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Offline constraint-based causal feature selection (OC-CFS) algorithms are essential for identifying 
causal relationships from observational data. However, existing methods often suffer from limitations 
such as low prediction accuracy or high computational cost, particularly when sample sizes vary. 
To address these limitations, we propose Triplet, a novel framework that leverages the HITON-MB 
Parents and Children (PC) strategy to identify strongly relevant PC nodes while eliminating irrelevant 
and redundant features. It concurrently employs the BAMB strategy to detect relevant spouses and 
discard irrelevant ones, and applies the STMB non-Markov Blanket (non-MB) strategy to identify and 
exclude non-MB descendants. Through this integration, the proposed T-OCDMB  overcomes these 
limitations, accurately identifying the true MB with high prediction accuracy and reduced runtime. 
To validate its effectiveness, we evaluated T-OCDMB  on benchmark Bayesian networks (BNs) and 
real-world datasets. Extensive experimental results demonstrate that T-OCDMB  achieves significant 
improvements in both prediction accuracy and computational efficiency compared to existing 
methods. On small sample sizes (n=500), T-OCDMB  achieved the highest recall in 5 out of 7 datasets, 
with an average improvement of over 20% compared to rivals. On large sample sizes (n=5000), it 
excelled in precision, achieving the top score in 4 out of 7 datasets with an average precision of 94%. 
Computationally, T-OCDMB  is highly efficient, operating as the second-fastest method overall. It ran 
over 55% faster than half of the benchmarks and a remarkable 35% faster than the average competitor 
on large datasets. The source code for this research is available at the following repository: https://
github.com/vickykhan89/T-OCDmb.
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OC-CFS (Offline Constraint-based causal feature selection) has garnered more attentions in diverse fields, 
including healthcare1,2, bioinformatics3–7, epidemiology8–10, and information technology11–14. One of the key 
objectives in studying such systems is to understand the causal relationships between the system’s components15. 
To identify these causal relations, experts can employ causal discovery algorithms on both benchmark and real-
world data. These algorithms aim to discover the MB (Markov blanket) from observational data, a crucial concept 
in a BNs (Bayesian networks)16–18. The MB is a fundamental concept in local causal discovery that identifies the 
minimal set of features directly related to a target feature. It consists of three key components: the target’s P/
direct causes (parents), C/direct effects (children), and spouses (other direct causes of the target’s children). 
This local causal structure is significant as it serves as a building block for both local causal analysis and global 
causal discovery tasks19. Moreover, the MB of a target feature is theoretically the optimal solution to the feature 
selection problem20. As a result, it has attracted significant interest, leading to the development of constraint-
based, score-based, and hybrid algorithms for its discovery. The focus of our paper is on the OC-CFS category, 
which includes several families, such as simultaneous MB discovery21, divide-and-conquer MB discovery22, 
MB discovery with interleaving PC and spouses learning23, MB discovery with relaxed assumptions24, and MB 
learning for special purpose25. For more details, see20,26. Each OC-CFS algorithm has its own set of assumptions, 
which may or may not be suitable for a specific dataset. Therefore, no single algorithm stands out in all situations. 
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One approach to address this limitation is to use of triplet frameworks, which combine several algorithms from 
different families to enhance the interpretability and robustness of the models (Method, Model, and Algorithm 
are used interchangeably in this paper).

However, this research focus on a different type of triplet framework, which combines core components 
from the most significant OC-CFS algorithms. The main advantage of OC-CFS approaches is that they are 
non-parametric; for example, no assumption is made about the functional form of the underlying causal 
relationships27. OC-CFS approaches learn the MB of a target feature by discovering the dependencies between 
the target feature and other features through the execution of CI (conditional independence) tests28. OC-CFS 
algorithms fall into three primary categories: simultaneous MB discovery, divide-and-conquer MB discovery, 
and MB discovery with interleaving PC and spouse learning. Algorithms that operate simultaneously can identify 
the MB of a target feature by detecting its parents, children, and spouses all at once. These algorithms employ CI 
tests that utilize the complete candidate MB as the conditioning set, which can lead to improved computational 
efficiency and fewer required tests. However, this approach faces a significant limitation: as the conditioning MB 
set grows larger, it demands increasingly large sample sizes to maintain reliable CI testing. In response to these 
challenges, researchers have developed alternative approaches based on divide-and-conquer principles. These 
methods first identify the PC set before determining the spouse set separately. While this approach enhances 
data efficiency through the use of multiple smaller conditional sets during independence testing, it comes at 
the cost of increased computational time. To overcome these issues, researchers have proposed MB discovery 
with interleaving PC and spouse algorithms which is the extension of divide-and-conquer approach. Instead of 
discovering PC and identifying spouses separately, this approach alternates between the PC discovery step and 
the spouse identification step. Specifically, once a candidate member of PC of target feature is added to the PC at 
the PC learning step, this approach triggers the spouse discovery step immediately. By interleaving PC and spouse 
discovery, this approach attempts to keep both PC and spouse sets as small as possible, thereby achieving a trade-
off between data efficiency and time efficiency. However, due to false positive PC inclusions, many false positive 
spouses may enter the spouse set, leading to a large size of the spouse set, which degrades the performance 
of this approach. Currently, researchers face the dual challenge of improving computational efficiency while 
maintaining stable prediction accuracy. To address the aforementioned issues, the main challenges, objectives, 
and contributions of this article are as follows.

Research Challenges, Objectives, and Contributions. Although OC-CFS algorithms are fundamental for 
MB discovery, they face critical challenges that hinder their performance: (1) achieving high computational 
efficiency when discovering the strongly relevant PC set; (2) ensuring the complete identification of strongly 
relevant spouses from the non-PC set; (3) effectively eliminating non-MB features from the final MB set; and (4) 
maintaining an optimal balance between prediction accuracy and algorithmic efficiency.

To overcome these challenges, this paper introduces a novel Triplet framework, named T-OCDMB , as 
illustrated in Fig. 1. The primary objective is to accurately and efficiently discover the MB from observational 
data by integrating the most effective components of existing algorithms.

The main contributions of this work are summarized as follows: 

	1.	 We propose the T-OCDMB  framework, a novel integration of the HITON-MB (for PC discovery), BAMB 
(for spouse discovery), and STMB (for non-MB descendant removal) algorithms. This unified design is the 
first to seamlessly combine these three steps, enabling the identification of an accurate MB with superior 
predictive accuracy and significantly reduced computational runtime.

	2.	 We perform a comprehensive stability analysis of the T-OCDMB  algorithm under varying parameter α val-
ues and sample sizes (measured by the Rate of Instance, |R|). This analysis demonstrates the robustness and 
consistent performance of our framework across different data conditions.

	3.	 We provide extensive theoretical and empirical validation on benchmark BNs and real-world datasets. 
Through statistical analysis (using Friedman test), we demonstrate that T-OCDMB  achieves statistically sig-
nificant improvements in performance compared to state-of-the-art methods.

The remainder of the paper is organized as follows: Section “Background” discusses related work and details 
the steps that compose different constraint-based algorithms. In “Literature review” provides the background 
for learning the MB algorithms used in this paper. Section “Framework of T-OCDMB algorithm” proposes 
the T-OCDMB  algorithm. Section “Results and discussion” reports the empirical results. Section “Statistical 
analysis” presents real-world application scenarios. Finally, Section “Conclusion” concludes the paper, discusses 
its limitations and suggests directions for future work.

Figure 1.  Flowchart of T-OCDMB .
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Background
This section introduces the fundamental notation and terminology employed throughout our work. Following 
standard conventions in probabilistic graphical modeling, we denote random variables using uppercase letters 
(X; Y ) and their deterministic counterparts with corresponding lowercase letters (x; y). Sets are represented 
using uppercase letters (S,D). For directed graph structures, let G = (R, E) denote a graph with vertex 
set R and edge set E, where for any node X ∈ R, we denote its parent nodes as P aG(X) and its children 
as ChG(X). All probability distributions are denoted by P. This consistent notational framework ensures 
unambiguous interpretation of subsequent theoretical developments.

Definition 1  (MB)29. In a BN, the MB of a target T, denoted MBT , is the minimal set of features that renders 
target T (Target T and T are used interchangeably in this paper.) conditionally independent of all other features 
in the network. Formally, T ⊥⊥ X|MBT , for ∀X ∈ R \ {T ∪ MBT }. This set consists of:

•	 The Parents of T (its direct causes).
•	 The Children of T (its direct effects).
•	 The Parents of T’s Children (its spouses).

Definition 2  (Faithfulness)30. A BN satisfies the faithfulness condition if and only if:

•	 Every CI relation present in P is entailed by the graph structure G via d-separation (see definition 7),
•	 There are no additional independencies in P beyond those implied by G’s Markov condition.

Mathematically, for all disjoint subsets X, Y, Z ⊆ R:

	 X ⊥⊥ Y | Z in P ⇔ X is d-separated from Y by Z in G.

Definition 3  (d-separation)31. Let G = (R, E) be a DAG, D be a path on G and Z a subset of R. The path D is 
blocked by Z iff D contains:

•	 a fork in Fig. 2a or a chain in Fig. 2b s.t. that middle vertex Y is in Z, or
•	 a collider in Fig. 2c s.t. middle vertex Y, or any descendant of it, is not in Z.

Literature review

	1.	 Simultaneous MB: This category has been dominant in C-CFS, with various algorithms emerging since the 
pioneering (KS) koller-sahami and GS (Grow-Shrink) MB algorithms. Two factors prevent the KS algorithm 
from guaranteeing an accurate MB: it requires knowing the MB’s size in advance and limits the size of the 
conditioning set. Meanwhile, the GS algorithm’s simple heuristic can lead to testing errors, causing it to 
include incorrect features in the MB. The IAMB (incremental Association MB) algorithm and its variants, 
such as inter-IAMB, IAMBnPC, inter-IAMBnPC, MMMBnPC, F BEDK , PFBP, and KIAMB, address some 
of these limitations. Notably, the conditioning set for GS, IAMB, and their derivatives typically constitutes a 
subset of commonly selected features. However, the reliability of CI tests is contingent upon the length of the 
MB, necessitating a proportional number of data instances. Despite their utility, these algorithms still face 
challenges in distinguishing between PC and spouse relationships within the discovered MB. Furthermore, 
their data efficiency remains limited, particularly when sample sizes are small, impacting the quality of their 
outputs. Addressing data efficiency concerns, Guo et al.32 developed EAMB (Error-Aware MB), which op-
erates through two complementary subroutines: ESMB (Efficient Simultaneous MB) and SRMB (Selectively 
Recover MB). The ESMB subroutine iteratively evaluates and eliminates variables from the candidate MB set 
during the discovery process, progressively refining the MB set through repeated updates. Complementarily, 

Figure 2.  Illustration of three vertices X, Y, and Z in path D.
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the SRMB subroutine implements an OR-AND rule mechanism to identify and recover any MB variables 
that may have been overlooked during the ESMB step.

	2.	 Divide-and-conquer MB: The MMMB (Min-Max MB) approach reduces sample size by addressing the 
challenge of finding the MB through two subproblems: identifying PC and spouse relationships. It conducts 
a segmented examination of recently selected features to learn the target feature PC set. Building upon this, 
HITON-MB integrates growing and shrinking steps to exclude irrelevant/redundant (“Irrelevant,” “redun-
dant,” and “false positive” are used interchangeably in this paper.) features from the PC set. However, under 
MB faithfulness assumptions, both MMMB and HITON-MB were found to be conceptually flawed, neces-
sitating further enhancements for accurate MB discovery. Fu et al. introduced the IPCMB (Iterative Parent-
Child-based MB) algorithm, employing a similar PC algorithm as PCMB to identify the PC set. IPCMB 
enhances efficiency without sacrificing accuracy, its computational speed is hindered by symmetry checks. 
Recognizing that large conditioning sets can compromise both data efficiency and CI tests reliability, Morais 
and Aussem33 introduced the MBOR algorithm. This approach minimizes the size of conditional sets and 
implements an OR condition during symmetry checking to reduce false negative results. Similarly, STMB 
(Simultaneous MB) shares its PC exploration methodology with IPCMB but differs by identifying spouses 
from the entire feature set in conjunction with the current PC set, eliminating the need for symmetry checks 
at the cost of greater computational intensity.

	3.	 MB discovery with interleaving PC and spouse: Ling et al. proposed the BAMB (Balanced MB), while 
Wang et al. introduced the EEMB (Efficient and Effective MB). These methods employ distinct strategies: 
BAMB learns the PC and spouse set simultaneously, discarding irrelevant/redundant features in a single step. 
In contrast, EEMB divides the process into distinct growing and pruning phases. Additionally, Zhaolong et 
al. devised the MBFS (MB discovery for Feature Selection) algorithm, a specialized subroutine MB algorithm 
that employs mutual information for PC discovery and distinguishes spouses from the PC set. While effi-
cient, this approach may compromise prediction accuracy. The FSMB (Feature Selection via MB)23 algorithm 
represents an enhancement of STMB that employs an alternative strategy for learning the PC set. In summa-
ry, offline OC-CFS algorithms have advanced in efficiency or accuracy, but only a few (e.g., BAMB, EEMB, 
FSMB) attempt to balance both. Their main limitations are an inefficient conditioning strategy that sacrifices 
data for computational speed, and a critical flaw where errors in the initial PC set propagate to the spouse set. 
This error propagation inflates the spouse set and ultimately degrades the performance of learning the MB.

Framework of T-OCDMB  algorithm
The proposed Triplet framework (T-OCDMB) employs CI testing, utilizing the G2 test for discrete datasets 
and Fisher’s z-test for continuous datasets. The general framework of T-OCDMB  is illustrated in Fig. 3, with its 
detailed pseudocode presented in Algorithm 1.

General idea of the T-OCDMB  algorithm
The T-OCDMB  algorithm integrates strategies from three established methods–HITON-MB, BAMB, and 
STMB–to efficiently and accurately identify the MB. The overall workflow and pseudo-code, depicted in Fig. 3 
and Algorithm 1, take the entire feature set R and target T as inputs. The procedure unfolds in three principal 
stages.

Algorithm 1.  T-OCDMB

(1) PC Identification.
In Step 1, the T-OCDMB  algorithm uses Theorem 1 to discovers a strongly relevant (“Strongly relevant,” and 

“true positive” are used interchangeably in this paper.) PC for the target T by performing a CI test between each 
feature in R excluding target T, for example Xi ∈ R \ T . Features exhibiting dependence with target T in the PC 
set, while others are added to a non-PC set.
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Algorithm 2.  HITON-PC

Theorem 1  Let X  and Y  be two random variables. The variables X  and Y  are null conditionally dependent if 
and only if they are marginally dependent. That is:

	 X ̸⊥⊥ Y | ∅ ⇐⇒ P (X, Y ) ̸= P (X)P (Y )

Proof 1  The proof follows directly from the definition of CI and the properties of the empty conditioning set. 

	1.	 By definition, X ⊥⊥ Y | ∅ iff P (X, Y | ∅) = P (X | ∅)P (Y | ∅).
	2.	 Conditioning on the empty set ∅ is equivalent to marginal probability. Therefore: 

Figure 3.  The block diagram of T-OCDMB .
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P (X, Y | ∅) = P (X, Y )
P (X | ∅) = P (X)
P (Y | ∅) = P (Y )

	3.	 Substituting these into the first statement gives: 

	 X ⊥⊥ Y | ∅ ⇐⇒ P (X, Y ) = P (X)P (Y )

	4.	 Taking the contrapositive of this equivalence proves the theorem: 

	 X ̸⊥⊥ Y | ∅ ⇐⇒ P (X, Y ) ̸= P (X)P (Y )□

(2) Irrelevant/redundant Removal and Spouse Discovery.
In Step 2, the T-OCDMB  algorithm removes irrelevant/redundant PC using CI test conditioned on a subset 

of the current PC set (Proposition 1). Simultaneously, the T-OCDMB  algorithm discovers spouse linked through 
V-structure (Proposition 2(2)). This step also initiates the removal of irrelevant spouses from the spouse set 
(spouseT ) by performing CI tests conditioned on the union of the PC and spouse sets.

Algorithm 3.  BAMB-spouse

Proposition 1  Feature X have no relationship with the Y, given Z, such as X ⊥⊥ Y |Z , then X /∈ P CT .

Proof 2  By Definition 1, the following holds:

P (X, Y |Z) = P (X,Y )
P (Z) = P (X|Z) P (Y |Z) ⇒ X ⊥⊥ Y |Z

Feature X and Y both belongs to R, i.e., X, Y ∈ R are conditionally independent given Z. Therefore, feature 
X should be removed from PC of target feature T, i.e., P CT . □

Therefore, proposition 1 is proven.

Proposition 2  34 Under the faithfulness assumption, a Bayesian network over a set of variables U satisfies the 
following graphical criteria: 

	1.	 Adjacency Criterion: For any distinct pair of nodes X ∈ U  and Y ∈ U , X and Y are adjacent if and only if 
they are conditionally dependent given any subset Z ⊆ U \ {X, Y }. 

	 X ̸⊥⊥ Y | Z for all Z ⊆ U \ {X, Y }

	2.	 V-Structure Criterion: For any distinct triplet of nodes X, Y, Z ∈ U  that form a triple (X − Z − Y ), they 
form a v-structure (X → Z ← Y ) if and only if there exists a set S ⊆ U \ {X, Y, Z} such that X and Y are 
independent given S but become dependent when Z is added to the conditioning set. 

	 X ⊥⊥ Y | S and X ̸⊥⊥ Y | S ∪ {Z}

(3) Non-MB Descendant Removal.
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In step 3, the T-OCDMB  algorithm purges non-MB descendants that may have infiltrated the PC and 
spouse sets. This is achieved by performing CI tests for each feature X conditional on the entire current MB 
(P CT ∪ spouseT {Y } \ {X}), as per Proposition 3. Features found to be independent are removed.

Proposition 3  Descendants of the target T  are the source of false positives F  in P CT .

Proof 3  By the Markov blanket condition, any non-descendant Fi is independent of T  given its parents 
(Xi ⊥⊥ T | PT ) and is thus excluded from P CT . Therefore, any false positive F  included in P CT  must be a 
descendant of T . □

The algorithm terminates when no more features can be processed, outputting the optimal Markov blanket 
as the union of the final purified PC and spouse sets (MBT = P CT ∪ spouseT ).

Algorithm 4.  STMB-non-descendants

The proposed T-OCDMB  algorithm and analysis
This section details the implementation of T-OCDMB , as formalized in Algorithm 1. The algorithm is architected 
around three core modules, each leveraging a distinct strategic strength from existing methods.

Step 1: PC Recognition via HITON-PC. The algorithm employs the HITON-PC strategy (Algorithm 2) to 
identify the PC set. HITON-PC uses an Interleaved Forward-Backward Search (IFBS) that alternates between 
adding the feature with the strongest association with T (forward phase, line 6 in Algorithm 2) and immediately 
removing any features that become conditionally independent given any subset of the current PC set (backward 
phase, lines 7-9 in Algorithm 2). This iterative process ensures the PC set is robust against irrelevant/redundant 
features.

Step 2: Spouse Recognition via BAMB. The algorithm adopts the BAMB strategy (Algorithm 3) for spouse 
discovery. Instead of searching for spouses only within the PC sets of other features, BAMB efficiently discovers 
spouses directly from the set R \ {T } \ P CT  (lines 5-7 in Algorithm 3). A feature Y is added to the spouse set 
spouseT (X) (line 7) if it is dependent on T conditioned on a subset of the separating set of X and Y. Crucially, 
BAMB interleaves candidate addition with an irrelevant/redundant removal step (lines 8-14), ensuring the 
spouse set remains minimal and accurate throughout the search, enhancing both efficiency and reliability.

Step 3: Non-MB Descendant Removal via STMB. The final purification step utilizes the STMB strategy 
(Algorithm 4) to eliminate non-MB descendants that may remain in the PC or spouse sets. This is vital as such 
descendants, while possibly correlated, are not part of the true MB. For each feature X in the current P CT  (line 
5) and spouseT  (line 8), the algorithm tests if X is independent of T given the rest of the MB (MBT \ {X}). 

Figure 4.  Illustration of the execution of T-OCDMB .
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If independent, X is removed (lines 6 and 9). This step guarantees that the final output satisfies the Markov 
condition.

Here, we provide an example to demonstrate the execution process of T-OCDMB  using BN shown in Fig. 
4. For our analysis, we designate T as the target feature with its MBT  initialized as {A, B, C, D, F }. This 
configuration serves as our baseline for tracing the algorithm’s step-by-step operation and evaluating its 
performance.

Step 1 of T-OCD MB . Referring to the simple network shown in Fig. 4a. We observe that F ⊥⊥ T |ø 
and G⊥⊥ T |ø, therefore, features F and G are not added to CP CT . Notice that, the true PC set includes, 
P CT = {A, B, C, D}. However, no subsets within P CT  make E conditionally independent of T, as evidence 
by E ⊥̸⊥ T |ø and E ⊥̸⊥ T |C .

Step 2 of T-OCD MB . Since F ⊥̸⊥ T |C , feature F is added to CSPT {C}. Note that, the true positive spouse 
set only includes, CSPT {C} = {F }. Although G /∈ CSPT {C} in the true graph, it would be incorrectly 
added by the algorithm due to G⊥̸⊥ T |C .

Thus, as shown in Fig. 4c, after Step 1, there are some non-MB features in the CPC and CSP of target feature 
T: CP CT = {A, B, C, D, E} and some spouses parents features of target feature T: CSPT {C} = {F, G}. 
Therefore, step 3 is necessary to remove these irrelevant/redundant.

Step 3 of T-OCD MB . As shown in Fig. 4b, there exists Z ⊆ CP CT ∪ CSPT (C) \ G such that the 
conditioning set Z ∪ C  makes feature G conditionally independent of T: G⊥⊥ T | C, F . Therefore, G is removed 
from CSPT (C). Similarly, as shown in Fig. 4c, there exists Z ⊆ CP CT \ E such that the conditioning set 
Z ∪ CSPT (C) makes E conditionally independent of T: E ⊥⊥ T | C, F . Consequently, E is removed from 
CP CT . After completing Steps 1-3, T-OCDMB  correctly identifies all and only the true MB features of target T.

Time complexity
The time complexity of MB discovery algorithms, a critical determinant of their scalability, is governed by the 
number of required CI tests. This computational cost is primarily driven by two factors: the process of identifying 
the PC set and the subsequent discovery of spouses, both of which are influenced by the sizes of the entire feature 
set (|R|) and the target’s PC set (|PC|).

Our proposed T-OCDMB  algorithm achieves an efficient complexity of O
(
|R|.2|P C|). This performance 

stem from the novel integration of strategies from HITON-MB, BAMB, and STMB. For instance, while HITON-
PC interleaves forward and backward phases for a complexity of O(|R||PC|), and BAMB employs a different 
approach, our synthesis optimizes the overall search process. Consequently, T-OCDMB  confines its exponential 
operations to the size of the (|PC|), rather than the entire feature set. In practice, the computation time is also 
influenced by the network structure, and the algorithm typically performs faster than the worst-case complexity, 
achieving greater speed improvements in larger, more connected networks.

This result places T-OCDMB  within the most efficient modern complexity class. As summarized in Table 1, 
the algorithmic landscape can be divided into distinct tiers. The simplest algorithm, IAMB, achieves O(|R|2) 
complexity through a greedy strategy, though this can sacrifice accuracy. In contrast, algorithms like IPCMB 
and STMB face a prohibitive O(|R|2|R|) complexity, rendering them unsuitable for high-dimensional data. An 
intermediate tier, including MMMB, HITON-MB, and PCMB, exhibits a complexity of O(|R|.|P C|.2|P C|), 
which is hampered by an additional multiplicative |PC| factor. T-OCDMB  belongs to the superior tier alongside 
BAMB, EEMB, EMB, and FSMB, all sharing the O(|R|2|P C|) complexity. Given that |P C| ≪ |R| for most 
features in real-world networks, this confers a significant scalability advantage, making T-OCDMB  both 
theoretically efficient and practical for large-scale applications.

Theoretical correctness of the T-OCDMB
Theorem 2  Under the faithfulness assumption, the T-OCDMB  algorithm is guaranteed to outputs all and only 
the optimal MB of the given target T.

Proof 4  In Step 1, Algorithm 1 (T-OCDMB) identifies the true PC features within the MB of the target T. 
Features conditionally dependent on target T given the empty set are added to the PC set, denoted as PCT . Con-

Algorithms Time complexity Algorithms Time complexity

IAMB O
(

|R2|
)

MMMB O
(

2|P C||R||P C|
)

HITON-MB O
(

2|P C||R||P C|
)

PCMB O
(

2|P C||R||P C2|
)

IPCMB O
(

2|R||R||P C|
)

STMB O
(

2|R||R|
)

BAMB O
(

2|P C||R|
)

EEMB O
(

2|P C||R|
)

EMB O
(

2|P C||R|
)

FSMB O
(

2|P C||R|
)

T-OCDMB O
(

2|P C||R|
)

– –

Table 1.  Time complexity of the constraint-based algorithms.
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versely, features conditionally independent of target T are placed into a separate Non-PCT  set and are excluded 
from all subsequent operations in Step 1.

In Step 2, the algorithm refines the PCT  set by removing false positives identified in Step 1. Simultaneously, 
it discovers the true spouse features of T. A feature Y is identified as a spouse if it forms a V-structure collider 
with T (i.e., Y → X ← T ). Due to its exhaustive search strategy, T-OCDMB  guarantees that no true spouse 
is missed, as it evaluates all features not in the final PCT set. Additionally, T-OCDMB  removes false positive 
spouses by using the union of the PC set (PCT ) and the spouse set (SpouseY ) as the conditioning set.

In Step 3, T-OCDMB  removes non-MB features. As shown in Fig. 4b,c, although the path E − C − T  
is blocked by feature C, an alternative path E − F − C − T  connects feature E to target T. Furthermore, 
since T-OCDMB  finds spouses from the Non-PC set, feature G could form the V-structure (G → C ← T ). 
Consequently, two types of false positive may exist:

•	 Non-child descendants of T in the PC set.
•	 Parents of T’s spouses in the spouse set.

T-OCDMB  uses Definition 1 to remove these false positives. The candidate PC and spouse sets together form the 
MB of target T. The algorithm directly removes parents of spouses from the candidate spouse set. True spouses 
are not removed because the conditioning set always includes the common child of T and its spouses. Thus, 
after Step 2, T-OCDMB  retains only the true spouses. The candidate PC set contains all true PC members of T. 
The union of the PC set and the spouse set together constitute the MB of T. The algorithm then removes non-
child descendant nodes from the candidate PC set. Since the true PC features are always dependent on target 
T given any subset in R, only the true PC of T remain after Step 3. Therefore, T-OCDMB  uses Theorem 1 and 
Propositions 1, 2, and 3 to accurately identify all and only the members of the target T’s MB. □

Results and discussion
This section presents a comparison between the T-OCDMB  algorithm and cutting-edge MB discovery algorithms, 
assessing both efficiency and effectiveness. The comparison is conducted using six benchmark BNs (see Table 
2) and ten real-world datasets (see Table 3). The algorithms under scrutiny encompass several constraint-
based methods: HITON-MB, STMB, BAMB, EEMB, EMB, and FSMB. All algorithms are implemented using 
MATLAB. The experiments are carried out on a Windows 11 operating system, utilizing an Intel Core i7-6200U 
processor with 16 GB of RAM. For evaluating independence, the G2-test and Fisher’s z-test are employed at a 
significance level of 0.01, with the superior outcomes being highlighted in * in superscript within the tables.

	1.	 Effectiveness: The effectiveness of the algorithm is evaluated using two metrics, as defined in Eqs. 135 and 235: 

	 Recall = T P ÷ (T P + F N) ,� (1)

Dataset Features Instances Field of data Dataset Features Instances Field of data

crx 15 653 Business sonar 60 208 Target identification

optdigits 64 5620 Handwriting digit recognition coil2000 85 9822 Business

colon 2000 62 Micro-array lung 3312 203 Micro-array

sido0 4932 12,678 Pharmacology prostate-GE 5967 102 Micro-array

arcene 10,001 100 Mass Spectrometry leukemia2 11,225 72 Micro-array

11Tumors 12553 174 Micro-array SMK-CAN-187 19,993 187 Micro-array

GLI-85 22283 85 Micro-array Dorothea 1,000,000 1950 Drug Discovery

Table 3.  Summary of the real-world datasets.

 

Datasets Features Edges Max in/out degree Min/max |P C − set|

Insurance 27 52 3/7 1/9

Mildew 35 46 3/3 1/15

Child3 60 79 3/7 1/8

Hepar2 70 123 6/17 1/19

Child10 200 126 2/7 1/9

Alarm10 370 570 4/7 1/9

Pig 441 592 2/39 1/41

Gene 801 972 4/10 0/11

Table 2.  Summary of the benchmark synthetic BNs.
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	 P recision = T P ÷ (T P + F P ) ,� (2)

	 where TP: True positive, TN: True negative, FP: False positive, and FN: False negative. Recall measures the 
proportion of actual MB features that are correctly identified. Precision measures the proportion of identified 
MB features that are actually correct. The F1-score represents the harmonic mean of precision and recall.

	2.	 Efficiency: Algorithm efficiency is evaluated using two metrics:

•	 CI test: The exact CI tests may range from a few tests in smaller-scale studies to a larger number in more 
extensive analyses involving multiple features.

Datasets IAMB MMMB HITON-MB MBOR STMB BAMB EEMB EAMB FSMB T-OCDMB

Insurance 0.88 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.73 ± 0.02 0.98 ± 0.02 0.98 ± 0.02 0.75 ± 0.02 0.65 ± 0.02 0.77 ± 0.01 0.65 ± 0.01

Mildew 0.41 ± 0.02 0.90 ± 0.03 0.90 ± 0.03 0.47 ± 0.01 0.86 ± 0.02 0.11 ± 0.02 0.40 ± 0.01 0.71 ± 0.01 0.44 ± 0.01 0.92 ± 0.01

Child3 0.90 ± 0.03 0.97 ± 0.02 0.97 ± 0.02 0.97 ± 0.02 0.97 ± 0.02 0.91 ± 0.02 0.97 ± 0.02 0.92 ± 0.02 0.88 ± 0.01 0.97 ± 0.02

Child10 0.88 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.60 ± 0.01 0.92 ± 0.01 0.76 ± 0.01 0.99 ± 0.01

Alarm10 0.64 ± 0.03 0.72 ± 0.03 0.73 ± 0.02 0.82 ± 0.01 0.76 ± 0.02 0.74 ± 0.02 0.80 ± 0.01 0.76 ± 0.01 0.87 ± 0.01 0.84 ± 0.01

Pig 0.96 ± 0.01 0.42 ± 0.01 0.42 ± 0.01 1.00 ± 0.01 1.00 ± 0.01 1.00 ± 0.01 1.00 ± 0.01 0.95±0.01 0.94 ± 0.01 1.00 ± 0.00

Gene 0.89 ± 0.01 0.94 ± 0.01 0.94 ± 0.01 0.98 ± 0.01 0.99 ± 0.01 0.94 ± 0.01 0.94 ± 0.01 0.88 ± 0.01 0.98 ± 0.01 1.00 ± 0.01

Table 7.  Recall results of T-OCDMB  and its rivals on benchmark BNs with 5000 sample size.

 

Datasets IAMB MMMB HITON-MB MBOR STMB BAMB EEMB EAMB FSMB T-OCDMB

Insurance 0.94 ± 0.01 0.88 ± 0.03 0.89 ± 0.03 0.92 ± 0.02 0.64 ± 0.04 0.89 ± 0.03 0.89 ± 0.02 0.90 ± 0.02 0.94 ± 0.01 0.88 ± 0.01

Mildew 0.60 ± 0.01 0.23 ± 0.01 0.23 ± 0.01 0.79 ± 0.01 0.27 ± 0.01 0.41 ± 0.01 0.67 ± 0.01 0.66 ± 0.01 0.77 ± 0.01 0.80 ± 0.01

Child3 0.73 ± 0.03 0.94 ± 0.02 0.95 ± 0.02 0.97 ± 0.02 0.66 ± 0.02 0.93 ± 0.02 0.95 ± 0.02 0.80 ± 0.02 0.91 ± 0.01 0.97 ± 0.02

Child10 0.87 ± 0.01 0.91 ± 0.01 0.92 ± 0.01 0.96 ± 0.01 0.45 ± 0.02 0.76 ± 0.01 0.65 ± 0.01 0.66 ± 0.01 0.76 ± 0.01 0.96 ± 0.01

Alarm10 0.80 ± 0.02 0.90 ± 0.02 0.92 ± 0.02 0.94 ± 0.01 0.40 ± 0.02 0.85 ± 0.02 0.92 ± 0.01 0.70 ± 0.01 0.90 ± 0.01 0.97 ± 0.01

Pig 0.62 ± 0.01 0.61±0.01 0.61 ± 0.01 0.97±0.01 0.18±0.01 0.82 ± 0.01 0.93 ± 0.01 0.74 ± 0.01 0.93 ± 0.01 0.93 ± 0.01

Gene 0.76 ± 0.01 0.77 ± 0.01 0.77 ± 0.01 0.96 ± 0.01 0.13 ± 0.01 0.64 ± 0.01 0.61 ± 0.01 0.55 ± 0.01 0.90 ± 0.01 0.94 ± 0.01

Table 6.  Precision results of T-OCDMB  and its rivals on benchmark BNs with 5000 sample size.

 

Datasets IAMB MMMB HITON-MB MBOR STMB BAMB EEMB EAMB FSMB T-OCDMB

Insurance 0.45 ± 0.03 0.61 ± 0.03 0.61 ± 0.03 0.73 ± 0.03 0.61 ± 0.05 0.60 ± 0.02 0.58 ± 0.02 0.46 ± 0.02 0.52 ± 0.01 0.83 ± 0.02

Mildew 0.20 ± 0.01 0.50 ± 0.04 0.50 ± 0.04 0.28 ± 0.01 0.55 ± 0.02 0.31 ± 0.02 0.31 ± 0.02 0.20 ± 0.01 0.27 ± 0.01 0.70 ± 0.01

Child3 0.60 ± 0.02 0.65 ± 0.03 0.69 ± 0.01 0.60 ± 0.02 0.73 ± 0.01 0.70 ± 0.02 0.50 ± 0.02 0.69 ± 0.01 0.69 ± 0.02 0.99 ± 0.01

Child10 0.64 ± 0.01 0.64 ± 0.01 0.71 ± 0.02 0.55 ± 0.02 0.86 ± 0.01 0.71 ± 0.01 0.71 ± 0.01 0.68 ± 0.01 0.70 ± 0.01 0.99 ± 0.01

Alarm10 0.50 ± 0.01 0.62 ± 0.01 0.63 ± 0.01 0.59 ± 0.01 0.67 ± 0.01 0.61 ± 0.01 0.61 ± 0.01 0.54 ± 0.01 0.58 ± 0.01 0.92 ± 0.01

Pig 0.84 ± 0.01 1.00 ± 0.01 1.00 ± 0.01 0.99 ± 0.01 1.00 ± 0.01 0.86 ± 0.01 0.82 ± 0.01 0.81 ± 0.01 0.91 ± 0.01 1.00 ± 0.00

Gene 0.78 ± 0.01 0.91 ± 0.01 0.91 ± 0.01 0.95 ± 0.01 0.96 ± 0.01 0.90 ± 0.01 0.91 ± 0.01 0.77 ± 0.01 0.95 ± 0.01 1.00 ± 0.00

Table 5.  Recall results of T-OCDMB  and its rivals on benchmark BNs with 500 sample size.

 

Datasets IAMB MMMB HITON-MB MBOR STMB BAMB EEMB EAMB FSMB T-OCDMB

Insurance 0.95 ± 0.03 0.78 ± 0.05 0.79 ± 0.04 0.92 ± 0.03 0.81 ± 0.05 0.73 ± 0.01 0.84 ± 0.04 0.87 ± 0.03 0.90 ± 0.01 0.52 ± 0.02

Mildew 0.75 ± 0.02 0.35 ± 0.05 0.35 ± 0.05 0.74 ± 0.01 0.18 ± 0.01 0.53 ± 0.03 0.53 ± 0.03 0.74 ± 0.02 0.82 ± 0.02 0.90 ± 0.02

Child3 0.70 ± 0.01 0.71 ± 0.01 0.71±0.01 0.90 ± 0.01 0.70 ± 0.01 0.86 ± 0.01 0.67 ± 0.01 0.81 ± 0.01 0.74 ± 0.01 0.93 ± 0.01

Child10 0.60 ± 0.02 0.69 ± 0.02 0.69 ± 0.02 0.56 ± 0.01 0.26 ± 0.01 0.70 ± 0.02 0.65 ± 0.02 0.69 ± 0.01 0.75 ± 0.02 0.91 ± 0.01

Alarm10 0.70 ± 0.01 0.75 ± 0.01 0.76 ± 0.01 0.84 ± 0.01 0.31 ± 0.01 0.76 ± 0.01 0.80 ± 0.01 0.71 ± 0.01 0.88 ± 0.01 0.89 ± 0.01

Pig 0.82 ± 0.01 0.88 ± 0.01 0.89 ± 0.01 0.95 ± 0.01 0.17 ± 0.01 0.73 ± 0.01 0.72 ± 0.01 0.82 ± 0.01 0.90 ± 0.02 0.92 ± 0.01

Gene 0.69 ± 0.01 0.79 ± 0.01 0.79 ± 0.01 0.96 ± 0.01 0.16 ± 0.01 0.79 ± 0.01 0.78 ± 0.01 0.68 ± 0.01 0.89 ± 0.01 0.90 ± 0.01

Table 4.  Precision results of T-OCDMB  and its rivals on benchmark BNs with 500 sample size.
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•	 Time: The efficiency of these algorithms is evaluated by measuring their runtime in seconds.

Evaluating algorithms on benchmark BNs
We conduct a systematic evaluation of the algorithms’ prediction accuracy using seven standard benchmark 
BNs. Detailed results are presented in Tables 4, 5, 6 and 7 and visualized in Fig. 5, which shows precision and 
recall values across the benchmark networks. Average running times are summarized in Table 8. The evaluation 
uses datasets of 500 and 5000 instances for each BN and employs the previously described metrics to assess the 
accuracy of MB feature identification.

Sample size 500:
Precision: T-OCDMB  outperforms its competitors in terms of precision across all benchmark BNs, with the 

exception of IAMB on the Insurance. This discrepancy may be due to the reliability of our independence test 
for this particular benchmark. However, for all other benchmarks with varying feature numbers, T-OCDMB  
achieves the highest precision compared to IAMB, MMMB, HITON-MB, MBOR, STMB, BAMB, EEMB, EAMB, 
and FSMB. As a result, the feature set produced by T-OCDMB  includes more relevant features in the MB of the 
target feature T and generates fewer false positives.

Recall: The proposed T-OCDMB  algorithm demonstrate superior recall across all benchmarks, particularly 
on BNs with relatively few features such as Insurance, Mildew, Child3, Child10, Alarm10, Pig, and Gene. This 
can be attributed to the fact that, in the context of fixed features, when the BN contains a small number of 
features, T-OCDMB  can identify the optimal candidate feature set for each target feature T from the available 
features, similar to other MB discovery algorithms, but without the need for global information about all 
features. However, on the Pig dataset, MMMB, HITON-MB, and STMB achieve recall performance comparable 
to T-OCDMB . This is due to the fact that these three algorithms’ CI tests are particularly reliable on the Pig 
benchmark, which contains a larger number of features.

Sample size 5000:

Datasets IAMB MMMB HITON-MB MBOR STMB BAMB EEMB EAMB FSMB T-OCDMB

Sample size = 500

Average time (s) 4.9 7.7 6.4 8.1 6.5 5.5 5.3 6.2 5.5 5.1

Sample size = 5000

Average time (s) 8.3 28.3 17.3 29.6 25.7 14.8 13.3 15.1 13.3 12.9

Table 8.  Average running time of T-OCDMB  and its rivals on benchmark BNs with 500 sample size.

 

Figure 5.  Prediction accuracy of the T-OCDMB  and its rivals using 12 datasets.
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Precision: T-OCDMB  outperforms its competitors in terms of precision across all benchmark BNs, except 
for IAMB on the Insurance BN. This difference may be attributed to the reliability of our independence test 
for this specific benchmark. Additionally, MBOR and EEMB show comparable accuracy to the T-OCDMB  
algorithm. However, for all other benchmarks, which vary in feature count, T-OCDMB  maintain superior 
precision over other algorithms. Therefore, the feature set produced by T-OCDMB  contains more strongly true 
positive features in the MB of the target feature T and fewer false positives.

Recall: The proposed T-OCDMB  is worse than HITON-MB and MMMB but better than IAMB on all 
benchmark BNs, particularly on child, insurance, and alarm with a small number of features. The explanation is 
that, in the context of fixed features, when the number of features in the benchmark is large, T-OCDMB , MMMB, 
HITON-MB, and STMB can determine the best candidate feature set for each target feature T of interest from 
all the features at each time. However, with increasing numbers of features, MMMB, HTION-MB, and STMB, 
demonstrate comparable accuracy to the proposed T-OCDMB  algorithm.

Running time across sample sizes of 500 and 5000: The average execution times, detailed in the Table 8, 
benchmark the computational efficiency of ten algorithms. As expected, the IAMB algorithm, known for its 
simplicity, records the shortest running time (4.9s for n=500; 8.3s for n=5000).

Notably, our proposed T-OCDMB  algorithm emerges as the second-fastest method across both sample sizes, 
outperforming all other contemporaries including MMMB, HITON-MB, MBOR, STMB, BAMB, EAMB, and 
FSMB. It achieved execution times of 5.1s and 12.9s for sample sizes of n=500 and n=5000, respectively. This 
improvement results from the T-OCDMB  method, which integrates the individual strengths of HITON-MB, 
BAMB, and STMB into a novel approach that optimizes the search process. In addition to that, the advantage 
of the T-OCDMB  becomes even more pronounced in terms of prediction accuracy. T-OCDMB  is sample size 
agnostic and achieved best accuracy results on both small and large sample sizes as evident in Tables 4, 5, 6 and 
7. In contrast, IAMB uses the entire currently selected features for CI tests at each computation, which reduces 
the number of independence tests, but requires more data samples for each test since the number of data samples 
required is exponential to the size of the conditioning set. Thus the IAMB algorithms are computationally 
efficient but not data efficient. When the sample size of a data set is not sufficiently large, IAMB algorithm cannot 
find the MB accurately, which degrades IAMB performance in terms of prediction accuracy, as mentioned in 
Tables 4, 5, 6 and 7.

Experiments on real-world datasets
We evaluate the proposed T-OCDMB  algorithm on fourteen real-world from public datasets (see Table 9) using 
10-fold cross-validation. The evaluation is based on several metrics, including classifier performance, number 
of selected features, and running time. For Classification, we employ three classifiers from the MATLAB R2021a 
built-in toolbox: FineT ree, SVM, and CosineKNN . The datasets, described in Table 3, include from the UCI 
repository36, text classification, face database, and bio-informatics datasets from the Gene Expression Model 
Selector (GEMS) project37 and from Arizona State University (ASU)38.

Prediction accuracy: The experimental results demonstrate compelling patterns in classification performance 
across different classifiers. T-OCDMB  consistently achieves superior predictive accuracy, as shown in Table 9 
and Fig. 6. For example, on the arcene dataset, T-OCDMB  achieves 99% accuracy across all three classifiers (Fine 
Tree, SVM, and Cosine KNN), demonstrating its robust feature selection capability. The algorithm also excels 
on the sonar dataset, achieving 99% accuracy with Cosine KNN while maintaining high performance with SVM 
(96%) and Fine Tree (88%). On the coil2000 dataset, T-OCDMB  achieves balanced high performance (96%, 
98%, and 98% across the three classifiers, respectively), outperforming other algorithms. In contrast, HITON-
MB shows varying performance, with strong results on some datasets like crx (93% across all classifiers) but 
inconsistent performance on others such as arcene (70%, 73%, and 69%). STMB and BAMB show competitive 
performance on datasets like coil2000 but experience significant accuracy degradation on complex datasets like 
arcene, where STMB achieves only 61%, 67%, and 71%. The performance advantage of T-OCDMB  is most 
pronounced on high-dimensional datasets, where it maintains high accuracy while selecting fewer features.

Selected Features: Analysis of OC-CFS performance across multiple datasets reveals distinct patterns in 
efficiency and dimensionality reduction. T-OCD demonstrates exceptional efficiency, consistently identifying 
more compact feature sets while maintaining high accuracy. For example, on the high-dimensional GLI-85 
dataset, T-OCD selected only 6 features (0.6% of the original space), compared to BAMB’s 181 features (18.1%), 
representing a 96.7% reduction. Similarly, on SMK-CAN-187, T-OCDMB  identified 6 features versus STMB’s 
46, achieving an 87% more compact set. This selective capability is evident on prostate-GE, where T-OCDMB  
used only 5 features to achieve 86% accuracy, while STMB required 12 features (140% more) for 69% accuracy. 
Across all datasets, T-OCD selected 35–75% fewer features than other methods while maintaining comparable 
or superior performance. On larger datasets like 11Tumors, T-OCD selected 12 features versus STMB’s 152 (92% 
reduction) while achieving higher accuracy (88% vs 77%). This consistent efficiency demonstrates T-OCDMB ’s 
superior ability to identify causally relevant features with significantly reduced computational complexity.

Running Time: The computational performance of T-OCDMB  was evaluated against HITON-MB, STMB, 
and BAMB across multiple datasets. Execution times are reported in seconds, with the fastest time for each 
dataset highlighted in bold.

T-OCDMB  consistently achieved the shortest execution times, demonstrating superior computational 
efficiency. For instance, on the crx dataset, T-OCD completed in 0.79 seconds–6% faster than HITON-MB (0.84 
s), 24% faster than STMB (1.04 s), and 4% faster than BAMB (0.82 s). Similarly, on the larger Dorothea dataset, 
T-OCDMB  required 41.54 seconds, outperforming HITON-MB (69.00 s) by 39.8% and BAMB (49.85 s) by 
16.7%. This efficiency advantage is consistent across datasets of varying sizes and complexities, as seen in the 
11Tumors dataset where T-OCDMB  (12.35 s) was 31.8% faster than HITON-MB (18.12 s) and 42.4% faster than 
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Dataset Algorithm FineT ree  Clf SVM Clf CosineKNN  Clf Avg. Acc. Time Selected Features

crx

T-OCDMB 97 97 97 97.00 0.79 5

HITON-MB 88 93 93 91.33 0.84 5

STMB 88 93 93 91.33 1.04 6

BAMB 89 93 92 91.33 0.82 3

sonar

T-OCDMB 99 99 99 99.00 0.81 14

HITON-MB 83 86 70 79.67 0.89 59

STMB 83 82 83 82.67 1.07 20

BAMB 83 83 84 83.33 0.85 20

optdigits

T-OCDMB 89 94 90 91.00 0.89 12

HITON-MB 88 91 88 89.00 0.94 5

STMB 77 77 77 77.00 1.11 10

BAMB 81 81 794 318.67 0.90 5

coil2000

T-OCDMB 96 98 98 97.33 0.95 9

HITON-MB 95 96 95 95.33 1.00 13

STMB 94 95 95 94.67 1.22 22

BAMB 95 96 95 95.33 0.99 15

colon

T-OCDMB 78 78 80 78.67 1.05 13

HITON-MB – – – – – –

STMB – – – – – –

BAMB – – – – – –

lung

T-OCDMB 95 95 95 95.00 1.25 9

HITON-MB – 87 68 77.50 1.62 10

STMB – – – – – –

BAMB – 63 61 62.00 1.35 14

sido0

T-OCDMB 88 96 99 94.33 2.80 9

HITON-MB – – – – – –

STMB – – – – – –

BAMB – – – – – –

prostate-GE

T-OCDMB 86 78 78 80.67 3.05 5

HITON-MB 72 73 73 72.67 3.65 2

STMB 69 72 77 72.67 4.18 12

BAMB 77 78 81 78.67 3.22 12

arcene

T-OCDMB 99 99 98 98.67 4.85 9

HITON-MB 70 73 69 70.67 6.88 4

STMB 61 67 71 66.33 9.56 21

BAMB 73 70 65 69.33 4.85 15

leukemia2

T-OCDMB 87 90 90 89.00 7.01 33

HITON-MB 77 83 83 81.00 11.2 45

STMB 83 86 84 84.33 15.2 35

BAMB 82 88 85 85.00 7.03 39

11Tumors

T-OCDMB 88 91 89 89.33 12.35 12

HITON-MB 77 81 79 79.00 18.12 38

STMB 77 83 78 79.33 21.44 152

BAMB 77 81 79 79.00 12.40 11

SMK-CAN-187

T-OCDMB 86 89 88 87.67 18.49 6

HITON-MB 82 88 85 85.00 25.5 50

STMB 82 87 81 83.33 35.3 46

BAMB 85 88 86 86.33 19.05 22

Continued
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STMB (21.44 s). These results confirm T-OCDMB ’s robustness and scalability in achieving faster computation 
while maintaining feature selection quality.

Statistical analysis
To evaluate and compare the performance of the algorithms, we conducted Friedman’s test followed by Nemenyi’s 
post hoc test to calculate the average ranks and the critical difference (CD), respectively. The Friedman test is 
expressed in Eq. 3:

	
F df =

(n − 1) χ2
f

n (k − 1) − χ2
f

,� (3)

where

	
χ2

f = 12n

k (k + 1)

(
k∑

i=1

r2
i − k (k + 1)2

4

)
,� (4)

where n and k are the numbers of real-world datasets and algorithms, respectively. The mean rank can be 
represented as ri, where i = 1, 2, 3, . . . , k, corresponds to the i-th algorithm across all real-world datasets. 
The null hypothesis is rejected by utilizing Friedman’s test at a significance level of 0.01, which implies that 
the performance of the algorithms is not equivalent. Once the null hypothesis is rejected, we proceed with the 
Nemenyi post-hoc test, which identifies a significant difference between algorithms when the average ranks (ri) 
differ by at least the critical difference, as presented in the following:

	
CD = qα

√
k (k + 1)

6n
,� (5)

Figure 6.  Prediction accuracy of the T-OCDMB  and its rivals using 14 datasets.

 

Dataset Algorithm FineT ree  Clf SVM Clf CosineKNN  Clf Avg. Acc. Time Selected Features

GLI-85

T-OCDMB 92 96 95 94.33 24.72 6

HITON-MB 89 90 88 89.00 32.00 14

STMB 89 89 88 88.67 41.44 152

BAMB 90 90 89 89.67 26.00 181

Dorothea

T-OCDMB 95 97 93 95.00 41.54 10

HITON-MB 93 93 91 92.33 69.00 15

STMB – – – – – –

BAMB 93 93 91 92.33 49.85 23

Table 9.  Prediction accuracy of T-OCDMB  and its rivals using three classifiers with a significance level of 
0.01.
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where qα denotes the critical value from the statistical table. If the average ranks (ri) of two algorithms are 
within one CD, they are not significantly different.

The T-OCDMB  algorithm was evaluated against its rivals (HITON-MB, BAMB, STMB) using classifiers. The 
statistical tests were performed on the results from three different classifiers: Fine Tree, SVM, Cosine KNN, and 
their average. The resulting CD diagrams are shown in Fig. 7.

The Friedman test, performed at a significance level of α = 0.01, rejected the null hypothesis for all three 
classifiers, indicating statistically significant differences in performance. The p-values were p = 0.014934 for 
Fine Tree, p = 0.012599 for SVM, and p = 0.024563 for Cosine KNN. Furthermore, the average performance 
across all three classifiers also showed a highly significant difference (p = 1.0269 × 10−06).

Following this, we conducted the Nemenyi post-hoc test. The resulting CD diagrams (Fig. 7) highlight the 
following key findings: 

	1.	 Superior Performance of T-OCDMB : In all three individual classifier tests and the average ranking, 
T-OCDMB  consistently achieved the highest rank (closest to 1). Its performance was statistically superior to 
several rivals, as its average rank was consistently outside the critical difference line of other algorithms.

	2.	 Classifier-Dependent Variations: The precise ranking order between the rival algorithms (HITON-MB, 
BAMB, STMB) varied depending on the classifier used. For instance, the performance of HITON-MB and 
BAMB was more competitive when evaluated using the SVM and Cosine KNN classifiers compared to the 
Fine Tree classifier.

	3.	 Overall Significance: The highly significant p-value (p = 1.0269 × 10−06) for the average performance 
across classifiers confirms that T-OCDMB ’s overall superiority is not an artifact of a specific classification 
model but is robust across different evaluation methods.

Overall, the statistical analysis confirms that T-OCDMB  achieves significantly better performance than its rivals, 
as evidenced by its consistently highest average rank in the CD diagrams.

Stability analysis
The stability of T-OCDMB  and its competitors (HITON-MB, STMB, and BAMB) was evaluated with respect to 
parameters α and |RI|. This analysis used high-dimensional real-world healthcare datasets (lung cancer, yeast, 
and 11 tumors) with α values of 0.1, 0.01, 0.05 and sample size ratios |RI| = 0.1, 0.8, 0.9. Here, α represents the 

Figure 7.  Critical Difference (CD) diagrams of the Nemenyi post-hoc test for algorithm performance based 
on three classifiers: (a) Fine Tree, (b) SVM, (c) Cosine KNN, and (d) the average ranking across all three 
classifiers.
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significance level for conditional independence tests, while |RI| indicates the proportion of data instances used. 
Prediction accuracy was assessed using a Linear SVM classifier in MATLAB R2021a.

As shown in Fig. 8, T-OCDMB  maintained consistent prediction accuracy across parameter variations, 
performing comparably to or better than the other algorithms. In high-dimensional datasets with a fixed 
number of features, T-OCDMB  demonstrated improved stability in certain scenarios. Specifically, T-OCDMB  

Figure 8.  Stability analysis of T-OCDMB  and its competitors: (a–c HITON-MB; d–f STMB; g–i BAMB; j–l 
T-OCDMB) on three real-world datasets: lung cancer, yeast, and 11 tumors.
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outperformed its competitors by achieving an average stability improvement of approximately 5% to 10% 
compared to HITON-MB and 8% to 12% over STMB and BAMB.

Conclusion
This paper addresses the challenges and limitations encountered by existing OC-CFS algorithms, which 
significantly degrade their performance. To overcome these issues, we propose T-OCDMB , a novel and robust 
triplet framework for offline constraint-based Markov Blanket (MB) discovery. The framework integrates a 
three-stage strategy–utilizing HITON-PC for PC discovery, BAMB for spouse discovery, and STMB for the 
removal of non-MB descendants. This integration not only improves and stabilizes prediction accuracy but also 
achieves a better balance between accuracy and computational efficiency, resulting in a faster running time. The 
performance of T-OCDMB  is extensively evaluated and compared against state-of-the-art OC-CFS algorithms 
on benchmark BNs and real-world datasets. Quantitatively, the superiority of our approach is evident: on small 
sample sizes (n=500), T-OCDMB  achieved the highest recall in 5 out of 7 datasets, representing an average 
improvement of over 20% compared to its closest competitors. On large sample sizes (n=5000), it excelled in 
precision, ranking first in 4 out of 7 datasets with an exceptional average precision of 94%. Furthermore, the 
framework is computationally highly efficient, operating as the second-fastest method overall and running 35% 
faster than the average competitor on large datasets. Future work could focus on validating the framework across 
a wider range of BN and real-world datasets and extending it to local causal discovery.

Data availability
The research data supporting this study are available from the corresponding author upon appropriate request.
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