are interested in rule-out performance (i.e. sensitivity and NPV) the answer is 
yes. If we are interested in rule-in performance (i.e. specificity and PPV), then XGBoost+SC is superior. Since 
rule-out performance is more desirable than the rule-in performance, and GBDT is designed for uncertainty 
quantification, we lean towards GBDT over XGBoost. For the experiments we repeated the ACS classification 
experiment with XGBoost and its corresponding predictive entropy (i.e. H (Y |X)) was used for selective 
classification. Note hyperparameter grid search was used for all methods.

What are the clinical characteristics of uncertain cases?
The uncertain group showcase older more co-morbid cases than the Non-ACS group, but not as definitive as 
the ACS group. In Table 9, we measure the count(proportion) of covariates, from the external cohort (n=1127) 
samples, categorized by GBDT as Non-ACS, Uncertain or ACS. The proportion is w.r.t. the number of samples 
in the category (i.e. 784, 193 or 150). For example, Hypertension 504(64%) indicates that 504 (or 64%) of the 
samples in the Non-ACS group had Hypertension; NSTEMI 3(<1%) indicates that 3 (or <1%) of the samples 
in the Non-ACS group had NSTEMI. We observe symptoms like chest pain are more prominent in ACS, while 
nonspecific symptoms like palpitations are more frequent in the Non-ACS and Uncertain groups. Prior CAD 
history, MI, and CABG are average in the Uncertain group (36-55%) but high on the Non-ACS group (54-96%) 
and small on the Non-ACS group (0-5%). Male patients are more frequent in the ACS group, which reflects 
previous observations that men have a higher incidence of ACS than women. Older patients are more likely to 
fall into the Uncertain or ACS categories than the Non-ACS. This aligns with the fact that cardiovascular risk 
increases with age. ECG changes, particularly ST depression, are much more prevalent in ACS and Uncertain 
groups. Lastly, the Uncertain group includes a mix of outcomes, most are Non-ACS (92%), but 7% do develop 
ACS, which supports the need for further evaluation of these cases.

How is performance affected by the coverage threshold?
In general, we observe that accuracy increases and prevalence decreases as we decrease coverage (See Table 10). 
In the case of NSTE-ACS, the prevalence decreases to the point where sensitivity becomes greatly affected by a 
single false negative (See the increase in variance and reduction in mean between 80% and 67% coverage). On 
the other hand, when prevalence is not greatly affected, we observe an improvement across all metrics as we 
decrease coverage (See ACS section of Table 10). An increase performance as we decrease coverage is consistent 
with other selective classification work9. Given this is the first work that introduces selective classification for 
this task, no standard coverage exist and we recommend 80% as a reasonable tradeoff between performance and 
coverage.

What is the performance of GBDT when we do not consider cases with ST-elevation (STE)?
For this task, we remove any cases with presence of STE from the NSTE-ACS cohort. Additionally, we remove 
ST-elevation from the list of model covariates. To aid comparison, we also report the performance of the 
standard NSTE-ACS (i.e. without removing STE cases and including the ST-elevation covariate in the model). 
Results in Table 11 suggests sensitivity stays the same (at 86%) specificity decreases by 1% (from 83% to 82%). 
Accordingly, the model would still be advocated, even for the subpopulation that do not present ST-Elevation 

Method Prevalence Coverage Sensitivity Specificity PPV NPV AUROC Accuracy

GBDT 18 ± 0 100 ± 0 90 ± 4 86 ± 3 59 ± 4 97 ± 1 88 ± 1 87 ± 2
GBDT+SC 16 ± 2 75 ± 5 94 ± 2 96 ± 4 81 ± 10 99 ± 0 95 ± 2 95 ± 3
XGBoost 18 ± 0 100 ± 0 63 ± 12 97 ± 3 83 ± 13 92 ± 2 80 ± 4 91 ± 1
XGBoost+SC 11 ± 2 80 ± 6 70 ± 10 99 ± 0 93 ± 2 97 ± 1 85 ± 5 96 ± 1

Table 8.  ACS classification performance on the external cohort. Reported is µ ± 2σ where the samples come 
from 5-fold stratified cross-validation on the training set. XGBoost is the predictor with the best reported 
performance in previous work2.

 

Method Prevalence Coverage Sensitivity Specificity PPV NPV AUROC Accuracy

GBDT 7 ± 0 100 ± 0 86 ± 10 83 ± 4 28 ± 3 99 ± 1 85 ± 3 83 ± 3
GBDT+SC 6 ± 2 80 ± 6 88 ± 10 91 ± 7 42 ± 11 99 ± 0 90 ± 2 91 ± 6
HEAR 7 ± 0 100 ± 0 81 ± 0 53 ± 0 12 ± 0 97 ± 0 67 ± 0 55 ± 0
HEAR+SC 4 ± 0 53 ± 0 29 ± 0 96 ± 0 22 ± 0 97 ± 0 62 ± 0 94 ± 0
HEART 7 ± 0 100 ± 0 90 ± 0 48 ± 0 12 ± 0 98 ± 0 69 ± 0 51 ± 0
HEART+SC 5 ± 0 54 ± 0 75 ± 0 87 ± 0 24 ± 0 98 ± 0 81 ± 0 86 ± 0

Table 7.  NSTE-ACS classification performance on the external cohort. Reported is µ ± 2σ where the samples 
come from 5-fold stratified cross-validation on the training set. HEAR and HEART does not exhibit standard 
deviation because they are not fit with the training set.
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NSTE-ACS

Method Prevalence Coverage Sensitivity Specificity PPV NPV AUROC Accuracy

GBDT+SC 4 ± 6 67 ± 6 75 ± 35 95 ± 9 52 ± 25 99 ± 0 85 ± 14 95 ± 8
GBDT+SC 6 ± 2 80 ± 6 88 ± 10 91 ± 7 42 ± 11 99 ± 0 90 ± 2 91 ± 6
GBDT+SC 7 ± 1 91 ± 5 88 ± 9 86 ± 5 34 ± 5 99 ± 1 87 ± 3 87 ± 4
GBDT 7 ± 0 100 ± 0 86 ± 10 83 ± 4 28 ± 3 99 ± 1 85 ± 3 83 ± 3
ACS

GBDT+SC 14 ± 5 67 ± 6 94 ± 2 97 ± 4 87 ± 12 99 ± 0 96 ± 1 97 ± 3
GBDT+SC 16 ± 2 75 ± 5 94 ± 2 96 ± 4 81 ± 10 99 ± 0 95 ± 2 95 ± 3
GBDT+SC 18 ± 0 90 ± 4 92 ± 3 90 ± 1 68 ± 2 98 ± 1 91 ± 1 91 ± 1
GBDT 18 ± 0 100 ± 0 90 ± 4 86 ± 3 59 ± 4 97 ± 1 88 ± 1 87 ± 2

Table 10.  NSTE-ACS and ACS classification performance of GBDT+SC with various coverage thresholds set 
to 70%, 80%, 90% and 100% (i.e. GBDT).

 

Characteristic Type Non-ACS (n=784) Uncertain (n=193) ACS (n=150)

Age Numerical 58(±32) 64(±25) 64(±26)

Gender(male) Binary 421(53%) 114(59%) 94(62%)

Medical history

Hypercholesterolemia Binary 253(32%) 109(56%) 123(82%)

Hypertension Binary 504(64%) 157(81%) 142(94%)

Current Smoker Binary 198(25%) 42(21%) 43(28%)

Diabetes Binary 204(26%) 78(40%) 72(48%)

Prior MI Binary 0(0%) 100(51%) 145(96%)

Angina Binary 1(<1%) 24(12%) 55(36%)

Prior CABG Binary 29(3%) 70(36%) 81(54%)

Prior PCI Binary 1(<1%) 4(2%) 1(<1%)

CAD Binary 47(5%) 107(55%) 117(78%)

Family history of CV disease Binary 44(5%) 18(9%) 19(12%)

Other Binary 781(99%) 193(100%) 150(100%)

Symptoms

Chestpain Binary 396(50%) 119(61%) 129(86%)

Syncope Binary 48(6%) 15(7%) 6(4%)

Shortness of breath Binary 198(25%) 42(21%) 42(28%)

Diaphoresis Binary 62(7%) 13(6%) 14(9%)

Nausea and/or vomiting Binary 76(9%) 17(8%) 20(13%)

Palpitations Binary 135(17%) 24(12%) 5(3%)

Other symptoms Binary 450(57%) 96(49%) 72(48%)

ECG Interpretation

ST elevation Binary 119(15%) 23(11%) 28(18%)

ST depression Binary 117(14%) 43(22%) 57(38%)

T wave inversion Binary 124(15%) 37(19%) 19(12%)

NSTE-ACS outcome

NSTEMI Binary 3(<1%) 7(3%) 52(34%)

Unstable Angina Binary 4(<1%) 8(4%) 19(12%)

Non-ACS condition Binary 778(99%) 179(92%) 89(59%)

Table 9.  Statistics of covariates, from the external cohort samples, categorized by GBDT as Non-ACS, 
Uncertain and ACS. The percentage is calculated w.r.t the number of samples in the category.
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in the ambulance. The proportion of cases with ST-elevation but without a diagnosis of STEMI is 58%. In the 
external cohort, this correspond to 13% (n=170) out of (n=1254) total cases. From a clinical perspective this is 
sensible because ST-elevation is not necessarily associated with STEMI.

Discussion
In this study we measured the ACS and NSTE-ACS classification performance of GBDT and GBDT+SC. Results 
show that both methods achieve the best sensitivity and specificity reported for the prehospital setting. This is 
important because any method that furthers is a better candidate to aid the early rule-out or rule-in of ACS. 
Compared to previously reported results1,2, GBDT10 is a better ML algorithm to rule-out both ACS and NSTE-
ACS. Selective classification (SC) further improves both rule-in and rule-out performance of GBDT by, on 
average, reducing coverage (i.e. percentage of filtered-in test cases) from 100% to 75% (See Table 2). These 
improvements in performance are particularly important for the task of NSTE-ACS as this represents patients 
without ST-elevation, a naturally ambiguous class of patients difficult to triage from ECG alone (See Table 4). 
In regards to standard clinical practice, previous work1 estimates the AUROC of paramedic interpretation to 
be 67% for ACS and 60% for NSTE-ACS which is more than 20% less than GBDT for the same task. GBDT 
also outperform standard risk scores (HEAR and HEART) on NSTE-ACS by at least 9% in AUROC (See Table 
7). Methodologically, the main difference with respect to previous work is the ML model used for prediction. 
GBDT10 is designed for predictive uncertainty quantification, whereas previous methods1,2 are designed for 
predictive accuracy. This difference in design permits more elaborate decision making through the identification 
of the uncertainty source (See equation 3). Furthermore, we observe GBDT has better rule-out performance than 
the best previously found predictor2 (See Table 8). In regards to input covariates, previous work2, we consider 
symptoms, an interpretation of the ECG and age in our prediction of ACS. However, we did not consider vital 
signs as they are not part of the ACS symptom checklist. We conjecture the addition of vital signs would improve 
performance like symptoms and history did in Table 5; Unlike other works1, our methodology requires EMS 
personnel to interpret the ECG and determine the presence/absence of three conditions (See Table 1). However, 
given how blackbox predictors are prone to random errors22 and overconfidence23, we argue EMS personnel 
should interpret the patient’s ECG, especially when rule-in and rule-out performance is insufficient. With 
respect to leveraging uncertainty in cardiovascular disease prediction outside the prehospital setting4–6,24–27, 
we also observed a positive correlation between selective classification and performance4–6,27. However, the 
deep learning methods19,20 employed among most these studies4,5,24,25 are outperformed by GBDT in this task 
(See Table 6) and have more complex implementation. Additionally, we reemphasize deep learning models are 
generally unpredictable under imperceptible or irrelevant changes to the input signal22,28. Even though there 
have been studies that quantify decreases in performance due to changes in the input (e.g. Modifying the ECG 
SNR27, ECG distribution shift4,5), no guarantee exists these predictions will not be random or overconfident. 
Accordingly, as mentioned before, we encourage keeping the clinician in the loop25 until predictive performance 
is at desired levels3. We emphasize reducing coverage does not imply cases will be missed. Per current clinical 
guidelines15, uncertain cases should be evaluated further rather than dismissed altogether from care. Additional 
evaluations may include serial ECG acquisitions, ongoing patient assessment and risk stratification. From an 
implementation’s perspective, all software is open-source and the model is lightweight (<10 MB) with fast 
inference (<8 ms per <1 MB sample). Its ACS prediction, uncertainty, and threshold can be displayed on an EMS 
clinician facing dashboard25. If uncertainty exceeds the threshold, the system alerts the clinician that further 
assessment may be needed. Ongoing collaboration with EMS clinician partners and prospective evaluations of 
the model will help inform next steps to this work. An important goal of our work is in being strategic about 
not adding time/burden to the EMS clinicians. Please see Methods section for further implementation details.

Whilst we showcase performance improvements, the work is still limited by various factors. First, a future 
prospective study must be done to better ground the performance of any classifier trained retrospectively, 
especially one that may affect the course of treatment early in the care plan (e.g. GBDT+SC). Second, the current 
evaluation does not include a completely independent dataset. Though our external validation is large and 
diverse, we did not use a similar independent dataset at the time of this study. These unique datasets are difficult 
to obtain as they involve a collaboration between EMS service providers and proprietary institutional data. If 
GBDT were to be applied to a different site, the model would have to be re-estimated. Third, GBDT+SC prediction 
remains unexplainable, thus compromising clinical trust and downstream decision making25,29. There exist other 
explainable predictors that use a subset of our covariates to predict ACS13,16 but either the rule-in and rule-out 
performance is worse, or require Troponin, a measurement generally unavailable in the prehospital setting (See 

NSTE-ACS (Excluding cases with prehospital STE)

Method Prevalence Coverage Sensitivity Specificity PPV NPV AUROC Accuracy

GBDT 7 ± 0 100 ± 0 86 ± 16 82 ± 6 27 ± 3 99 ± 1 84 ± 5 82 ± 4
GBDT+SC 6 ± 3 80 ± 9 88 ± 12 91 ± 7 39 ± 7 99 ± 0 89 ± 4 91 ± 7
NSTE-ACS (Including cases with prehospital STE)

GBDT 7 ± 0 100 ± 0 86 ± 10 83 ± 4 28 ± 3 99 ± 1 85 ± 3 83 ± 3
GBDT+SC 6 ± 2 80 ± 6 88 ± 10 91 ± 7 42 ± 11 99 ± 0 90 ± 2 91 ± 6

Table 11.  NSTE-ACS classification performance of GBDT and GBDT+SC with and without considering cases 
with prehospital ST-elevation. Performance does not change significantly.
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Fig. 1 and Table 7). In conclusion, GBDT+SC brings ML-based preshopital ACS screening performance closer to 
the preference of cardiologists3. The improvement in predictive performance outweighs the loss in coverage for 
this task due to the sensible nature of the prediction. This advocation is stronger if the automatic classification is 
also intended to aid diagnosis, which requires better rule-in.

Methods
Machine learning model development evaluation
Performance samples are obtained using 5-fold cross validation over the internal cohort to estimate a model 
and the external cohort to test it. That is, 5 different times, we splits the internal cohort into 20% for internal 
testing and 80% for training. We further split 10% of the internal training set for validation (Dval), and leave 
the remaining for training (D). The validation set is used for hyper parameter search and the estimation of 
the selective classification cutoff. Hyperparameters are selected automatically using the grid_search function 
to mitigate selection biases (See Table 12 for the grid space). The cutoff value is estimated as the 0.8 quantile of 
the total uncertainty estimates in the validation set. The GBDT method is implemented in the Catboost library, 
as class CatboostClassifier. Due to small prevalence (i.e. 7% for NSTE-ACS and 20% for ACS), the uncertainty 
scores will often be smaller for true negatives than for true positives (See Fig. 2). To mitigate this and the overall 
impact of class imbalance, during training and grid search, samples are weighted inversely proportional to the 
frequency of its corresponding class (See Fig. 3) (See class_weights) . The class weights are estimated dynamically 
from the data available for training in each cross-validation fold.

The following metrics are evaluated on the test set: coverage, area under the receiver operating characteristic 
curve (AUROC), accuracy (ACC), positive predictive value (PPV), negative predictive value (NPV), sensitivity 
and specificity. In the case of selective classification, these metrics are evaluated on a subset of the test set. This 
subset corresponds to the test cases that are smaller than the 0.8 quantile of the total uncertainty in the validation 
set. This is to guarantee around 80% of the test set is covered. The compromise in coverage was arbitrarily 
limited to 20%, mainly to preserve utility of automatic classification. Total uncertainty is defined in eq. (1) and 
is estimated by the average output entropy as in eq. (2). Where the average is across the output of all GBDT in 
the ensemble.

Fig. 2.  ECDF of uncertainty scores conditioned on outcome. No sample weighing is applied.

 

Catboost Hyperparameter Space

learning_rate [0.01, 0.1, 1.0]

depth [1, 3, 6, 10]

subsample [0.25, 0.5, 0.75]

iterations [1000]

border_count [128]

random_strength [0]

bootstrap_type [’Bernoulli’]

posterior_sampling [True]

random_seed [1419528]

nensemble [10]

class_weights [.,.]

Table 12.  Hyperparameters for both ACS and NSTE-ACS tasks.
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Study population
The dataset used in this paper was obtained from the Optimizing Electrocardiographic Methods for the Early 
Identification of ST-elevation Myocardial Infarction in Prehospital Cardiac Care study. The cohort study 
included patients transported by emergency medical services (EMS) with chest pain and/or anginal equivalent 
to Carolinas Medical Center (now Atrium) in Charlotte, NC (2013-2017). Per prehospital protocol, EMS 
providers obtained a standard 12-lead ECG on patients with suspected ACS. Raw digital ECG data were acquired 
and linked to hospital based clinical outcomes. This study was approved by the institutional review board of 
the University of North Carolina at Chapel Hill, and all relevant ethical regulations on human experiments, 
including the declaration of Helsinki, have been followed. Data were collected through a healthcare registry, and 
all consecutive eligible patients were enrolled under a waiver of informed consent approved by the institutional 
review board (#18-3411) of the University of North Carolina at Chapel Hill.

Data availability
The datasets generated during and/or analysed during the current study are not publicly available due to insti-
tutional data use agreements but are available from Jessica K. Zègre-Hemsey PI (jzhemsey@email.unc.edu) on 
reasonable request.

Code availability
Code will be made available upon publication Github.
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