

OPEN

Identification of apoptosis-related genes as potential biomarkers and therapeutic targets in cystic fibrosis patients progressing to pulmonary nontuberculous mycobacterial disease

Jianhua Pan¹, Aifeng Liu², Sifang Xiao¹ & Xiaohua Ma¹✉

Pulmonary Non-tuberculous mycobacteria (pNTM) disease, often associated with underlying lung diseases, refers to a class of diseases in which humans are infected with Non-tuberculous mycobacteria (NTM), leading to pathological changes in the lungs. It is believed that the regulation of apoptosis by NTM contributes to their persistent infection. However, the roles of apoptosis - related genes in pNTM disease remain unclear. Here, we downloaded the expression profile of GSE205161 from the Gene Expression Omnibus (GEO) database to identify differentially expressed genes (DEGs) between pNTM patients and control samples. We then intersected the DEGs with apoptosis - related genes (ARGs). As a result, we obtained fifteen apoptosis - related differentially expressed genes (ARDEGs). Through GO and KEGG pathway analyses, we found that fifteen ARDEGs were primarily enriched in the TNF - mediated signaling pathway, cytokine receptor binding, regulation of JNK cascade, and TNF receptor superfamily binding. Additionally, we identified four key genes (ACTA2, CD180, PIK3R1, TPM4) as biomarkers with moderate potential for diagnosing pNTM disease using the Receiver Operating Characteristic (ROC) curve analysis. By analyzing the RNA regulation networks, we found that arsenic trioxide and doxorubicin could potentially target CASP9, PIK3R1, ACTA2, and BECN1 for treating pNTM disease. The present study provides a basis for investigating biomarkers and potential therapeutic targets for pNTM disease in the future.

Keywords Pulmonary nontuberculous mycobacterial disease, Apoptosis, Bioinformatic analysis, Apoptosis related genes, Biomarkers, Drug target

Non-tuberculous mycobacteria (NTM) are opportunistic pathogens that can be found in various environments, including soil and tap water^{1,2}. At present, there are over 200 reported NTM strains/subspecies in clinical practice, including *Mycobacterium intracellulare*, *Mycobacterium kansasii*, *Mycobacterium avium*, *Mycobacterium abscessus* complex, *Mycobacterium gordonaiae*, *Mycobacterium fortuitum*, *Mycobacterium cosmeticum*, *Mycobacterium peregrinum*, *Mycobacterium simiae*, etc. However, a single positive NTM culture alone is not enough to diagnose NTM disease. To make an accurate diagnosis, the guideline recommends considering three factors: multiple isolations of the same bacterium, corresponding clinical symptoms, and radiographic evidence³. NTM disease is a chronic infectious condition that can affect multiple organs in humans, but it primarily targets lung tissue, accounting for approximately 70% to 80% of cases⁴. Pulmonary Non-tuberculous mycobacteria (pNTM) disease, often present alongside underlying lung diseases, refers to a group of disorders where NTM infects humans and causes pathological changes in the lungs. Since pNTM disease exhibits similar clinical characteristics to tuberculosis and has a high resistance rate to anti-tuberculosis drugs, distinguishing between the two can be

¹Department of Laboratory, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, No.161, Shaoshan South Road, Changsha 410004, Changsha, Hunan, China. ²Department of Pathology, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China. ✉email: 2018050711@usc.edu.cn

challenging⁵. Hence, the development of new diagnostic methods is crucial for accurately identifying and differentiating pNTM disease.

Apoptosis plays a critical role in maintaining the immune defense system. It not only ensures the homeostasis of the immune system, but also significantly impacts the progression and severity of diseases. Host cells employ apoptosis as a mechanism to protect against pathogens such as bacteria and viruses⁶. The relationship among pathogens, hosts, and apoptosis is intricate⁷. Danelishvili et al. made an important discovery regarding the impact of *Mycobacterium tuberculosis* (*M. tuberculosis*) on cell apoptosis. Highly toxic *M. tuberculosis* strains may inhibit cell apoptosis to promote their own growth and reproduction within cells, while weakly virulent strains induce significant host cell apoptosis⁸. They also observed various changes in the expression of pro-apoptotic genes and inhibitors of apoptosis in infected alveolar epithelial cells and macrophages⁸. These findings suggest that mycobacteria employ different survival strategies depending on the host organism, and that apoptosis plays a crucial role in determining the prognosis of mycobacterial diseases. However, the specific apoptotic genes involved in pNTM disease and their impact on the disease remain unknown.

Next-generation sequencing technology and bioinformatics analysis have been extensively used to investigate differentially expressed genes (DEGs) and their gene networks in pNTM disease. These networks provide comprehensive insights into the regulation of mRNA and the evaluation of drug targets for pNTM disease. It has been observed that NTM can cause persistent infection in patients, but the immune system is unable to eradicate it promptly. One of the main features of the relationship between NTM infection and apoptosis is that it is bidirectional and regulatory^{9,10}. NTM avoids immune clearance by suppressing host cell apoptosis, thereby enhancing its intracellular survival. Simultaneously, NTM has the capacity to induce apoptosis, either as a host defense mechanism or to cause tissue damage. This intricate interaction involves cross-regulation between autophagy and apoptosis, ultimately influencing infection progression and the immune response. Therefore, conducting in-depth bioinformatics analysis to explore apoptosis-related differentially expressed genes (ARDEGs) can assist in the identification of potential diagnostic biomarkers and the exploration of drug targets for pNTM disease. Additionally, a study by Prieto MD et al. provided data on whole - blood gene expression in pulmonary nontuberculous mycobacterial infection¹¹. The data included 12 patients who progressed to pNTM disease (detected with 7 strains of *M. avium complex* and 5 strains of *M. abscessus complex*) and 30 patients who did not progress to pNTM disease (detected with 15 strains of *M. avium complex*, 7 strains of *M. abscessus complex*, 3 strains of *M. gordonae*, 2 strains of *M. fortuitum*, 1 strain of *M. cosmeticum*, 1 strain of *M. peregrinum*, and 1 strain of *M. simiae*). Those data serve as a valuable resource for further investigation of pNTM disease.

In this study, we utilized the expression profile dataset GSE205161 of cystic fibrosis patients from the GEO database. We extracted apoptosis - related genes (ARGs) from the GeneCards database. Then, we intersected these ARGs with the differentially expressed genes (DEGs) to identify ARDEGs in patients with pNTM disease. Subsequently, we performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses of the ARDEGs. Furthermore, we investigated various molecular mechanisms, including the protein-protein interaction (PPI) network, mRNA regulatory networks of ARDEGs, ARDEGs-drugs interaction network, and immune infiltration analysis. Ultimately, we pinpointed pivotal diagnostic biomarkers and drug targets for pNTM disease, offering a robust experimental foundation for future research.

Results

Identification of apoptosis-related genes in pNTM disease

Figure 1 illustrates the identification process of apoptosis-related biomarkers in pNTM disease. We analyzed the expression profiles from GSE205161 to identify differentially expressed genes (DEGs). Subsequently, we intersected these DEGs with apoptosis - related genes (ARGs) and obtained 15 ARDEGs. We then performed GO and KEGG pathway analyses. After that, we constructed protein - protein interaction (PPI) and mRNA regulation networks, conducted immune infiltration analysis using CIBERSORT, and carried out differential expression analysis. Finally, four hub genes (ACTA2, CD180, PIK3R1, TPM4) were identified as potential diagnostic biomarkers for pNTM disease.

Normalization and differential analysis of the NTM dataset

The NTM disease dataset GSE205161 was first normalized using the limma package (This study was exclusively based on the single-batch dataset GSE205161, with no cross-batch integration scenario involved). A total of 42 samples were obtained from the GSE205161 dataset, comprising 30 control samples and 12 pNTM disease group samples. Figure 2A-B demonstrate that after normalizing the expression profile data of pNTM disease, the normalization among samples was significantly reduced and the expression profiles of the GSE205161 dataset became more consistent. Principal Component Analysis (PCA) of the expression matrix of the GSE205161 dataset was then conducted to validate the effectiveness of normalization, as shown in Fig. 2C-D.

The limma package was utilized to normalize the data of the pNTM disease patients and control group in order to analyze the differences in gene expression between the two groups. Using the criteria of $|\log FC| > 0$ and $P\text{-value} < 0.05$, we obtained 799 DEGs from a total of 17,186 genes in the GSE205161 dataset. Among these DEGs, there were 357 genes with high expression and 442 genes with low expression in the pNTM disease group compared to the control group, shown in the volcano plot (Fig. 2E). Furthermore, we conducted a venn diagram analysis to identify the overlap between the DEGs and ARGs in the GSE205161 dataset. This analysis identified 15 ARDEGs, as shown in Fig. 2F; Tables 1, 2, 3, 4, 5, 6 and 7. The differential analysis results of these 15 ARDEGs were visualized using a heatmap (Fig. 2G).

GO and KEGG analysis of ARDEGs in pNTM disease

Function enrichment analysis was conducted to examine the relationship between pNTM disease and biological pathways, such as molecular function (MF), cellular component (CC), and biological process (BP)

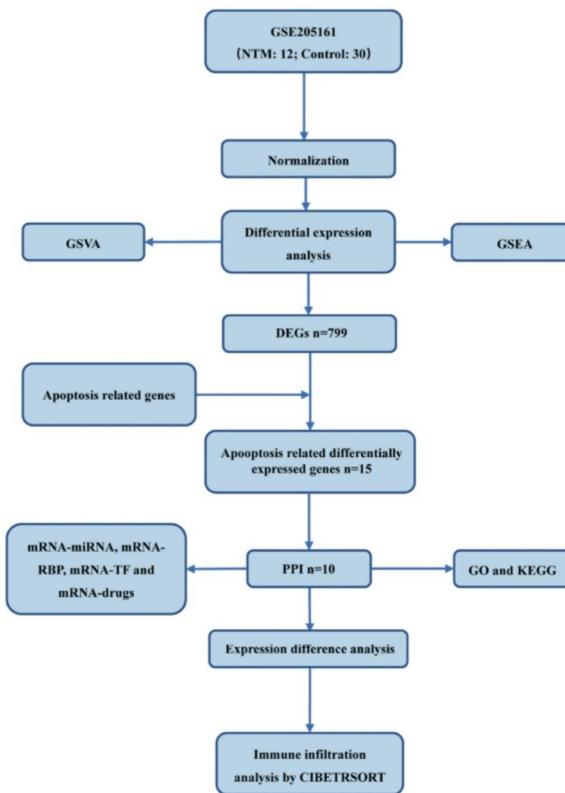


Fig. 1. Technological flowchart of identification of apoptosis-related genes from GEO databases.

with screening criteria of adjusted P - value < 0.05 and FDR value (q-value) < 0.05 , which indicated statistical significance. The results, displayed in bubble plots (Fig. 3A; Table 3), demonstrated that the 15 ARDEGs were primarily enriched in GO-MF items such as death receptor binding, tumor necrosis factor receptor superfamily binding, phosphatidylinositol 3-kinase binding, cytokine receptor binding, and the apoptotic process regulated by cysteine - type endopeptidase inhibitor activity. Furthermore, they were enriched in GO-CC items such as phosphatidylinositol 3-kinase complex, actin filament bundle, stress fiber, actomyosin, and contractile actin filament bundle. Additionally, the 15 ARDEGs were enriched in GO-BP items such as intrinsic apoptotic signaling pathway, extrinsic apoptotic signaling pathway, regulation of apoptotic signaling pathway, TNF-mediated signaling pathway, and regulation of JNK cascade. Network diagrams depicting the pathways of MF, CC, and BP in the GO enrichment analysis were also displayed (Fig. 3B-D).

Moreover, a KEGG enrichment pathway analysis was performed on the 15 ARDEGs (Table 4). The bar graphs (Fig. 3E) showed that the 15 ARDEGs were significantly enriched in Epstein-Barr virus infection, apoptosis, small cell lung cancer, apoptosis-multiple species, and colorectal cancer. The network graph (Fig. 3F) displayed hub genes, such as TRAF1, PI3KR1, and CASP9, which were involved in small cell lung cancer based on the KEGG pathways. These findings suggested that persistent infection in pNTM disease may be associated with the development of lung cancer and warrant further investigation.

GSEA results in pNTM disease dataset

To gain insights into the impact of gene expression levels on pNTM disease, an analysis of all genes and biological processes involved in the GSE205161 dataset was conducted using GSEA. The results, presented in Table 5; Fig. 4, identified the top 5 pathways of DEGs in the GSE205161 dataset. These pathways were visually represented in a ridge plot (Fig. 4A) and predominantly enriched in the IFNA response (Fig. 4B), IFNB1 targets (Fig. 4C), response to LPS with mechanical ventilation (Fig. 4D), STAT3 targets up (Fig. 4E), and STAT5A targets group1 (Fig. 4F) in the pNTM disease group as compared to the control group.

GSVA results of DEGs between disease and control group

To investigate the disparity of hallmark gene sets between the pNTM disease patients and control group, we conducted Gene Set Variation Analysis (GSVA) using the GSE205161 dataset (Fig. 5; Table 6). As shown in Fig. 5, five hallmark gene sets, namely fatty acid metabolism, oxidative phosphorylation, DNA repair, hedgehog signaling, and TGF beta signaling, exhibit significant differences between the two groups (adjusted P - value < 0.05). Notably, the enrichment scores of the hallmark pathways of hedgehog signaling and TGF beta signaling in the pNTM disease group was higher than that of the control group ($P_{adj} < 0.05$). Conversely, the control group showed higher enrichment scores for the hallmark pathways of DNA repair, fatty acid metabolism,

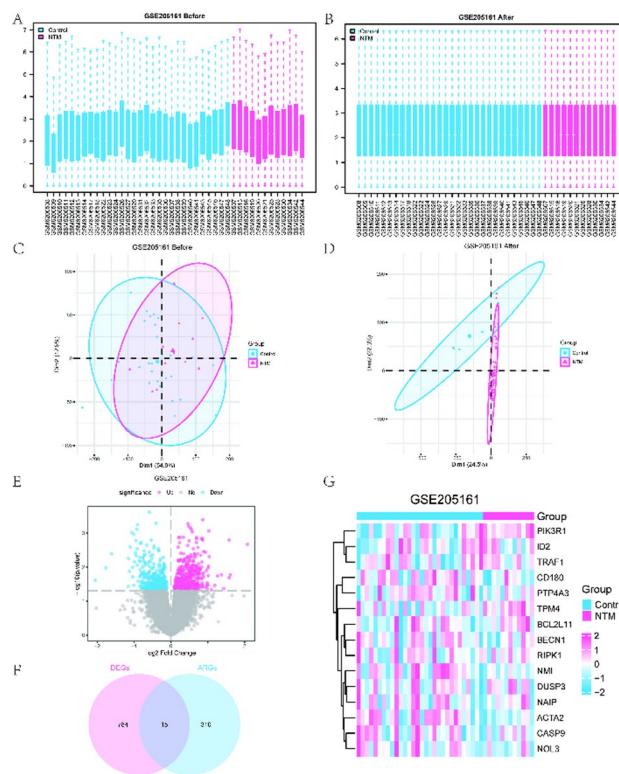


Fig. 2. Normalization and differential analysis of the NTM dataset. **A-B.** Boxplot of expression profiles of GSE205161 dataset before normalization (A) and after normalization (B). **C-D.** PCA plot of GSE205161 before normalization treatment (C) and after normalization treatment (D). **(E).** Volcano plot of DEGs analysis in pNTM disease group relative to control group of GSE205161 dataset. **(F).** Venn diagram of obtaining 15 ARDEGs from ARGs and DEGs in GSE205161 dataset. **(G).** Heatmap of differential analysis of 15 ARDEGs in GSE205161 dataset. PCA: Principal Component Analysis; pNTM disease: pulmonary nontuberculous mycobacteria disease; DEGs: Differentially Expressed Genes; ARGs: apoptosis related genes; ARDEGs: apoptosis related differentially expressed genes.

	GSE205161
Platform	GPL24676
Type	Expression profiling by high throughput sequencing
Species	Homo sapiens
Tissue	Whole blood
Samples in NTM group	12
Samples in Control group	30
Reference	Whole blood RNA-seq demonstrates an increased host immune response in individuals with cystic fibrosis who develop nontuberculous mycobacterial pulmonary disease.

Table 1. List of nontuberculous mycobacteria datasets information. NTM: Nontuberculous mycobacteria.

and oxidative phosphorylation compared to those in the pNTM disease (adjusted P - value < 0.05). Furthermore, the specific results were effectively visualized through a heatmap in Fig. 5A, while Fig. 5B utilized a comparison plot with the Mann-Whitney U test to present the differences between the two groups.

PPI network and mRNA regulation networks of ARDEGs

The STRING database was used to conduct a PPI network analysis for fifteen ARDEGs within the pNTM disease dataset. After we selecting ARDEGs that had connections with other nodes, a total of 10 hub genes (ACTA2, BCL2L11, BECN1, CASP9, CD180, NAIP, PIK3R1, RIPK1, TPM4, TRAF1) were obtained, and a PPI network was constructed (Fig. 6A).

The miRDB database was used to predict target microRNAs (miRNAs) for the 10 hub genes, and the resulting mRNA-miRNA interaction network was visualized using Cytoscape software (Fig. 6B). In this network, sky blue

Apoptosis related genes					
AATBC	IL6ST	DUSP5	SIK1	CASP1	PAN2
AATF	ILK	DYRK3	SIRT1	CASP10	PARP1
AATK	IRAG2	E2F1	SIVA1	CASP14	PAWR
ABL1	IRF1	ECSCR	SLA	CASP2	PDCD6
ACP3	IRF4	EEF1E1	SLC16A6	CASP3	PDGFRA
ACTA2	IRF9	EGFR	SLC2A3	CASP4	PDK2
ADIPORE2	ITGB1	EIF4E	SOCS1	CASP5	PDPK1
AEN	JUN	EIF5	SOCS3	CASP6	PEA15
AIFM1	JUNB	ELAPOR1	SOD2-OT1	CASP7	PERP
AIFM2	KRAS	ELAPOR2	SOS1	CASP8	PHTF2
AIFM3	LDLR	ELL2	SOX2	CASP9	PIK3CA
AKT1	LINC01672	EPB41L2	SPP1	CAT	PIK3CG
AKT2	LITAF	ESR1	SREK1IP1	CAV2	PIK3R1
AMPD1	LPCAT4	EVI2A	SRPK2	CCAR1	PIM1
ANAPC10	LTBP1	EVI2B	ST3GAL6	CCAR2	PIM2
ANXA5	MAFF	FADD	STAT1	CCL2	PLEKHB2
AP1S2	MAP1B	FAM30A	STAT3	CCNC	PLSCR1
APAF1	MAP2K1	FAM3C	STK17B	CCND1	PMAIP1
API5	MAP3K5	FAS	TGFB1	CD180	PNO1
APP	MAP3K8	FASLG	TGIF1	CD40	POLR3F
AREL1	MAPK1	FLOT1	TMED7	CD44	POU2AF1
ARFGAP3	MAPK10	FOXO3	TMEM184B	CD8B	POU2F2
ATM	MAPK14	GADD45A	TMF1	CDK1	PPARG
ATP2B4	MAPK3	GADD45B	TMX2-CTNND1	CDK17	PPP1R13B
AVEN	MAPK8	GAS5	TNF	CDK2	PRDM1
BAD	MAPK9	GAS6	TNFRSF10A	CDKN1A	PRKCD
BAK1	MAPKAPK2	GATM	TNFRSF10B	CDKN1B	PTEN
BAX	MARCKS	GNA13	TNFRSF10C	CDKN2A	PTGS2
BBC3	MAZ	GRB2	TNFRSF10D	CEBPB	PTK2
BCAR1	MCL1	GZMB	TNFRSF1A	CERNA3	PTP4A1
BCL2	MDM2	H19	TNFRSF25	CFLAR	PTP4A3
BCL2A1	MEG3	HBEGF	TNFSF10	CHEK2	PTPN11
BCL2L1	MIR7-3HG	HCK	TNFSF12	CHST15	PTPRG
BCL2L10	MOAP1	HDAC9	TP53	CHUK	PYCARD
BCL2L11	MSMO1	HEG1	TP53AIP1	CIAPIN1	RAD1
BCL2L13	MT1H	HIF1A	TP53BP2	CLU	RAF1
BCL2L14	MT1X	HNRNPU	TP73	CSE1L	RALA
BCL2L2	MTOR	HRK	TPM4	CTNNB1	RAPGEF4
BCL3	MUC1	HSPA13	TRADD	CXCR4	RB1
BCL6	MX1	HSPA1A	TRAF1	CYCS	RCN2
BDNF-AS	MYC	HSPA5	TRAF2	DAPK1	RELA
BECN1	MYLK	HSPB1	TRIAP1	DAXX	RGS16
BFAR	MYO18A	HTRA2	TWF1	DDIAS	RHOBTB3
BHLHE40	NAIF1	ICAM1	TXNDC9	DDIT3	RIPK1
BID	NAIP	ID1	VDAC1	DEPP1	RIPK3
BIK	NAMPT	ID2	VEGFA	DFFA	RNF13
BIRC2	NCBP2	ID3	VWA5A	DFFB	SBNO2
BIRC3	NFKB1	IER2	WIP1	DIABLO	SCARNA5
BIRC5	NFKBIA	IFNG	XAF1	DNAJA2	SEPTIN4
BIRC7	NIBAN1	IFNGR1	XIAP	DNAJB9	SF1
BLCAP	NIBAN2	IGF1	ZBTB11	DOHH	SGK1
BOK	NMI	IGF1R	ZFP36	DPM1	SH2D2A
BORCS8-MEF2B	NOL3	IL1B	ZFP36L2	DUSP3	SHC1
CAAP1	NRAS	IL2	ZNF101	OAS1	IL6
CADPS					

Table 2. Apoptosis related genes related genes list.

Ontology	ID	Description	GeneRatio	BgRatio	pvalue	p.adjust
BP	GO:0097191	extrinsic apoptotic signaling pathway	5/15	221/18,800	5.85e-07	0.0005
BP	GO:0033209	tumor necrosis factor-mediated signaling pathway	4/15	107/18,800	1.29e-06	0.0005
BP	GO:0097193	intrinsic apoptotic signaling pathway	5/15	295/18,800	2.43e-06	0.0007
BP	GO:0046328	regulation of JNK cascade	4/15	141/18,800	3.88e-06	0.0008
BP	GO:2,001,233	regulation of apoptotic signaling pathway	5/15	370/18,800	7.34e-06	0.0012
CC	GO:0005942	phosphatidylinositol 3-kinase complex	2/15	29/19,594	0.0002	0.0116
CC	GO:0001725	stress fiber	2/15	69/19,594	0.0012	0.0142
CC	GO:0097517	contractile actin filament bundle	2/15	69/19,594	0.0012	0.0142
CC	GO:0042641	actomyosin	2/15	77/19,594	0.0015	0.0142
CC	GO:0032432	actin filament bundle	2/15	78/19,594	0.0016	0.0142
MF	GO:0032813	tumor necrosis factor receptor superfamily binding	3/15	49/18,410	7.88e-06	0.0006
MF	GO:0005126	cytokine receptor binding	4/15	272/18,410	5.6e-05	0.0021
MF	GO:0005123	death receptor binding	2/15	21/18,410	0.0001	0.0026
MF	GO:0043027	cysteine-type endopeptidase inhibitor activity involved in apoptotic process	2/15	22/18,410	0.0001	0.0026
MF	GO:0043548	phosphatidylinositol 3-kinase binding	2/15	29/18,410	0.0002	0.0037

Table 3. GO enrichment analysis results of ARDEGs. ARDEGs: Apoptosis Related Differentially Expressed Genes; GO: Gene Ontology; BP: Biological Process; CC: Cellular Component; MF: Molecular Function.

Ontology	ID	Description	GeneRatio	BgRatio	pvalue	p.adjust
KEGG	hsa04210	Apoptosis	5/11	136/8164	5.08e-07	6.71e-05
KEGG	hsa04215	Apoptosis - multiple species	3/11	32/8164	8.84e-06	0.0006
KEGG	hsa05169	Epstein-Barr virus infection	4/11	202/8164	0.0001	0.0046
KEGG	hsa05210	Colorectal cancer	3/11	86/8164	0.0002	0.0050
KEGG	hsa05222	Small cell lung cancer	3/11	92/8164	0.0002	0.0050

Table 4. KEGG enrichment analysis results of ARDEGs. ARDEGs: Apoptosis Related Differentially Expressed Genes; KEGG: Kyoto Encyclopedia of Genes and Genomes.

Description	setSize	enrichmentScore	NES	p.adjust	qvalue
MOSERLE_IFNA_RESPONSE	30	0.71107715	2.116243197	0.002615474	0.002404414
HECKER_IFNB1_TARGETS	90	0.573355028	2.10112947	0.002615474	0.002404414
ALTEMEIER_RESPONSE_TO_LPS_WITH_MECHANICAL_VENTILATION	122	0.542306065	2.082865226	0.002615474	0.002404414
DAUER_STAT3_TARGETS_UP	42	0.589331664	1.881241667	0.023592138	0.021688334
WIERENGA_STAT5A_TARGETS_GROUP1	124	0.486092934	1.871875692	0.002615474	0.002404414
DAUER_STAT3_TARGETS_DN	46	0.553116431	1.798445882	0.041262404	0.03793267
RYAN_MANTLE_CELL_LYMPHOMA_NOTCH_DIRECT_UP	148	0.415875929	1.640396851	0.02664384	0.024493774
RYAN_MANTLE_CELL_LYMPHOMA_NOTCH_DIRECT_UP	148	0.415875929	1.640396851	0.02664384	0.024493774
WIERENGA_STAT5A_TARGETS_UP	197	0.394294523	1.610608553	0.015606993	0.014347562
HADDAD_B_LYMPHOCYTE_PROGENITOR	256	0.365816471	1.538261391	0.024607519	0.022621776

Table 5. GSEA analysis results of dataset GSE205161. GSEA: Gene Set Enrichment Analysis.

Description	logFC	AveExpr	t	P.Value
HALLMARK_FATTY_ACID_METABOLISM	-0.293936105	-0.012257556	-3.874085792	0.000254918
HALLMARK_OXIDATIVE_PHOSPHORYLATION	-0.361378978	-0.001310023	-3.788349628	0.00033828
HALLMARK_DNA_REPAIR	-0.310890651	-0.015795324	-3.657759754	0.000517149
HALLMARK_HEDGEHOG_SIGNALING	0.330376639	0.015953333	3.298647774	0.001591588
HALLMARK_TGF_BETA_SIGNALING	0.300961908	0.044537155	3.213218047	0.002059151

Table 6. GSVA enrichment analysis results of GSE205161. GSVA: Gene Set Variation Analysis.

Gene symbol	Fold change	P-value	FDR adjusted P-value	Level
ACTA2	-0.575833	0.0296724	0.854589	down
BCL2L11	-0.199165	0.0271955	0.854589	down
BECN1	-0.084102	0.0362548	0.854589	down
CASP9	-0.259481	0.0405043	0.854589	down
CD180	-0.446909	0.0050211	0.854589	down
DUSP3	-0.269354	0.0396067	0.854589	down
ID2	0.296980	0.0274999	0.854589	up
NAIP	-0.536794	0.034888	0.854589	down
NMI	-0.281283	0.0233764	0.854589	down
NOL3	-0.449407	0.0308274	0.854589	down
PIK3R1	0.305419	0.0357992	0.854589	up
PTP4A3	-0.367672	0.009567	0.854589	down
RIPK1	-0.123005	0.0274956	0.854589	down
TPM4	0.185376	0.0316854	0.854589	up
TRAF1	0.315278	0.0258597	0.854589	up

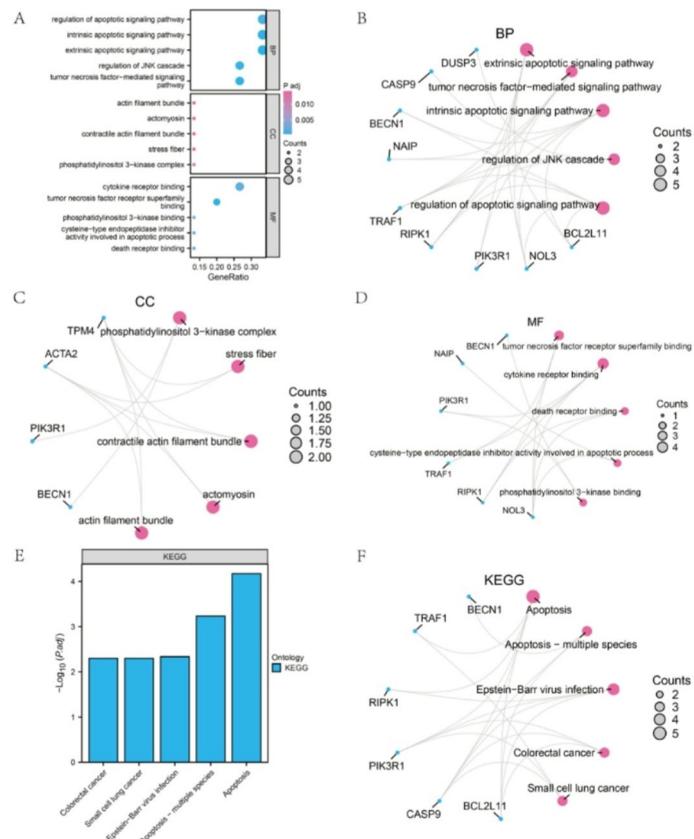
Table 7. Information of 15 apoptosis-related differentially expressed genes (ARDEGs).

Fig. 3. GO and KEGG analysis of ARDEGs in pNTM disease. **A-D.** Bubble plot (A) and circular network diagram (B-D) of GO functional enrichment analysis of ARDEG. **E-F.** Bar chart (E) and network diagram (F) of KEGG enrichment analysis of ARDEGs. All pathway maps in E-F were adapted from the KEGG PATHWAY database¹² (<https://www.kegg.jp/kegg/kegg1.html>).

circular blocks represented mRNAs, while green circular blocks represented miRNAs. Analysis of Fig. 6B and Supplementary table S1 revealed that 5 hub genes (ACTA2, BCL2L11, BECN1, PIK3R1, TPM4) and 109 miRNA molecules constituted a total of 119 mRNA-miRNA regulation networks.

The ENCORI database was utilized to predict interactions between the 10 hub genes and RNA binding proteins (RBPs). Only interaction pairs of mRNA-RBP that met specific criteria (clusterNum > 3, clipExpNum > 3) were

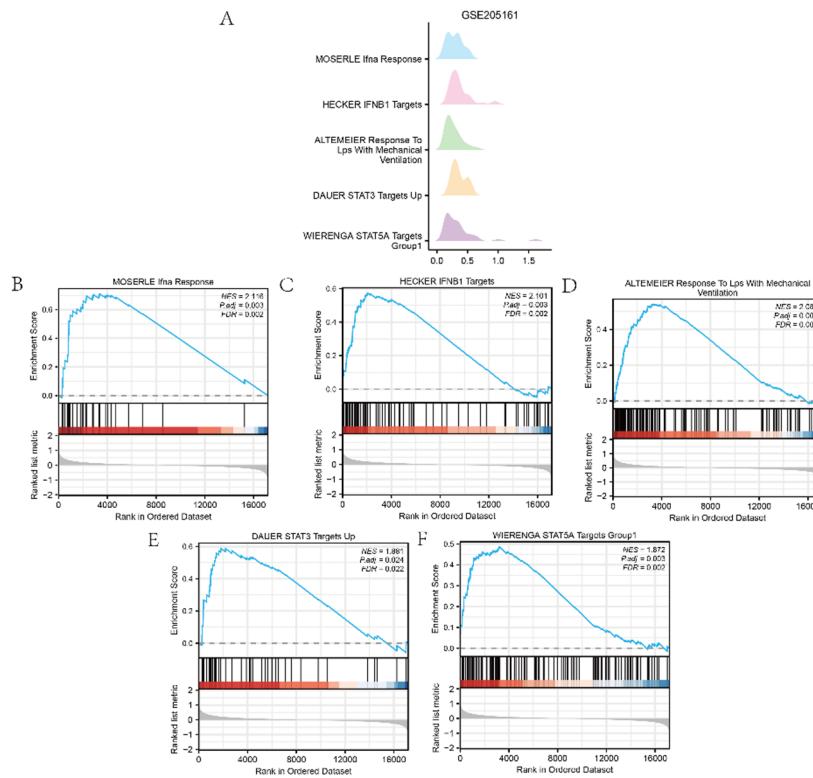


Fig. 4. GSEA results of pNTM disease dataset GSE205161. **(A)** Ridge plot of five pathways. **(B-F)** Enrichment plot of individual pathway.

retained. After this screening step, the resulting mRNA-RBP regulation network was visualized using Cytoscape software (Fig. 6C and Supplementary table S2). In this network, a total of 8 hub genes (ACTA2, BCL2L11, BECN1, CASP9, PIK3R1, RIPK1, TPM4, TRAF1) and 48 RBP molecules constituted 126 mRNA-RBP regulation networks.

Transcription factors (TFs) that bind to the hub genes were identified using the CHIPBase (version 2.0) and hTFtarget databases. The data obtained from these databases was intersected with the 10 hub genes, resulting in the identification of 9 hub genes (ACTA2, BCL2L11, BECN1, CASP9, CD180, PIK3R1, RIPK1, TPM4, TRAF1) that interacted with 122 TFs (Fig. 6D and table S3). In this network, sky blue circular blocks represented mRNAs, while purple circular blocks represented TFs.

Finally, the CTD database was used to identify potential molecular compounds associated with the 10 hub genes. Our results indicated that 66 potential molecular compounds interacted with 9 hub genes (ACTA2, BCL2L11, BECN1, CASP9, NAIP, PIK3R1, RIPK1, TPM4, TRAF1). Specific mRNA-drug interactions were established and shown in Fig. 6E and Supplementary Table S4. In this network, sky blue circular blocks represented mRNAs, while pink circular blocks represented the molecular compounds.

Differential expression analysis of ARDEGs

To thoroughly investigate the differential expression of hub genes in pNTM disease and the control group, the Wilcoxon signed-rank test was conducted. This test was used to compare the expression differences of 15 ARDEGs in the GSE205161 dataset, as depicted in Fig. 7A. In total, 4 key genes (ACTA2, CD180, PIK3R1, and TPM4) exhibited statistical significance between the two groups. Next, we evaluated the diagnostic performance of 4 key genes in pNTM disease using receiver operating characteristic (ROC) curves. As illustrated in Fig. 7B-E, the area under the curve (AUC) for the expression of ACTA2, CD180, PIK3R1, and TPM4 was calculated to be 0.758, 0.713, 0.742, and 0.769, respectively. These findings suggest that the 4 key genes (ACTA2, CD180, PIK3R1, and TPM4) possess a certain level of accuracy in diagnosing pNTM disease.

Infiltration analysis of pNTM disease dataset (CIBERSORT)

The correlation between 22 immune cells and the expression profile dataset of GSE205161 in pNTM disease was determined using the CIBERSORT algorithm. Based on the results of immune infiltration analysis, We presented the infiltration results of the 20 immune cells, whose total infiltration abundance in each sample of the GSE205161 dataset was greater than 0, in the form of a bar graph (Fig. 8A). Afterwards, we calculated the correlation between the abundance of these 20 types of immune cell infiltration in the GSE205161 dataset samples. Figure 8B showed that the logarithmic values of positive and negative correlation between the abundance of immune cell infiltration was approximately equal.

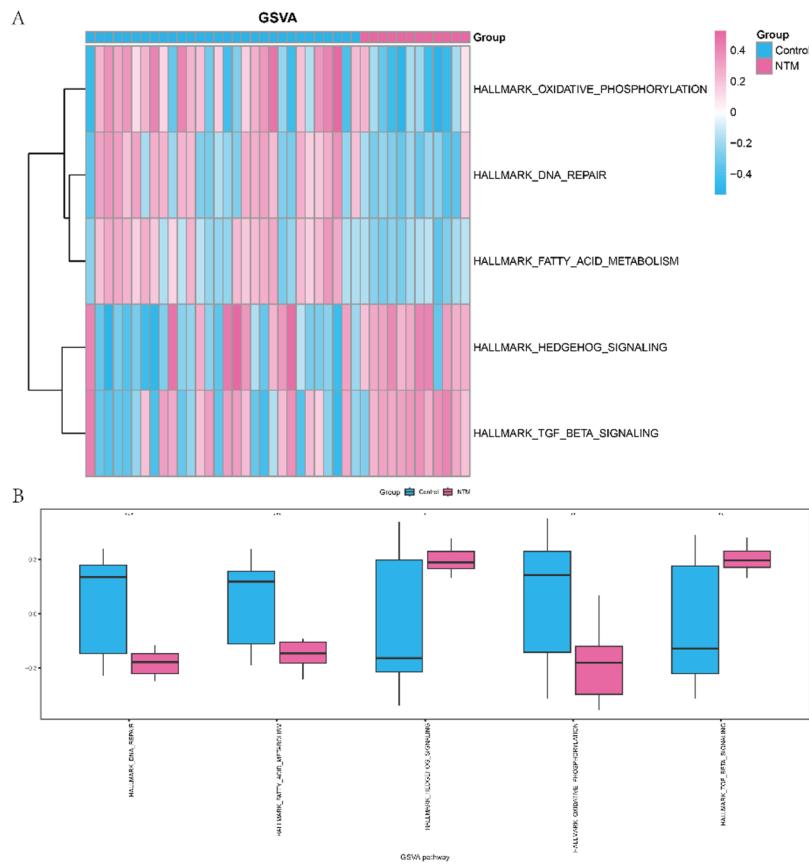


Fig. 5. GSVA results between pNTM disease and control group. **(A)** Heatmap of GSVA results between pNTM disease group and control group in GSE205161 dataset. **(B)** Comparison plot of GSVA results between pNTM disease group and control group in GSE205161 dataset. * $P<0.05$, ** $P<0.01$, *** $P<0.001$.

Additionally, we assessed the correlation between the abundance of these 20 types of immune cell infiltration and the expression levels of 10 hub genes (ACTA2, BCL2L11, BECN1, CASP9, CD180, NAIP, PIK3R1, RIPK1, TPM4, TRAF1) in the pNTM disease group samples of the GSE205161 dataset. As shown in Fig. 8C, there was a significant positive correlation between immune cells and certain hub genes, such as macrophages M1 and BECN1, NAIP, and TPM4; neutrophils and ACTA2, BCL2L11, BECN1, CASP9, NAIP, and RIPK1; activated CD4 memory T cells and ACTA2, BECN1, CASP9, and NAIP. Conversely, there was a significant negative correlation between immune cells and specific hub genes, such as macrophages M0 and PIK3R1, TRAF1; activated NK cells and ACTA2, BCL2L11, BECN1, CASP9, NAIP, and RIPK1; CD8 T cells and BCL2L11, BECN1, CASP9, and NAIP. Based on the varying expression levels of the four key genes examined in this study, We hypothesize that in pNTM disease, the host may exhibit an anti-inflammatory response by modulating some hub genes to stimulate M1-type monocyte macrophages and NK cells. Conversely, the regulation of neutrophils appears to have a comparatively minor anti-inflammatory impact.

Discussion

Currently, the major strains causing NTM disease include *M. abscessus*, *M. kansasi*, *M. avium complex*, *M. malmoense*, *M. fortuitum*, and *M. turtles*¹³. NTM disease is a chronic condition that can affect individuals of any age, although it is more common in older individuals. Most patients with NTM disease also suffer from underlying lung diseases such as cystic pulmonary fibrosis¹⁴, bronchiectasis¹⁵, and chronic obstructive pulmonary disease (COPD)¹⁶. An effective method of distinguishing NTM from *M. tuberculosis* is by identifying the type of NTM. However, when there is a clinical suspicion of NTM disease, laboratories often fail to culture the specific pathogen, which poses challenges for physicians. Therefore, there is an urgent need to find novel biomarkers that can aid in the diagnosis of NTM disease.

Apoptosis is a genetically regulated process that occurs in both pathological and physiological conditions^{17,18}. It plays a crucial role in maintaining organismal homeostasis by eliminating damaged cells^{19,20}. During infection with intracellular bacteria, host cells strive to limit the growth of the bacteria by inducing cell death pathways such as apoptosis. However, mycobacteria have evolved various strategies to disrupt apoptosis and thereby promote their own intracellular survival²¹. To investigate the impact of mycobacteria on apoptotic mechanisms, we utilized bioinformatics methods to examine the expression of apoptosis-related genes in patients with pNTM disease. We also analyzed the potential value of these genes and their complex interactions to provide a reference for identifying biomarkers related to NTM disease and developing treatment strategies.

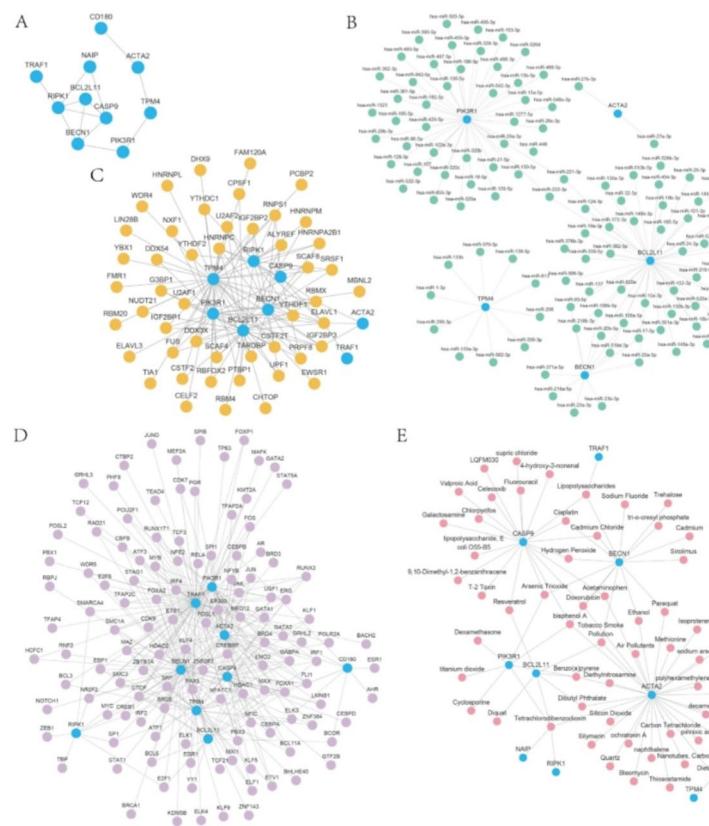


Fig. 6. PPI network and mRNA-miRNAs/RBPs/TFs/drugs regulation network. (A) PPI network of hub genes. (B) The mRNA-miRNAs regulation network of hub genes. (C) The mRNA-RBPs regulation network of hub genes. (D) The mRNA-TFs regulation network of hub genes. (E) The mRNA-drugs interaction network of hub genes.

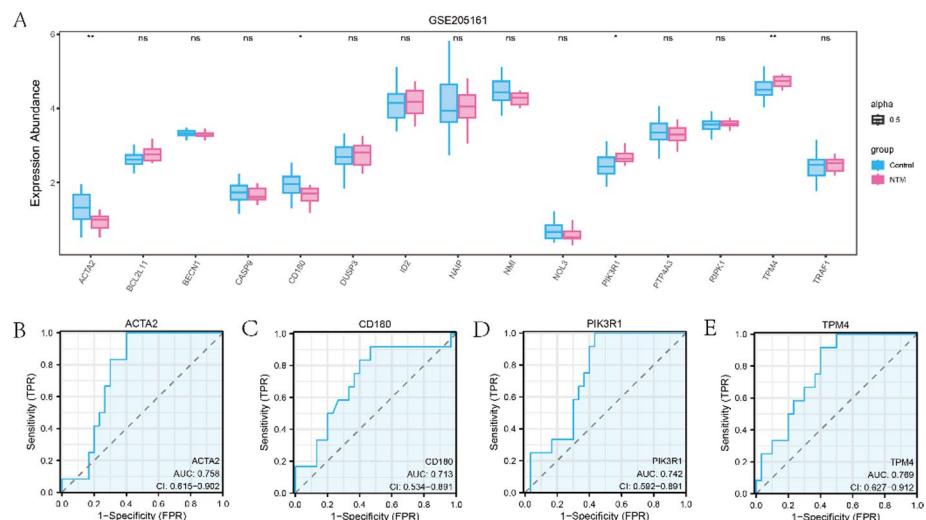


Fig. 7. Diagnostic values of 4 key genes in the GSE205161. (A) Comparison of fifteen ARDEGs in pNTM disease group and control group. (B-E) The ROC curves of ACTA2 (B), CD180 (C), PIK3R1 (D), and TPM4 (E). ** $P < 0.01$, * $P < 0.05$. ns, non-significant.

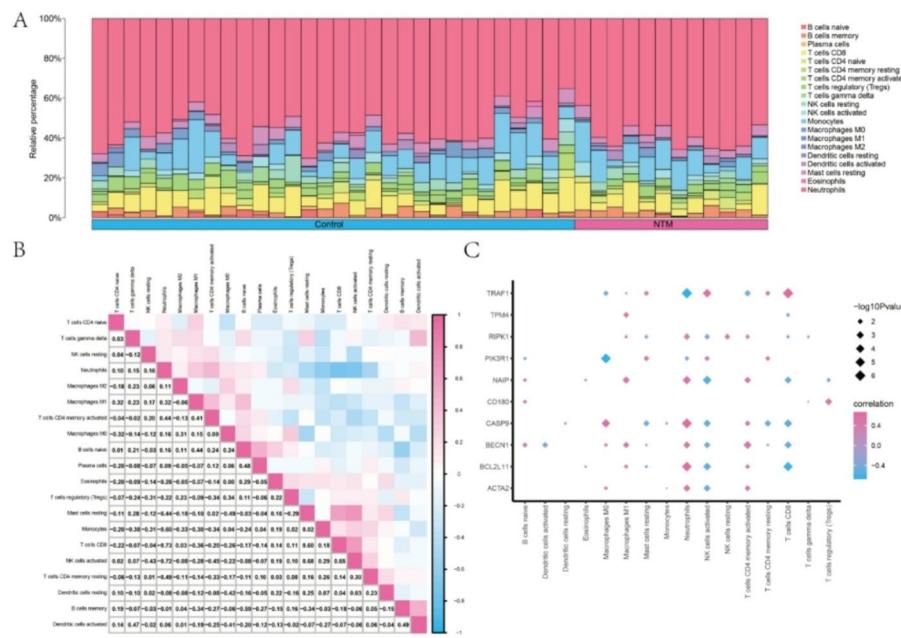


Fig. 8. Relationship of immune cell infiltration and hub genes in pNTM disease dataset. (A) Bar graph showing the immune infiltration results in GSE205161 dataset. (B) Display of immune cell infiltration abundance by heatmap analysis in GSE205161 dataset. (C) Display of relationship between hub genes and immune cells infiltration by dot plot.

In this study, we used the limma package to identify 799 DEGs with a screening criterion of $p < 0.05$, which was different from Miguel Dario Prieto et al.'s study. The main reason was that limma package can detect more DEGs through linear models and empirical bayes methods, while DESeq2 uses a negative binomial distribution model to evaluate the data. When the false discovery rate is strictly controlled, the number of DEGs detected is usually smaller. Moreover we observed significant differences in four key genes (ACTA2, CD180, PIK3R1, TPM4) when comparing the pNTM disease group and control group. The ROC curves showed that the AUCs of these four genes were all above 0.7, suggesting their moderate diagnostic accuracy in diagnosing pNTM disease. CD180, originally detected in B cells, has been confirmed to have high similarity to TLRs and is classified as a member of the TLR family. Fan Z et al. reported that RP105 (CD180) regulated immune cells, leading to the release of inflammatory cytokines and activation of immune cells such as B cells, macrophages, and bone marrow monocytes²². Previous research has also shown that synthetic lipopeptide analogs of the 19 kDa lipoprotein from *M. tuberculosis* promoted CD180-mediated IL-6 and TNF secretion by macrophages²³. Furthermore, Edwards K et al. reported that CD180 could serve as a therapeutic target and prognostic biomarker for various diseases²⁴. In our study, we observed a decrease in CD180 expression in pNTM group by using the Wilcoxon signed - rank test, suggesting that NTM may exploit CD180 to inhibit cytokine secretion and maintain its sustained survival in vivo.

PIK3R1, which is an essential component of PI3K, encodes p85 α ²⁵. Various signaling molecules need to interact with p85 α subunits, which then leads to the activation of PI3K. Activated PI3K subsequently activates Akt to exert biological functions. FAN Z et al. reported that IL-1 β mediated increase in miR-155 expression could inhibit PIK3R1 expression, thereby inhibiting PI3K/AKT expression and enhancing apoptosis²⁶. Etna Marilena et al. found that *M. tuberculosis* significantly induced high expression of miR-155²⁷. We speculate that *M. tuberculosis* may inhibit PIK3R1 expression by inducing miR-155 and this speculation needs further investigation. In our study, our results showed that PIK3R1 expression was more upregulated in pNTM group than that of control group, which may be related to the different virulence of NTM and *M. tuberculosis*.

TPM4 is a key member of the TPM family, responsible for maintaining cytoskeleton stability in non-muscle cells and facilitating contraction in smooth and skeletal muscle cells. Extensive research has been carried out on the role of TPM4 in the field of cancer, revealing that its overexpression promotes the proliferation of gastric cancer AGS cells and inhibits apoptosis²⁸. Furthermore, TPM4 expression is positively correlated with immune infiltration by macrophages, NK cells, and neutrophils, implying its involvement not only in tumor progression but also in inflammatory responses.

ACTA2 is predominantly expressed in vascular smooth muscle cells, where it plays a pivotal role in promoting vascular motility and contraction. Mutations in the ACTA2 gene are known to cause various diffuse vasculopathies²⁹. However, its involvement in infectious diseases has been scarcely reported. Therefore, further investigations are warranted to elucidate the precise function of ACTA2 in pNTM disease for a better understanding of the pathogenesis and potential therapeutic targets of pNTM disease.

GO and KEGG results indicated that 15 ARDEGs were primarily associated with tumor necrosis factor receptor superfamily binding, cytokine receptor binding, and tumour necrosis factor-mediated signalling

pathways. In the GSEA results, inflammatory signalling of IFNA and IFNB1 was found to be involved in pNTM disease. These pathways were associated with inflammatory reaction of *M. intracellularare*^{30,31}. IFNA and IFNB1 could induce the expression of IFN-stimulated genes (ISGs) to restrict infection. Lande R et al. reported that *M. tuberculosis*-infected DC cells release Interferons α/β , which induce CXCL10 expression, subsequently recruiting effector cells to participate in tuberculosis granuloma formation³². Prabhakar S et al. found that type I interferon could serve as a prognostic marker for chemotherapy in monitoring *M. tuberculosis* patients³³. In the GSVA results, we observed a higher enrichment score for TGF- β signalling in the pNTM disease group, which was consistent with the existing literature that the host-produced TGF- β inhibits *M. intracellular* survival through the ERK1/2 pathway in pNTM disease³⁴, moreover, we also observed a lower enrichment score for fatty acid metabolism and oxidative phosphorylation in the pNTM disease group. It was hypothesized that NTM infection could potentially reprogram the host's energy metabolism, leading to metabolic remodeling. Previous studies showed that NTM infection could significantly alter the metabolic status of host cells, especially immune cells such as macrophages, including the regulation of multiple energy metabolism processes such as fatty acid metabolism, oxidative phosphorylation, and glycolysis^{35,36}. This process not only impacts the efficiency of pathogen clearance but also has a strong correlation with the intensity of the immune response and apoptosis.

As is widely recognized, miRNAs play critical roles in the regulation of mRNA. However, the connections between hub genes and miRNAs in pNTM disease remain unclear. Hence, it is essential to construct regulatory networks for miRNA-mRNA interactions in order to investigate potential molecular mechanisms. Our findings revealed that hsa-miR-222-3P and hsa-miR-221-3p were targeted by PIK3R1 and BCL2L11, respectively. Additionally, hsa-miR-20a/b-5p, hsa-miR-93-5p, hsa-miR216b-5p, hsa-miR-17-5p, hsa-miR-519d-3p, and hsa-miR-106a/b-5p were connected to BECN1 and BCL2L11, indicating their potential significance in pNTM disease. Literature reported that miRNA-221 could target PIK3R1 to hinder vasculogenesis in vivo in a zebrafish model³⁷ and miRNA-221/222-BCL2L11 axis played a vital role in the regulation of apoptosis^{38,39}. Aguiló N et al. discovered that apoptosis induced by mycobacterium was inhibited by transfection with BCL2L11 (BIM) siRNA⁴⁰. More recently, Luo S et al. found that BCL2L11 recruited BECN1 to microtubules, inhibiting autophagy by connecting DYNLL1 and BECN1⁴¹. These findings suggest that BCL2L11 may have an important role in regulating apoptosis and autophagy. In the results of mRNA-drug interactions, we found several molecular compounds or drugs, such as arsenic trioxide, and doxorubicin, targeting CASP9, PIK3R1, ACTA2, and BECN1 in pNTM disease. Arsenic trioxide is clinically used in the treatment of glioma⁴² and lung cancer⁴³. We require experiments to further assess the therapeutic efficacy of arsenic trioxide in treating pNTM disease. Doxorubicin has been demonstrated to be an inhibitor of Mtb DnaG primase which promoted bacterial DNA replication^{44,45}. However, the evaluation of doxorubicin in pNTM disease requires further experimental verification. Furthermore, the analysis of immune cell infiltration and apoptosis gene expression uncovered the important role of apoptosis in NTM disease. In patients with pNTM disease, we observed that: (1) upregulated expression of the anti-apoptotic gene TPM4 was positively correlated with M1 macrophage infiltration; (2) increased PI3KR1 expression showed a negative correlation with M0 macrophage infiltration; and (3) downregulated expression of the pro-apoptotic gene ACTA2 was positively associated with neutrophils and CD4+ T cell infiltration but negatively correlated with NK cell infiltration. These findings collectively suggest that dysregulation of these apoptosis-related genes may facilitate NTM immune evasion.

There are certain limitations in this study. Firstly, the relatively small sample size in pNTM disease may have influenced the results, and the expression level of ARDEGs needs to be further validated using RT-PCR; secondly, NTM is an opportunistic pathogen, cases of NTM disease are relatively rare in clinical practice. Even if NTM is cultured positive in clinical laboratory, it may still be a colonizing bacterium in the respiratory tract, which is of little significance. Moreover, we do not analyze our data in comparison with other related studies because these datasets have differences in chip platforms, species types, and other aspects, which may present challenges for direct comparative analysis. Nevertheless, the present study offers a direction for investigating biomarkers and potential therapeutic targets for pNTM disease in the future.

In conclusion, We have successfully identified four key genes (ACTA2, CD180, PIK3R1, TPM4) that show moderate potential to serve as biomarkers for the diagnosis of the pNTM disease. Additionally, CASP9, PIK3R1, ACTA2, and BECN1 may serve as valuable therapeutic targets for the treatment of pNTM disease. This study significantly contributes to our understanding of the significance of diagnosing and treating pNTM disease.

Materials and methods

Data download

The dataset GSE205161¹¹, which contains the expression profiles of cystic fibrosis (CF) patients, was obtained from *Homo sapiens* and downloaded from the GEO database⁴⁶. This was achieved using the GEOquery R package⁴⁷. As shown in Table 1, the GSE205161 dataset consists of high-throughput sequencing expression profiles of human whole blood samples, with some individuals exhibiting NTM infection while others serve as the control group without NTM disease. The dataset includes a total of 42 samples, including 12 patients with pNTM disease and 30 matched controls. The data platform used for this study was the GPL24676 Illumina NovaSeq 6000 (*Homo sapiens*).

The GPL platform - specific annotation files were used to annotate the probe names in the datasets. The subsequent analysis integrated the expression profile data of 12 pNTM patient samples, along with their corresponding 30 matched controls from the GSE205161 dataset.

The GeneCards database⁴⁸ (<https://www.GeneCards.org/>) provides comprehensive information about human genes, including ARGs. In our study, we used the term "apoptosis" as the search keyword and only included ARGs with protein -coding designation and a Relevance score > 10. A total of 179 ARGs were identified from the GeneCards database. Furthermore, Using 'apoptosis' as the search keyword, we obtained BROCKE_APOPTOSIS_REVERSED_BY_IL6 and BIOCARTA_PTEN_PATHWAY from the Molecular Signatures

Database (MSigDB)⁴⁹. In the reference gene set, there were 162 ARGs. After merging and removing duplicates, a total of 325 ARGs were identified. Detailed information can be found in Table 2.

DEGs and ARDEGs identification of pNTM disease

We initially normalized the dataset GSE205161 using the limma package⁵⁰ for further analysis. After that, we identified DEGs based on the screening criteria of $|\log FC| > 0$ and $P\text{-value} < 0.05$ within various groups in the GSE205161 dataset. DEGs with $\log FC < 0$ and $P\text{-value} < 0.05$ were categorized as down-regulated genes, while DEGs with $\log FC > 0$ and $P\text{-value} < 0.05$ were classified as up-regulated genes.

To obtain ARDEGs associated with pNTM disease, Our initial step was to intersect differentially expressed genes (DEGs) from the GSE205161 dataset and construct a Venn diagram. Then, the DEGs were intersected with ARGs to obtain ARDEGs. Finally, we used the ggplot2 R package to generate a volcano plot and the heatmap R package to create a heatmap, enabling visualization of the DEGs results.

ROC curve

The ROC curve⁵¹ is a comprehensive indicator that reflects the continuous variables of sensitivity and specificity, demonstrating the interrelationship between the two groups. A higher area under the ROC curve (AUC) value indicates superior diagnostic performance. An AUC value ranging from 0.5 to 0.7 suggests low accuracy, while a value of 0.7 to 0.9 denotes moderate accuracy. An AUC value above 0.9 indicates high accuracy. In this study, the ROC curve of ARDEGs in the pNTM disease dataset was plotted using the pROC package in R. The AUC was then calculated to evaluate the diagnostic efficacy of ARDEGs expression in pNTM disease.

GO and KEGG enrichment analysis of ARDEGs in pNTM disease

GO analysis is a widely used method for conducting comprehensive functional enrichment studies on a large scale, which encompasses biological process (BP), molecular function (MF), and cellular component (CC)⁵². KEGG, a database that houses extensive information on diseases, genomes, drugs, and biological pathways, was utilized⁵³. The clusterprofiler R package was employed to conduct GO annotation analysis on the ARDEGs, adhering to a set of screening criteria, namely a $P\text{-adj} < 0.05$ and FDR value ($q\text{-value}$) < 0.05 , with these values considered statistically significant⁵⁴. The Benjamini-Hochberg (BH) method was employed for P -value correction to control the false discovery rate.

Gene set enrichment analysis (GSEA)

GSEA is used to assess the tendency of gene distribution in a pre-defined gene set within a gene list ranked based on their correlation with the phenotype⁵⁵. This enables the determination of the contribution of these genes to the phenotype. In this study, the genes from the GSE205161 dataset were divided into two categories based on positive and negative logFC values. Subsequently, the clusterProfiler package was employed to perform enrichment analysis on all DEGs within the positive and negative logFC values. The parameters used in this GSEA were as follows: 2023 seeds, 1000 counts, where each gene set contained a minimum of 10 genes and a maximum of 500 genes. The Benjamini-Hochberg (BH) method was utilized to correct the P -values. The c2.all.v2022.1.Hs.syndromes.gmt gene set, meeting the filtering criteria of $P\text{-adj} < 0.05$ and FDR value ($q\text{-value}$) < 0.25 , was retrieved from MsigDB.

Gene set variation analysis (GSVA)

GSVA is a non-parametric and unsupervised method. It is used to evaluate the enrichment of gene sets in the sample-derived transcriptome. This is achieved by transforming the matrix of gene expression levels across samples into gene sets across samples. The primary objective is to ascertain whether distinct biological pathways exhibit enrichment across the samples. In order to conduct GSVA analysis on the gene expression matrix of the GSE205161 dataset comparing the pNTM disease group and the control group, we searched MSigDB⁴⁹ to acquire the “h.all.V7.4.Symbols.gmt” reference gene set. Using this reference gene set, we calculated the enriched pathways in the GSVA enrichment analysis results, which indicate the functional differences between the two groups. We considered an adjusted P -value < 0.05 to be statistically significant.

PPI networks of ARDEGs

PPI networks are formed by the interactions between individual proteins, which enable proteins to participate in various life processes such as gene expression regulation, biological signal transmission, and cell cycle regulation⁵⁶. Understanding how proteins function in biological systems is crucial for comprehending protein-protein functional links and mechanisms of biological signal transduction. The STRING database serves as a valuable resource for studying protein interactions, encompassing both predicted and experimentally-validated protein interactions⁵⁷. In this study, We constructed PPI networks using the STRING database, employing a minimum required interaction score of medium confidence (0.400) for the screened ARDEGs. Additionally, We employed Cytoscape (version 3.9.1)⁵⁸ to visualize the PPI network model and subsequently identified these ARDEGs as key genes associated with pNTM disease.

Construction of the interaction network of ARDEGs-miRNA/RBP/TF and ARDEGs-drugs

We utilized the miRDB database⁵⁹ to predict miRNAs interacting with hub genes. Subsequently, we constructed the ARDEGs - miRNA interaction network by filtering data with a target score > 80 , which was obtained from the miRDB database.

The ENCORI database⁶⁰ provides a diverse range of visual interfaces for exploring the targets of miRNAs. Within this database, the interactions of miRNA-ncRNA, RBP-mRNA, miRNA-mRNA, ncRNA-RNA, RNA-RNA, and RBP-ncRNA are based on degradome sequencing data (for plant) and CLIP-seq. Additionally, we used

the ENCORI database to predict RBPs, with clusternum > 3 and clipexnum > 3 as the screening criteria, and mapped the mRNA-RBP interaction network.

The CHIPBase database (version 3.0) is composed of thousands of binding motif matrices and their associated binding sites, which have been identified from ChIP-seq data. This database has predicted millions of transcription factors (TFs) involved in gene regulation. We identified TFs binding to hub genes using the CHIPBase database (version 3.0)⁶¹ and the hTFtarget database⁶². The resulting data were visualized using the Cytoscape software.

Furthermore, we predicted small molecule compounds or drugs interacting with hub genes using the Comparative Toxicogenomics Database (CTD)⁶³. The results of the mRNA-drugs interaction network have been displayed using the Cytoscape software.

Immune infiltration analysis (CIBERSORT)

CIBERSORT⁶⁴ is an algorithm used for analyzing immune infiltration, which provides estimates of the composition and abundance of immune cells within mixed cell populations. This is accomplished through linear support vector regression for deconvoluting transcriptome expression matrices. In our study, we selected data with an immune cell enrichment score greater than zero using the CIBERSORT package. Additionally, we combined the data with the LM22 feature gene matrix⁶⁵ to obtain specific results related to immune cell infiltration abundance in the pNTM disease dataset. To assess the correlation between various immune cells in samples from the pNTM disease dataset, we employed the Pearson algorithm and visualized the results using the ggplot2 R package. Furthermore, we calculated the correlation between immune cells and hub genes in different groups and presented these findings using the ggplot2 R package.

Statistical analysis

R software was employed for data analysis in this study. Continuous variables were reported as means \pm standard deviations of the samples. The Wilcoxon rank sum test was employed to compare the differences between the two groups. Unless explicitly stated, we calculated the correlation coefficient for all results involving different molecules using Spearman's correlation analysis. A significance level of $P < 0.05$ was adopted as the criterion for statistical significance.

Data availability

This study analyzed publicly accessible datasets, which include GeneCards (<https://www.GeneCards.org/>), MSigDB (<https://www.gsea-msigdb.org/gsea/msigdb/>), miRDB (<https://mirdb.org/>), ENCORI (<https://starbase.sysu.edu.cn/>), CHIPBase (<https://rna.sysu.edu.cn/chipbase/>), hTFtarget (<http://bioinfo.life.hust.edu.cn/hTFtarget>), Comparative Toxicogenomics Database (CTD, <http://ctdbase.org/>) and the GSE205161 datasets from Gene Expression Omnibus(GEO, <https://www.ncbi.nlm.nih.gov/geo/query>). All the analyzed data were included in article and supplementary material.

Received: 27 March 2025; Accepted: 13 October 2025

Published online: 20 November 2025

References

1. Halstrom, S. et al. Environmental mycobacteria as a cause of human infection. *Int. J. Mycobacteriol.* **4**, 81–91. <https://doi.org/10.1016/j.ijmyco.2015.03.002> (2015).
2. Davalos, A. F. et al. Identification of nontuberculous mycobacteria in drinking water in Cali, Colombia. *Int. J. Environ. Res. Public. Health.* **18** <https://doi.org/10.3390/ijerph18168451> (2021).
3. Daley, C. L. et al. Winthrop, treatment of nontuberculous mycobacterial pulmonary disease: an official ATS/ERS/ESCMID/IDSA clinical practice guideline. *Eur. Respir. J.* **56** <https://doi.org/10.1183/13993003.00535-2020> (2020).
4. Sharma, S. K. et al. Epidemiology, diagnosis & treatment of non-tuberculous mycobacterial diseases. *Indian J. Med. Res.* **152** (3), 185–226. https://doi.org/10.4103/ijmr.IJR_902_20 (2020).
5. Das, S. et al. Clinical presentations of nontuberculous mycobacteria as suspected and drug-resistant tuberculosis: experience from a tertiary care center in Eastern India. *Int. J. Mycobacteriol.* **11**, 167–174. https://doi.org/10.4103/ijmycmy_68_22 (2022).
6. Gao, J. et al. When ferroptosis Meets pathogenic infections. *Trends Microbiol.* **31**, 468–479. <https://doi.org/10.1016/j.tim.2022.11.006> (2023).
7. Scordo, J. M. et al. Alveolar epithelial cells in *Mycobacterium* tuberculosis infection: active players or innocent bystanders? *J. Innate Immun.* **8**, 3–14. <https://doi.org/10.1159/000439275> (2016).
8. Danelishvili, L. et al. *Mycobacterium* tuberculosis infection causes different levels of apoptosis and necrosis in human macrophages and alveolar epithelial cells. *Cell. Microbiol.* **5**, 649–660. <https://doi.org/10.1046/j.1462-5822.2003.00312.x> (2003).
9. Sousa, S. et al. Nontuberculous mycobacteria persistence in a cell model mimicking alveolar macrophages. *Microorganisms* **7** <https://doi.org/10.3390/microorganisms7050113> (2019).
10. Whang, J. et al. *Mycobacterium* abscessus glycopeptidolipids inhibit macrophage apoptosis and bacterial spreading by targeting mitochondrial Cyclophilin D. *Cell. Death Dis.* **8**, e3012. <https://doi.org/10.1038/cddis.2017.420> (2017).
11. Prieto, M. D. et al. Whole blood RNA-seq demonstrates an increased host immune response in individuals with cystic fibrosis who develop nontuberculous mycobacterial pulmonary disease. *PLoS One.* **17**, e0278296. <https://doi.org/10.1371/journal.pone.0278296> (2022).
12. Kanehisa, M. et al. KEGG: biological systems database as a model of the real world. *Nucleic Acids Res.* **53** (D1), D672–D677. <https://doi.org/10.1093/nar/gkae909> (2025).
13. Liu, Q. et al. Clinical characteristics of patients with non-tuberculous mycobacterial pulmonary disease: a seven-year follow-up study conducted in a certain tertiary hospital in Beijing. *Front. Cell. Infect. Microbiol.* **13**, 1205225. <https://doi.org/10.3389/fcimb.2023.1205225> (2023).
14. Martiniano, S. L. et al. Nontuberculous mycobacterial infections in cystic fibrosis. *Clin. Chest Med.* **43**, 697–716. <https://doi.org/10.1016/j.ccm.2022.06.010> (2022).
15. Aksamit, T. R. et al. Adult patients with bronchiectasis: a first look at the US bronchiectasis research registry. *Chest* **151**, 982–992. <https://doi.org/10.1016/j.chest.2016.10.055> (2017).

16. Yeh, J. J. et al. Nontuberculosis *Mycobacterium* disease is a risk factor for chronic obstructive pulmonary disease: a nationwide cohort study. *Lung* **192**, 403–411. <https://doi.org/10.1007/s00408-014-9574-9> (2014).
17. Lu, H. et al. Polystyrene microplastics mediate cell cycle arrest, apoptosis, and autophagy in the G2/M phase through ROS in grass carp kidney cells. *Environ. Toxicol.* **39**, 1923–1935. <https://doi.org/10.1002/tox.24068> (2024).
18. Hou, L. et al. A new insight into fluoride induces cardiotoxicity in chickens: involving the regulation of PERK/IRE1/ATF6 pathway and heat shock proteins. *Toxicology* **501**, 153688. <https://doi.org/10.1016/j.tox.2023.153688> (2024).
19. Li, J. et al. Polystyrene microplastics mediate inflammatory responses in the chicken thymus by Nrf2/NF-κB pathway and trigger autophagy and apoptosis. *Environ. Toxicol. Pharmacol.* **100**, 104136. <https://doi.org/10.1016/j.etap.2023.104136> (2023).
20. Roberts, J. Z. et al. The role of ubiquitination in apoptosis and necroptosis. *Cell. Death Differ.* **29**, 272–284. <https://doi.org/10.1038/s41418-021-00922-9> (2022).
21. Briken, V. et al. Living on the edge: Inhibition of host cell apoptosis by *Mycobacterium tuberculosis*. *Future Microbiol.* **3**, 415–422. <https://doi.org/10.2217/17460913.3.4.415> (2008).
22. Fan, Z. et al. The potential role of RP105 in regulation of inflammation and osteoclastogenesis during inflammatory diseases. *Front. Cell. Dev. Biol.* **9**, 713254. <https://doi.org/10.3389/fcell.2021.713254> (2021).
23. Schultz, T. E. et al. The N-terminal peptide moiety of the *Mycobacterium tuberculosis* 19 kDa lipoprotein harbors RP105-agonistic properties. *J. Leukoc. Biol.* **103**, 311–319. <https://doi.org/10.1002/JLB.2MA0517-190RR> (2018).
24. Edwards, K. et al. The role of CD180 in hematological malignancies and inflammatory disorders. *Mol. Med.* **29**, 97. <https://doi.org/10.1186/s10020-023-00682-x> (2023).
25. D'Ambrosio, C. et al. PIK3R1(W624R) is an actionable mutation in high grade serous ovarian carcinoma. *Cells* **9** <https://doi.org/10.3390/cells9020442> (2020).
26. Fan, Z. et al. MiR-155 promotes interleukin-1beta-induced chondrocyte apoptosis and catabolic activity by targeting PIK3R1-mediated PI3K/Akt pathway. *J. Cell. Mol. Med.* **24**, 8441–8451. <https://doi.org/10.1111/jcmm.15388> (2020).
27. Etna, M. P. et al. *Mycobacterium tuberculosis*-induced miR-155 subverts autophagy by targeting ATG3 in human dendritic cells. *PLoS Pathog.* **14**, e1006790. <https://doi.org/10.1371/journal.ppat.1006790> (2018).
28. Luo, Y. et al. Inhibitory effect of Crocin against gastric carcinoma via regulating TPM4 gene. *Onco Targets Ther.* **14**, 111–122. <https://doi.org/10.2147/OTT.S254167> (2021).
29. Yuan, S. M. Alpha-smooth muscle actin and ACTA2 gene expressions in vasculopathies. *Braz J. Cardiovasc. Surg.* **30**, 644–649. <https://doi.org/10.5935/1678-9741.20150081> (2015).
30. Ali, M. K. et al. *Mycobacterium tuberculosis* rv0580c impedes the intracellular survival of Recombinant mycobacteria, manipulates the cytokines, and induces ER stress and apoptosis in host macrophages via NF-κB and p38/JNK signaling. *Pathogens* **10** <https://doi.org/10.3390/pathogens10020143> (2021).
31. Oh, S. M. et al. TNF-alpha-mediated ER stress causes elimination of *Mycobacterium fortuitum* reservoirs by macrophage apoptosis. *FASEB J.* **32**, 3993–4003. <https://doi.org/10.1096/fj.201701407R> (2018).
32. Lande, R. et al. IFN-alpha beta released by *Mycobacterium tuberculosis*-infected human dendritic cells induces the expression of CXCL10: selective recruitment of NK and activated T cells. *J. Immunol.* **170**, 1174–1182. <https://doi.org/10.4049/jimmunol.170.3.1174> (2003).
33. Prabhakar, S. et al. Inhibition of response to alpha interferon by *Mycobacterium tuberculosis*. *Infect. Immun.* **71**, 2487–2497. <https://doi.org/10.1128/IAI.71.5.2487-2497.2003> (2003).
34. L'Abbate, C. et al. TGF-beta-mediated sustained ERK1/2 activity promotes the Inhibition of intracellular growth of *Mycobacterium avium* in epithelioid cells surrogates. *PLoS One.* **6**, e21465. <https://doi.org/10.1371/journal.pone.0021465> (2011).
35. Barisch, C. et al. Breaking fat! How mycobacteria and other intracellular pathogens manipulate host lipid droplets. *Biochimie* **141**, 54–61. <https://doi.org/10.1016/j.biochi.2017.06.001> (2017).
36. Llibre, A. et al. Host immune-metabolic adaptations upon mycobacterial infections and associated co-morbidities. *Front. Immunol.* **12**, 747387. <https://doi.org/10.3389/fimmu.2021.747387> (2021).
37. Chang, T. Y. et al. MiRNome traits analysis on endothelial lineage cells discloses biomarker potential Circulating MicroRNAs which affect progenitor activities. *BMC Genom.* **15**, 802. <https://doi.org/10.1186/1471-2164-15-802> (2014).
38. Sehgal, M. et al. IFN-alpha-induced downregulation of miR-221 in dendritic cells: implications for HCV pathogenesis and treatment. *J. Interferon Cytokine Res.* **35**, 698–709. <https://doi.org/10.1089/jir.2014.0211> (2015).
39. Terasawa, K. et al. Sustained activation of ERK1/2 by NGF induces microRNA-221 and 222 in PC12 cells. *FEBS J.* **276**, 3269–3276. <https://doi.org/10.1111/j.1742-4658.2009.07041.x> (2009).
40. Aguiló, N. et al. Bim is a crucial regulator of apoptosis induced by *Mycobacterium tuberculosis*. *Cell. Death Dis.* **5**, e1343. <https://doi.org/10.1038/cddis.2014.313> (2014).
41. Luo, S. et al. BCL2L11/BIM: a novel molecular link between autophagy and apoptosis. *Autophagy* **9**, 104–105. <https://doi.org/10.4161/auto.22399> (2013).
42. Fang, Y. et al. Arsenic trioxide as a novel anti-glioma drug: a review. *Cell. Mol. Biol. Lett.* **25**, 44. <https://doi.org/10.1186/s11658-02-00236-7> (2020).
43. Huang, W. et al. A candidate for lung cancer treatment: arsenic trioxide. *Clin. Transl. Oncol.* **21**, 1115–1126. <https://doi.org/10.1007/s12094-019-02054-6> (2019).
44. Biswas, T. et al. A novel non-radioactive primase-pyrophosphatase activity assay and its application to the discovery of inhibitors of *Mycobacterium tuberculosis* primase DnaG. *Nucleic Acids Res.* **41**, e56. <https://doi.org/10.1093/nar/gks1292> (2013).
45. Ilic, S. et al. DnaG Primase-a target for the development of novel antibacterial agents. *Antibiot. (Basel)* **7** <https://doi.org/10.3390/antibiotics7030072> (2018).
46. Barrett, T. et al. NCBI GEO: mining tens of millions of expression profiles–database and tools update. *Nucleic Acids Res.* **35**, D760–765. <https://doi.org/10.1093/nar/gkl887> (2007).
47. Davis, S. et al. GEOquery: a Bridge between the gene expression omnibus (GEO) and BioConductor, Bioinformatics, 23 1846–1847, (2007). <https://doi.org/10.1093/bioinformatics/btm254>
48. Stelzer, G. et al. The genecards suite: from gene data mining to disease genome sequence analyses. *Curr. Protoc. Bioinf.* **54** <https://doi.org/10.1002/cpb1.5> (2016). 1 30 31–31 30 33.
49. Liberzon, A. et al. The molecular signatures database (MSigDB) hallmark gene set collection. *Cell. Syst.* **1**, 417–425. <https://doi.org/10.1016/j.cels.2015.12.004> (2015).
50. Ritchie, M. E. et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies. *Nucleic Acids Res.* **43**, e47. <https://doi.org/10.1093/nar/gkv007> (2015).
51. Mandrekar, J. N. Receiver operating characteristic curve in diagnostic test assessment. *J. Thorac. Oncol.* **5**, 1315–1316. <https://doi.org/10.1097/JTO.0b013e3181ec173d> (2010).
52. Yu, G. Gene ontology semantic similarity analysis using gosem sim. *Methods Mol. Biol.* **2117**, 207–215. https://doi.org/10.1007/978-1-0716-0301-7_11 (2020).
53. Kanehisa, M. et al. KEGG: Kyoto encyclopedia of genes and genomes. *Nucleic Acids Res.* **28**, 27–30. <https://doi.org/10.1093/nar/28.1.27> (2000).
54. Yu, G. et al. ClusterProfiler: an R package for comparing biological themes among gene clusters. *OMICS* **16**, 284–287. <https://doi.org/10.1089/omi.2011.0118> (2012).
55. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. *Proc. Natl. Acad. Sci. U S A.* **102**, 15545–15550. <https://doi.org/10.1073/pnas.0506580102> (2005).

56. Zhou, J. et al. Protein function prediction based on Ppi networks: network reconstruction vs edge enrichment. *Front. Genet.* **12**, 758131. <https://doi.org/10.3389/fgene.2021.758131> (2021).
57. Szklarczyk, D. et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. *Nucleic Acids Res.* **47**, D607–D613. <https://doi.org/10.1093/nar/gky1131> (2019).
58. Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. *Genome Res.* **13**, 2498–2504. <https://doi.org/10.1101/gr.1239303> (2003).
59. Chen, Y. et al. MiRDB: an online database for prediction of functional MicroRNA targets. *Nucleic Acids Res.* **48** <https://doi.org/10.1093/nar/gkz757> (2020). D127–D131.
60. Li, J. H. et al. StarBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. *Nucleic Acids Res.* **42**, D92–97. <https://doi.org/10.1093/nar/gkt1248> (2014).
61. Zhou, K. R. et al. ChIPBase v2.0: decoding transcriptional regulatory networks of non-coding RNAs and protein-coding genes from ChIP-seq data. *Nucleic Acids Res.* **45**, D43–D50. <https://doi.org/10.1093/nar/gkw965> (2017).
62. Zhang, Q. et al. hTFtarget: A comprehensive database for regulations of human transcription factors and their targets. *Genomics Proteom. Bioinf.* **18**, 120–128. <https://doi.org/10.1016/j.gpb.2019.09.006> (2020).
63. Davis, A. P. et al. Comparative toxicogenomics database (CTD): update 2021. *Nucleic Acids Res.* **49** <https://doi.org/10.1093/nar/gka891> (2021). D1138–D1143.
64. Newman, A. M. et al. Robust enumeration of cell subsets from tissue expression profiles. *Nat. Methods.* **12**, 453–457. <https://doi.org/10.1038/nmeth.3337> (2015).
65. Chen, B. et al. Profiling tumor infiltrating immune cells with CIBERSORT. *Methods Mol. Biol.* **1711**, 243–259. https://doi.org/10.1007/978-1-4939-7493-1_12 (2018).

Acknowledgements

We gratefully acknowledge contributions from the GEO, GeneCards, MSigDB, miRDB, ENCOR1, CHIPBase, HTFtarget and CTD databases for providing their platforms. This work was supported by grants from the Natural Science Foundation of Hunan Province (2025JJ80543) and the Scientific Research Project of Hunan Provincial Health Commission (20254080).

Author contributions

The authors confirm contribution to the paper as follows: Jianhua Pan: Conceptualization, Methodology, Software, Investigation, Formal analysis, Writing – original draft; Aifeng Liu: Data curation, Software, Validation, Funding acquisition; Sifang Xiao: Visualization, Supervision, Writing – review & editing; Xiaohua Ma: Conceptualization, Resources, Supervision, Funding acquisition, Writing – review & editing. All authors reviewed the results and approved the final version of the manuscript.

Declarations

Competing interests

The authors declare no competing interests.

Additional information

Supplementary Information The online version contains supplementary material available at <https://doi.org/10.1038/s41598-025-24346-4>.

Correspondence and requests for materials should be addressed to X.M.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit <http://creativecommons.org/licenses/by-nc-nd/4.0/>.

© The Author(s) 2025