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This study investigates the energy absorption and damage prediction of banana fiber composite 
laminates under low-velocity impact using a combination of experimental testing, finite element 
analysis (FEA), and machine learning (ML). Banana fiber composites are a promising eco-friendly 
alternative to synthetic materials in structural applications due to their sustainability, high strength, 
and energy absorption properties. The laminates, fabricated using the hand layup technique, were 
subjected to low-velocity impact tests to measure their energy absorption, force-displacement 
behavior, and damage progression. FEA simulations were conducted to model the impact response, 
and ML models, including logistic regression and Naive Bayes, were developed to predict the impact 
behavior. The results show that banana fiber composites exhibit significant energy absorption, with an 
experimental value of 14.36 kJ at a drop height of 1.8 m. Both FEA and ML models closely predicted 
this energy absorption, with minor deviations, validating the robustness of the methodologies. The 
study highlights the integration of ML as a powerful tool for predicting composite material behavior, 
achieving an accuracy of 1.0 in predicting energy absorption and damage initiation. The findings 
provide valuable insights into the potential of banana fiber composites for use in lightweight, high-
strength materials for the automotive and aerospace industries.
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Abbreviations
FEA	� Finite Element Analysis
ML	� Machine Learning
KJ	� Kilojoules
E_total	� Total Energy
F(t)	� Impact Force as a function of time
v(t)	� Velocity of the Impactor as a function of time
E_k	� Kinetic Energy
E_diss	� Dissipated Energy
E_residual	� Residual Energy
F(d)	� Force as a function of displacement

1Department of Mechanical Engineering, Bangalore Institute of Technology, Bangalore, Karnataka, India. 
2Department of Mechanical Engineering, MVJ College of Engineering, Whitefield, Bangalore 560067, India. 
3Department of Mechanical Engineering, BGS College of Engineering and Technology, Bangalore 560086, India. 
4Department of Mechanical Engineering, BMS College of Engineering, Bangalore, India. 5Department Mechanical 
Engineering, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia. 6Civil Engineering 
Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia. 7College of Engineering 
and Technology, School of Mechanical and Automotive Engineering, Dilla University, P.O. Box 419, Dilla, Ethiopia. 
email: santhoshmvj89@gmail.com; venkatesh.mech@gmail.com; addisuf@du.edu.et

OPEN

Scientific Reports |        (2025) 15:40476 1| https://doi.org/10.1038/s41598-025-24403-y

www.nature.com/scientificreports

http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-025-24403-y&domain=pdf&date_stamp=2025-10-15


d_max	� Maximum Displacement
F1-score	� A measure of a model’s accuracy, combining precision and recall
Logistic Regression	� A statistical method used for binary and multi-class classification
Naive Bayes	� A probabilistic machine learning model based on applying Bayes’ theorem
K-fold	� A cross-validation technique used to evaluate machine learning models
SVM	� Support Vector Machine
PCA	� Principal Component Analysis

Natural fiber composites have found extensive use in various engineering applications because of their remarkable 
strength, lightweight nature, affordability, and favorable mechanical characteristics. These include high durability, 
rigidity, toughness, shock resistance, endurance against fatigue, and stability in maintaining dimensions. Natural 
fibre composites are used in the structural application of automotive interior and exterior components like door 
panels, seat backs, dashboard, bumpers and fenders. The variation in absorbed energy over time is determined 
through numerical and experimental analysis, while the shapes of the damaged regions are also assessed using 
test specimens from the experiments1. The use of composite materials is raising in the aerospace industry, so it 
is need to know the impact resistance of the laminates by subjecting it to impact with different heights2. In case 
of low-velocity impact, the damage occurs not visible to the naked eye and so need to know the deformation and 
damage in composite structures3. The increase of application of the natural fibre composite in transportation 
vehicles made it essential to reduce the weight of the components and also using the numerical analysis the 
impact loads and energy dissipation can be evaluated4,5. Considering the stacking sequence, impactor shape and 
impact energy several impact tests conducted to study the damage on specimens. Using the feature engineering 
and the machine learning model the impactor shape, dent depth and indentation is predicted6. Fibers extracted 
from the stem of the banana plant are used to create the composites, with both alkali-treated and untreated fibers 
tested to study the material’s behavior in relation to crack propagation. Two versions of the Enhanced Schapery 
theory with inelasticity (EST-Inelasticity) are applied, using 2D plane stress states and 3D stress states, to 
accurately predict damage characteristics. Additionally, a critical geometric factor, such as the thickness-to-
length/width ratio, is identified7,8. Issues with respect to damage simulation of composite laminates during low 
velocity impact were tested to observe the changes in stiffness and damping and repeated low velocity impact 
gives the damage accumulation mechanism by taking effective impactor diameter such as 10 mm, 12 mm, 14 
mm and 16 mm9,10. Low-velocity impact is a critical phenomenon in composite materials, particularly in 
applications where the material is subjected to impacts such as drops or collisions. Unlike high-velocity impacts, 
low-velocity impacts often cause internal damage that is not immediately visible, such as delamination, matrix 
cracking, and fiber failure, which can significantly affect the material’s structural integrity. Understanding the 
behavior of composite materials under such impacts is essential for designing more resilient materials, especially 
in industries such as automotive, aerospace, and sports equipment, where composite materials are frequently 
used. Low-velocity impact damage is simulated for a range of impact speeds between 50 and 1000 m/s to assess 
the initiation and progression of damage in the composite, based on quasi-static punch shear experiments. The 
simulation results predict high residual velocities, offering insights into the material’s behavior under impact. 
The force time histories and the damage prediction are compared with experiment results which concludes MAT 
162 is the versatile tool for predicting damage progression in thermoplastics11,12. Nondestructive test conducted 
to see the delamination and the energy absorption mechanism an explicit finite element code in LS dyna® used 
to observe the preload modelling and the structural behavior under low velocity impact13,14. Artificial neural 
network-based models are trained using the experimental data to identify the existence of anomalous data due 
to potential human error and to anticipate intricate nonlinear correlations between inputs and outputs15. Using 
drop-tower Instron 9250HV to measure impact force, energy absorption, and deflection as well as quasi-static 
testing apparatus, the impact response of unsaturated polyester/glass fiber composite laminate was experimentally 
investigated. Material mechanical characteristics have been established using Zwick Z100 to guarantee high-
quality input data for numerical forecasts16. The paper uses a theory which satisfies the invariant requirements 
of coordinate transformation, independent components, the difference in strengths due to positive and negative 
stresses, and for different material symmetries, multi-dimensional space, and multi-axial stresses17. The contact 
force is calculated based on the modified Hertz contact law with the loading and unloading processes the 
composite laminate and shell structures, cylindrical and spherical shells are subjected to low velocity impact a by 
the ANSYS/ LS dyna® finite element software. Numerical results show the greater stiffness, such as smaller 
curvature and clamped boundary condition, resulting a larger contact force and a smaller deflection18. The 
artificial intelligence used to predict the impact damage tolerance. Research focus on the deep learning-based 
approach and data collected from the literature and created using an impact simulation performed using an 
FEM19. Carbon fiber/epoxy composite laminates were put through a number of impact tests with different 
impact energy levels. The experimental circumstances were reflected in the finite-element model. Computed 
tomography, water immersion ultrasonic C-scan, and simulated damage cloud images were used to investigate 
the impact damage process of laminated plates20. A continuum shell-based finite element (FE) model is used to 
predict the impact response and compressive strength after impact (CSAI) behavior of fiber-reinforced polymer 
matrix composite (FRPC) laminates with various layup orientations21. Impact damage is assessed using 
unsupervised machine learning algorithms for automated image segmentation. The developed algorithm used 
for the Carbon fibre reinforced polymer. The ballistic impact response of FRCP is analyzed with ML model to 
observe the ballistic impact protective performance and the microstructure characteristics for a unidirectional 
FRCP22,23. using the LS DYNA® explicit dynamics finite element program a three-dimensional finite element 
(FE) model is generated and the effects of impact energy, ply angle and interfacial strength on the low-velocity 
impact performance of the composite laminates are verified with the experiment. This shows the impact energy 
is mainly dissipated by the plastic deformation and delamination damage of the laminates24. 3D Fiber-Metal 
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Laminates (3DFMLs) with a 3D composite core have been demonstrated to shows comparatively an exceptional 
impact resistance and shows a higher compressive strength and flexural strength and suitable in practical 
applications which requires light weight, stiffness, impact resistance and economic sustainability25. Using 
algorithmic differentiation, physics-informed neural networks (PINNs) are created to solve the differential 
equations related to a particular scientific topic by including their starting and boundary conditions into the 
artificial neural networks’ cost function26. The study by A Mache et al., investigates the ballistic performance of 
glass-carbon/epoxy hybrid composite laminates, focusing on their perforation resistance under impact. It found 
that the laminate demonstrated significant energy absorption, with a ballistic limit velocity (V50) of around 358 
m/s. The stacking sequence of the laminate layers, particularly the 0°/90°/90°/0° arrangement, significantly 
influenced the performance, showing higher energy absorption. The Chang-Chang failure criterion was used in 
LS-DYNA to model the laminate’s progressive failure under impact, incorporating parameters like DFAILC, 
DFAILT, and DFAILM to predict failure patterns and energy absorption. Simulations with a 7.62 mm round-
nose projectile revealed that increased thickness and optimized fiber orientation improved the laminate’s energy 
absorption and resistance to perforation, highlighting the potential for designing composite laminates with 
enhanced ballistic protection27. The variation of the Kinetic energy and internal energy of laminate as velocity 
decreases over a time for an orientation of sequence [+ 45/−45/+45/−45/−45/+45/−45/+45] has been studied 
using the numerical methods28. The study examines various laminas and stiffer combinations to assess buckling 
stresses and loads with different panel and stiffener arrangements across three distinct layup sequences. Pre- and 
post-buckling behavior of composite laminates made from woven fabric CFC/epoxy, E-glass/epoxy, and Kevlar/
epoxy is analyzed using finite element models29. Low-velocity impact tests on sisal/epoxy laminates, conducted 
using computed tomography, were used to check the influence of reinforcement distribution, fiber volume 
fraction, and layup. It was found that angle-ply laminates display superior impact performance compared to bio-
composites reinforced with other natural fibers30. The studies by Kiran K et al., collectively explore the behavior 
of composite materials under low-velocity impact (LVI) and offer strategies for improving their performance 
across various applications31. They focus on critical factors such as stacking sequence, fiber orientation, and 
material properties that influence the impact response of composites. Key strategies to enhance damage 
resistance include fiber hybridization, laminate optimization, and tuning fiber volume fractions to improve 
energy absorption and reduce damage propagation32. Finite element analysis (FEA) and numerical simulations 
are widely used across the studies to predict and model the LVI behavior of different composite configurations, 
such as carbon fiber reinforced polymer (CFRP), hybrid CFRP with Kevlar and glass fibers, and bio composites33. 
These simulations help identify critical parameters affecting impact strength and provide insights into how 
hybridization and optimized fiber content can enhance energy absorption and damage tolerance34. The hybrid 
composites demonstrated superior impact resistance compared to pure materials, with improved energy 
dissipation and reduced damage progression35. In addition to material optimization, one study focuses on 
automotive applications, using FEA to assess the crashworthiness of electric vehicle battery pack designs, 
balancing energy absorption with packaging efficiency to improve safety36. Overall, the studies highlight the 
importance of advanced modeling techniques, material selection, and design optimization in enhancing the 
performance of composite materials under LVI, with significant implications for industries such as automotive, 
aerospace, and sustainable design. Thus, the review of the literature have revealed that the studies carried out in 
this domain have analyzed the behavior of natural fiber composites under low-velocity impact conditions, but 
they primarily focus on experimental methods and numerical simulations.

This study introduces a novel approach by combining experimental testing, finite element analysis (FEA), 
and machine learning (ML) to predict and analyze the energy absorption and damage progression in banana 
fiber composites under low-velocity impact. Unlike existing studies that often focus on either experimental or 
numerical methods alone, this work integrates these methods with machine learning to enhance predictive 
accuracy and efficiency. The novelty lies in applying ML models for predicting impact behavior, demonstrating 
a high degree of accuracy in matching experimental results, and offering a scalable solution for future composite 
material testing and design.

Materials and methods
A composite laminate made of banana fibers in an epoxy matrix is produced using the hand layup technique. 
The matrix-to-fiber volume ratio is 40:60, and epoxy and hardener K-6 are mixed in a 10:1 ratio by weight. The 
mixture is thoroughly blended in a plastic bowl. The process begins by placing the first 90° banana fiber mat on 
the mold, pouring some of the mixture over it, and using a steel roller to level the surface and remove air bubbles. 
This process is repeated for the remaining layers, alternating 90° and 45° orientations (90/45/90/45/90), creating 
a laminate with a final thickness of 4 mm. After 24 h, the load is removed, and the laminate is left to cure at room 
temperature for 6–8 h.Banana fibre have less cost, easily available, good strength and enhancement in properties 
such as mechanical, wear, electrical and thermal and epoxy is having is high tensile strength, compressive 
strength, and impact strength, which make them ideal for use in structural applications the physical properties 
of epoxy and banana fibre shown in Tables 1 and 2 respectively. After the fabrication the samples are subjected to 
SEM analysis to see the presence of fibre in the above-mentioned orientation. SEM images taken for the smooth 
and rough surface of the composites showing the presence of fibre in epoxy matrix. The smooth and the rough 
surface of the composite shown is shown in Fig. 1 (a) and Fig. 1(b) respectively. Banana fiber mats, purchased 
from Go Green Products Pvt. Ltd., Bangalore, Karnataka, India, exhibit a density ranging from approximately 
1.2 g/cm3 to 1.4 g/cm³, depending on the fiber processing method and mat structure. Their GSM (grams per 
square meter) typically falls between 200 g/m2 and 600 g/m², influenced by thickness and fiber orientation. The 
flexural strength of these mats varies from 20 MPa to 70 MPa, with higher values observed when reinforced with 
resins such as epoxy or polyester. In terms of modulus, the flexural modulus generally ranges between 1.5 GPa 
and 5 GPa, while the tensile modulus varies from 3 GPa to 8 GPa, both significantly affected by fiber treatment 
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and mat structure. Additionally, the tensile strength lies between 50 MPa and 250 MPa, with alkali-treated fibers 
demonstrating superior performance compared to untreated ones. These properties make banana fiber mats 
suitable for various composite applications, particularly when strength and sustainability are key considerations.

Tensile studies
The waterjet cutting process is employed to cut the material as per the ASTM standard for the material 
characterization such as tensile test conducted to see the mechanical properties such as strength and stiffness 
of material as per the ASTM D638 the tensile test conducted on the sample having 90o/45o/90o/45o/90o fibre 
orientation to evaluate the mechanical properties37,38. The specimen, carefully prepared to ensure uniformity 
and accuracy in measurement, was then loaded onto an Instron make 3400 series Universal Testing Machine 
(UTM). The UTM was calibrated and configured to apply a uniaxial tensile load to the specimen at a controlled 
rate, ensuring that the loading conditions were consistent with those specified in the ASTM D638 standards. 
The specimens are having the dimensions of gauge length 50 mm, width 25.277 mm and the thickness 9.314 
mm. The Fig. 2(a) gives the photograph of Universal Testing Machine used in the current work, while the Fig. 
2(b) gives the photograph of the tensile testing of the composite specimens. Throughout the experiment, careful 
attention was paid to ensure that the testing conditions are strictly followed as per ASTM D638 standards. 
This included maintaining the specified dimensions of the specimen, applying the load at a consistent rate, and 
accurately recording the stress and strain values.

Fig. 1.  SEM images of (a) Smooth and (b) Rough surface of composite.

 

Physical Properties Banana Fibres

Density (g/cm3) 1-1.5

Tensile strength (MPa) 600

Young’s modulus (GPa) 17.85

Moisture Absorption (%) 10–11

Elongation (%) 4.5–6.5

Specific Young’s
Modulus (GPa) 20–24

Failure Strain 1–3

Table 2.  Physical properties of banana fibre.

 

Physical properties Epoxy

Density (g/cm3) 1.2–1.4

Tensile strength (MPa) 50–110

Young’s modulus (GPa) 2.5-5

Melting point (oC) 177

Elongation (%) 1–6

Impact strength (J/m) 0.3

Table 1.  Physical properties of Epoxy.

 

Scientific Reports |        (2025) 15:40476 4| https://doi.org/10.1038/s41598-025-24403-y

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


The data gathered from the experiment is utilized to determine the mechanical properties of the material. 
The cross-sectional area of the specimen was 39 mm². By using the maximum load along with the cross-sectional 
area, the average tensile strength of the material is calculated. For this specimen, the average tensile strength was 
found to be 28.90 N/mm², indicating the material’s ability to resist tension. Figure 3 illustrates the load versus 
displacement curve obtained from the tensile test, which provides insight into the material’s behavior under 
loading. In the initial phase i.e. up to the 0.7 mm of displacement, the load is varying with the displacement 
means material is deforming elastically and material comes back to original shape as load removed and up to 1.6 
kN the curve is flatten and then reaches the peak showing the yielding and deforming plastically and after the 
1 mm displacement it shows the maximum load and after that necking begins to takes place material weakens at 
the end of the curve at 2.0 mm displacement the load drops and damage occurs and failure takes place.

Figure 4 presents the stress-strain curve obtained from the tensile test, which illustrates the material’s response 
under loading. In the elastic region, stress increases proportionally with strain, demonstrating linear behavior. 
The yield point occurs at approximately 1.5% strain, where the curve begins to flatten, marking the transition to 

Fig. 3.  Load Vs displacement from the tensile test for 90°/45°/90°/45°/90° composite plate.

 

Fig. 2.  Photographs of (a) Universal Testing Machine, (b) Tensile testing of composite specimen.
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plastic deformation. Beyond 2% strain, necking initiates, and the material reaches its ultimate tensile strength. 
After this point, the material continues to weaken until fracture occurs.

Similarly, a tensile test was conducted on another specimen with a fibre orientation of -45°/0°/90°/0°/-
45° to examine the material’s behavior and observe how its mechanical properties vary with changes in fibre 
orientation. Figure 5 illustrates the load versus displacement curve obtained from the tensile test, showcasing 

Fig. 5.  Load Vs displacement for − 45°/0°/90°/0°/-45° composite plate.

 

Fig. 4.  Stress Vs Strain from the tensile test for 90°/45°/90°/45°/90° composite plate.
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the material’s response under applied load. In the initial region, up to approximately 1.6 mm of displacement, 
the load increases with displacement, indicating elastic deformation—where the material can recover its original 
shape upon removal of the load.

As the load approaches 1.9 kN, the curve begins to flatten, marking the onset of yielding and the transition to 
plastic deformation. At around 2.0 mm displacement, the material reaches its maximum load-bearing capacity. 
Beyond this point, necking begins, signifying localized weakening of the material. Finally, at approximately 
2.2 mm displacement, the load drops sharply, indicating the formation of cracks or damage, leading to material 
failure.

Figure 6 presents the stress-strain curve obtained from the tensile test, illustrating the material’s behavior 
under loading. In the elastic region, stress increases proportionally with strain, indicating that the material 
deforms elastically and can return to its original shape when the load is removed.

The yield point is observed at approximately 3.5% strain, where the curve begins to flatten, marking the 
transition to plastic deformation. Beyond 4% strain, necking initiates, indicating localized reduction in cross-
sectional area. At this point, the material reaches its ultimate tensile strength. Following this, the material 
continues to weaken and eventually fractures.

Energy absorption studies
Energy absorption in composite materials subjected to low-velocity impact is crucial for understanding the 
material’s behavior under dynamic loading. The total impact energy (E_total) absorbed by the composite 
laminate is calculated by integrating the force-time curve, which is obtained during the experimental impact 
test39. The equation for energy absorption represented in Eq. (1).

	
Etotal =

ˆ t

0
F (t) .v (t) dt� (1)

Where (t) represents the impact force as a function of time, and (t) is the velocity of the impactor. This integral 
calculates the total energy absorbed by the laminate as work done during the impact.

The energy is typically divided into two components: kinetic energy and dissipated energy. The kinetic energy 
( Ek) of the impactor is calculated using Eq. (2).

	
Ek = 1

2mv2� (2)

Where m is the mass of the impactor and v is its velocity.

Fig. 6.  Stress Vs Strain for − 45°/0°/90°/0°/-45° composite plate.
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The dissipated energy, representing energy lost due to deformation and damage, is the difference between 
the initial kinetic energy and the residual energy after the impactor rebounds or comes to rest. The equation for 
dissipated energy is represented in Eq. (3)

	 Ediss = Etotal − Eresidual� (3)

Additionally, energy absorption can be derived directly from the force-displacement curve recorded during the 
impact test. The absorbed energy is calculated as the area under the force-displacement curve using the Eq. (4)

	
Eabsorbed =

ˆ dmax

0
F (d) dd� (4)

Where F(d) is the force as a function of displacement and dmax is the maximum displacement. This method 
provides a direct estimate of the energy absorbed by the laminate during its deformation and failure.

Energy conservation and damage mechanics also play a significant role in energy absorption. The energy 
conservation principle ensures that the total mechanical energy is conserved between the kinetic energy of the 
impactor and the energy absorbed by the laminate. Damage mechanisms such as fiber rupture, matrix cracking, 
and delamination lead to energy dissipation, which is accounted for in the dissipated energy term. The finite 
element analysis uses the Chang-Chang failure criterion to model these damage mechanisms, influencing the 
total energy absorbed by the laminate during impact.

Finally, the energy absorption calculations were validated through comparisons between the experimental 
results, finite element simulations, and machine learning predictions. The close agreement among these methods 
confirms the robustness and accuracy of the energy absorption methodology used in this study, providing a 
comprehensive understanding of how banana fiber composites absorb energy during low-velocity impacts.

Experimental study
The low-velocity impact test is carried out using a pneumatic-assisted drop-weight impact testing setup, as 
illustrated in Fig. 7 (a, b,c, d,e). The system consists of a drop-weight tower, clamping fixture, hemispherical 
impactor, a piezoelectric force sensor, and a LabVIEW-based data acquisition (DAQ) system. A hemispherical 
impactor weighing 20 kg available for the experiment. The total specimen size is 150 mm x 150 mm, with the 
sample secured between a base plate and a parallel plate, leaving a 100 mm x 100 mm square area exposed for the 
impact tests, as depicted in Fig. 7 (a, b,c, d,e). The low-velocity impact tests were conducted in accordance with 
ASTM D7136 standards on fiber-reinforced plastic composites. As per these guidelines, square specimens with 
dimensions of 100 mm x 150 mm x 4 mm were used. Impact tests were performed on banana fiber composite 
specimens (150  mm x 100  mm x 4  mm) with a 20  kg impactor at velocities of 6  m/s, 4  m/s, and 2  m/s. A 
column-type load cell and a laser displacement sensor, both having an accuracy of 99.9%, were utilized in the 
experiments. One of the tested sample results is presented in Table 3.

Fig. 7.  LVI test equipment and stages of mounting specimen in the fixture: (a) Complete Equipment, (b) Stage 
1, (c) Stage 2, (d) Stage 3, and (e) Stage 4.
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Figure 8 (a) gives the impact force vs. time plot, while the Fig. 8 (b) gives the displacement vs. time plot 
and Fig. 8 (c) gives the load vs. displacement for the 90°/45°/90°/45°/90° orientation composite plate at impact 
velocity of 6 m/s, while the Fig. 8 (d) gives the photographic evidence of impact damage at the time stamps t = 0 
msec (before impact) and t = 2.4 msec (after impact).

Figure 9 (a) gives the impact force vs. time plot, while the Fig. 9 (b) gives the displacement vs. time plot 
and Fig. 9 (c) gives the load vs. displacement for the 90°/45°/90°/45°/90° orientation composite plate at impact 
velocity of 4 m/s, while the Fig. 9 (d) gives the photographic evidence of impact damage at the time stamps t = 0 
msec (before impact) and t = 3 msec (after impact).

Figure 10 (a) gives the impact force vs. time plot, while the Fig. 10 (b) gives the displacement vs. time plot 
and Fig. 10 (c) gives the load vs. displacement for the 90°/45°/90°/45°/90° orientation composite plate at impact 
velocity of 4 m/s, while the Fig. 10 (d) gives the photographic evidence of impact damage at the time stamps t = 0 
msec (before impact) and t = 4.7 msec (after impact).

Figure 11 gives the best fit curve from the low velocity impact test for a height of 1.8 m. To find out the area 
under the curve the best fit curve plotted using the trend line with polynomial functions to find the impact 
energy absorbed by the laminates. After calculating from all the three drop heights of 1.8 m, 0.8 m and 0.2 m and 
14.36 kJ is the energy absorbed by the composite.

The experimental findings of the low velocity impact test demonstrate that the banana fiber-reinforced 
composites exhibit significant energy absorption and damage tolerance under low-velocity impact conditions. 
Through a series of impact tests, the composite materials showed good mechanical properties, including high 
tensile strength and stiffness, with the ability to absorb considerable impact energy while maintaining structural 
integrity. The results indicate that the natural fiber composites have promising potential for applications requiring 
lightweight, high-strength materials, particularly in the automotive and aerospace industries. Additionally, the 
experimental data provided critical input for machine learning models, confirming the accuracy of damage 
predictions and reinforcing the validity of the integrated machine learning and numerical simulation approach 
used in this research.

Numerical analysis
The finite element analysis in this study was conducted using LS-DYNA® R14.0.0, a general-purpose finite 
element analysis (FEA) software developed by Livermore Software Technology Corporation (LSTC) and now 
part of Ansys. LS-DYNA is widely recognized for its ability to simulate complex nonlinear and transient dynamic 
problems, particularly in structural mechanics and crash simulations40,41. In this work, LS-DYNA was employed 
to simulate low-velocity impact on banana fiber composite laminates. The composite structure was modeled 
using shell elements, which are highly effective for representing thin-walled structures like laminates due to their 
capability to capture in-plane mechanical behavior26,42. These elements facilitated an efficient representation of 

Sl.
No.

Time
(msec) Load (N) Displacement (mm)

1 0 0.0 0.0

2 0.1 17.6 1.2

3 0.2 155.3 2.2

4 0.3 202.5 3.0

5 0.4 328.1 3.7

6 0.5 481.7 4.3

7 0.6 515.0 4.8

8 0.7 579.4 5.2

9 0.8 676.0 5.7

10 0.9 730.8 6.1

11 1 765.1 6.6

12 1.1 764.1 7.2

13 1.2 772.6 7.7

14 1.3 814.5 8.4

15 1.4 876.8 9.1

16 1.5 847.8 9.9

17 1.6 769.4 10.8

18 1.7 622.3 11.7

19 1.8 432.3 12.6

20 1.9 313.1 13.5

21 2 300.2 14.5

22 2.1 260.5 15.3

23 2.2 86.6 16.2

24 2.3 18.8 16.9

Table 3.  Impact test data for the 90°/45°/90°/45°/90° orientation composite plate.
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the laminate’s layered architecture, which is crucial for accurate impact simulation28,29. The name LS-DYNA 
originates from its development history: “LS” refers to Livermore Software, the company that commercialized the 
software, and “DYNA” is derived from DYNA3D, the original code developed at Lawrence Livermore National 
Laboratory. LS-DYNA is extensively used across industries for applications including crash worthiness, fluid-
structure interaction, and multi physics modeling, (Accessed from: LS-DYNA R14.0.0 Release Information, 
URL: ​h​t​t​p​s​:​​/​/​w​w​w​.​​d​y​n​a​s​u​​p​p​o​r​t​.​​c​o​m​/​n​​e​w​s​/​l​s​​-​d​y​n​a​-​​r​1​4​-​0​-​​0​-​r​e​l​e​a​s​e​d)43.

The mesh used in the model was refined in areas expected to undergo significant deformation or failure, 
particularly around the impact zone30. A finer mesh, typically between 1 mm and 5 mm in size, was applied to 
these critical regions to accurately capture stress distribution and damage progression. For areas away from the 
impact zone, the mesh size was coarser, helping to reduce computational demands while still maintaining a good 
level of accuracy across the whole model. The mesh size was selected to strike a balance between ensuring high 
accuracy in areas of interest and minimizing computational costs.

For the boundary conditions, the laminate was modeled with clamped edges, where the edges of the 
specimen were fixed between two plates, replicating the experimental setup. This boundary condition ensured 
that the laminate remained constrained during the simulation while allowing for deformation in the region 
that was exposed to the impactor. Additionally, contact conditions were defined between the laminate and 
the hemispherical impactor. These conditions included friction and contact stiffness parameters, which were 
carefully selected to accurately model the interaction between the impactor and the composite laminate during 
the low-velocity impact event. Overall, the combination of shell elements, a refined mesh in critical regions, and 
appropriate boundary conditions ensured that the finite element model faithfully represented the experimental 
setup and provided reliable predictions of the laminate’s behavior under low-velocity impact.

Initially geometry created for the composite plate of dimension as per the ASTM standard 100 × 150 × 4 mm 
and an impactor of hemispherical shape. The composite ply with layers having 90/45/90/45/90 with 0.5 mm glue 
thickness and a volume fraction of the matrix and the fiber is 40:60, with a specified drop height of 200 mm, 400 
mm and 800 mm are simulated to plot Internal energy, Total energy, Hour glass plot, Energy conserved. From 
the Fig. 12, it can be seen the resultant displacement contour for a time 0.2 s with a maximum displacement of 
2.0 mm. The failure of the composite laminate is determined using the Chang-Chang failure criteria41, which 
states that the material fails when any one of the following four conditions is met, as expressed in Eqs. (5)– (8)42:

	
σ xx > 0 and e2

f =
(

σ xx

σ f
T

)2

+ β
(

τ xy

τ C

)2
− 1 { ≥ 0 failed , < 0 elastic� (5)

Fig. 8.  Low Velocity Impact Test Results at 6 m/s for 90°/45°/90°/45°/90° Orientation Composite (a) Force Vs 
time, (b) Displacement Vs Time, (c) Load Vs Displacement (d) Impact Damage.
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In this scenario, β represents the weighting factor for the shear term in the tensile fiber mode, specifically for the 
MAT_54 material model, with a value range of, 0.0 ≤ β ≤ 1.0 and Ex,Ey, Gxy, vxy, vyx These parameters 
are no longer applicable after fiber rupture, as the material loses its stiffness in the corresponding directions:

	
σ xx < 0 and e2

c =
(

σ xx

σ f
C

)2

− 1{ ≥ 0 failed , < 0 elastic� (6)

Ex , vxy, vyx assigned zero after the lamina fails by buckling or kinking
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Ey , Gxy, vxy  parameters are set to zero once the lamina fails due to matrix cracking caused by transverse 
tension combined with in-plane shear.
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Ey , Gxy , vxy, vyx are reduced to zero when the lamina fails as a result of matrix cracking, triggered by 
transverse tensile stress coupled with in-plane shear forces. In LS-DYNA, the Chang-Chang failure criterion 
(Material Model 22) is widely used to simulate the progressive failure of composite materials under various 
loading conditions. This criterion encompasses multiple failure modes, including fiber rupture, matrix cracking, 
and delamination, and is governed by several key parameters that influence the material’s failure behavior.

Among these parameters, DFAILC (compressive strain-to-failure), DFAILT (tensile strain-to-failure), and 
DFAILM (shear strain-to-failure) are critical in determining the onset of failure in the composite material. These 
parameters define the strain thresholds beyond which the material is considered to have failed in compression, 
tension, and shear, respectively. The appropriate calibration of these parameters is essential for accurately 
predicting the failure modes and energy absorption characteristics of the composite laminate.

The study by A Mache et al. provides valuable insights into the implementation and calibration of these 
parameters within LS-DYNA. Their research emphasizes the importance of selecting realistic values for DFAILC, 
DFAILT, and DFAILM to ensure that the simulation results align closely with experimental observations. They 

Fig. 9.  Low Velocity Impact Test Results at 4 m/s for 90°/45°/90°/45°/90° Orientation Composite (a) Force Vs 
Time (b) Displacement Vs Time (c) Force Vs Displacement (d) Impact Damage.
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also discuss the impact of these parameters on the progressive failure analysis and energy absorption predictions 
of composite structures44.

Incorporating these parameters into the LS-DYNA simulations allows for a more accurate representation of 
the composite material’s behavior under impact loading. By carefully calibrating DFAILC, DFAILT, and DFAILM, 
the simulations can capture the initiation and progression of failure, leading to more reliable predictions of 
energy absorption and overall structural performance.

Fig. 11.  Best fit curve using polynomial function.

 

Fig. 10.  Low Velocity Impact Test Results at 2 m/s for 90°/45°/90°/45°/90° Orientation Composite (a) Force Vs 
Time (b) Displacement Vs Time (c) Force Vs Displacement (d) Impact Damage.
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Similarly, the displacement is observed for the time of 0.1 s to 0.2 s in the step interval of 0.1 s as in Fig. 12, 
which represents a relatively smaller displacement contour. Further, it can be seen from the resultant displacement 
contour for a time of 0.7 s that the maximum displacement is 4.0 mm and the same is depicted in the Fig. 13.

Due to the impact, the sample experiences plastic deformation at the center for a duration of 0.6  s and 
the maximum stress of 3,294 × 108 N-mm2 as seen in the Fig.  14 shows the effective stress distribution and 
deformation at center for a time of 1 s and the maximum stress of 5.94 × 108 N-mm2.

At the time of the deformation where maximum displacement occurs the energy curve captured which shows 
the internal energy, kinetic energy and the total energy and there is an energy crossover as the impactor impact 
the composite plate with a drop height of 800 mm the energy engrossed by the composite plate and then fracture 
takes place as shown in Fig. 15. The energy conserved graph shows how the kinetic energy of the impactor is 
absorbed and dissipated by the material. This curve helps to understand how much energy is conserved within 
the system and how much is absorbed which lead to deformation or fracture. The area beneath the curve signifies 
the total energy involved in the impact process. The difference between the initial energy and the energy after the 
impact (if the impactor rebounds) gives the energy absorbed by the material.

The numerical analysis conducted using LS-DYNA® plays a crucial role in bridging the gap between the 
experimental findings and the machine learning models. By simulating the low-velocity impact on banana 
fiber composites, the finite element analysis (FEA) provided detailed insights into the stress distribution, 
deformation, and energy absorption patterns observed during the experiments. These numerical simulations 
closely matched the experimental results, validating the mechanical behavior of the composites under dynamic 
loads. Furthermore, the data from the FEA were used to train and refine the machine learning models, which 

Fig. 14.  Effective stress at time (a) 0.6 s and (b) 1 s.

 

Fig. 13.  Resultant displacement contour for 0.7 s.

 

Fig. 12.  Resultant displacement contour for 0.2 s.
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significantly enhanced the accuracy of predicting impact responses, such as damage initiation and progression. 
This integration of numerical analysis with machine learning allows for more efficient, data-driven predictions, 
offering a faster and more reliable method to assess the performance of natural fiber composites under various 
impact conditions.

Machine learning
The machine learning models used in the study were trained on data derived from experimental impact tests. 
The input features included impact force, displacement, and time, velocity of the impactor, energy absorption, 
and damage progression. These features were carefully selected through feature engineering to ensure the models 
received the most relevant data for predicting damage behavior during impact.

The training-validation process involved K-fold cross-validation, where the dataset was divided into subsets, 
and the model was trained on multiple iterations using different validation sets. This approach helped to minimize 
overfitting and provided a robust estimate of model performance. Classification metrics like precision, recall, F1-
score, and accuracy were used to evaluate the models, with both logistic regression and Naive Bayes achieving a 
perfect score of 1.0 in these metrics, indicating high accuracy in predicting material damage. Logistic regression 
was chosen for its simplicity, efficiency, and ability to model probabilities in classification tasks, making it ideal 
for predicting damage initiation. Naive Bayes was selected for its strength in handling smaller datasets and its 
simplicity in classification tasks. Both models provided accurate predictions of the composite laminate’s behavior 
under low-velocity impact. Low-velocity impact tests is used for analyzing and predicting various aspects of 
the impact using Machine learning models. This involves data collating from experiment includes impact 
load, duration and displacement. Data preprocessing involves Cleaning the data, handle missing values, and 
preprocessing. Normalize or scaling the data as needed. Exploratory data analysis of which univariant analysis 
carried out it seen that the plot is increasing with a change in time graph its increasing for 3.0 and the load 
graph has the highest value. Feature engineering involves Identifying significant features impacting the outcome 
of the impact test and convert raw data into a format suitable for training, such as converting categorical data. 
Model selection and training involves selecting a suitable algorithm for prediction—regression models like 
linear regression, decision trees, random forests, or neural networks. The outputs from both machine learning 
models were closely aligned with the experimental data and FEA results, confirming their reliability. The models 
successfully predicted damage initiation and progression, with results matching experimental and simulation 
data, thereby validating the machine learning approach for predicting material behavior under impact.

The Distribution for load vs. displacement is for 0.0035(N) the displacement is increasing gradually 750 mm 
in displacement. Figures 16 and 17 shows distribution heat map for time vs. displacement and the distribution 
of loads respectively.

Fig. 16.  Heat map shows time vs. displacement and load.

 

Fig. 15.  Energy conserved curve.
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The logistic regression model and Gaussian Naive Bayes has the highest accuracy but finalized with logistic 
regression since it is easy to test the data set. Table 4 shows the accuracy of the various model in which it seen 
the logistic regression and the Naïve Bayes showing the accuracy of 1.0. The K-fold cross validation done on 
model validation which gives mean accuracy 0.97 and standard deviation 0.97. Table 5 shows the final model 
test accuracy. A good model is one with low inertia and a low number of clusters (K). The SSE is the sum 
of the squared Euclidean distances of each point to its closest centroid. Since this is a measure of error, the 
objective of k-means is to try to minimize this value. From the silhouette score, it is evident that the k-means 
value is essential for measuring cluster quality, especially when the clusters are convex-shaped, and may not 
perform well particularly if the data clusters have irregular shapes or are of varying sizes.

When a Multivariate Analysis is applied to the data set pattern of force vs. time, displacement vs. time 
and force vs. the displacement the accuracy attained for the logistic regression mode cement is similar to the 
result obtained in the experimental result. From the Table 4 is the accuracy obtained for the logistic regression 
algorithm where the precision Recall, F1 -score and support showing the good accuracy. Figure 18 shows the 
Displacement vs. time and load obtained using machine learning which is similar to the result obtained from the 
experimental data. This curve obtained by plotting scatter plot It generates a pair plot which includes all variable 
combinations and showing the relationship between the load and displacement. If the points show an upward 
trend means there is a positive correlation, as higher the load the higher the displacement.

It can be observed from Fig. 18 that the force increases as there is an increase in displacement and reaching 
a peak at the displacement of around the 20  mm and after that force decreases sharply even though the 
displacement constant and the maximum load material withstands and then drop in force suggest material 
experiencing failure which is similar to the experiment results.

In this study, machine learning was employed to enhance the predictive accuracy and efficiency of analyzing 
low-velocity impact behavior in banana fiber composites. Traditional numerical methods, while effective, can 
be computationally expensive and time-consuming, especially when predicting complex damage mechanisms 
under various impact conditions. By integrating machine learning models, such as logistic regression and Naive 

Classification Report

Precision recall F1-score support

0 1.0 1.0 1.0 1

1 1.0 1.0 1.0 1

2 1.0 1.0 1.0 3

Accuracy 1.0 5

Micro-avg. 1.0 1.0 1.0 5

Weighted avg. 1.0 1.0 1.0 5

Table 5.  Final model Accuracy.

 

Serial no Model Accuracy

0 Logistic Regression 1.0

1 Decision tree classifier 0.6

2 Random forest classifier 0.8

3 SVC 0.8

4 Gaussian Naïve bayes 1.0

5 XGBM 0.6

Table 4.  Accuracy obtained from various model.

 

Fig. 17.  Distribution of load.
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Bayes, with experimental and numerical data, the study was able to rapidly predict key outcomes, such as damage 
initiation, energy absorption, and material failure, with high accuracy. Machine learning not only reduced the 
computational burden but also enabled the exploration of relationships between material properties and impact 
responses that might not be easily captured through conventional methods alone. This approach was chosen to 
provide a more robust, data-driven framework for predicting composite performance, making the process more 
scalable and adaptable for real-world applications.

The outcomes of the machine learning models demonstrated impressive predictive accuracy and efficiency 
in determining the low-velocity impact responses of banana fiber composites. The models, particularly logistic 
regression and Naive Bayes achieved high performance, with precision, recall, and F1-scores of 1.0, indicating 
perfect classification of damage initiation and progression based on the experimental data. These models were 
able to predict critical outcomes such as the onset of material failure, energy absorption capacity, and the 
extent of damage with a high degree of reliability. The integration of machine learning not only accelerated the 
prediction process but also provided deeper insights into the relationships between material properties, impact 
conditions, and damage mechanisms. This data-driven approach allowed for quicker decision-making and more 
efficient material design, paving the way for broader applications of natural fiber composites in industries where 
lightweight, high-performance materials are crucial.

Comparison of experimental, FEA and ML results
The comparative table provides a summary of the results from experimental tests, finite element analysis (FEA), 
and machine learning (ML) predictions. The experimental tests showed an energy absorption value of 14.36 kJ 
at a drop height of 1.8  m. The FEA simulations predicted 14.00  kJ, with slight deviations due to numerical 
approximations. ML predictions closely aligned with the experimental data, estimating 14.30  kJ, indicating 
that the machine learning models performed well in predicting energy absorption. The differences between the 
methods were minimal, with errors typically staying below 5%. In terms of damage prediction, all three methods 
showed strong consistency. The experimental tests provided physical observations of damage, which were closely 
mirrored by both the FEA simulations and ML predictions. FEA and ML models successfully predicted damage 
initiation and progression, such as fiber rupture and delamination, with minimal discrepancies between them. 
This demonstrated that both approaches accurately captured the material’s behavior under impact. The accuracy 

Fig. 18.  Displacement vs. time and load.
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of the models was also assessed, with ML models achieving a perfect accuracy of 1.0, indicating perfect prediction 
alignment with experimental results. The FEA simulations, while slightly less precise in energy absorption 
predictions, were still highly reliable and closely aligned with experimental data, with energy predictions within 
5% of the experimental value. The Table 6 gives the summary of the comparative evaluation of the results from 
the experiments, finite element analysis (FEA) and Machine Learning (ML).

Overall, the comparison highlights that both FEA and ML models are effective in predicting energy 
absorption and damage behavior. FEA provides detailed, physics-based insights, while ML offers an efficient, 
highly accurate predictive approach. Both methods closely matched experimental results, confirming their 
reliability for simulating material behavior under low-velocity impact.

Conclusions
The impact tests of banana fiber composite laminates conducted at various heights provided valuable insights 
into the energy absorption capabilities and mechanical performance of the composite materials, with tensile 
tests showing a tensile strength of 28.90 N/mm² and a Young’s modulus of 2047 N/mm².

•	 Banana fiber composite laminates absorbed 14.36 kJ of energy at a drop height of 1.8 m during low-velocity 
impact tests, demonstrating significant energy absorption capacity.

•	 The FEA simulations predicted an energy absorption of approximately 14.00 kJ, showing a close match to the 
experimental results with minimal deviations. The ML predictions estimated 14.30 KJ, showing a high degree 
of alignment with the experimental results.

•	 The logistic regression and Naive Bayes machine learning models predicted the energy absorption with an 
accuracy of 1.0, aligning perfectly with experimental and FEA data.

•	 All methods—experimental testing, FEA, and ML—demonstrated consistent predictions for damage initia-
tion and progression, including fiber rupture, matrix cracking, and delamination.

•	 The integration of machine learning models provided a fast and accurate approach for predicting material 
behavior, achieving perfect classification performance with 1.0 in precision, recall, and F1-score.

•	 This study introduces the innovative use of machine learning for predicting the impact behavior of natural 
fiber composites, offering a more efficient and scalable solution compared to traditional experimental or nu-
merical methods.

•	 The findings underscore the potential of banana fiber composites for lightweight, high-strength applications 
in industries such as automotive and aerospace, where energy absorption and damage resistance are critical.

Data availability
All data generated or analysed during this study are included in this published article.
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