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Pulmonary Non-tuberculous mycobacteria (pNTM) disease, often associated with underlying lung 
diseases, refers to a class of diseases in which humans are infected with Non-tuberculous mycobacteria 
(NTM), leading to pathological changes in the lungs. It is believed that the regulation of apoptosis 
by NTM contributes to their persistent infection. However, the roles of apoptosis - related genes in 
pNTM disease remain unclear. Here, we downloaded the expression profile of GSE205161 from the 
Gene Expression Omnibus (GEO) database to identify differentially expressed genes (DEGs) between 
pNTM patients and control samples. We then intersected the DEGs with apoptosis - related genes 
(ARGs). As a result, we obtained fifteen apoptosis - related differentially expressed genes (ARDEGs). 
Through GO and KEGG pathway analyses, we found that fifteen ARDEGs were primarily enriched in 
the TNF - mediated signaling pathway, cytokine receptor binding, regulation of JNK cascade, and 
TNF receptor superfamily binding. Additionally, we identified four key genes (ACTA2, CD180, PIK3R1, 
TPM4) as biomarkers with moderate potential for diagnosing pNTM disease using the Receiver 
Operating Characteristic (ROC) curve analysis. By analyzing the RNA regulation networks, we found 
that arsenic trioxide and doxorubicin could potentially target CASP9, PIK3R1, ACTA2, and BECN1 for 
treating pNTM disease. The present study provides a basis for investigating biomarkers and potential 
therapeutic targets for pNTM disease in the future.

Keywords  Pulmonary nontuberculous mycobacterial disease, Apoptosis, Bioinformatic analysis, Apoptosis 
related genes, Biomarkers, Drug target

Non-tuberculous mycobacteria (NTM) are opportunistic pathogens that can be found in various environments, 
including soil and tap water1,2. At present, there are over 200 reported NTM strains/subspecies in clinical practice, 
including Mycobacterium intracellulare, Mycobacterium kansasii, Mycobacterium avium, Mycobacterium abscessus 
complex, Mycobacterium gordonae, Mycobacterium fortuitum, Mycobacterium cosmeticum, Mycobacterium 
peregrinum, Mycobacterium simiae, etc. However, a single positive NTM culture alone is not enough to diagnose 
NTM disease. To make an accurate diagnosis, the guideline recommends considering three factors: multiple 
isolations of the same bacterium, corresponding clinical symptoms, and radiographic evidence3. NTM disease 
is a chronic infectious condition that can affect multiple organs in humans, but it primarily targets lung tissue, 
accounting for approximately 70% to 80% of cases4. Pulmonary Non-tuberculous mycobacteria (pNTM) disease, 
often present alongside underlying lung diseases, refers to a group of disorders where NTM infects humans 
and causes pathological changes in the lungs. Since pNTM disease exhibits similar clinical characteristics to 
tuberculosis and has a high resistance rate to anti-tuberculosis drugs, distinguishing between the two can be 
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challenging5. Hence, the development of new diagnostic methods is crucial for accurately identifying and 
differentiating pNTM disease.

Apoptosis plays a critical role in maintaining the immune defense system. It not only ensures the homeostasis 
of the immune system, but also significantly impacts the progression and severity of diseases. Host cells employ 
apoptosis as a mechanism to protect against pathogens such as bacteria and viruses6. The relationship among 
pathogens, hosts, and apoptosis is intricate7. Danelishvili et al. made an important discovery regarding the 
impact of Mycobacterium tuberculosis (M. tuberculosis) on cell apoptosis. Highly toxic M. tuberculosis strains may 
inhibit cell apoptosis to promote their own growth and reproduction within cells, while weakly virulent strains 
induce significant host cell apoptosis8. They also observed various changes in the expression of pro-apoptotic 
genes and inhibitors of apoptosis in infected alveolar epithelial cells and macrophages8. These findings suggest 
that mycobacteria employ different survival strategies depending on the host organism, and that apoptosis plays 
a crucial role in determining the prognosis of mycobacterial diseases. However, the specific apoptotic genes 
involved in pNTM disease and their impact on the disease remain unknown.

Next-generation sequencing technology and bioinformatics analysis have been extensively used to investigate 
differentially expressed genes (DEGs) and their gene networks in pNTM disease. These networks provide 
comprehensive insights into the regulation of mRNA and the evaluation of drug targets for pNTM disease. 
It has been observed that NTM can cause persistent infection in patients, but the immune system is unable 
to eradicate it promptly. One of the main features of the relationship between NTM infection and apoptosis 
is that it is bidirectional and regulatory9,10. NTM avoids immune clearance by suppressing host cell apoptosis, 
thereby enhancing its intracellular survival. Simultaneously, NTM has the capacity to induce apoptosis, either as 
a host defense mechanism or to cause tissue damage. This intricate interaction involves cross-regulation between 
autophagy and apoptosis, ultimately influencing infection progression and the immune response.Therefore, 
conducting in-depth bioinformatics analysis to explore apoptosis-related differentially expressed genes 
(ARDEGs) can assist in the identification of potential diagnostic biomarkers and the exploration of drug targets 
for pNTM disease. Additionally, a study by Prieto MD et al. provided data on whole - blood gene expression in 
pulmonary nontuberculous mycobacterial infection11. The data included 12 patients who progressed to pNTM 
disease (detected with 7 strains of M. avium complex and 5 strains of M. abscessus complex) and 30 patients 
who did not progress to pNTM disease (detected with 15 strains of M. avium complex, 7 strains of M. abscessus 
complex, 3 strains of M. gordonae, 2 strains of M. fortuitum, 1 strain of M. cosmeticum, 1 strain of M. peregrinum, 
and 1 strain of M. simiae). Those data serve as a valuable resource for further investigation of pNTM disease.

In this study, we utilized the expression profile dataset GSE205161 of cystic fibrosis patients from the GEO 
database. We extracted apoptosis - related genes (ARGs) from the GeneCards database. Then, we intersected 
these ARGs with the differentially expressed genes (DEGs) to identify ARDEGs in patients with pNTM disease. 
Subsequently, we performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
analyses of the ARDEGs. Furthermore, we investigated various molecular mechanisms, including the protein-
protein interaction (PPI) network, mRNA regulatory networks of ARDEGs, ARDEGs-drugs interaction 
network, and immune infiltration analysis. Ultimately, we pinpointed pivotal diagnostic biomarkers and drug 
targets for pNTM disease, offering a robust experimental foundation for future research.

Results
Identification of apoptosis-related genes in pNTM disease
Figure 1 illustrates the identification process of apoptosis-related biomarkers in pNTM disease. We analyzed 
the expression profiles from GSE205161 to identify differentially expressed genes (DEGs). Subsequently, we 
intersected these DEGs with apoptosis - related genes (ARGs) and obtained 15 ARDEGs. We then performed 
GO and KEGG pathway analyses. After that, we constructed protein - protein interaction (PPI) and mRNA 
regulation networks, conducted immune infiltration analysis using CIBERSORT, and carried out differential 
expression analysis. Finally, four hub genes (ACTA2, CD180, PIK3R1, TPM4) were identified as potential 
diagnostic biomarkers for pNTM disease.

Normalization and differential analysis of the NTM dataset
The NTM disease dataset GSE205161 was first normalized using the limma package (This study was exclusively 
based on the single-batch dataset GSE205161, with no cross-batch integration scenario involved). A total of 
42 samples were obtained from the GSE205161 dataset, comprising 30 control samples and 12 pNTM disease 
group samples. Figure 2A-B demonstrate that after normalizing the expression profile data of pNTM disease, the 
normalization among samples was significantly reduced and the expression profiles of the GSE205161 dataset 
became more consistent. Principal Component Analysis (PCA) of the expression matrix of the GSE205161 
dataset was then conducted to validate the effectiveness of normalization, as shown in Fig. 2C-D.

The limma package was utilized to normalize the data of the pNTM disease patients and control group in 
order to analyze the differences in gene expression between the two groups. Using the criteria of |logFC| > 0 
and P-value < 0.05, we obtained 799 DEGs from a total of 17,186 genes in the GSE205161 dataset. Among these 
DEGs, there were 357 genes with high expression and 442 genes with low expression in the pNTM disease group 
compared to the control group, shown in the volcano plot (Fig. 2E). Furthermore, we conducted a venn diagram 
analysis to identify the overlap between the DEGs and ARGs in the GSE205161 dataset. This analysis identified 
15 ARDEGs, as shown in Fig. 2F; Tables 1, 2, 3, 4, 5, 6 and 7. The differential analysis results of these 15 ARDEGs 
were visualized using a heatmap (Fig. 2G).

GO and KEGG analysis of ARDEGs in pNTM disease
Function enrichment analysis was conducted to examine the relationship between pNTM disease and 
biological pathways, such as molecular function (MF), cellular component (CC), and biological process (BP) 
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with screening criteria of adjusted P - value < 0.05 and FDR value (q-value) < 0.05, which indicated statistical 
significance. The results, displayed in bubble plots (Fig. 3A; Table 3), demonstrated that the 15 ARDEGs were 
primarily enriched in GO-MF items such as death receptor binding, tumor necrosis factor receptor superfamily 
binding, phosphatidylinositol 3-kinase binding, cytokine receptor binding, and the apoptotic process regulated 
by cysteine - type endopeptidase inhibitor activity. Furthermore, they were enriched in GO-CC items such as 
phosphatidylinositol 3-kinase complex, actin filament bundle, stress fiber, actomyosin, and contractile actin 
filament bundle. Additionally, the 15 ARDEGs were enriched in GO-BP items such as intrinsic apoptotic 
signaling pathway, extrinsic apoptotic signaling pathway, regulation of apoptotic signaling pathway, TNF-
mediated signaling pathway, and regulation of JNK cascade. Network diagrams depicting the pathways of MF, 
CC, and BP in the GO enrichment analysis were also displayed (Fig. 3B-D).

Moreover, a KEGG enrichment pathway analysis was performed on the 15 ARDEGs (Table 4). The bar graphs 
(Fig. 3E) showed that the 15 ARDEGs were significantly enriched in Epstein-Barr virus infection, apoptosis, 
small cell lung cancer, apoptosis-multiple species, and colorectal cancer. The network graph (Fig. 3F) displayed 
hub genes, such as TRAF1, PI3KR1, and CASP9, which were involved in small cell lung cancer based on the 
KEGG pathways. These findings suggested that persistent infection in pNTM disease may be associated with the 
development of lung cancer and warrant further investigation.

  

GSEA results in pNTM disease dataset
To gain insights into the impact of gene expression levels on pNTM disease, an analysis of all genes and biological 
processes involved in the GSE205161 dataset was conducted using GSEA. The results, presented in Table 5; Fig. 4, 
identified the top 5 pathways of DEGs in the GSE205161 dataset. These pathways were visually represented in 
a ridge plot (Fig. 4A) and predominantly enriched in the IFNA response (Fig. 4B), IFNB1 targets (Fig. 4C), 
response to LPS with mechanical ventilation (Fig. 4D), STAT3 targets up (Fig. 4E), and STAT5A targets group1 
(Fig. 4F) in the pNTM disease group as compared to the control group.

GSVA results of DEGs between disease and control group
To investigate the disparity of hallmark gene sets between the pNTM disease patients and control group, we 
conducted Gene Set Variation Analysis (GSVA) using the GSE205161 dataset (Fig. 5; Table 6). As shown in 
Fig. 5, five hallmark gene sets, namely fatty acid metabolism, oxidative phosphorylation, DNA repair, hedgehog 
signaling, and TGF beta signaling, exhibit significant differences between the two groups (adjusted P - 
value < 0.05). Notably, the enrichment scores of the hallmark pathways of hedgehog signaling and TGF beta 
signaling in the pNTM disease group was higher than that of the control group (P.adj < 0.05). Conversely, the 
control group showed higher enrichment scores for the hallmark pathways of DNA repair, fatty acid metabolism, 

Fig. 1.  Technological flowchart of identification of apoptosis-related genes from GEO databases.
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and oxidative phosphorylation compared to those in the pNTM disease (adjusted P - value < 0.05). Furthermore, 
the specific results were effectively visualized through a heatmap in Fig. 5A, while Fig. 5B utilized a comparison 
plot with the Mann-Whitney U test to present the differences between the two groups.

PPI network and mRNA regulation networks of ARDEGs
The STRING database was used to conduct a PPI network analysis for fifteen ARDEGs within the pNTM disease 
dataset. After we selecting ARDEGs that had connections with other nodes, a total of 10 hub genes (ACTA2, 
BCL2L11, BECN1, CASP9, CD180, NAIP, PIK3R1, RIPK1, TPM4, TRAF1) were obtained, and a PPI network 
was constructed (Fig. 6A).

The miRDB database was used to predict target microRNAs (miRNAs) for the 10 hub genes, and the resulting 
mRNA-miRNA interaction network was visualized using Cytoscape software (Fig. 6B). In this network, sky blue 

GSE205161

Platform GPL24676

Type Expression profiling by high throughput sequencing

Species Homo sapiens

Tissue Whole blood

Samples in NTM group 12

Samples in Control group 30

Reference
Whole blood RNA-seq demonstrates an increased 
host immune response in individuals with cystic 
fibrosis who develop nontuberculous mycobacterial 
pulmonary disease.

Table 1.  List of nontuberculous mycobacteria datasets information. NTM: Nontuberculous mycobacteria.

 

Fig. 2.  Normalization and differential analysis of the NTM dataset. A-B. Boxplot of expression profiles of 
GSE205161 dataset before normalization (A) and after normalization (B). C-D. PCA plot of GSE205161 
before normalization treatment (C) and after normalization treatment (D). (E). Volcano plot of DEGs analysis 
in pNTM disease group relative to control group of GSE205161 dataset. (F). Venn diagram of obtaining 15 
ARDEGs from ARGs and DEGs in GSE205161 dataset. (G). Heatmap of differential analysis of 15 ARDEGs 
in GSE205161 dataset. PCA: Principal Component Analysis; pNTM disease: pulmonary nontuberculous 
mycobacteria disease; DEGs: Differentially Expressed Genes; ARGs: apoptosis related genes; ARDEGs: 
apoptosis related differentially expressed genes.
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Apoptosis related genes

AATBC IL6ST DUSP5 SIK1 CASP1 PAN2

AATF ILK DYRK3 SIRT1 CASP10 PARP1

AATK IRAG2 E2F1 SIVA1 CASP14 PAWR

ABL1 IRF1 ECSCR SLA CASP2 PDCD6

ACP3 IRF4 EEF1E1 SLC16A6 CASP3 PDGFRA

ACTA2 IRF9 EGFR SLC2A3 CASP4 PDK2

ADIPOR2 ITGB1 EIF4E SOCS1 CASP5 PDPK1

AEN JUN EIF5 SOCS3 CASP6 PEA15

AIFM1 JUNB ELAPOR1 SOD2-OT1 CASP7 PERP

AIFM2 KRAS ELAPOR2 SOS1 CASP8 PHTF2

AIFM3 LDLR ELL2 SOX2 CASP9 PIK3CA

AKT1 LINC01672 EPB41L2 SPP1 CAT PIK3CG

AKT2 LITAF ESR1 SREK1IP1 CAV2 PIK3R1

AMPD1 LPCAT4 EVI2A SRPK2 CCAR1 PIM1

ANAPC10 LTBP1 EVI2B ST3GAL6 CCAR2 PIM2

ANXA5 MAFF FADD STAT1 CCL2 PLEKHB2

AP1S2 MAP1B FAM30A STAT3 CCNC PLSCR1

APAF1 MAP2K1 FAM3C STK17B CCND1 PMAIP1

API5 MAP3K5 FAS TGFB1 CD180 PNO1

APP MAP3K8 FASLG TGIF1 CD40 POLR3F

AREL1 MAPK1 FLOT1 TMED7 CD44 POU2AF1

ARFGAP3 MAPK10 FOXO3 TMEM184B CD8B POU2F2

ATM MAPK14 GADD45A TMF1 CDK1 PPARG

ATP2B4 MAPK3 GADD45B TMX2-CTNND1 CDK17 PPP1R13B

AVEN MAPK8 GAS5 TNF CDK2 PRDM1

BAD MAPK9 GAS6 TNFRSF10A CDKN1A PRKCD

BAK1 MAPKAPK2 GATM TNFRSF10B CDKN1B PTEN

BAX MARCKS GNA13 TNFRSF10C CDKN2A PTGS2

BBC3 MAZ GRB2 TNFRSF10D CEBPB PTK2

BCAR1 MCL1 GZMB TNFRSF1A CERNA3 PTP4A1

BCL2 MDM2 H19 TNFRSF25 CFLAR PTP4A3

BCL2A1 MEG3 HBEGF TNFSF10 CHEK2 PTPN11

BCL2L1 MIR7-3HG HCK TNFSF12 CHST15 PTPRG

BCL2L10 MOAP1 HDAC9 TP53 CHUK PYCARD

BCL2L11 MSMO1 HEG1 TP53AIP1 CIAPIN1 RAD1

BCL2L13 MT1H HIF1A TP53BP2 CLU RAF1

BCL2L14 MT1X HNRNPU TP73 CSE1L RALA

BCL2L2 MTOR HRK TPM4 CTNNB1 RAPGEF4

BCL3 MUC1 HSPA13 TRADD CXCR4 RB1

BCL6 MX1 HSPA1A TRAF1 CYCS RCN2

BDNF-AS MYC HSPA5 TRAF2 DAPK1 RELA

BECN1 MYLK HSPB1 TRIAP1 DAXX RGS16

BFAR MYO18A HTRA2 TWF1 DDIAS RHOBTB3

BHLHE40 NAIF1 ICAM1 TXNDC9 DDIT3 RIPK1

BID NAIP ID1 VDAC1 DEPP1 RIPK3

BIK NAMPT ID2 VEGFA DFFA RNF13

BIRC2 NCBP2 ID3 VWA5A DFFB SBNO2

BIRC3 NFKB1 IER2 WIPI1 DIABLO SCARNA5

BIRC5 NFKBIA IFNG XAF1 DNAJA2 SEPTIN4

BIRC7 NIBAN1 IFNGR1 XIAP DNAJB9 SF1

BLCAP NIBAN2 IGF1 ZBTB11 DOHH SGK1

BOK NMI IGF1R ZFP36 DPM1 SH2D2A

BORCS8-MEF2B NOL3 IL1B ZFP36L2 DUSP3 SHC1

CAAP1 NRAS IL2 ZNF101 OAS1 IL6

CADPS

Table 2.  Apoptosis related genes related genes list.
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Description logFC AveExpr t P.Value

HALLMARK_FATTY_ACID_METABOLISM −0.293936105 −0.012257556 −3.874085792 0.000254918

HALLMARK_OXIDATIVE_PHOSPHORYLATION −0.361378978 −0.001310023 −3.788349628 0.00033828

HALLMARK_DNA_REPAIR −0.310890651 −0.015795324 −3.657759754 0.000517149

HALLMARK_HEDGEHOG_SIGNALING 0.330376639 0.015953333 3.298647774 0.001591588

HALLMARK_TGF_BETA_SIGNALING 0.300961908 0.044537155 3.213218047 0.002059151

Table 6.  GSVA enrichment analysis results of GSE205161. GSVA: Gene Set Variation Analysis.

 

Description setSize enrichmentScore NES p.adjust qvalue

MOSERLE_IFNA_RESPONSE 30 0.71107715 2.116243197 0.002615474 0.002404414

HECKER_IFNB1_TARGETS 90 0.573355028 2.10112947 0.002615474 0.002404414

ALTEMEIER_RESPONSE_TO_LPS_WITH_MECHANICAL_VENTILATION 122 0.542306065 2.082865226 0.002615474 0.002404414

DAUER_STAT3_TARGETS_UP 42 0.589331664 1.881241667 0.023592138 0.021688334

WIERENGA_STAT5A_TARGETS_GROUP1 124 0.486092934 1.871875692 0.002615474 0.002404414

DAUER_STAT3_TARGETS_DN 46 0.553116431 1.798445882 0.041262404 0.03793267

RYAN_MANTLE_CELL_LYMPHOMA_NOTCH_DIRECT_UP 148 0.415875929 1.640396851 0.02664384 0.024493774

RYAN_MANTLE_CELL_LYMPHOMA_NOTCH_DIRECT_UP 148 0.415875929 1.640396851 0.02664384 0.024493774

WIERENGA_STAT5A_TARGETS_UP 197 0.394294523 1.610608553 0.015606993 0.014347562

HADDAD_B_LYMPHOCYTE_PROGENITOR 256 0.365816471 1.538261391 0.024607519 0.022621776

Table 5.  GSEA analysis results of dataset GSE205161. GSEA: Gene Set Enrichment Analysis.

 

Ontology ID Description GeneRatio BgRatio pvalue p.adjust

KEGG hsa04210 Apoptosis 5/11 136/8164 5.08e-07 6.71e-05

KEGG hsa04215 Apoptosis - multiple species 3/11 32/8164 8.84e-06 0.0006

KEGG hsa05169 Epstein-Barr virus infection 4/11 202/8164 0.0001 0.0046

KEGG hsa05210 Colorectal cancer 3/11 86/8164 0.0002 0.0050

KEGG hsa05222 Small cell lung cancer 3/11 92/8164 0.0002 0.0050

Table 4.  KEGG enrichment analysis results of ARDEGs. ARDEGs: Apoptosis Related Differentially Expressed 
Genes; KEGG: Kyoto Encyclopedia of Genes and Genomes.

 

Ontology ID Description GeneRatio BgRatio pvalue p.adjust

BP GO:0097191 extrinsic apoptotic signaling pathway 5/15 221/18,800 5.85e-07 0.0005

BP GO:0033209 tumor necrosis factor-mediated signaling pathway 4/15 107/18,800 1.29e-06 0.0005

BP GO:0097193 intrinsic apoptotic signaling pathway 5/15 295/18,800 2.43e-06 0.0007

BP GO:0046328 regulation of JNK cascade 4/15 141/18,800 3.88e-06 0.0008

BP GO:2,001,233 regulation of apoptotic signaling pathway 5/15 370/18,800 7.34e-06 0.0012

CC GO:0005942 phosphatidylinositol 3-kinase complex 2/15 29/19,594 0.0002 0.0116

CC GO:0001725 stress fiber 2/15 69/19,594 0.0012 0.0142

CC GO:0097517 contractile actin filament bundle 2/15 69/19,594 0.0012 0.0142

CC GO:0042641 actomyosin 2/15 77/19,594 0.0015 0.0142

CC GO:0032432 actin filament bundle 2/15 78/19,594 0.0016 0.0142

MF GO:0032813 tumor necrosis factor receptor superfamily binding 3/15 49/18,410 7.88e-06 0.0006

MF GO:0005126 cytokine receptor binding 4/15 272/18,410 5.6e-05 0.0021

MF GO:0005123 death receptor binding 2/15 21/18,410 0.0001 0.0026

MF GO:0043027 cysteine-type endopeptidase inhibitor activity involved in apoptotic process 2/15 22/18,410 0.0001 0.0026

MF GO:0043548 phosphatidylinositol 3-kinase binding 2/15 29/18,410 0.0002 0.0037

Table 3.  GO enrichment analysis results of ARDEGs. ARDEGs: Apoptosis Related Differentially Expressed 
Genes; GO: Gene Ontology; BP: Biological Process; CC: Cellular Component; MF: Molecular Function.
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circular blocks represented mRNAs, while green circular blocks represented miRNAs. Analysis of Fig. 6B and 
Supplementary table S1 revealed that 5 hub genes (ACTA2, BCL2L11, BECN1, PIK3R1, TPM4) and 109 miRNA 
molecules constituted a total of 119 mRNA-miRNA regulation networks.

The ENCORI database was utilized to predict interactions between the 10 hub genes and RNA binding proteins 
(RBPs). Only interaction pairs of mRNA-RBP that met specific criteria (clusterNum > 3, clipExpNum > 3) were 

Fig. 3.  GO and KEGG analysis of ARDEGs in pNTM disease. A-D. Bubble plot (A) and circular network 
diagram (B-D) of GO functional enrichment analysis of ARDEG. E-F. Bar chart (E) and network diagram (F) 
of KEGG enrichment analysis of ARDEGs. All pathway maps in E-F were adapted from the KEGG PATHWAY 
database12 (https://www.kegg.jp/kegg/kegg1.html).

 

Gene symbol Fold change P-value FDR adjusted P-value Level

ACTA2 −0.575833 0.0296724 0.854589 down

BCL2L11 −0.199165 0.0271955 0.854589 down

BECN1 −0.084102 0.0362548 0.854589 down

CASP9 −0.259481 0.0405043 0.854589 down

CD180 −0.446909 0.0050211 0.854589 down

DUSP3 −0.269354 0.0396067 0.854589 down

ID2 0.296980 0.0274999 0.854589 up

NAIP −0.536794 0.034888 0.854589 down

NMI −0.281283 0.0233764 0.854589 down

NOL3 −0.449407 0.0308274 0.854589 down

PIK3R1 0.305419 0.0357992 0.854589 up

PTP4A3 −0.367672 0.009567 0.854589 down

RIPK1 −0.123005 0.0274956 0.854589 down

TPM4 0.185376 0.0316854 0.854589 up

TRAF1 0.315278 0.0258597 0.854589 up

Table 7.  Information of 15 apoptosis-related differentially expressed genes (ARDEGs).
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retained, After this screening step, the resulting mRNA-RBP regulation network was visualized using Cytoscape 
software (Fig.  6C and Supplementary table S2). In this network, a total of 8 hub genes (ACTA2, BCL2L11, 
BECN1, CASP9, PIK3R1, RIPK1, TPM4, TRAF1) and 48 RBP molecules constituted 126 mRNA-RBP regulation 
networks.

Transcription factors (TFs) that bind to the hub genes were identified using the CHIPBase (version 2.0) and 
hTFtarget databases. The data obtained from these databases was intersected with the 10 hub genes, resulting in 
the identification of 9 hub genes (ACTA2, BCL2L11, BECN1, CASP9, CD180, PIK3R1, RIPK1, TPM4, TRAF1) 
that interacted with 122 TFs (Fig. 6D and table S3). In this network, sky blue circular blocks represented mRNAs, 
while purple circular blocks represented TFs.

Finally, the CTD database was used to identify potential molecular compounds associated with the 10 hub 
genes. Our results indicated that 66 potential molecular compounds interacted with 9 hub genes (ACTA2, 
BCL2L11, BECN1, CASP9, NAIP, PIK3R1, RIPK1, TPM4, TRAF1). Specific mRNA-drug interactions were 
established and shown in Fig.  6E and Supplementary Table S4. In this network, sky blue circular blocks 
represented mRNAs, while pink circular blocks represented the molecular compounds.

Differential expression analysis of ARDEGs
To thoroughly investigate the differential expression of hub genes in pNTM disease and the control group, 
the Wilcoxon signed-rank test was conducted. This test was used to compare the expression differences of 15 
ARDEGs in the GSE205161 dataset, as depicted in Fig. 7A. In total, 4 key genes (ACTA2, CD180, PIK3R1, and 
TPM4) exhibited statistical significance between the two groups. Next, we evaluated the diagnostic performance 
of 4 key genes in pNTM disease using receiver operating characteristic (ROC) curves. As illustrated in Fig. 7B-E, 
the area under the curve (AUC) for the expression of ACTA2, CD180, PIK3R1, and TPM4 was calculated to be 
0.758, 0.713, 0.742, and 0.769, respectively. These findings suggest that the 4 key genes (ACTA2, CD180, PIK3R1, 
and TPM4) possess a certain level of accuracy in diagnosing pNTM disease.

Infiltration analysis of pNTM disease dataset (CIBERSORT)
The correlation between 22 immune cells and the expression profile dataset of GSE205161 in pNTM disease 
was determined using the CIBERSORT algorithm. Based on the results of immune infiltration analysis, We 
presented the infiltration results of the 20 immune cells, whose total infiltration abundance in each sample 
of the GSE205161 dataset was greater than 0, in the form of a bar graph (Fig. 8A). Afterwards, we calculated 
the correlation between the abundance of these 20 types of immune cell infiltration in the GSE205161 dataset 
samples. Figure  8B showed that the logarithmic values of positive and negative correlation between the 
abundance of immune cell infiltration was approximately equal.

Fig. 4.  GSEA results of pNTM disease dataset GSE205161. (A) Ridge plot of five pathways. (B-F) Enrichment 
plot of individual pathway.
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Additionally, we assessed the correlation between the abundance of these 20 types of immune cell infiltration 
and the expression levels of 10 hub genes (ACTA2, BCL2L11, BECN1, CASP9, CD180, NAIP, PIK3R1, RIPK1, 
TPM4, TRAF1) in the pNTM disease group samples of the GSE205161 dataset. As shown in Fig. 8C, there was 
a significant positive correlation between immune cells and certain hub genes, such as macrophages M1 and 
BECN1, NAIP, and TPM4; neutrophils and ACTA2, BCL2L11, BECN1, CASP9, NAIP, and RIPK1; activated CD4 
memory T cells and ACTA2, BECN1, CASP9, and NAIP. Conversely, there was a significant negative correlation 
between immune cells and specific hub genes, such as macrophages M0 and PIK3R1, TRAF1; activated NK 
cells and ACTA2, BCL2L11, BECN1, CASP9, NAIP, and RIPK1; CD8 T cells and BCL2L11, BECN1, CASP9, 
and NAIP. Based on the varying expression levels of the four key genes examined in this study, We hypothesize 
that in pNTM disease, the host may exhibit an anti-inflammatory response by modulating some hub genes to 
stimulate M1-type monocyte macrophages and NK cells. Conversely, the regulation of neutrophils appears to 
have a comparatively minor anti-inflammatory impact.

Discussion
Currently, the major strains causing NTM disease include M.abscessus, M. kansasii, M. avium complex, M. 
malmoense, M. fortuitum, and M. turtles13. NTM disease is a chronic condition that can affect individuals 
of any age, although it is more common in older individuals. Most patients with NTM disease also suffer 
from underlying lung diseases such as cystic pulmonary fibrosis14, bronchiectasis15, and chronic obstructive 
pulmonary disease (COPD)16. An effective method of distinguishing NTM from M.tuberculosis is by identifying 
the type of NTM. However, when there is a clinical suspicion of NTM disease, laboratories often fail to culture 
the specific pathogen, which poses challenges for physicians. Therefore, there is an urgent need to find novel 
biomarkers that can aid in the diagnosis of NTM disease.

Apoptosis is a genetically regulated process that occurs in both pathological and physiological conditions17,18. 
It plays a crucial role in maintaining organismal homeostasis by eliminating damaged cells19,20. During infection 
with intracellular bacteria, host cells strive to limit the growth of the bacteria by inducing cell death pathways 
such as apoptosis. However, mycobacteria have evolved various strategies to disrupt apoptosis and thereby 
promote their own intracellular survival21. To investigate the impact of mycobacteria on apoptotic mechanisms, 
we utilized bioinformatics methods to examine the expression of apoptosis-related genes in patients with pNTM 
disease. We also analyzed the potential value of these genes and their complex interactions to provide a reference 
for identifying biomarkers related to NTM disease and developing treatment strategies.

Fig. 5.  GSVA results between pNTM disease and control group. (A) Heatmap of GSVA results between pNTM 
disease group and control group in GSE205161 dataset. (B) Comparison plot of GSVA results between pNTM 
disease group and control group in GSE205161 dataset. *P < 0.05, ** P < 0.01, *** P < 0.001.
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Fig. 7.  Diagnostic values of 4 key genes in the GSE205161. (A) Comparison of fifteen ARDEGs in pNTM 
disease group and control group. (B-E) The ROC curves of ACTA2 (B), CD180 (C), PIK3R1 (D), and TPM4 
(E). ** P < 0.01, * P < 0.05. ns, non-significant.

 

Fig. 6.  PPI network and mRNA-miRNAs/RBPs/TFs/drugs regulation network. (A) PPI network of hub genes. 
(B) The mRNA-miRNAs regulation network of hub genes. (C) The mRNA-RBPs regulation network of hub 
genes. (D) The mRNA-TFs regulation network of hub genes. (E) The mRNA-drugs interaction network of hub 
genes.
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In this study, we used the limma package to identify 799 DEGs with a screening criterion of p < 0.05, which 
was different from Miguel Dario Prieto et al.‘s study. The main reason was that limma package can detect more 
DEGs through linear models and empirical bayes methods, while DESeq2 uses a negative binomial distribution 
model to evaluate the data. When the false discovery rate is strictly controlled, the number of DEGs detected 
is usually smaller. Moreover we observed significant differences in four key genes (ACTA2, CD180, PIK3R1, 
TPM4) when comparing the pNTM disease group and control group. The ROC curves showed that the AUCs of 
these four genes were all above 0.7, suggesting their moderate diagnostic accuracy in diagnosing pNTM disease. 
CD180, originally detected in B cells, has been confirmed to have high similarity to TLRs and is classified as a 
member of the TLR family. Fan Z et al. reported that RP105 (CD180) regulated immune cells, leading to the 
release of inflammatory cytokines and activation of immune cells such as B cells, macrophages, and bone marrow 
monocytes22. Previous research has also shown that synthetic lipopeptide analogs of the 19 kDa lipoprotein from 
M. tuberculosis promoted CD180-mediated IL-6 and TNF secretion by macrophages23. Furthermore, Edwards 
K et al. reported that CD180 could serve as a therapeutic target and prognostic biomarker for various diseases24. 
In our study, we observed a decrease in CD180 expression in pNTM group by using the Wilcoxon signed - rank 
test, suggesting that NTM may exploit CD180 to inhibit cytokine secretion and maintain its sustained survival 
in vivo.

PIK3R1, which is an essential component of PI3K, encodes p85α25. Various signaling molecules need to 
interact with p85α subunits, which then leads to the activation of PI3K. Activated PI3K subsequently activates 
Akt to exert biological functions. FAN Z et al. reported that IL-1β mediated increase in miR-155 expression 
could inhibit PIK3R1 expression, thereby inhibiting PI3K/AKT expression and enhancing apoptosis26. Etna 
Marilena et al. found that M.tuberculosis significantly induced high expression of miR-15527. We speculate 
that M.tuberculosis may inhibit PIK3R1 expression by inducing miR-155 and this speculation needs further 
investigation. In our study, our results showed that PIK3R1 expression was more upregulated in pNTM group 
than that of control group, which may be related to the different virulence of NTM and M.tuberculosis.

TPM4 is a key member of the TPM family, responsible for maintaining cytoskeleton stability in non-muscle 
cells and facilitating contraction in smooth and skeletal muscle cells. Extensive research has been carried out on 
the role of TPM4 in the field of cancer, revealing that its overexpression promotes the proliferation of gastric 
cancer AGS cells and inhibits apoptosis28. Furthermore, TPM4 expression is positively correlated with immune 
infiltration by macrophages, NK cells, and neutrophils, implying its involvement not only in tumor progression 
but also in inflammatory responses.

ACTA2 is predominantly expressed in vascular smooth muscle cells, where it plays a pivotal role in 
promoting vascular motility and contraction. Mutations in the ACTA2 gene are known to cause various 
diffuse vasculopathies29. However, its involvement in infectious diseases has been scarcely reported. Therefore, 
further investigations are warranted to elucidate the precise function of ACTA2 in pNTM disease for a better 
understanding of the pathogenesis and potential therapeutic targets of pNTM disease.

GO and KEGG results indicated that 15 ARDEGs were primarily associated with tumor necrosis factor 
receptor superfamily binding, cytokine receptor binding, and tumour necrosis factor-mediated signalling 

Fig. 8.  Relationship of immune cell infiltration and hub genes in pNTM disease dataset. (A) Bar graph 
showing the immune infiltration results in GSE205161 dataset. (B) Display of immune cell infiltration 
abundance by heatmap analysis in GSE205161 dataset. (C) Display of relationship between hub genes and 
immune cells infiltration by dot plot.
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pathways. In the GSEA results, inflammatory signalling of IFNA and IFNB1 was found to be involved in pNTM 
disease. These pathways were associated with inflammatory reaction of M. intracellulare30,31. IFNA and IFNB1 
could induce the expression of IFN-stimulated genes (ISGs) to restrict infection. Lande R et al. reported that 
M. tuberculosis-infected DC cells release Interferons α/β, which induce CXCL10 expression, subsequently 
recruiting effector cells to participate in tuberculosis granuloma formation32. Prabhakar S et al. found that type 
I interferon could serve as a prognostic marker for chemotherapy in monitoring M. tuberculosis patients33. In 
the GSVA results, we observed a higher enrichment score for TGF-β signalling in the pNTM disease group, 
which was consistent with the existing literature that the host-produced TGF-β inhibits M. intracellular survival 
through the ERK1/2 pathway in pNTM disease34, moreover, we also observed a lower enrichment score for 
fatty acid metabolism and oxidative phosphorylation in the pNTM disease group. It was hypothesized that 
NTM infection could potentially reprogram the host’s energy metabolism, leading to metabolic remodeling. 
Previous studies showed that NTM infection could significantly alter the metabolic status of host cells, especially 
immune cells such as macrophages, including the regulation of multiple energy metabolism processes such as 
fatty acid metabolism, oxidative phosphorylation, and glycolysis35,36. This process not only impacts the efficiency 
of pathogen clearance but also has a strong correlation with the intensity of the immune response and apoptosis.

As is widely recognized, miRNAs play critical roles in the regulation of mRNA. However, the connections 
between hub genes and miRNAs in pNTM disease remain unclear. Hence, it is essential to construct regulatory 
networks for miRNA-mRNA interactions in order to investigate potential molecular mechanisms. Our findings 
revealed that hsa-miR-222-3P and hsa-miR-221-3p were targeted by PIK3R1 and BCL2L11, respectively. 
Additionally, hsa-miR-20a/b-5p, hsa-miR-93-5p, hsa-miR216b-5p, hsa-miR-17-5p, hsa-miR-519d-3p, and hsa-
miR-106a/b-5p were connected to BECN1 and BCL2L11, indicating their potential significance in pNTM disease. 
Literature reported that miRNA-221 could target PIK3R1 to hinder vasculogenesis in vivo in a zebrafish model37 
and miRNA-221/222-BCL2L11 axis played a vital role in the regulation of apoptosis38,39. Aguilo N et al. discovered 
that apoptosis induced by mycobacterium was inhibited by transfection with BCL2L11 (BIM) siRNA40. More 
recently, Luo S et al. found that BCL2L11 recruited BECN1 to microtubules, inhibiting autophagy by connecting 
DYNLL1 and BECN141. These findings suggest that BCL2L11 may have an important role in regulating apoptosis 
and autophagy. In the results of mRNA-drug interactions, we found several molecular compounds or drugs, 
such as arsenic trioxide, and doxorubicin, targeting CASP9, PIK3R1, ACTA2, and BECN1 in pNTM disease. 
Arsenic trioxide is clinically used in the treatment of glioma42 and lung cancer43. We require experiments to 
further assess the therapeutic efficacy of arsenic trioxide in treating pNTM disease. Doxorubicin has been 
demonstrated to be an inhibitor of Mtb DnaG primase which promoted bacterial DNA replication44,45. However, 
the evaluation of doxorubicin in pNTM disease requires further experimental verification. Furthermore, the 
analysis of immune cell infiltration and apoptosis gene expression uncovered the important role of apoptosis in 
NTM disease. In patients with pNTM disease, we observed that: (1) upregulated expression of the anti-apoptotic 
gene TPM4 was positively correlated with M1 macrophage infiltration; (2) increased PI3KR1 expression showed 
a negative correlation with M0 macrophage infiltration; and (3) downregulated expression of the pro-apoptotic 
gene ACTA2 was positively associated with neutrophils and CD4 + T cell infiltration but negatively correlated 
with NK cell infiltration. These findings collectively suggest that dysregulation of these apoptosis-related genes 
may facilitate NTM immune evasion.

There are certain limitations in this study. Firstly, the relatively small sample size in pNTM disease may 
have influenced the results, and the expression level of ARDEGs needs to be further validated using RT-PCR; 
secondly, NTM is an opportunistic pathogen, cases of NTM disease are relatively rare in clinical practice. Even 
if NTM is cultured positive in clinical laboratory, it may still be a colonizing bacterium in the respiratory tract, 
which is of little significance. Moreover, we do not analyze our data in comparison with other related studies 
because these datasets have differences in chip platforms, species types, and other aspects, which may present 
challenges for direct comparative analysis.Nevertheless, the present study offers a direction for investigating 
biomarkers and potential therapeutic targets for pNTM disease in the future.

In conclusion, We have successfully identified four key genes (ACTA2, CD180, PIK3R1, TPM4) that show 
moderate potential to serve as biomarkers for the diagnosis of the pNTM disease. Additionally, CASP9, PIK3R1, 
ACTA2, and BECN1 may serve as valuable therapeutic targets for the treatment of pNTM disease. This study 
significantly contributes to our understanding of the significance of diagnosing and treating pNTM disease.

Materials and methods
Data download
The dataset GSE20516111, which contains the expression profiles of cystic fibrosis (CF) patients, was obtained 
from Homo sapiens and downloaded from the GEO database46. This was achieved using the GEOquery R 
package47. As shown in Table 1, the GSE205161 dataset consists of high-throughput sequencing expression 
profiles of human whole blood samples, with some individuals exhibiting NTM infection while others serve as 
the control group without NTM disease. The dataset includes a total of 42 samples, including 12 patients with 
pNTM disease and 30 matched controls. The data platform used for this study was the GPL24676 Illumina 
NovaSeq 6000 (Homo sapiens).

The GPL platform - specific annotation files were used to annotate the probe names in the datasets. The 
subsequent analysis integrated the expression profile data of 12 pNTM patient samples, along with their 
corresponding 30 matched controls from the GSE205161 dataset.

The GeneCards database48 (https://www.GeneCards.org/) provides comprehensive information about 
human genes, including ARGs. In our study, we used the term “apoptosis” as the search keyword and only 
included ARGs with protein -coding designation and a Relevance score > 10. A total of 179 ARGs were identified 
from the GeneCards database. Furthermore, Using ‘apoptosis’ as the search keyword, we obtained BROCKE_
APOPTOSIS_REVERSED_BY_IL6 and BIOCARTA_PTEN_PATHWAY from the Molecular Signatures 
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Database (MSigDB)49. In the reference gene set, there were 162 ARGs. After merging and removing duplicates, 
a total of 325 ARGs were identified. Detailed information can be found in Table 2.

DEGs and ARDEGs identification of pNTM disease
We initially normalized the dataset GSE205161 using the limma package50 for further analysis.After that, we 
identified DEGs based on the screening criteria of | logFC | >0 and P-value < 0.05 within various groups in the 
GSE205161 dataset. DEGs with logFC < 0 and P-value < 0.05 were categorized as down-regulated genes, while 
DEGs with logFC > 0 and P-value < 0.05 were classified as up-regulated genes.

To obtain ARDEGs associated with pNTM disease, Our initial step was to intersect differentially expressed 
genes (DEGs) from the GSE205161 dataset and construct a Venn diagram. Then, the DEGs were intersected with 
ARGs to obtain ARDEGs. Finally, we used the ggplot2 R package to generate a volcano plot and the heatmap R 
package to create a heatmap, enabling visualization of the DEGs results.

ROC curve
The ROC curve51 is a comprehensive indicator that reflects the continuous variables of sensitivity and specificity, 
demonstrating the interrelationship between the two groups. A higher area under the ROC curve (AUC) value 
indicates superior diagnostic performance. An AUC value ranging from 0.5 to 0.7 suggests low accuracy, while a 
value of 0.7 to 0.9 denotes moderate accuracy. An AUC value above 0.9 indicates high accuracy. In this study, the 
ROC curve of ARDEGs in the pNTM disease dataset was plotted using the pROC package in R. The AUC was 
then calculated to evaluate the diagnostic efficacy of ARDEGs expression in pNTM disease.

GO and KEGG enrichment analysis of ARDEGs in pNTM disease
GO analysis is a widely used method for conducting comprehensive functional enrichment studies on a large 
scale, which encompasses biological process (BP), molecular function (MF), and cellular component (CC)52. 
KEGG, a database that houses extensive information on diseases, genomes, drugs, and biological pathways, 
was utilized53. The clusterprofiler R package was employed to conduct GO annotation analysis on the ARDEGs, 
adhering to a set of screening criteria, namely a P-adj < 0.05 and FDR value (q-value) < 0.05, with these 
values considered statistically significant54. The Benjamini-Hochberg (BH) method was employed for P-value 
correction to control the false discovery rate.

Gene set enrichment analysis (GSEA)
GSEA is used to assess the tendency of gene distribution in a pre-defined gene set within a gene list ranked 
based on their correlation with the phenotype55. This enables the determination of the contribution of these 
genes to the phenotype. In this study, the genes from the GSE205161 dataset were divided into two categories 
based on positive and negative logFC values. Subsequently, the clusterProfiler package was employed to perform 
enrichment analysis on all DEGs within the positive and negative logFC values. The parameters used in this 
GSEA were as follows: 2023 seeds, 1000 counts, where each gene set contained a minimum of 10 genes and a 
maximum of 500 genes. The Benjamini-Hochberg (BH) method was utilized to correct the P-values. The c2.all.
v2022.1.Hs.syndromes.gmt gene set, meeting the filtering criteria of P adj < 0.05 and FDR value (q-value) < 0.25, 
was retrieved from MsigDB.

Gene set variation analysis (GSVA)
GSVA is a non - parametric and unsupervised method. It is used to evaluate the enrichment of gene sets in the 
sample - derived transcriptome. This is achieved by transforming the matrix of gene expression levels across 
samples into gene sets across samples. The primary objective is to ascertain whether distinct biological pathways 
exhibit enrichment across the samples. In order to conduct GSVA analysis on the gene expression matrix of 
the GSE205161 dataset comparing the pNTM disease group and the control group, we searched MSigDB49 to 
acquire the “h.all.V7.4.Symbols.gmt” reference gene set. Using this reference gene set, we calculated the enriched 
pathways in the GSVA enrichment analysis results, which indicate the functional differences between the two 
groups. We considered an adjusted P - value < 0.05 to be statistically significant.

PPI networks of ARDEGs
PPI networks are formed by the interactions between individual proteins, which enable proteins to participate 
in various life processes such as gene expression regulation, biological signal transmission, and cell cycle 
regulation56. Understanding how proteins function in biological systems is crucial for comprehending protein-
protein functional links and mechanisms of biological signal transduction. The STRING database serves as a 
valuable resource for studying protein interactions, encompassing both predicted and experimentally-validated 
protein interactions57. In this study, We constructed PPI networks using the STRING database, employing a 
minimum required interaction score of medium confidence (0.400) for the screened ARDEGs. Additionally, 
We employed Cytoscape (version 3.9.1)58 to visualize the PPI network model and subsequently identified these 
ARDEGs as key genes associated with pNTM disease.

Construction of the interaction network of ARDEGs-miRNA/RBP/TF and ARDEGs-drugs
We utilized the miRDB database59 to predict miRNAs interacting with hub genes. Subsequently, we constructed 
the ARDEGs - miRNA interaction network by filtering data with a target score > 80, which was obtained from 
the miRDB database.

The ENCORI database60 provides a diverse range of visual interfaces for exploring the targets of miRNAs. 
Within this database, the interactions of miRNA-ncRNA, RBP-mRNA, miRNA-mRNA, ncRNA-RNA, RNA-
RNA, and RBP-ncRNA are based on degradome sequencing data (for plant) and CLIP-seq. Additionally, we used 
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the ENCORI database to predict RBPs, with clusternum > 3 and clipexnum > 3 as the screening criteria, and 
mapped the mRNA-RBP interaction network.

The CHIPBase database (version 3.0) is composed of thousands of binding motif matrices and their 
associated binding sites, which have been identified from ChIP-seq data. This database has predicted millions 
of transcription factors (TFs) involved in gene regulation. We identified TFs binding to hub genes using the 
ChIPBase database (version 3.0)61 and the hTFtarget database62. The resulting data were visualized using the 
Cytoscape software.

Furthermore, we predicted small molecule compounds or drugs interacting with hub genes using the 
Comparative Toxicogenomics Database (CTD)63. The results of the mRNA-drugs interaction network have been 
displayed using the Cytoscape software.

Immune infiltration analysis (CIBERSORT)
CIBERSORT64 is an algorithm used for analyzing immune infiltration, which provides estimates of the 
composition and abundance of immune cells within mixed cell populations. This is accomplished through 
linear support vector regression for deconvoluting transcriptome expression matrices. In our study, we selected 
data with an immune cell enrichment score greater than zero using the CIBERSORT package. Additionally, 
we combined the data with the LM22 feature gene matrix65 to obtain specific results related to immune cell 
infiltration abundance in the pNTM disease dataset. To assess the correlation between various immune cells in 
samples from the pNTM disease dataset, we employed the Pearson algorithm and visualized the results using the 
ggplot2 R package. Furthermore, we calculated the correlation between immune cells and hub genes in different 
groups and presented these findings using the ggplot2 R package.

Statistical analysis
R software was employed for data analysis in this study. Continuous variables were reported as means ± standard 
deviations of the samples. The Wilcoxon rank sum test was employed to compare the differences between the 
two groups. Unless explicitly stated, we calculated the correlation coefficient for all results involving different 
molecules using Spearman’s correlation analysis. A significance level of P < 0.05 was adopted as the criterion for 
statistical significance.

Data availability
This study analyzed publicly accessible datasets, which include GeneCards (https://www.GeneCards.org/), 
MSigDB (https://www.gsea-msigdb.org/gsea/msigdb/), miRDB (https://mirdb.org/), ENCORI ​(​h​t​t​p​s​:​/​/​s​t​a​r​b​a​s​
e​.​s​y​s​u​.​e​d​u​.​c​n​/​)​, CHIPBase (https://rna.sysu.edu.cn/chipbase/), hTFtarget ​(​h​t​t​p​:​/​/​b​i​o​i​n​f​o​.​l​i​f​e​.​h​u​s​t​.​e​d​u​.​c​n​/​h​T​F​t​a​
r​g​e​t​)​， Comparative Toxicogenomics Database (CTD, http://ctdbase.org/) and the GSE205161 datasets from 
Gene Expression Omnibus(GEO, https://www.ncbi.nlm.nih.gov/geo/query). All the analyzed data were ​i​n​c​l​u​d​e​
d in article and supplementary material.
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