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Italy reports some of the highest antimicrobial resistance (AMR) rates in Europe. This necessitates 
multiple interventions among which improved surveillance is a key to solutions. Statistical Process 
Control (SPC) methods may help distinguishing between natural variability and significant regional 
trends. We applied specifically tailored SPC methods, namely funnel plots, Z-score charts, and chi-
squared control charts to the AMR data from the AR-ISS surveillance system (2015–2023), focusing 
on bloodstream infections. Specifically, we analysed regional and temporal trends of carbapenem-
resistant Klebsiella pneumoniae (CRKP), third-generation cephalosporin-resistant Escherichia coli 
(3GCephRE), carbapenem-resistant Acinetobacter spp. (CRAS), carbapenem-resistant Pseudomonas 
aeruginosa (CRPA), vancomycin-resistant Enterococcus faecium (VRE-faecium), and Staphylococcus 
aureus methicillin-resistant (MRSA). VRE- faecium showed a persistent increase at the national 
level, while other pathogens exhibited marked regional variability. Funnel plots identified significant 
outliers, particularly for CRAS and CRKP, with peaks in 2020–2021. These trends align with increased 
antibiotic use during the COVID-19 pandemic. The chi-squared control chart highlighted widening 
interregional disparities, possibly indicating an uneven distribution of AMR containment efforts 
across Italy. SPC methods can help highlighting significant deviations and interregional disparities in 
AMR trends across Italy. The identification of specific outliers suggests these tools can complement 
traditional surveillance approaches by flagging patterns that may warrant further investigation, 
supporting targeted public health interventions, especially where regional differences are pronounced.

Antimicrobial resistance (AMR) represents a significant and growing global health challenge. Despite its often-
silent progression, AMR has catastrophic potential, leading to life-threatening complications and substantial 
mortality worldwide1 In 2021, multi-drug-resistant organisms (MDROs) were directly responsible for an 
estimated 1.14 million deaths and contributed to 4.71 million deaths at a global level, ranking among the top 
three leading causes2. Based on surveillance reports, Italy stands out as one of the European countries with the 
highest burden of bacterial AMR3, prompting urgent interventions to address AMR and mitigate its long-term 
public health impact.

The robust surveillance is a cornerstone of AMR mitigation, and its priority is underscored by international 
frameworks like the Sustainable Development Goals (SDG)4, specifically target 3.d.2, which is monitored via 
the SDG 3.d.2 indicator. This indicator emphasizes the capacity of countries to address health emergencies, 
including AMR, through standardized reporting. This is made possible by the Global Antimicrobial Resistance 
and Use Surveillance System (GLASS), a WHO initiative launched in 2015 that provides a unified framework for 
measuring and reporting AMR, serving as a key platform for tracking global progresses5.

Italy contributes to EARS-Net, the European surveillance network, through the National Institute of Health 
(ISS), which oversees AMR surveillance via the antibiotic-resistance surveillance system coordinated by ISS (AR-
ISS). Through its participation in EARS-Net, Italy subsequently contributes to GLASS, the Global Antimicrobial 
Resistance Surveillance System, thus ensuring its data is integrated into global efforts to monitor AMR. This 
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Italian sentinel network, involving 197 clinical microbiology laboratories across all regions, covers 65.8% of 
national hospital days (2023) and provides valuable data (antibiotic-resistance percentage) on key pathogen-
antibiotic combinations from invasive (blood and cerebrospinal fluid) infections.

Extracting the maximum information from surveillance data requires not only collecting robust 
epidemiological indicators but also choosing appropriate analytical frameworks. Indeed, traditional approaches 
to AMR monitoring, such as displaying raw %AMR using boxplots, choropleth maps, and time series6, tend to 
overlook the impact of sample size, potentially confounding natural variability and significant epidemiological 
events.

Statistical process control (SPC) methods have gained increasing traction in healthcare monitoring since the 
early 2000s7–10 offering a robust framework to analyse and manage natural process variability. i.e., the ensemble 
of natural fluctuations in a process or phenomenon that occur in the absence of external interventions.

Although funnel plots have been used pioneeringly for a critical analysis of year-on-year reduction targets set 
by the UK National Health Systems for hospital rates of infection with methicillin resistant Staphylococcus aureus 
(MRSA)11,12 there has not been a systematic use of funnel plots for AMR surveillance.

Our study advocates the use of multiple SPC control charts, extending their adoption beyond hospital 
performance metrics to national-level epidemiological monitoring. This methodology enables both cross-
sectional comparison of units (regions) and longitudinal assessment of trends. Furthermore, it offers tools to 
differentiate outlier behavior such as localized issues (e.g., epidemiological outbreaks, systemic shifts or problems 
in data collection) from systemic changes (e.g., those observed during the COVID-19 pandemic).

Methods
Data
Blood and liquor culture data, aggregated by year, region, pathogen, and main resistance profile, were retrieved 
from published documents of the National Surveillance on AMR (available at the ISS website13. These data 
correspond to those sent individually to ECDC as part of the EARS-Net surveillance and eventually transferred 
to WHO GLASS. Since 2024, the National Surveillance on AMR has also collected data on urine cultures, which 
were not included in this analysis. Specifically, we used data from 2015 to 2023 on MRSA, Vancomycin-resistant 
Enterococcus faecium (VRE-faecium), third-generation cephalosporin-resistant Escherichia coli (3GCephRE), 
Carbapenem-resistant Klebsiella pneumoniae (CRKP), Carbapenem-resistant Pseudomonas aeruginosa 
(CRPA), and Carbapenem-resistant Acinetobacter spp. (CRAS).

No preprocessing has been necessary.

Funnel-based and multivariate chart control methods
In a funnel plot, a measured or estimated quantity is plotted against an interpretable measure of its precision. 
A funnel plot is composed of four elements7: (i) an indicator Y  that represents the quantity to be monitored, 
(ii) a reference value θ  that specifies the expected value of the indicator, (iii) a precision parameter ρ  that 
determines the accuracy with which the indicator is measured, (iv) the control limits ylower , yupper  that 
specify the boundaries of the out-of-control region. An example of funnel plot can be seen in Fig. 2. The point 
(ρ i, yi), i = 1, . . . , n, is associated with the i-th Italian region, where ρ i reflects the number of Antimicrobial 

Susceptibility Tests (ASTs) in the region and yi is an AMR indicator. The horizontal centerline Y = θ  shows 
the expected value of the indicator and the funnel-shaped pair of control limits ylower  and yupper  show where 
we would expect the region indicators to be if they were homogenous with those of the population.

In several circumstances, an exact or approximate normal distribution of the indicator Y  can be assumed, 
namely

	
Y ∼ N

(
θ ,

g (θ )
ρ

)
� (1)

where g is a suitable function of θ 7 such that V ar [Y ] = g (θ ) /ρ . Under this null hypothesis, with probability 
1 − α ,
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where zα /2 is such that P
(
Z ≤ zα /2

)
= 1 − α

2  for a standard normal variable Z . For instance,
zα /2 = 1.96, when α = 0.05 and zα /2 = 3.09, when α = 0.002. This means that, in 100 (1 − α ) % 

of the cases, Y  is expected to lie within the lower and upper control limits defined as

	 ylower = θ − zα /2
√

g (θ ) /ρ

	 yupper = θ + zα /2
√
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By introducing the Z-score

	
zi = yi − θ√

g (θ ) /ρ
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we have that P
(
|zi

∣∣ > zα /2) = α . In Statistical Process Control, the common practice is to select a false 
alarm probability as small as α = 0.002, corresponding to zα /2 = 3.09. A Z-score whose absolute value is 
greater than zα /2 is said to be out of (statistical) control and deemed worthy of study to identify a special cause 
of variation that explains its departure from the mean. Note that there is a 0.2% probability of reporting an out-
of-control point when no special cause of variation is actually perturbing the process and the outlier arises by 
pure chance under common causes of variation.

When the indicators yi  measure a frequency of occurrence, it is reasonable to assume a binomial model, 
with θ  representing the probability of the event and ρ i the number of surgeries in the i-th unit. For the 
binomial model, the variance of yi is θ (1 − θ )/ρ i so that, given θ , the variance of yi is completely specified. 
For a large enough ρ , the binomial converges to a normal random variable that follows distribution (1) with.

 g (θ ) = θ (1 − θ ). Therefore, estimating the mean of yi suffices to specify both the centerline and the 
alarm limits of the funnel plot. However, as discussed in14, if one lets the variance be specified by the mean, it 
very often happens that the fraction of units of analysis that lie outside the ideal alarm limits greatly exceeds the 
theoretical false positive rate. We will deal with this overdispersion phenomenon14 by introducing a multiplicative 
overdispersion parameter ϕ to be estimated from data:

	
Y ∼ N(θ ,

ϕg (θ )
ρ

)� (2)

The control limits and the Z-scores are redefined accordingly as

	 ylower = θ − zα /2
√

ϕg (θ ) /ρ

	 yupper = θ + zα /2
√

ϕg (θ ) /ρ

	
zi = yi − θ√

ϕg (θ ) /ρi

Details about parameter estimation can be found in the Supplementary Material.

Choice of the indicator
Funnel plots are usually used to monitor performance over a given time window. In a surveillance context, 
however, it makes sense to monitor variation, see e.g14., where the ratio between successive performances is 
examined. Here we consider differences 

∼
Y t = Yt − Yt−1 between AMRs in consecutive years.

In particular, under a binomial model for infections, yielding a normal approximation, if we assume that 
Yt ∼ N(θt, θt (1 − θt) /ρ t), we have that Ỹt ∼ N

(
θt − θt−1, τ2

t

)
, where

	 τ 2
t = θ t (1 − θ t) /ρ t + θ t−1 (1 − θ t−1) /ρ t−1

Letting β 2
t = (θ t (1 − θ t) + θ t−1 (1 − θ t−1))/2, the variance τ 2

t  can be approximated as

	
τ 2

t = β 2
t
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1

ρ t

+ 1
ρ t−1

)
= 2β 2
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−
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where 
−
ρ t = 2

[
1

ρ t
+ 1

ρ t−1

]−1
is the harmonic mean of the AST numbers.

In conclusion, we assume that

	
Ỹt ∼ N

(
θ̄t,

2β2
t

ρ̄t

)

where 
−
θ t = θ t − θ t−1. Comparing with (1), it is possible to monitor the AMR differences through a funnel 

plot. Just as in the standard case discussed by Spiegelhalter, control limits computed according to the ideal model 
will usually result in a disproportionate number of out of control points. Therefore, the final model accounts for 
an overdispersion factor φt:

	
Ỹt ∼ N

(
θ̄t,

σ2
t

ρ̄t

)

where σ2
t = 2φtβ

2
t .

In summary, the practical implementation of the funnel plot for AMR surveillance explicitly defines all key 
elements highlighted in the theoretical framework:

	 i.	 Indicator: we monitor the year-to-year variation in AMR, which captures changes in resistance levels be-
tween consecutive years;
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	ii.	 Reference value: the expected value of the indicator is given by the annual change under the null model, 
i.e. the country year-to-year change, calculated as the difference between consecutive years of the country 
%AMR;

	iii.	 Precision parameter: the accuracy of the indicator is quantified using the harmonic mean of the annual 
AST counts;

	iv.	 Control limits: boundaries of the out-of-control region are calculated according to the statistical model 
and by incorporating an overdispersion factor​, ensuring that the funnel plot realistically reflects both the 
expected variability and the additional variation observed in the data.

Multivariate control chart
The funnel plot detects out of control units with respect to the reference distribution, highlighting anomalous 
values with respect to the overall population. Another type of surveillance regards the monitoring of the 
multivariate distribution of the between year variations of regional AMR’s. This second monitoring aims at 
identifying systemic changes that affect all regions simultaneously. The most common multivariate control chart, 
is based on the sum of squares of standardized variates32. In particular, the indicator

	

T 2
t =

n∑
i=1




∼
Y t,i −

−
θ t

σ t

/√
−
ρ t




2

,

is approximately distributed as a chi-squared distribution with n − 1 degrees of freedom. Therefore, for 
each time index, T 2

t can be plotted against the upper control limit χ 2
α , such that P

(
χ 2

n−1 ≥ χ 2
α

)
= α , 

α = 0.002.

SPC user guide: rationale and tiered approach
To guide the reader, we provide here a step-by-step rationale for the choice and order of the SPC methods 
adopted. The aim was to build a tiered surveillance toolbox where each chart addresses a specific question on 
AMR variability and evolution.

	1.	 Funnel Plot (regional variability at a given time). Purpose: to define the expected range of natural variabil-
ity of AMR percentages across regions, accounting for the precision of the estimates (number of AST per-
formed). Strengths: intuitive, widely used in healthcare monitoring, allows to distinguish random fluctuation 
from unusual regional deviations. Limitations: does not capture temporal dynamics and nationwide systemic 
shifts.

	2.	 Z-Score Control Chart (temporal monitoring of single regions). Purpose: to standardize yearly AMR values 
and monitor their evolution over time. This chart highlights two critical patterns: (i) shifts, indicating per-
sistent changes, and (ii) rebound effects, indicating transient deviations. Strengths: focuses on within-region 
time trends, complementary to the funnel plot. Limitations: individual-region perspective; does not detect 
nationwide systemic shifts.

	3.	 Multivariate Control Chart (systemic national changes).Purpose: to detect whether changes occur simulta-
neously across all regions, discriminating between increased heterogeneity and global shifts.Strengths: iden-
tifies systemic variations that might be overlooked by single-region methods.Limitations: does not provide 
detail on which specific regions are driving the change; requires complementary interpretation with funnel 
plots.

The tiered use of funnel plots, Z-score charts, and chi-squared charts provides a structured SPC-based toolbox for 
AMR surveillance. Each tool addresses a different surveillance question (cross-sectional anomalies, longitudinal 
trends, systemic shifts), and together they enhance interpretability, reproducibility, and practical applicability.

Results
As seen in Fig. 1, among the six different pathogens, VRE-faecium is the only one that shows a clear increasing 
trend in the average national value. For the other five cases, the national value is relatively stable, maybe with a 
slight decline for CRKP. Of note is the consistently high value of CRAS.

It is also seen that Italian regional %AMR data are characterized by a significant heterogeneity. Not only 
regional values are fairly dispersed, but in most cases the differences tend to persist over the years. In view of this, 
a monitoring approach that focuses on year-to-year variation appears particularly appropriate. In particular, 
Italian AMR data were analysed by means of the charts of the surveillance toolbox.

Carbapenem-resistant Acinetobacter spp
Figure 2 presents a series of funnel plots, illustrating the year-to-year variation in %AMR against the harmonic 
mean of AST counts across Italian regions. Between 2016 and 2017 and 2019–2020, all regional data points 
remained within the control limits, indicating no significant deviations from expected resistance trends. 
However, in 2020–2021, the grey-shaded area, representing the current year’s distribution, expanded beyond the 
upper control limits, suggesting a systemic increase in CRAS prevalence. During this period, Lombardy, Liguria, 
Veneto, and Tuscany exceeded the upper red margins, highlighting regions with an anomalous increase in AMR 
derivatives. Lazio approached the threshold but remained within statistical limits.
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In 2021–2022, the contraction of the grey area, coupled with all regional data points falling within control 
limits, suggests a return to statistical stability. However, in 2022–2023, a sharp drop in CRAS resistance was 
observed in Lombardy, while Piemonte, Veneto, and Tuscany fell below the lower control limit, potentially 
indicating effective interventions, data biases, or a rebound effect following a previous surge. Figure 3 presents the 
Z-score control chart (top) and the Chi-squared control chart (bottom). The Z-score chart tracks standardized 
variations in %AMR over time. Points outside the control limits correspond to the out-of-control regions 

Fig. 2.  Funnel plots illustrating year-to-year variations in AMR percentage for Carbapenem-resistant 
Acinetobacter spp. (CRAS) across Italian regions, plotted against the harmonic mean of AST counts. Each point 
represents a regional data value for a specific year. Control limits (red lines) delineate expected variability, with 
values outside these limits indicating significant deviations. Grey areas represent the current year distribution 
of the data. Between 2016-2020, all regional data points remained within expected bounds. In 2020-2021, a 
systemic increase in CRAS prevalence occurred, so that the grey-shaded area expanded beyond the red control 
limits. A return to statistical stability is observed in 2021-2022, followed by a sharp decline in CRAS resistance 
in 2022-2023, where Piemonte, Veneto, and Toscana fell below the lower control limits, suggesting potential 
epidemiological shifts or interventions. Despite this overall reduction, the growing interregional variability 
observed in 2023 suggests that resistance patterns may be stabilizing at different rates across the country.

 

Fig. 1.  Time series of AMR percentages for six key pathogens in Italy from 2015 to 2023.Each line represents 
a different region (for full region names, see Supplementary Material), while the bold black line indicates the 
national average. VRE (Vancomycin-resistant Enterococci) is the only pathogen showing a clear increasing 
trend at the national level. The remaining pathogens display relatively stable trends. A high degree of 
heterogeneity is observed across regions, with persistent disparities over time, emphasizing the need for 
monitoring approaches focused on year-to-year variations.
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identified in the funnel plots. The Chi-squared chart (bottom) monitors systemic variations across all regions 
within control boundaries. A notable decrease in 2017–2020 is followed by a progressive increase from 2020 and 
a peak in 2023, which may reflect increasing heterogeneity in regional AMR trends.

Vancomycin-resistant Enterococcus faecium
Figure 4 presents the funnel plots tracking %AMR against the harmonic mean of AST counts for VRE -faecium. 
In 2016–2017, all Italian regions remained within control limits, indicating a stable epidemiological situation. 
In 2017–2018, Molise and Liguria exhibited the highest resistance variations, yet remained within expected 
boundaries, likely due to their low AST volumes. Conversely, Umbria, despite having a lower %AMR, exceeded 
the upper control limit because of a higher AST count, demonstrating the influence of testing volume on statistical 
thresholds. Between 2018 and 2019, Tuscany showed a decline in VRE -faecium prevalence, temporarily moving 
outside the control limits, a trend that was later mirrored by Liguria in both 2019–2020 and 2021–2022. However, 
in 2020–2021 and 2022–2023, all regions remained within control limits, suggesting an overall stabilization 
of VRE-faecium trends. Throughout the study period, Veneto, Emilia-Romagna, and Lombardy consistently 
performed the highest number of ASTs, reflecting their strong surveillance capacity.

Figure 5 presents the Z-score control chart (top) and the Chi-squared control chart (bottom). The top chart 
provides a temporal overview of the monitoring, highlighting individual variations over the years, consistently 
with the funnel plots. The Chi-squared control chart monitors systemic variability in VRE-faecium resistance: 
the black cumulative trend line exhibited two major peaks (2018 and 2022), both exceeding control limits, 
indicating periods of increased interregional variability. In 2023, the trend line sharply declined, suggesting a 
potential stabilization phase.

Carbapenem-resistant Pseudomonas aeruginosa
Figure S1 presents the funnel plots for CRPA. In 2017–2018, Emilia-Romagna approached the upper red limit 
but remained within control boundaries. By 2018–2019, it returned fully within the limits, while increasing AST 
volume, indicating enhanced surveillance efforts. In 2019–2020, Tuscany slightly exceeded the upper control 
limit, although it remained within the grey-shaded area, suggesting a moderate but non-significant increase in 
CRPA prevalence. From 2020 to 2021 to 2021–2022, all regions remained within statistical thresholds, except 
for Calabria, which in 2020–2021 fell below the lower control limit, though with a limited AST sample size. In 
2022–2023, Lombardy conducted the highest number of ASTs, followed by Tuscany and Emilia-Romagna, both 
of which approached the upper control limit but remained within expected variability.

The Z-score control chart (top) of Fig. 4 provides a temporal overview of the monitoring, highlighting 
individual variations over the years, consistently with the funnel plots. The Chi-squared control chart (bottom) 
remained below control limits but exhibited a transient surge in AMR variability in 2020, followed by a rapid 
decline in 2021–2022. However, in 2023, the trend rebounded to 2020 levels, suggesting potential increasing 
heterogeneity in resistance patterns.

Fig. 3.  Statistical Process Control charts for CRAS resistance trends in Italy. The top panel presents a Z-score 
control chart, tracking standardized variations in %AMR across regions over time. Regions exceeding the 
control limits correspond to outliers identified in the funnel plots. The bottom panel displays a Chi-squared 
control chart, assessing systemic variation across all regions. A decreasing trend is observed between 2017–
2020, followed by a peak in 2023. This trend suggests increasing heterogeneity in regional AMR patterns, 
highlighting the dynamic nature of resistance evolution and the potential impact of public health interventions.
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Fig. 5.  Statistical Process Control charts for VRE resistance trends in Italy. The top panel shows a Z-score 
control chart, highlighting regional variations over time, in line with the funnel plot findings. The bottom 
panel presents a Chi-squared control chart, assessing systemic variability. Two major peaks in interregional 
resistance differences emerged in 2018 and 2022, corresponding to documented outbreaks and changes in 
infection control policies. Toscana’s decline in VRE prevalence in 2018–2019 aligns with the effects of AMS 
programs, while Liguria’s persistent resistance trends from 2019 to 2022 suggest localized outbreaks and 
challenges in infection control. The sharp decline in systemic variability observed in 2023 suggests a decrease 
in heterogeneity.

 

Fig. 4.  Funnel plots illustrating year-to-year variations in AMR percentage for Vancomycin- resistant 
Enterococci (VRE) across Italian regions, plotted against the harmonic mean of AST counts. In 2016–2017, 
all regions remained within control limits, indicating stable variations. However, in the following years, 
certain regions—particularly Molise, Liguria, and Toscana—displayed greater variability. In 2017–2018, 
Molise and Liguria exhibited the highest resistance values but remained within expected boundaries due to 
their low AST volumes, whereas Umbria, with a higher AST count, exceeded the upper control limit despite 
a lower AMR percentage. Toscana showed a notable decline in VRE prevalence in 2018–2019, likely due to 
successful antimicrobial stewardship (AMS) interventions. In 2020–2021 and 2022–2023, all regions remained 
within control limits, suggesting a slowdown in the VRE growth. Veneto, Emilia-Romagna, and Lombardia 
consistently conducted the highest number of ASTs, reflecting strong surveillance capacity.
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Third-generation cephalosporin-resistant Escherichia coli
The funnel plots in Figure S3 show a stable resistance pattern from 2016 to 2018, with all regions remaining 
within control limits. However, in 2018–2019, Lazio exceeded the upper control limits, while Tuscany and Veneto 
recorded a substantial increase in AST testing. In 2019–2020, the grey area shifted downward and widened, 
indicating increased variability and an overall reduction in resistance levels. During this period, Lazio fell below 
the lower control limit, confirming a statistically significant decline. From 2020 to 2023, Emilia-Romagna, 
Lombardy, Tuscany, and Veneto consistently performed the highest number of ASTs.

In the Z-score control chart (top) of Figure S4, the rebound effect can be observed for Lazio, highlighting 
possible anomalies in collecting data or an outbreak that rapidly subsided. The Chi-squared control chart 
highlights an out-of-control value in 2020, corresponding to the global downward shift in the funnel already 
observed in Figure S2.

Carbapenem-resistant Klebsiella pneumoniae
Between 2016 and 2019, all regions remained within control limits (Figure S5). However, in 2019–2020, Sicily 
exceeded the upper control limits, followed by Lazio in 2021–2022, indicating localized surges in CRKP 
prevalence. From 2020 to 2023, Lazio, Veneto, Sicily, Tuscany, and Lombardy consistently maintained high AST 
rates, with Emilia-Romagna performing the highest number of ASTs across all years.

The Chi-squared control chart in Figure S6 remained within statistical control limits throughout the study 
period, suggesting no major systemic shifts in interregional resistance variability.

Methicillin-resistant Staphylococcus aureus
In 2017–2018, Veneto fell below the lower control limit (Figure S7), while Piemonte and Lombardy approached 
the lower margin, suggesting a temporary decline in resistance rates. In 2018–2019, all regions remained within 
control limits, with Veneto and Emilia-Romagna showing a notable increase in AST testing, a trend that persisted 
through 2020–2021. In contrast, 2021–2022 saw Piemonte and Lazio exceed the upper control limit, suggesting a 
localized increase in resistance prevalence. By 2022–2023, Piemonte exhibited a recovery, falling below the lower 
red limit, while Lombardy recorded a substantial increase in AST volume.

The Chi-squared control chart in Figure S8 revealed physiological oscillations within statistical limits, 
aligning with the expected national interregional distribution of MRSA resistance trends.

Discussion 
This study demonstrates how SPC methods may enhance AMR surveillance by identifying both local anomalies 
and systemic patterns across regions and over time. This involves two sets of problems. Firstly, the choice of the 
most suitable SPC tools and, if necessary, the development of new techniques. Secondly, it is crucial to assess in 
the field whether this paradigm is able to offer added value in terms of national surveillance.

Regarding the first issue, the heterogeneous sample size is a key feature of AMR data. This motivated the use 
of funnel plots, which were specifically introduced and developed to address statistical challenges associated 
with varying sample sizes. However, their potential was not fully realized in the context of AMR surveillance.

Furthermore, it is important to acknowledge the structural features of the Italian healthcare system. Since 
healthcare in Italy is largely managed at the regional and autonomous provincial levels, variations in healthcare 
practices can influence both the reporting and the management of AMR data. While national guidelines 
provide a general framework, each region retains discretion over policies, implementation, and reporting. These 
differences may affect both the quality and the consistency of regional AMR data and should therefore be taken 
into account when interpreting surveillance results.

Application of funnel plots to AMR surveillance is new apart from an example relative to the assessment 
of MRSA rates11. There, the control limits were based on conditioning on the total observed cases, so that the 
(approximate) size parameter was given by the average number of cases in consecutive years. In our approach we 
focus on %AMR using a more insightful size parameter, namely the harmonic mean of ASTs, directly linked to 
the monitoring effort of the Italian regions.

The regional %AMR provides a straightforward interpretation of resistance levels but relies on the statistical 
assumption of national homogeneity, which may not hold due to substantial differences in healthcare systems 
across regions. For this reason, AMR variations are preferred as indicator as they help neutralize disparities, 
allowing regions to be compared within the same probabilistic framework and highlighting anomalous increases 
or decreases relative to their own trends.

Building on this methodological framework, we applied SPC techniques to AMR surveillance data across 
Italian regions, covering six key MDROs. This highlighted both localized anomalies and broader systemic trends 
observed over the 2015–2023 period.

Regarding CRAS prevalence, while initial years (2016–2020) showed stable resistance within control limits, 
the pandemic years marked a clear systemic deviation beyond control limits, especially in regions such as Liguria 
and Lombardy. These findings align with previous studies that documented increased use of broad-spectrum 
antibiotics and ICU overcrowding during COVID-19, conditions favouring the spread of MDROsCarbapenem 
resistant Acinetobacter baummannii (CRAB)15 wordlwide and specifically in Northern Italy16. Although CRAB 
incidence has since decreased17, the variability observed underscores the importance of monitoring interregional 
dynamics rather than relying solely on national aggregates.

Similarly, while initial years showed overall stability of VRE-faecium, certain regions, most notably Molise, 
Liguria, and Tuscany, demonstrated fluctuations over time. These fluctuations in VRE-faecium rates in regions 
like Molise and Liguria might be traced back to localized interventions or shifts in infection control policies. The 
heightened VRE-faecium rates in some regions are potentially attributed to both increased use of vancomycin 
in ICUs and a shortage of trained infection control staff18–20. Tuscany’s and Liguria’s reduction in VRE-faecium 
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prevalence from 2018 to 2019 suggests successful interventions in antimicrobial stewardship (AMS) programs21 
and improved surveillance of potentially colonizing MDROs22, respectively. The broader peaks in systemic 
resistance variability suggest that while regional interventions were effective, they may not have been uniformly 
implemented across all areas, and notably the funnel plots allowed us to contextualize these events within 
national trends, identifying both successful interventions and areas where resistance remained persistently high.

In contrast, for MRSA the funnel plot showed remarkable regional stability, with a few notable exceptions 
such as Veneto falling below the lower control limit in 2017–2018 and Piemonte and Lombardy approaching 
the lower boundaries. The general downward trend and low variability suggest the effectiveness of long-
standing infection prevention efforts and AMS programs, particularly in regions like Veneto, Lombardy, and 
Piedmont23–25. The regional variability in CRPA resistance, especially in regions like Tuscany, reflects trends 
observed across Europe. Studies have shown that P. aeruginosa has been particularly problematic in ICUs during 
the COVID-19 pandemic26.

Reports from Tuscany indicated an increase in CRPA during the early pandemic phase due to factors such 
as overcrowding in ICUs and the increased use of carbapenems for treating COVID-related pneumonia27. 
Interestingly, systemic monitoring revealed a transient increase in resistance heterogeneity in 2020, followed by a 
decline in 2021–2022. This suggests that interventions were effective in restoring a more homogeneous situation 
in the years following the COVID-19 pandemic.

The observed increased incidence of 3GCephRE in Lazio during the pandemic was probably linked to 
extended use of broad-spectrum antibiotics in hospitals treating high-risk COVID-19 patients28. However, by 
2020, interventions in AMS programs appeared to have stabilized 3GCephRE rates29, as reflected in the return to 
control limits in later years. This aligns with the broader trend observed in systemic surveillance, where an initial 
increase in heterogeneity in 2020 was followed by stabilization.

The CRKP results demonstrated relative stability across regions, although some regions like Sicily showed a 
deviation above control limits in 2019–2020. K. pneumoniae resistance in regions such as Sicily has been linked 
to several outbreaks that emerged in the wake of COVID-19. Specifically, some authors reported an alarming 
rise in CRKP cases during 2020–202130, likely due to the increased use of carbapenems in COVID-19 patients. 
By 2023, however, evidence suggested a gradual decline in CRKP rates, which might reflect the effectiveness of 
national efforts to curb the spread of hospital-acquired infections through improved AMS and infection control 
programs31.

The SPC allowed for the early detection of abnormal trends in AMR rates which is particularly significant 
since even small shifts in resistance patterns can have serious public health implications. Unlike traditional 
reports that rely on aggregated data, SPC helps identify specific regions and time periods where AMR deviates 
from expected norms. This robust analytical approach distinguishes between random fluctuations and genuine 
deviations, which can signal the need for targeted interventions. For instance, regions like Liguria and Tuscany 
showed deviations in CRAS and VRE-faecium, indicating a need for targeted interventions. Ideally, applying 
SPC to real-time data could immediately alert public health officials to potential outbreaks, allowing for quicker 
and more effective interventions. While our retrospective analysis offers valuable insights into past trends, real-
time application of SPC might provide a timely and effective response to AMR outbreaks. However, there are 
some limitations to consider. The retrospective nature of the data means that our findings reflect past trends and 
might not fully represent current AMR dynamics. Furthermore, while SPC can identify regions and timeframes 
with significant deviations, it doesn’t provide direct insight into the causes behind those shifts, such as changes 
in hospital practices, AMS programs, or the introduction of other infection control measures.

It has already been pointed out that the application of SPC in healthcare comes with several practical benefits, 
limitations, and implementation challenges32. Among the main advantages, SPC stands out as a relatively low-
cost and versatile tool that can support process improvement across a wide range of clinical and organizational 
settings. There are also limitations. Displaying data in control chart format does not inherently lead to improved 
outcomes, and processes deemed to be in statistical control may still fall short of clinical expectations. Barriers 
to SPC adoption include resistance to change and limited access to high-quality data. To overcome these 
barriers, training users in SPC principles and providing technical support are essential. Moreover, a common 
misconception is the belief that the theoretical foundations of SPC are difficult to master. In reality, the theory 
is entirely based on probability theory and is intuitive: natural variability is modeled using an appropriate 
probabilistic model that can be adapted to the nature of the data, and control limits are derived accordingly. 
Another misconception is that normality is required. In fact, other probabilistic distributions can also be used 
to model the phenomenon. However, normality guarantees specific and useful properties and is recommended 
when addressing overdispersion.

Data availability
The study did not involve humans, and it was conducted in accordance with the local legislation and institutional 
requirements. The original contributions presented in the study are included in the article/Supplementary ma-
terial, further inquiries can be directed to the corresponding author Giuseppe De Nicolao (giuseppe.denicolao@
unipv.it).

Received: 4 June 2025; Accepted: 13 October 2025

References
	 1.	 Ikuta, K. S. et al. Global mortality associated with 33 bacterial pathogens in 2019: a systematic analysis for the global burden of 

disease study 2019. Lancet 400, 2221–2248. https://doi.org/10.1016/S0140-6736(22)02185-7 . (2022).

Scientific Reports |        (2025) 15:40477 9| https://doi.org/10.1038/s41598-025-24383-z

www.nature.com/scientificreports/

https://doi.org/10.1016/S0140-6736(22)02185-7
http://www.nature.com/scientificreports


	 2.	 Naghavi, M. et al. Global burden of bacterial antimicrobial resistance 1990–2021: a systematic analysis with forecasts to 2050, The 
Lancet, 404(10459), 1199–1226. https://doi.org/10.1016/S0140-6736(24)01867-1 (2024).

	 3.	 Ecdc “Antimicrobial resistance in the EU/EEA (EARS-Net) EU targets on antimicrobial resistance”. Accessed on January 10, 2025. 
[Online]. Available at https://atlas.ecdc.europa.eu/public/.

	 4.	 Mendelson, M. et al. Antimicrobial resistance and the great divide: inequity in priorities and agendas between the Global North 
and the Global South threatens global mitigation of antimicrobial resistance. Lancet Global Health 12(3), e516–e521. ​h​t​t​p​s​:​/​/​d​o​i​.​o​
r​g​/​1​0​.​1​0​1​6​/​S​2​2​1​4​-​1​0​9​X​(​2​3​)​0​0​5​5​4​-​5​​​​ (2024).

	 5.	 Tornimbene, B. et al. WHO Global Antimicrobial Resistance Surveillance System early implementation 2016–17. Lancet. Infect. 
Dis 18(3), 241–242. https://doi.org/10.1016/S1473-3099(18)30060-4 (2018).

	 6.	 WHO. GLASS dashboard, availble at: ​h​t​t​p​s​:​​/​/​w​o​r​l​​d​h​e​a​l​t​​h​o​r​g​.​s​​h​i​n​y​a​​p​p​s​.​i​o​​/​g​l​a​s​s​​-​d​a​s​h​b​​o​a​r​d​/​​_​w​_​a​d​9​​3​0​2​2​7​d​​d​1​d​4​f​7​​4​8​c​9​3​0​8​1​8​e​1​7​4​
6​1​b​a​/​#​!​/​h​o​m​e. Accessed: May 05, 2025. [Online]. Available: ​h​t​t​p​s​:​​/​/​w​o​r​l​​d​h​e​a​l​t​​h​o​r​g​.​​s​h​i​n​y​a​p​p​s​.​i​o​/​g​l​a​s​s​-​d​a​s​h​b​o​a​r​d​/​_​w​_​a​d​9​3​0​2​2​7​d​
d​1​d​4​f​7​4​8​c​9​3​0​8​1​8​e​1​7​4​6​1​b​a​/​#​!​/​h​o​m​e​​​

	 7.	 Spiegelhalter, D. J. Funnel plots for comparing institutional performance, Stat. Med. 24(8), 1185–1202. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​0​0​2​/​S​I​
M​.​1​9​7​0​​​​ (2005). 

	 8.	 Mohammed, M. A., Cheng, K. K., Rouse, A. & Marshall, T. Bristol, shipman, and clinical governance: Shewhart’s forgotten lessons. 
Lancet 357(9254), 463–467. https://doi.org/10.1016/S0140-6736(00)04019-8 (2001).

	 9.	 Stark, J. et al. Mar., Mortality rates after surgery for congenital heart defects in children and surgeons’ performance, Lancet, 
355(9208), 1004–1007. https://doi.org/10.1016/S0140-6736(00)90001-1 (2000). 

	10.	 Milanesi, S. et al. Early detection of variants of concern via funnel plots of regional reproduction numbers, Scient. Rep. 2023 13:1, 
13(1), 1–14. https://doi.org/10.1038/s41598-022-27116-8 (2023).

	11.	 Spiegelhalter, D. J. Problems in assessing rates of infection with methicillin resistant Staphylococcus aureus. BMJ 331(7523), 1013. 
https://doi.org/10.1136/BMJ.331.7523.1013 (2005).

	12.	 Spiegelhalter, D. et al. Statistical methods for healthcare regulation: rating, screening and surveillance. J. R Statist Soc. A. 175, 1–47 
(2011).

	13.	 Superiore, I. et al. AR-ISS: sorveglianza nazionale dell’Antibiotico-Resistenza. Dati (2023).
	14.	 Spiegelhalter, D. J. Handling over-dispersion of performance indicators, Quality & safety in health care, 14(5), 347–351. ​h​t​t​p​s​:​/​/​d​o​

i​.​o​r​g​/​1​0​.​1​1​3​6​/​Q​S​H​C​.​2​0​0​5​.​0​1​3​7​5​5​​​​ (2005).
	15.	 Perez, S. et al. Increase in hospital-acquired carbapenem-resistant Acinetobacter baumannii Infection and colonization in an acute 

care hospital during a surge in COVID-19 Admissions - New Jersey, February-July 2020, MMWR. Morbidity and mortality weekly 
report, 69(48), 1827–1831. https://doi.org/10.15585/MMWR.MM6948E1 (2020).

	16.	 Mangioni, D. et al. Genomic Characterization of Carbapenem-Resistant Acinetobacter baumannii (CRAB) in Mechanically 
Ventilated COVID-19 Patients and Impact of Infection Control Measures on Reducing CRAB Circulation during the Second 
Wave of the SARS-CoV-2 Pandemic in Milan, Italy. Microbiol. Spectr. 11(2), https://doi.org/10.1128/SPECTRUM.00209-23 (2023).

	17.	 Scaglione, G. et al. Understanding the burden of antibiotic resistance: a decade of carbapenem-resistant Gram-negative bacterial 
infections in Italian intensive care units. Front. Microbiol. 15 https://doi.org/10.3389/FMICB.2024.1405390 (2024).

	18.	 Molise, R. Delibera ASREM 457, (2023).
	19.	 Lombardi, A., Ripabelli, G., Sammarco, M. L. & Tamburro, M. Enterococcus faecium as an emerging pathogen: molecular 

epidemiology and antimicrobial resistance in clinical strains. Pathogens, 14, 483, (2025).
	20.	 Antibiotici e infezioni ospedaliere. resistenti, la Liguria tra le regioni peggiori. Accessed: Mar. 24, 2025. [Online]. Available: ​h​t​t​p​s​:​​

/​/​w​w​w​.​​g​e​n​o​v​a​​t​o​d​a​y​.​​i​t​/​c​r​​o​n​a​c​a​/​​a​n​t​i​b​i​​o​t​i​c​i​-​​i​n​f​e​z​​i​o​n​i​-​o​​s​p​e​d​a​l​​i​e​r​e​-​r​​e​s​i​s​t​​e​n​t​i​-​l​​i​g​u​r​i​a​​.​h​t​m​l​?​​u​t​m​_​s​o​u​r​c​e​=​c​h​a​t​g​p​t​.​c​o​m
	21.	 La sorveglianza epidemiologica delle malattie infettive. in Toscana - Agenzia Regionale di Sanità della Toscana. Accessed: May 05, 

2025. [Online]. Available: ​h​t​t​p​s​:​​/​/​w​w​w​.​​a​r​s​.​t​o​​s​c​a​n​a​.​​i​t​/​p​u​​b​b​l​i​c​a​​z​i​o​n​i​-​​n​s​/​r​e​l​​a​z​i​o​n​​i​/​4​0​1​8​​-​l​a​-​s​o​​r​v​e​g​l​i​​a​n​z​a​-​​e​p​i​d​e​m​​i​o​l​o​g​i​​c​a​-​d​e​l​​l​e​-​m​a​​l​a​
t​t​i​e​​-​i​n​f​e​t​​t​i​v​e​-​i​​n​-​t​o​s​c​a​n​a​.​h​t​m​l

	22.	 Infezioni correlate all’assistenza e antimicrobico-resistenza - Alisa - Sistema Sanitario Regione Liguria. Accessed: Mar. 25, 2025. 
[Online]. Available: ​h​t​t​p​s​:​​/​/​w​w​w​.​​a​l​i​s​a​.​​l​i​g​u​r​i​​a​.​i​t​/​​o​r​g​a​n​i​​z​z​a​z​i​o​​n​e​/​d​i​r​​e​z​i​o​n​​e​-​g​e​n​e​​r​a​l​e​/​p​​r​e​v​e​n​z​​i​o​n​e​-​​e​p​i​d​e​m​​i​o​l​o​g​i​​a​-​p​r​o​g​​r​a​m​m​a​​z​i​o​n​e​
-​​e​-​c​o​n​t​​r​o​l​l​i​/​​i​n​f​e​z​​i​o​n​i​-​a​​s​s​i​s​t​e​​n​z​a​-​a​n​​t​i​m​i​c​​r​o​b​i​c​o​​-​r​e​s​i​s​​t​e​n​z​a​.​​h​t​m​l​?​u​t​m​_​s​o​u​r​c​e​=​c​h​a​t​g​p​t​.​c​o​m

	23.	 Anello, P. et al. Antimicrobial stewardship and infection prevention and control in the Veneto Region, Northeastern italy: 
governance Models, Resources, and key challenges across hospital and community Settings—Findings from the ARCO project. 
Microorganisms 2025. 13(2), 405. https://doi.org/10.3390/MICROORGANISMS13020405 (2025).

	24.	 Vicentini, C., Blengini, V., Libero, G., Martella, M. & Zotti, C. M. Tailoring Antimicrobial Stewardship (AMS) Interventions to 
the Cultural Context: An Investigation of AMS Programs Operating in Northern Italian Acute-Care Hospitals. Antibiot. (Basel 
Switzerland) 11(9). https://doi.org/10.3390/ANTIBIOTICS11091257 (2022).

	25.	 Vicentini, C. et al. Impact of COVID-19 on antimicrobial stewardship activities in italy: a region-wide assessment. Antimicrob. 
Resist. Infect. Control. 13 (1), 1–9. ​h​t​t​p​s​:​​/​/​d​o​i​.​​o​r​g​/​1​0​​.​1​1​8​6​/​​S​1​3​7​5​​6​-​0​2​4​-​​0​1​4​0​7​-​​3​/​T​A​B​L​​E​S​/​3 (2024).

	26.	 De Pascale, G. et al. Incidence of hospital-acquired infections due to carbapenem-resistant Enterobacterales and Pseudomonas 
aeruginosa in critically ill patients in Italy: a multicentre prospective cohort study. Crit. Care. (London, England) 29(1), 32. ​h​t​t​p​s​:​/​
/​d​o​i​.​o​r​g​/​1​0​.​1​1​8​6​/​S​1​3​0​5​4​-​0​2​5​-​0​5​2​6​6​-​1​​​​ (2025).

	27.	 L’antibiotico-resistenza. in Toscana nell’anno della pandemia - Agenzia Regionale di Sanità della Toscana. Accessed: Mar. 24, 2025. 
[Online]. Available: ​h​t​t​p​s​:​​/​/​w​w​w​.​​a​r​s​.​t​o​​s​c​a​n​a​.​​i​t​/​2​-​​a​r​t​i​c​o​​l​i​/​4​4​4​​4​-​a​n​t​i​​b​i​o​t​i​​c​o​-​r​e​s​​i​s​t​e​n​z​​a​-​t​o​s​c​​a​n​a​-​p​​a​n​d​e​m​i​​a​-​b​a​t​t​​e​r​i​-​i​n​​f​e​z​i​o​​n​i​-​a​s​s​​i​s​t​e​
n​z​​a​-​o​s​p​e​​d​a​l​e​-​​c​o​v​i​d​.​​h​t​m​l​?​u​​t​m​_​s​o​u​​r​c​e​=​c​h​a​t​g​p​t​.​c​o​m

	28.	 Falcone, M. et al. Superinfections caused by carbapenem-resistant Enterobacterales in hospitalized patients with COVID-19: a 
multicentre observational study from Italy (CREVID Study), JAC-Antimicrobial Resistance, 4(3), dlac064. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​0​9​3​/​
J​A​C​A​M​R​/​D​L​A​C​0​6​4​​​​ (2022).

	29.	 Nasce al Policlinico Gemelli l’Antimicrobial Stewardship Center of Excellence Italiano - Policlinico Universitario & Gemelli, A. 
IRCCS. Accessed: Mar. 24, 2025. [Online]. Available: ​h​t​t​p​s​:​​/​/​w​w​w​.​​p​o​l​i​c​l​​i​n​i​c​o​g​​e​m​e​l​l​​i​.​i​t​/​n​​e​w​s​-​e​v​​e​n​t​i​/​n​​a​s​c​e​-​​a​l​-​p​o​l​​i​c​l​i​n​i​​c​o​-​g​e​m​​e​l​l​i​-​​l​
a​n​t​i​m​​i​c​r​o​b​i​​a​l​-​s​t​e​​w​a​r​d​s​​h​i​p​-​c​e​​n​t​e​r​-​o​​f​-​e​x​c​e​​l​l​e​n​c​​e​-​i​t​a​l​​i​a​n​o​/​?​​u​t​m​_​s​o​​u​r​c​e​=​c​h​a​t​g​p​t​.​c​o​m

	30.	 Amodio, E. et al. Increase of multidrug-resistant bacteria after the COVID-19 pandemic in a major teaching Hospital in Sicily 
(2018–2021). Int. J. Antimicrob. Agents 63(5), 107123. https://doi.org/10.1016/j.ijantimicag.2024.107123 (2024).

	31.	 Piano Nazionale di Contrasto all’Antibiotico-Resistenza (PNCAR). 2022–2025. Accessed: Mar. 24, 2025. [Online]. Available: ​h​t​t​p​s​
:​​​/​​/​w​w​​w​.​e​p​i​c​e​n​t​r​​o​.​i​​​s​s​.​​i​​t​/​a​n​t​i​​b​i​o​t​​i​c​​o​-​r​e​s​​i​s​t​e​​n​​z​a​/​p​​n​c​​a​r​-​​2​0​​2​​2​?​u​t​​m​_​s​​o​u​r​c​e​=​c​​h​a​t​g​p​t​.​c​o​m

	32.	 Mohammed, M. A. Statistical Process Control, Elem. Impr. Quali. Saf. Health. . https://doi.org/10.1017/9781009326834 (2024). 

Acknowledgements
We wish to thank the ISS for publicly available source of AR-ISS annual reports.

Author contributions
**SM: ** Data curation, Formal analysis, Methodology, Writing–review and editing **, MC** : Writing–original 
draft, Writing–review and editing, **SLF: ** Investigation, Resources, Supervision, Visualization, **AB: ** Inves-
tigation, Resources, Supervision, Visualization **, SV** : Supervision, Visualization, Writing–review and edit-
ing, **ET: ** Formal analysis, Methodology, **PMP: ** Supervision, Visualization, **AG: ** Conceptualization, 

Scientific Reports |        (2025) 15:40477 10| https://doi.org/10.1038/s41598-025-24383-z

www.nature.com/scientificreports/

https://doi.org/10.1016/S0140-6736(24)01867-1
https://atlas.ecdc.europa.eu/public/
https://doi.org/10.1016/S2214-109X(23)00554-5
https://doi.org/10.1016/S2214-109X(23)00554-5
https://doi.org/10.1016/S1473-3099(18)30060-4
https://worldhealthorg.shinyapps.io/glass-dashboard/_w_ad930227dd1d4f748c930818e17461ba/#!/home
https://worldhealthorg.shinyapps.io/glass-dashboard/_w_ad930227dd1d4f748c930818e17461ba/#!/home
https://worldhealthorg.shinyapps.io/glass-dashboard/_w_ad930227dd1d4f748c930818e17461ba
https://worldhealthorg.shinyapps.io/glass-dashboard/_w_ad930227dd1d4f748c930818e17461ba
https://doi.org/10.1002/SIM.1970
https://doi.org/10.1002/SIM.1970
https://doi.org/10.1016/S0140-6736(00)04019-8
https://doi.org/10.1016/S0140-6736(00)90001-1
https://doi.org/10.1038/s41598-022-27116-8
https://doi.org/10.1136/BMJ.331.7523.1013
https://doi.org/10.1136/QSHC.2005.013755
https://doi.org/10.1136/QSHC.2005.013755
https://doi.org/10.15585/MMWR.MM6948E1
https://doi.org/10.1128/SPECTRUM.00209-23
https://doi.org/10.3389/FMICB.2024.1405390
https://www.genovatoday.it/cronaca/antibiotici-infezioni-ospedaliere-resistenti-liguria.html?utm_source=chatgpt.com
https://www.genovatoday.it/cronaca/antibiotici-infezioni-ospedaliere-resistenti-liguria.html?utm_source=chatgpt.com
https://www.ars.toscana.it/pubblicazioni-ns/relazioni/4018-la-sorveglianza-epidemiologica-delle-malattie-infettive-in-toscana.html
https://www.ars.toscana.it/pubblicazioni-ns/relazioni/4018-la-sorveglianza-epidemiologica-delle-malattie-infettive-in-toscana.html
https://www.alisa.liguria.it/organizzazione/direzione-generale/prevenzione-epidemiologia-programmazione-e-controlli/infezioni-assistenza-antimicrobico-resistenza.html?utm_source=chatgpt.com
https://www.alisa.liguria.it/organizzazione/direzione-generale/prevenzione-epidemiologia-programmazione-e-controlli/infezioni-assistenza-antimicrobico-resistenza.html?utm_source=chatgpt.com
https://doi.org/10.3390/MICROORGANISMS13020405
https://doi.org/10.3390/ANTIBIOTICS11091257
https://doi.org/10.1186/S13756-024-01407-3/TABLES/3
https://doi.org/10.1186/S13054-025-05266-1
https://doi.org/10.1186/S13054-025-05266-1
https://www.ars.toscana.it/2-articoli/4444-antibiotico-resistenza-toscana-pandemia-batteri-infezioni-assistenza-ospedale-covid.html?utm_source=chatgpt.com
https://www.ars.toscana.it/2-articoli/4444-antibiotico-resistenza-toscana-pandemia-batteri-infezioni-assistenza-ospedale-covid.html?utm_source=chatgpt.com
https://doi.org/10.1093/JACAMR/DLAC064
https://doi.org/10.1093/JACAMR/DLAC064
https://www.policlinicogemelli.it/news-eventi/nasce-al-policlinico-gemelli-lantimicrobial-stewardship-center-of-excellence-italiano/?utm_source=chatgpt.com
https://www.policlinicogemelli.it/news-eventi/nasce-al-policlinico-gemelli-lantimicrobial-stewardship-center-of-excellence-italiano/?utm_source=chatgpt.com
https://doi.org/10.1016/j.ijantimicag.2024.107123
https://www.epicentro.iss.it/antibiotico-resistenza/pncar-2022?utm_source=chatgpt.com
https://www.epicentro.iss.it/antibiotico-resistenza/pncar-2022?utm_source=chatgpt.com
https://doi.org/10.1017/9781009326834
http://www.nature.com/scientificreports


Funding acquisition, Investigation, Resources, Supervision, Visualization, **MR: ** Conceptualization, Funding 
acquisition, Investigation, Resources, Supervision, Visualization, **GDN: ** Conceptualization, Data curation, 
Formal analysis, Methodology, Supervision, Writing–original draft, Writing–review and editing.

Funding statement
The author(s) declare financial support was received for the research, authorship, and/or publication of the 
article. This research was supported by EU funding within the NextGenerationEU-MUR PNRR Extended Part-
nership initiative on Emerging Infectious Diseases (Project no. PE00000007, INF-ACT), and by the project “Pro-
liferation, Resistance and Infection Dynamics in Epidemics (PRIDE)”, funded under the “Progetti di Rilevante 
Interesse Nazionale (PRIN)” programme (Project ID: 2022LP77J4).

Declarations

Competing interests
The authors declare no competing interests.

Ethics statement
The study did not involve humans, and it was conducted in accordance with the local legislation and 
institutional requirements.

Additional information
Supplementary Information The online version contains supplementary material available at ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​
0​.​1​0​3​8​/​s​4​1​5​9​8​-​0​2​5​-​2​4​3​8​3​-​z​​​​​.​​

Correspondence and requests for materials should be addressed to G.N.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give 
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and 
indicate if changes were made. The images or other third party material in this article are included in the article’s 
Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included 
in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy 
of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2025 

Scientific Reports |        (2025) 15:40477 11| https://doi.org/10.1038/s41598-025-24383-z

www.nature.com/scientificreports/

https://doi.org/10.1038/s41598-025-24383-z
https://doi.org/10.1038/s41598-025-24383-z
http://creativecommons.org/licenses/by/4.0/
http://www.nature.com/scientificreports

	﻿Funnel-based antimicrobial resistance monitoring in Italy: the FUN-IT study
	﻿Methods
	﻿Data
	﻿Funnel-based and multivariate chart control methods
	﻿Choice of the indicator
	﻿Multivariate control chart
	﻿SPC user guide: rationale and tiered approach

	﻿Results
	﻿Carbapenem-resistant Acinetobacter spp
	﻿Vancomycin-resistant Enterococcus faecium
	﻿Carbapenem-resistant Pseudomonas aeruginosa
	﻿Third-generation cephalosporin-resistant Escherichia coli
	﻿Carbapenem-resistant Klebsiella pneumoniae
	﻿Methicillin-resistant Staphylococcus aureus


	﻿Discussion 
	﻿References


