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Multimodal image fusion network
with prior-guided dynamic
degradation removal for extreme
environment perception

Yi Li%, Donghui Li%, Shu Fang? & Geer Yang3"’

Image fusion is a pivotal technology that effectively integrates multimodal image information to
obtain clearer imaging, and it has wide applications in fields such as environmental monitoring,
reconnaissance, and night vision. However, the majority of extant fusion methods neglect the issue

of image degradation caused by inclement weather conditions in real-world scenarios. This results in a
deficiency of clarity and detail representation of fused images in complex environments. The proposed
method is an adaptive multimodal image fusion technique that is suitable for extreme scenarios, and

it solves the imaging problem when the scene is affected by degraded interference. Firstly, a pre-
enhancement module based on physical parameters is utilised to adaptively enhance the degraded
image. The primary objective is to execute preliminary filtration of deleterious interference in the input
degraded image. Subsequently, a gate-based sparse expert mixing mechanism was introduced, guided
by degraded text descriptions generated by large visual-language models. This method facilitates

the establishment of a dynamically sparse network structure, thereby enabling the overall model to
manage complex and diverse input degradation information with greater flexibility. Finally, in order

to enhance fusion performance to an even greater extent, a composite loss function has been devised.
This function incorporates pixel-level loss, gradient loss, reconstruction loss and mutual information
loss, thereby effectively improving the modal discrimination and detail retention ability of the fused
image. The experimental results demonstrate that the proposed method significantly outperforms
mainstream methods on multiple public datasets and in degraded scenarios such as smog, low light,
and overexposure, demonstrating superior performance in terms of image clarity and quantitative
metrics.
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Multimodal image fusion is an important research direction in computer vision'. This technique integrates
complementary information from different sensors or imaging configurations to generate fused images with
richer details and higher contrast. Due to hardware limitations, images captured by a single sensor or under
specific imaging conditions frequently contain only partial information about a given scene®.. For example,
visible images capture scene textures and details through reflected light, providing rich visual information
under adequate illumination. However, in low-light environments, the ability of visible images to present details
is limited-object boundaries and features are often difficult to distinguish®.. In contrast, infrared images are
formed by sensing thermal radiation from the scene, remaining unaffected by ambient lighting and relying
primarily on the thermal properties of objects. As such, they have clear advantages in nighttime or low-visibility
conditions, enabling distinct thermal source identification. However, infrared images typically have lower
contrast, insufficient detail resolution, and lack the rich texture information of visible images, which can hinder
advanced vision tasks such as detection and segmentation. By fusing infrared and visible images, their respective
advantages can be effectively combined: the fused image retains the rich texture and color of visible imagery
while enhancing visibility in low-light environments, thereby improving the overall image quality. Owing to its
outstanding capability for information integration and strong visual performance, image fusion has been widely
applied in remote sensing*, medical imaging®, target detection®, and other fields.
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In recent years, deep learning (DL) methods has driven significant innovation in the field of image fusion.
Autoencoders (AEs)’, convolutional neural networks (CNNs)® and generative adversarial networks (GANs)’
are the mainstream approaches in this domain. Deep learning can automatically learn and extract complex
data features, achieving more efficient and accurate multimodal information fusion. For instance, convolutional
neural networks (CNNs) are widely used for feature extraction to get rich spatial information in complex
scenes and thereby enhancing the detail representation capability of fused images!®. And generative adversarial
networks (GANs) can effectively improve image quality while reducing artifacts and noise that may arise during
the fusion process through adversarial training!!.

However, most existing image fusion methods are designed for ideal conditions source images and fail to
adequately account for the commonly occurring problem of image degradation in real-world scenarios'2. As
shown in Fig. 1(a), the fused image often lacks satisfactory clarity when negative interference information is
present in the scene. Although some studies have attempted to improve the quality of source images through
preprocessing techniques, but these approaches typically separate the preprocessing and fusion stages. This
separation results in insufficient coordination between the cascaded tasks, which can lead to error accumulation
and low efficiency'®.

On the other hand, some studies have attempted to construct end to end fusion models, and training them
specifically for certain types of degradation in order to get the handling of degraded images during the fusion
process, but their applicability remains limited for the complexity of degradation in real-world applications'*.
Image degradation in real scenes is highly uncertain and diverse, images captured at different times may be subject
to markedly different types of degradation. For example, daytime visible images are prone to overexposure caused
by strong light interference, whereas nighttime images are generally affected by low illumination and increased
noise. Even at the same moment, different modalities may simultaneously suffer from multiple combined
degradations, such as the coexistence of low brightness and reduced contrast. Relying on a single-task model
with dedicated training would require building multiple image restoration models for different degradation
combinations under such circumstances, which would significantly increase system deployment complexity
and computational resource consumption. It would also raise the burden of model switching and management,
because it is difficult to meet the requirements of efficient fusion in rapidly changing environments'>. Moreover,
due to the uncontrollable nature of image degradation, even images affected by the same type of degradation can
vary greatly in severity. For severely degraded images, more intensive restoration and enhancement operations
are required. But for lightly degraded images, applying a uniform fusion strategy may lead to over-restoration®.
The fusion requirements of each image often differ according to its inherent characteristics. Consequently, it is
necessary to develop fusion methods that can dynamically adapt to the severity of degradation, so as to produce
more accurate and adaptive fusion results.

To address the above issues, we propose an adaptive multimodal image fusion method for extreme scenarios.
Built upon a deep neural network, the method integrates a gated mixture-of-experts (MoE) mechanism and
leverages scene degradation descriptions generated by a vision-language large model, enabling comprehensive
representation of the complementary information between visible and infrared images in the feature space.
Unlike traditional approaches, our model not only achieves efficient multimodal information fusion at
intermediate feature layers but also incorporates mutual information loss along with multiple auxiliary loss
functions, effectively enhancing the discriminability and detail representation of the fused images. Specifically,
the method first performs physics-parameter-based pre-enhancement separately on the visible and infrared
images. Then employs a routing mechanism to dynamically allocate expert networks based on the content and
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Fig. 1. Comparison between conventional image fusion methods and the proposed fusion method.
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degradation severity of the input images, allowing the fusion strategy to adapt to different types and levels of
degradation while balancing detail preservation and robustness. In terms of loss design, we adopt a combination
of pixel-level loss, gradient loss, reconstruction loss, and other auxiliary losses to ensure that the fused results
outperform single-modality images in both visual quality and structural integrity. Our approach eliminates
the need to train separate models for different degradation types, it achieves adaptive handling of complex
and variable degradation scenarios through a unified end-to-end framework, significantly simplifying system
deployment and reducing computational resource consumption. As shown in Fig. 1(b), our method delivers a
level of clarity in degraded scenarios that conventional methods fail to achieve. Overall, our contributions can
be summarized as follows:

1. We pioneer the integration of CLIP-generated degradation description vectors into multimodal image
fusion, introducing a gated mixture-of-experts mechanism for dynamic expert selection, which significantly
enhances adaptability in degraded environments.

2. We propose a physical-parameter pre-enhancement module that incorporates real-world physical
degradation patterns into deep models, substantially improving perceptual robustness under extreme conditions.

3. We design a composite loss function that balances low-level image quality and high-level semantic
consistency, thereby achieving superior fusion performance across diverse scenarios.

Related work
In this section, we review image fusion, image fusion in degraded scenes and the mix of expert (MoE) techniques.

Deep learning-based multimodal image fusion methods

With the rapid development of deep learning technology, deep neural networks have gradually become the
mainstream approach for handling complex visual tasks. Deep learning—driven image fusion methods can be
broadly categorized into techniques based on convolutional neural networks (CNNs), generative adversarial
networks (GANSs), and transformers, each demonstrating unique advantages in different application scenarios.

Xu et al.'” employed a multi-layer convolutional structure combined with a channel selection mechanism
to develop a multimodal image fusion model whose performance far surpasses that of traditional statistical
methods. Xu et al.!® proposed U?Fusion, which integrates dense networks with information metrics to
adaptively assess the importance of different modal images. Generative adversarial networks (GANs), through
the adversarial interplay between discriminator and generator, can produce more refined fused images. Ma et
al.!” were among the first to introduce GANGs into image fusion tasks, where the discriminator supervises the
generator to produce fused images with richer texture. Subsequent research further adopted dual-discriminator
architectures to distinguish subtle differences between fused images and source images, such as in DDcGAN%.
With the introduction of the self-attention mechanism, transformer models have achieved breakthroughs in
image fusion. Wang et al.2! combined residual blocks with transformer networks to significantly improve fusion
quality. Zhao et al.?? proposed a dual-branch transformer network capable of effectively handling multimodal
image fusion.

In summary, deep learning based methods can automatically learn the intrinsic features and representations
of data, enabling the extraction of high-level image features and overcoming the limitations of traditional
approaches. These methods are capable of preserving more detail information during feature extraction
and fusion, fully exploiting the complementary information between different modalities, and significantly
enhancing the quality and diagnostic value of fused images.

Degraded image fusion methods

Despite the significant progress achieved by deep learning-based multimodal image fusion methods, but image
degradation remains a critical challenge to be addressed. To tackle this issue, many recent studies have begun
exploring ways to address degradation during the fusion process.

Early solutions for mitigating the effects of multiple degradations often adopted two stage method. For
example, RDMFuse?® decouples illumination and reflectance of visible images through Retinex decomposition.
Although this approach can alleviate low-light issues, but it is ineffective against noise and resolution
degradation. As the development of deep learning, recent years have seen the emergence of a series of end to end
models that jointly perform degradation suppression and cross-modal feature fusion within a single network.
The detail-preserving and robust DAFusion? is primarily characterized by its degradation-aware module,
which dynamically identifies and suppresses various degradations to achieve simultaneous restoration and
fusion. Aimed at providing clear and information-rich fusion results, even under extreme low-light and noisy
conditions, the proposed Text-IF* integrates semantic text prompts into a transformer backbone and enables
fine-grained regulation of degradation suppression via text-vision interaction. In addition, DRMF?® leverages
conditional diffusion priors and a composable diffusion module to simulate complex degradation distributions
and jointly learn composite fusion rules.

Despite the significant progress made by the aforementioned all-in-one methods, most of them rely on
synthetic quadruplet datasets or single-modality restoration corpora. As a result, they are prone to overfitting
or performance degradation in real-world scenarios involving cross-modal combined degradations and domain
shifts. In addition, the lack of an explicit modality-degradation decoupling mechanism limits their adaptability
to novel types of degradation. To address these challenges, Section Method of this paper presents the overall
fusion architecture of our proposed method, which performs degradation classification and expert routing at
the feature level to achieve flexible decoupling and recombination along both modality and quality dimensions,
thereby enhancing scalability and robustness.

Scientific Reports |

(2025) 15:40530 | https://doi.org/10.1038/s41598-025-24436-3 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Mixture of Experts

Mixture of Experts (MoE)® is a deep learning architecture that improves computational efficiency by selectively
activating only a subset of experts.

Recently years, the application of MoE in the field of computer vision has attracted widespread attention
particularly in vision transformers (ViTs). V-MoE? is a sparsified architecture which proposed a method to
improve computational efficiency by replacing part of the dense feed-forward layers with MoE layers. Patcher?
introduced a vision transformer architecture combined with MoE to enhance segmentation accuracy. M>ViT?
achieves efficient multitask learning through model-accelerator co-design, which integrates MoE layers into
the ViT backbone to activate task-specific experts during training, and activating only the sparse expert paths
relevant to the current task during inference.

These studies demonstrate the wide-ranging applications of MoE in computer vision. The introduction of
MoE not only improves computational efficiency but also maintains high performance in complex vision tasks.

In this study, the MoE will be extended to make it suitable for multimodal image fusion under multi-degradation
scenarios.

Method

To address the unpredictable degradation commonly found in real-world images, we propose a novel degradation
guided mixture-of-experts fusion network. Our framework consists of three main module. Prior Knowledge-
Based Image Enhancement (PKDM) is employed to preliminarily remove degradations in the image, while the
Degradation-Aware Guidance Module (DAGM) generates scene degradation vectors. And the Degradation-

Guided Mixture of Experts (DGME) then utilizes the generated vectors from DAGM to guide the MoE to
enhance the sparsity of the model.

Prior knowledge-based image enhancement (PKDM)

This section normalizes source images affected by various types of degradation to a more stable feature space
through a series of differentiable transformations, thereby reducing the input variance that downstream MoE
network need to process. The overall structure of PKDM is shown in Fig. 2.

Sequential enhancement of visible images

A visible image I.is € R”*™ >3 will be processed through three main modules which is dehazing, low-light
enhancement and deraining. The output of each module is fused with the input via a learnable weight which
enables adaptive control over the enhancement strength.

Dehazing module: A CNN network Ngehaze is used to predict the global atmospheric light A and the scene
transmission map #(x) for I.is. The dehazed image Iis,q can be obtained:

-Ivis —A

IViS = 7~ .~
4T max(t(z), to)

+ A (1)

where x denotes the pixel coordinate, to denotes a small positive constant which is used to clip #(x) to avoid
instability caused by division by values close to zero.

Low-light enhancement module: This module adopts an iterative enhancement strategy. A CNN network
Nie predicts a series of parameters { Ry, }5_; and enhances Iis 1 iteratively. Let N = 8:
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Fig. 2. The overall structure of the serialized enhancement of the visible image.
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Here, Iii; 1 = ILyis,a. o(-) is the Sigmoid function, which maps the parameter values to the range (0, 1). This

iterative process ensures a gradual and stable improvement in image brightness and contrast.

Deraining module: This module aims to remove rain streaks from the image. A CNN sub-network Nderain
is trained to predict the background (i.e., rain-free image) Byain. The final enhanced visible image I.,;; from this
module is directly given by:

Ix//is = Brain (3)

In our implementation, the outputs of the enhancement modules are not simply connected. Instead, We utilize
a learnable weighted residual connection to fuse the output of each enhancement into the target feature stream:

Iouwt = Iin - (1 +w) + Enhance(Iin) (4)

Here, Enhance(-) denotes an enhancement operation (e.g., dehazing), and w is a learnable scalar weight. This
design ensures the preservation of the intensity flow path from input to output and avoids lossing intensity
information. In addition, by reducing reliance on the enhancement modules (when w approaches —1 and the
enhancement effect is weak), it enables adaptive control of the enhancement strength.

Structural enhancement of infrared images

Although infrared images I;; € R *"™ *! are generally insensitive to illumination, they often suffer from low
contrast and blurred texture details. To enhance their structural information for improved subsequent fusion,
we introduce a learnable sharpening filter. This process performs residual addition based on the Laplacian of
the image:

[i/r = Iir + )\ . L(Lr) (5)

Here, £(-) denotes a fixed 3x3 convolution-based Laplacian operator, which is used to extract high-frequency
edge information from the image. The sharpening strength parameter X is not a fixed hyperparameter, but a
learnable scalar. This allows the network, during end-to-end training, to determine the optimal sharpening
strength for the current task based on the overall loss.

After this complete pre-enhancement process, we obtain a higher-quality and more feature-consistent
infrared image I, € R¥*" ! and visible image I/;, € R *" >3 For ease of subsequent network processing,
the single-channel infrared features are duplicated across three channels, resulting in I}, € REXWX3 which is
then fed into the following processing pipeline.

Degradation-aware guidance module (DAGM)
This module extracts the degradation status information directly from the image content, generating a global
guidance vector ddeg. The overall structure of DAGM is shown in Fig. 3.

Degradation-Aware Guidance Based on LoRA-CLIP: The CLIP image encoder £.;;;, was fine-tuned with
Low-Rank Adaptation (LoRA, which updates only about 2-3% of the parameters of the CLIP vision model)
prior to training larger models, because the representation capacity of small models is limited. We use this
approach to adjust CLIP attention to degradation features with few parameters. Thus, the module enhances the
image and extracts high-level features as follows:
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Fig. 3. The overall structure of the degradation-aware guidance module.
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fvis - gclip (Pclip (I{ns)) ) fiT = gclip (Pclip (Concat (Iz{ry Iz{rv I{»,»))) (6)

Here, P.ip(-) represents the standard preprocessing in CLIP, which includes resizing the image to fixed 224 x
224 pixels and make it normalized. This process ensures that the single-channel infrared image i matches
the input requirements for the CLIP model. i (-) denotes our fine-tuned LoRA-CLIP encoder. The encoded
features fyis and fir € Rl (with clip = 512) represent the encoder output. These vectors not only contain
spatial information but also represent the entire content of the image in a global manner.

Guidance Vector Generation: The extracted feature vectors are first multiplied element-wise. After that,
a two-layer MLP is applied to reduce the dimension and merge the information. the result is the degradation
vector daeg € R¥“ext (with text = 512).

ddeg = MLP(fvis © fir) (7)
This vector, as a global and compact scene state descriptor, will be used to guide the subsequent MoE network

Degradation-guided mixture of experts (DGME)
The DGME module receives two inputs: the feature map F' € RZ*WX from the previous layer, and the
global degradation vector dgeg € R%* generated in Section Degradation-Aware Guidance Module (DAGM).
The overall structure of DGME is shown in Fig. 4. The overall structure is as follows, which includes two key
components:

Guidance Control Mechanism: The control mechanism of the guidance is driven by the DGME strategy,
which uses the global degradation vector dgeg € R%xt to guide the fusion of the input feature map F to establish
a unified expert processing strategy:

G = daegWy + N(0, 1) - Softplus(daeg Wnoise) (8)

Here, the components of the route (Router Bank) are merged through a linear layer to generate W. The main
signal, which uses the global degradation vector dqegWy, is normalized by the linear transformation of dgeg,
and another unique linear transformation matrix Whoise is used to compute N(0, 1), which represents standard
Gaussian noise and helps ensure that all experts are sufficiently distributed to process different types of features.
To mitigate the risk of overfitting, noise perturbation is introduced into the gating mechanism of the mixture-of-
experts layer. By injecting noise during expert selection, the model avoids relying excessively on a fixed subset of
experts, thereby promoting a more diverse utilization of expert networks. This stochasticity not only regularizes
the learning process but also enhances the generalization ability of the model across different scenes.

Sparse Dispatcher Calculation: A sparse dispatcher based on the non-zero values of G distributes the feature
map F to the active top K experts. In our work, we set K = 2, where the experts are divided into three different
structures (same height, same width, and different sizes). Such a model has strong ability to handle multi-scale
features. Specifically, each active expert fully processes its corresponding input data. Then, the outputs from
these experts are fused together. Finally, the fused result is passed back to the sparse dispatcher, which produces
the final output of DGME.

G = Softmax (TopK(G, K)) 9)

Here, the operation TopK g) retains the top K values (with K = 2), and after the Softmax operation, the sparse
dispatcher weight G € R* (with M = 8) is formed. Then, using G and the expert layers in the expert bank, the
features are processed to obtain the DGME output.

k
Fou =Y Ge - Expert, (F) (10)
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Fig. 4. Overall structural diagram of DGME.
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Here, G. represents the activation weight of each expert, and Expert, (F') denotes the processing result of the
input feature F by the expert. In summary, DGME improves image reconstruction accuracy and robustness. This
is achieved through its strong ability in multi-modal and multi-scale feature selection, which helps identify the
most suitable expert networks. Such selection enhances image restoration precision. In addition, it also provides
a more reliable feature foundation for following high-level vision tasks.

In this work, CNN is adopted to construct £}, within DGME, as it offers advantages in extracting low-level
features such as edges and textures, which are particularly critical for image fusion under degraded scenes.
Meanwhile, compared with Transformer or Mamba-based approaches, CNN demonstrates higher computational
efficiency, making it more suitable for resource-constrained scenarios. Overall, CNN provides an efficient and
practical solution, whereas introducing Transformer or Mamba architectures may enhance the quality of fused
images to some extent, but at the cost of significant computational overhead.

Overall structure of the fusion network
The core fusion network follows a multi-scale mixture-of-experts design built on the U-Net framework. It adopts
an encoder—-decoder structure that extracts, merges, and reconstructs features at several semantic levels. The
overall network structure is illustrated in Fig. 5. First, DGME utilizes the visible and infrared inputs to obtain
a scene degradation vector. Next, this degradation vector is fed into DGME to generate the activation gates for
the experts. Then, the visible and infrared images are initially processed by PKDM for preliminary degradation
removal, after which they are passed into a dual-branch network constructed with DGME to generate the fused
image, the degradation-free visible image, and the degradation-free infrared image. During training, supervision
on the fused image ensures that the overall network learns the knowledge of multimodal information fusion,
while supervision on the degradation-free visible and infrared images ensures that the fused image retains more
information from the inputs.

At the beginning, the degraded visible and infrared images are sent into PKDM for basic enhancement. The
enhanced results are then passed to the DGME module, where features are adaptively extracted. A downsampling

DAGM
L™
1] [} 1 ‘l
! Sequential | i Sequential |
v enhancement |} PKDM ' enhancement E
i ofvisible | i ofinfrared |
v
=P DGME
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DownSample DownSample daeg DGME
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Fig. 5. Overall structural diagram of the fusion network.
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layer is used here, which reduces the feature resolution. This step lightens the computation and at the same time
enlarges the receptive field. This process is applied across four layers, while the DGME layers keep the feature
shape unchanged. The downsampling layer reduces the feature resolution by half and increases the number of
feature channels by a factor of 4. Both the visible and infrared branches share the same structure for feature
extraction. Let the degraded visible image feature at layer 1 and the degraded infrared image feature at layer 1 be
denoted as F';, and F.,;, respectively. Formally, the process can be written as:

Fl. = Downsample (DGME(F&;l)) (11)
Fl; = Downsample (DGME(FIZD}I)) (12)

ol H W 1 ol H W . .
s € R” 20 20 and F,,;; € R 2T 27, where H and W mean the height and width of the features.

After feature extraction from the visible and infrared images, the extracted multi-layer, multi-modal features are
concatenated to obtain the fused features. This process can also be expressed as:

Here, F. ll

n

F} = concat(Flis, Fih) (13)

Here, concat() denotes the operation of concatenating along the channel axis. After obtaining the multi-layer
fused features, they are used to form the fused image, which consists of the enhanced visible image and the
enhanced infrared image. The fusion of the images is achieved through three consecutive DGME layers and
downsampling layers, followed by the use of three different scales to obtain different output results. The DGME
layers do not change the shape or resolution of the features, while the downsampling layers reduce the resolution
of the features to half the original resolution and expand the number of feature channels by a factor of 4. The
fused feature at the first layer is defined as F' }, and the above fusion process can be formulated as:

Fj = Upsample(DGME(F} 1)) + F; ™! (14)

LH W
Here, I ch S R? 27 % , where the definition of the layer number here is consistent with that in the feature
extraction part. Finally, the fused features are fed into three different convolutional layers for the final channel
mapping, yielding the reconstructed clean visible image, clean infrared image, and the fused image as the outputs
of the overall model. Meanwhile, it should be noted that the reconstructed visible and infrared images are only
used for the computation of the loss function.

Multiple loss functions

We design a multi-loss function to optimize our framework, which is defined as Liotar. This loss guides the
network to adapt to the fusion strategy as well as preserve key information from the source images. The total loss
itself consists of the following components: fusion quality loss, confidence preservation loss, and expert (MoE)
auxiliary losses. The overall loss function is:

Ltotal = apiprix + agradLgrad + areconLrecon + aauxLaux (15)

where a(-) represents the weight parameters for each loss, used to balance the significance of each term during
optimization.

Fusion quality loss
This loss component directly applies to the final generated f, ensuring that both the image strength and structural
details are optimized to meet high-quality standards.

Strength Loss: When solving the problem of highlighting prominent objects in the fused image(such as
high-temperature regions in infrared or bright regions in visible images), we maximize the strength information
in the fusion result. This loss is calculated through the L1 norm as the difference between the fused image fand
the maximum pixel values in the corresponding regions of the source images (I, ;, and I},.):

Lpiac = Hf_ maX(L/”'S,IZ{ )

| (16)
where || - ||1 means the L1 norm, and the goal is to ensure that the fused image covers the most significant
features in the target region of interest(ROI).

Gradient Loss: Similarly, we employ a comparable strategy to preserve the strongest gradient information
during fusion, since gradients correspond to image edges. This loss is defined as:

Lgrad = va - maX(VI':}'Lm VIZIT)

l, (17)
where V represents the Sobel gradient operator. We believe that this design preserves the essential details from
each source image in the fused result.

Information preservation constraint
Reconstruction Loss: Following this idea, we added a reconstruction task because it helps prevent modality
collapse, where one source image could be completely ignored. This task requires the network to be able to
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reconstruct the original source images I,;s and I from the final fused features through an independent
decoding branch. The loss function is defined as:
Ly — I, (18)

2 ’
Lrecon = HIm's - ]vis

.

1

This design forces the network to preserve sufficient modality-specific information from the input in its
intermediate layers. This ensures the completeness of the fusion. Note that the same formula works when the
input modalities are extended.

Moe auxiliary loss

Considering that the MoE module itself can be effectively and stably trained, we utilize two auxiliary losses,
Lioad and Li,;. These losses are summed over the corresponding MoE-FFN modules in the network, denoted
as Nonoe.

Load Balancing Loss:This loss prevents the gating network from favouring only a few star experts, so the
others still get properly trained. This issue is called expert collapse. We adopt the classical load balancing loss
based on the squared coeflicient of variation (CV) of the distribution of expert importance I and expert load L
within a batch. For a single MoE block, the load balancing loss is defined as:

Livad_viock = CV?(I) + CV*(L) (19)

where CV() denotes the coefficient of variation. £;oq4 is the sum of this loss over all MoE blocks.

Mutual Information Loss: The last part we need to discuss is the mutual information loss that encourages
expert specialization. In our framework, the network needs to handle two different tasks: the main fusion task
(T = to) and the auxiliary reconstruction task (1" = ¢1). This means our designed loss maximizes the mutual
information between the expert selection variable E and the task type T(E; T), so that it encourages the model
to learn distinct expert utilization strategies for different tasks. For a single MoE block, the mutual information
loss is:

Lmiiblock - 7I(Ea T) (20)

where I() denotes mutual information. The total mutual information loss £, is the sum of this loss over all MoE
blocks in the network.
The combined auxiliary loss is expressed as:

Lauz = Lload + Lmz (21)

and is added to the total loss function with a unified weight aquz.

In addition to the noise perturbation, a load balancing loss and a mutual information loss are introduced
to further reduce the risk of overfitting. The load balancing loss prevents the model from over-relying on a
small subset of experts by encouraging a more uniform activation of the expert networks, thereby promoting
diversity in feature learning. Meanwhile, the mutual information loss constrains the learned representations to
retain informative and discriminative features while suppressing redundancy, which enhances the generalization
ability of the model. Together, these losses act as regularization terms that mitigate overfitting and improve the
robustness of the proposed framework.

Experiments

Experimental setup

Dataset

To comprehensively evaluate the generalization ability of the proposed method, four mainstream publicly
available infrared-visible image fusion datasets are selected: MSRS, RoadScene, M3FD and LLVIP. The original
images in these datasets all have varying degrees of degradation. For instance, the visible images in the LLVIP
and MSRS dataset have poor brightness, some visible images in the RoadScene dataset are overexposed, and the
M3FD dataset suffers from haze degradation. These datasets can adequately test the robustness of the algorithm
under various degradation scenarios.

Training details

The model is implemented in PyTorch. The proposed network consists of two training stages. In the first
training phase, DAGM was trained. 100 images for each of four visible light degradation types (Fog, Low
Light, Overexpose, Normal) were gathered from MSRS, M3FD and RoadScene datasets, with 300 rounds and
a learning rate of 1e-4. In the second phase, the overall fusion network was trained. 3000 infrared-visible pairs
with manually corrected visible light degradation labels were collected, training the network for 100 rounds with
a learning rate of le-4. A learning rate decay of 0.99 is applied on both stagel and stage2. The batch was set to
16 in the first training phase and 4 in the second. All methods are trained and tested on the same hardware: a
15-core Intel Xeon Platinum 8474 C CPU and an NVIDIA RTX 4090 GPU with 24GB RAM.
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Fig. 6. Visual comparison on the LLVIP dataset.
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Fig. 7. Visual effect comparison on the LLVIP dataset.

Evaluation metrics

We evaluate image fusion performance using quantitative and qualitative metrics. Key aspects include
information richness (EN, SE, AG), structural fidelity (SD), and artifact suppression (QAbf). Higher EN, SE, AG,
and SD indicate better fusion, while higher QADf reflects fewer artifacts.

Comparison algorithms

To comprehensively evaluate the fusion performance of our model under complex degradation conditions,
the experiments are conducted in two stages: DF stage (Direct Fusion) compares the fusion performance
without any additional restoration. The baselines include the All-in-One degradation fusion algorithm Text-IF,
DRFM?® and AWFusion®, as well as eight general-purpose fusion algorithms such as CAMF?!, DATFuse®?,
DDBFusion®’, MURF**, MFI**, SuperFusion®, and SwinFusion®’. RF stage (Restoration and Fusion) first applies
state-of-the-art (SOTA) image restoration models for different degradation types. SCI*® for low-light visible
images, PrainNet* for de-raining and LMPEC* for deblurring. Then feeds the restored images into all the
aforementioned general fusion methods for fusion. The All-in-One methods (including our proposed method)
do not perform any input preprocessing and directly reuse the fusion results from the first stage for evaluation.
All comparison algorithms are executed based on their official implementations and default configurations to
ensure the fairness and reproducibility of the experimental results.

Comparative experiments

Comparative experiments on the LLVIP dataset

To verify the stability of the proposed method in low-light environments, qualitative comparison experiments are
conducted on the low-light scene dataset LLVIP. Figures 6 and 7 show the results of the qualitative comparison
on the LLVIP dataset. The scene selected in Fig. 7 is a surveillance video captured under a bridge. It can be
observed that, due to insufficient brightness, the visible image barely reveals any information hidden in the
darkness. The infrared image, being more robust in extreme conditions, clearly displays pedestrian information
on the zebra crossing, but it fails to show the zebra crossing information and the text on the pole. CAMF reduces
scene brightness, worsening the low-light problem, while DATFuse keeps the brightness but looks blurry, with
the pole text almost unreadable. DDBFusion suffers from severe brightness loss and missing colors, while MURF
further aggravates this issue with weak infrared information. MFI also shows heavy brightness degradation
along with infrared artifacts, whereas SuperFusion produces only an average result with poorly defined text
regions. Text-IF and the proposed method both have the ability to restore brightness degradation during fusion.
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CAMF 3.3591 | 6.8116 | 11.2577 | 33.6476 | 0.5676 | 2.5035
DATFuse 4.1291 7.0802 | 15.3527 |39.4433 | 0.7084 | 3.8725
DDBFusion |3.4963 | 6.6948 | 12.1581 |31.7495 | 0.5505 |2.3631

Murf 2.8171 | 6.3976 | 7.1804 | 26.2555 | 0.4109 | 1.9988
MFI 5.0283 | 6.7395 | 18.5830 | 32.3618 | 0.6593 | 2.3089
TextIF 8.8831 | 7.4173 | 28.7048 | 49.4001 | 0.6492 |2.4305

SuperFusion | 4.3293 | 7.1332 | 16.2125 | 42.0680 | 0.6984 | 3.7571
SwinFusion |5.1646 | 7.1586 |18.6986 |44.4828 |0.7583 |3.6078

DRFM 7.2158 | 7.4321 | 23.4567 |51.2145 | 0.9453 | 2.7894
AWFusion 8.0324 | 7.6214 | 27.1234 | 56.3287 | 0.9571 | 2.9012
Ours 10.7784 | 7.7200 | 31.9825 | 62.3594 | 0.9312 | 2.7019

Table 1. Quantitative comparison of metrics on the LLVIP dataset.
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Fig. 8. Visual effect comparison on the M3FD dataset.

The fusion results are not limited by brightness degradation. In extremely dark scenes, we can still achieve clear-
textured results. In comparison, the proposed method shows less color shift, more vibrant colors, and overall,
richer texture details.

Figure 7 presents a comparison of fusion performance in another representative scene, further demonstrating
the generalization ability of our approach. The scene reflected in Fig. 7 is a nighttime road scene captured by
a traffic camera. For the visible image, only a blurry zebra crossing can be seen, with little to no pedestrian
information visible. The infrared image clearly shows pedestrian information but lacks color information and
background details that do not emit thermal radiation. Several conventional fusion methods struggle to restore
the brightness degradation in the visible image during the fusion process, which limits the performance of
the fused image. Both the proposed method and Text-IF can enhance the scene brightness during the fusion
process, resulting in more accurate environmental perception. In contrast, the proposed method, with the help
of accurate color information, achieves better visual effects.

We conducted extensive experiments on the LLVIP dataset to compare multiple infrared and visible image
fusion methods, and the performance results are summarized in Table 1. The analysis based on multiple
evaluation metrics shows that the proposed method has a significant advantage in overall performance.

Comparative experiments on the M3FD dataset
The stability of the proposed approach under rainy scenarios was evaluated through comparative experiments
on the M3FD dataset. Figure 8 presents the results of the visual effect comparison on the M3FD dataset. As
shown in the figure, the visible image is severely disturbed by water vapor, which limits its visibility. The infrared
image exhibits stable imaging in rainy conditions but lacks color information and background details that do
not emit thermal radiation. During the fusion process, CAMF experiences a brightness degradation issue while
DATFuse amplifies the water vapor information, which does not improve the visibility of the fused image.
DDBFusion suppresses some water vapor during fusion, but the colors of the fused image suffer noticeably.
MURE effectively reduces water vapor, yet restoration of degraded areas remains weak. MFI, in contrast, tends to
amplify water vapor. SuperFusion neither removes nor enhances it, leading to average visual results. TextIF can
restore degraded regions, but water vapor persists and noticeable artifacts remain. In brief, the proposed method
effectively corrects the rain degradation information during fusion, and the fused image contains no water vapor
information, with significantly enhanced infrared details and better visual effects.

An additional set of images with artificial smoke was selected for fusion performance comparison. As shown
in Fig. 9(a), only nearby grass information and distant building details are visible. In the comparative experiments,
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Fig. 9. Visual effect comparison on the M3FD dataset.

CAMF 4.5642 | 6.9521 | 11.8536 | 32.0018 | 0.6260 | 2.1158
DATFuse 4.3436 |5.9243 | 12.8672 | 16.4739 | 0.6109 | 1.9987
DDBFusion | 4.8503 | 6.7355 | 12.5040 |27.2104 | 0.6154 | 1.7056

MURF 3.7982 | 6.6541 |9.1596 |27.1661 | 0.3763 | 1.5712
MFI 5.1408 | 6.1752 | 14.6067 |20.7913 | 0.7278 | 1.6002
TextIF 6.3028 | 6.4684 |17.5231 |24.2346 | 0.7571 | 1.8804

SuperFusion | 4.3308 | 6.2160 | 12.4246 |21.5178 | 0.7510 | 3.5181
SwinFusion | 4.9367 | 6.3406 | 14.1257 | 23.7465 | 0.8185 | 3.2255

DRFM 6.8451 | 6.8724 | 18.4527 | 30.1423 | 0.6521 | 2.2015
AWFusion 7.2156 | 7.0458 |20.3365 | 34.8759 | 0.6672 | 2.2984
Ours 8.5426 | 7.1881 |23.2540 | 45.2970 | 0.6138 | 2.2463

Table 2. Quantitative comparison of evaluation metrics on the M3FD dataset.

other methods suffer from color loss, artifacts, or incomplete smoke removal. The proposed method, in contrast,
effectively removes slight smoke in the ground area. Infrared information is well preserved, and grass colors
remain clear. These results demonstrate the robustness of the proposed method under smoky conditions.

The performance comparison of the proposed method with similar approaches is summarized in Table 2,
showing that it consistently outperforms existing methods across multiple quantitative metrics. Specifically,
in terms of clarity (AG), the proposed method achieves 7.9315, a 25.8% improvement over the highest
competing method, TextIF (6.3028), indicating a significant advantage in detail clarity in the fused image. For
the information entropy (EN) metric, the proposed method achieves 7.1218, which is significantly higher than
that of SwinFusion (6.3406) and TextIF (6.4684). This means the fused image have the ability to save more
source image information. In terms of spatial frequency (SF) and standard deviation (SD), which reflect texture
details and contrast, the proposed method achieves 22.3913 and 43.8993, far surpassing other methods (e.g.,
SwinFusion (14.1257 and 23.7465)), indicating that the proposed method better enhances texture details and
overall contrast. Although the proposed method performs slightly lower than some competing methods on
the visual information fidelity (VIF) and mutual information (MI) metrics, its overall performance remains
outstanding, especially in the significant improvements in key metrics such as AG and SD. This further confirms
its superiority in the infrared and visible image fusion task.

Comparative experiments on the RoadScene dataset under normal and slightly overexposed conditions

Figures 10 and 11 show how the proposed method performs in normal scenarios on the RoadScene dataset. In
the daytime road scene of Fig. 10, the visible image already reveals most of the scene, and adding the infrared
image brings in extra details. CAMF and DDBFusion lose some brightness, which spoils part of the visible
information. DATFuse introduces noise, making the fused image a little blurry. MURF and MFI damage visible
details, and SuperFusion keeps too little infrared data, so the result almost looks like the original visible image.
Compare TextIF with the proposed method: both perform well, but the proposed method shows fewer odd spots
and generally looks better overall.

The proposed method was also tested on a nighttime road scene from the RoadScene dataset. Figure 11 shows
how the fusion works under this circumstance. In the figure, the visible image is heavily affected by glare, but
the infrared image is not affected. CAMF does well in reducing the glare, and the fused image looks acceptable.
DATFuse, however, adds too much noise, making the fused image look worse. DDBFusion and MURF handle
the glare fairly well. MFI loses some color, so the fused image is not very vivid. SuperFusion does not reduce
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Fig. 11. Visual effect comparison on the RoadScene dataset.

CAMF 3.4829 | 7.3716 | 7.9702 | 44.6738 | 0.3899 | 2.2628
DATFuse 3.3694 | 6.7754 | 8.6372 | 29.9683 | 0.5441 | 3.0482
DDBFusion | 4.5244 |7.3178 | 10.7936 | 43.1538 | 0.5314 | 2.4258

MURF 4.8741 | 7.1436 | 10.6670 | 37.3031 | 0.4556 | 1.9314
MFI 4.4034 | 7.1020 | 10.7083 | 36.5785 | 0.1216 | 1.5782
TextIF 5.1723 | 7.4761 | 12.1064 | 50.2446 | 0.6535 | 2.6815

SuperFusion | 3.7004 | 7.0042 | 9.3544 | 42.2800 | 0.5639 |3.3142
SwinFusion | 3.6958 |7.0324 | 9.2065 | 44.5111 | 0.5838 | 3.0392

DRFM 4.9821 | 7.2983 | 11.8764 | 46.5217 | 0.6620 | 2.8427
AWFusion 5.1345 | 7.4120 | 12.9341 | 48.7324 | 0.6615 | 2.9543
Ours 5.5274 | 7.2226 | 14.2019 | 51.9902 | 0.6066 | 3.3142

Table 3. Quantitative comparison of evaluation metrics on the RoadScene dataset.

the glare enough, which makes the fusion result poor. Both TextIF and the proposed method deal with the glare
correctly and give good results, but the proposed method has fewer issues and looks a bit better overall.

Table 3 presents their results on the RoadScene dataset. From the experimental results, it is evident that the
proposed method exhibits significant advantages in several key metrics. The proposed method achieves 5.5274
AG, a 6.9% improvement over the second-best performing method, TextIF (5.1723), indicating that the fused
image retains more detail. The proposed method achieves 14.2019 S, significantly outperforming all comparison
methods, especially compared to DDBFusion (10.7936) and TextIF (12.1064), with improvements of 31.5% and
17.3%, respectively. This further demonstrates its advantage in enhancing texture details. Additionally, in the
standard deviation (SD) metric, the proposed method surpasses all comparison methods with a value of 51.9902,
indicating its effectiveness in enhancing image contrast. EN and MI indicate similar performance between the
proposed method and others. For example, EN is 7.2226, close to TextIF’s 7.4761, and MI is 2.7135, slightly lower
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Fig. 12. Visual effect comparison on the MSRS dataset.

AG EN SF SD VIF MI

CAMF 3.2451 | 7.0154 |7.8123 | 42.1589 | 0.3721 | 2.1154
DATFuse 3.4882 | 6.8521 |8.4597 |31.2045 | 0.5223 | 2.9052
DDBFusion |4.3217 | 7.1029 |10.2314 | 40.8712 | 0.5129 | 2.3487

MURF 4.6729 | 7.0643 | 10.1187 | 35.7591 | 0.4312 | 1.8896
MFI 4.2214 | 6.9810 |10.0542 | 34.8325 | 0.1059 | 1.4820
TextIF 5.0328 | 7.3127 | 11.9845 | 48.0124 | 0.6275 | 2.5513

SuperFusion | 3.5683 | 6.8342 | 9.1024 | 40.1213 | 0.5489 | 3.1054
SwinFusion | 3.6895 | 6.9984 |9.0548 |42.9057 | 0.5710 |2.8762

DRFM 4.7924 | 7.1986 | 11.3425 | 44.7316 | 0.6432 | 2.7325
AWFusion 5.0142 | 7.3621 | 12.0417 | 46.8243 | 0.6389 | 2.8441
Ours 5.3479 | 7.4782 | 13.2103 | 50.1827 | 0.6124 | 3.1950

Table 4. Quantitative comparison of evaluation metrics on the MSRS dataset.

than SuperFusion’s 3.3142. Although the VIF metric is slightly lower than TextIF (0.6535), the proposed method
still stands out for its overall balanced and excellent performance.

Comparative experiments on the MSRS dataset

To further validate the generalization capability of the proposed method, we conducted experiments on the
low-resolution image fusion dataset MSRS. A representative comparison is illustrated in Fig. 12. Due to the
low illumination in the scenes, the visible images suffer from poor visual quality, making it difficult to observe
fine details and texture information. Several conventional fusion methods fail to properly adjust the overall
brightness during the fusion process, resulting in darker fused images with unsatisfactory visual quality. TextIF
achieves more accurate brightness adjustment by leveraging additional textual guidance. DRFM and AW Fusion
also perform brightness correction, but their enhancement remains insufficient. In contrast, our method not
only provides reasonable brightness adjustment but also preserves the richest texture details, as confirmed by the
quantitative results reported in Table 4. However, the fused images generated by our method are less vivid in color
compared to those of TextIF, since TextIF incorporates an additional color loss to regulate image colorization.
Nevertheless, the introduction of color loss may reduce the robustness of the algorithm, as erroneous color
predictions can cause a rapid degradation in overall visual quality, which is evident from the comparisons on
the M3FD dataset.

Robustness analysis on challenging samples

To verify the robustness of the proposed method when facing complex samples, we conducted experiments on
two pairs of images with typical composite degradations. The experimental results are shown in Fig. 13. In the
visible images, haze, low light, and severe halo effects around headlights coexist. The cross-degradation of the
visible images significantly increases the difficulty of fusion. DATFuse and SuperFusion are not immune to such
interference, resulting in fused images with heavy haze and poor visual quality, which indicates weak robustness.
CAME, DDBFusion, MURE and MFI generate fused images without introducing excessive haze, suggesting
stronger robustness against interference. TextIF, DRFM, and AWFusion are fusion algorithms equipped with
degradation-removal capabilities, which perform well when dealing with a single degradation type but become
limited under composite degradations. In particular, DRFM completely fails to adjust brightness during
fusion. In contrast, our method effectively removes haze interference during fusion and reasonably adjusts the
brightness of the fused image, demonstrating superior robustness compared to similar methods. However, some
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Fig. 14. Visual effect comparison of ablation experiments on the LLVIP dataset.

w/o. DGME | 7.5772 | 7.3612 | 24.6282 | 45.3745 | 0.8233 |2.2051
w/o. PKDM | 8.3090 | 7.5226 |26.5944 | 49.5709 | 0.8406 |2.1544
Ours 10.7338 | 7.7094 | 32.9654 | 59.4140 | 0.9985 | 2.7826

Table 5. Results of ablation experiments on the LLVIP dataset.

shortcomings remain, such as the incomplete removal of haze around headlights. In future work, we will focus on
addressing the fusion of complex degraded samples to further enhance the robustness of the proposed method.

Ablation studies

Experiments conducted on the LLVIP dataset demonstrated the effectiveness of the proposed PKDM and
DGME modules. The results of the ablation experiments are shown in Fig. 14. Removing DGME from the
network caused the model to struggle with balancing multiple degradation tasks, producing generally blurry
fused images. Without PKDM, the model could not adjust brightness properly, resulting in unnatural colors
and lighting. These results demonstrate that both modules contribute positively to the network and confirm
the effectiveness of the proposed method. Table 5 presents the results of the ablation experiments on the
LLVIP dataset. The data in the table is consistent with the visual comparison in Fig. 15, further validating the
effectiveness of the proposed modules.
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Fig. 15. Visual effect comparison of two-stage experiments using the SCI algorithm.
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Fig. 16. Results of the two-stage experiment using PReNet.

Two-stage experiments

The proposed method is capable of performing degradation restoration during the fusion process. To demonstrate
that this integrated de-degradation approach is superior to the two-stage processing method of performing
restoration first and then fusion, two-stage experiments were conducted on the LLVIP and M3FD datasets.

Results of the two-stage experiment on the LLVIP dataset

The SCI algorithm was used to restore low-light visible images, which were then fused with infrared images
using different methods. Figure 16 shows the visual comparison. The visible image remains almost completely
dark, while the infrared image stays clear. In the two-stage experiment, most algorithms brighten the scene
well. Yet, the small car in the dark can only be clearly seen in the fusion result of the proposed method. This
shows that brightness enhancement alone does not guarantee effective fusion. The proposed method succeeds
by integrating both tasks efficiently.

Table 6 presents the quantitative results of the two-stage experiments on the LLVIP dataset. The experimental
results show that the proposed method demonstrates clear advantages in most metrics. Specifically, the proposed
method achieves 10.7338 AG metric, which is 38.5% higher than the second-best result, result_mfi (7.7467),
fully proving its outstanding performance in detail enhancement and texture information preservation. The
proposed method achieves 32.9654 SF score, significantly outperforming SwinFusion (20.1776) and SuperFusion
(23.6403) by 63.3% and 39.4%, respectively, indicating an absolute advantage in the resolution of texture
details. In addition, for the standard deviation (SD) metric, the proposed method reaches 59.4139, surpassing
SuperFusion (58.1386) and SwinFusion (56.6406), showing that it can better enhance image contrast and make
the fused image more visually striking. For the EN metric, the proposed method achieves 7.7094, ranking among
the top overall results, further demonstrating the richness of information in the fused images. Although the VIF
of the proposed method (0.9985) is slightly lower than that of some methods (e.g., SwinFusion at 0.7217), its
overall balance and comprehensive performance highlight its superior capability in infrared and visible image
fusion tasks.
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AG EN SF SD VIF MI

CAMF 52484 | 7.5077 | 16.6790 |52.3174 | 0.6686 | 2.5530
DATFuse 5.2541 7.3867 | 18.9278 | 50.2754 | 0.6640 | 3.5295
DDBFusion |5.7158 | 7.4522 |18.7780 |49.9717 | 0.6476 |2.3995
MURF 4.2471 7.0755 | 10.3238 | 37.7817 | 0.4665 | 2.0355
MFI 7.7467 | 7.5034 | 26.5291 | 50.3920 | 0.6062 | 2.1810
SuperFusion | 6.9161 7.6421 | 23.6403 | 58.1386 | 0.7010 | 3.2577
SwinFusion |5.6950 | 7.5991 |20.1776 |56.6406 | 0.7217 | 3.6006
Ours 10.7784 | 7.7200 | 31.9825 | 62.3594 | 0.9312 | 2.7019

Table 6. Quantitative comparison of two-stage experiment results on the LLVIP dataset.

AG EN SF SD VIF MI

CAMF 3.3019 | 6.1584 |12.9361 | 20.6789 | 0.4247 | 2.5872
DATFuse 2.7830 | 6.6389 |9.0604 |27.2196 | 0.4429 |2.1754
DDBFusion | 4.2498 | 6.4174 | 13.1598 | 24.0018 | 0.3598 | 2.0327

MURF 3.7916 | 6.3550 |13.9880 |22.4851 | 0.4823 | 1.8057
MFI 3.1371 | 6.3412 | 12,4083 | 24.4253 | 0.4262 | 2.8009
SuperFusion | 3.5920 | 6.4533 | 13.6351 | 26.8145 | 0.4488 |2.6270
TextIF 4.5972 | 6.6565 | 16.0716 | 28.1849 | 0.5073 | 2.0344
Ours 8.5426 | 7.1881 |23.2540 | 45.2970 | 0.6138 | 2.2463

Table 7. Results of two-stage experiments on the M3FD dataset.

Results of the two-stage experiment on the M3FD dataset

The PReNet algorithm was selected to conduct the two-stage experiment on the M3FD dataset. The visual effect
comparison of the experimental results is shown in Fig. 16. The visible image contains a large amount of raindrop
interference, which was removed using PReNet before fusion. The result of CAMF shows almost no raindrop
information, but the fused image loses color. Although there is no raindrop interference in the DATFuse result,
it amplifies the rain and fog information in the image. DDBFusion experiences brightness degradation during
fusion, making the image overall darker. The brightness degradation issue is similarly severe in MURF and MFIL.
TextIF introduces artifacts during fusion. SuperFusion fails to fully remove the rain and fog interference during
fusion. The proposed method produces a clear image with no raindrops or rain/fog interference, achieving
excellent visual effects.

Table 7 presents the results of the quantitative comparison. The data in the table show that the fusion results
obtained by the proposed method achieve higher AG, EN, SE and SD, indicating that the fused images have
higher clarity. Since the proposed method not only corrects degradation but also increases the distance between
the original visible image and the fused image, this results in a slight decrease in VIF and MI. However, the
overall performance remains among the top.

Two-stage experiments on the RoadScene dataset

The LMPEC algorithm was applied for a two-stage experiment on the RoadScene dataset. Figure 17 shows
the visual comparison. In Fig. 17(a), the visible image is blurred due to overexposure. LMPEC removed the
blur before further fusion experiments. CAMF loses both brightness and color in the scene. DATFuse gives a
generally good result but misses line details on the ground. DDBFusion suffers from significant brightness loss,
producing a dark fused image; MURF shows similar issues. MFI keeps the brightness but the fused image is
somewhat blurry and lacks local texture. TextIF, SuperFusion, and the proposed method all deliver good results.
Compared with the others, the proposed method preserves more infrared information and richer local textures.
Table 8 confirms its advantages in quantitative metrics.

Downstream detection task experiments

To verify the effectiveness of the proposed method in detection tasks, downstream detection experiments
were conducted on the M3FD dataset based on YOLOv8*!. The experimental results are shown in Table 9. The
performance of detection using only visible images is limited due to the presence of complex factors such as
rain and fog occlusion in the environment, with an mAP50 of only 70.2%, making it difficult to meet robustness
requirements. Infrared images are more stable in extreme weather and low-light conditions resulting in better
detection performance. The mAP50 reaches 74.4%, which is 4.2% higher than that of visible images. Infrared
images, however, lack color and texture, limiting detection accuracy. The proposed method fuses visible and
infrared images and corrects degradation in the visible images. When using the fused image for detection, mAP50
rises to 81.3%, 6.9% higher than infrared images alone. Precision climbs to 86.1% and Recall to 73.1%. Overall,
the fused images clearly improve detection performance, demonstrating the effectiveness of the proposed fusion
method.
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(h)TextIF (i)SuperFusion

Results of the two-stage experiment using LMPEC.

CAMF 4.5254 | 7.3324 | 10.9142 | 44.6732 | 0.5120 | 2.6946
DATFuse 4.8856 | 7.3216 | 12.5070 |47.6053 | 0.5913 | 3.7133
DDBFusion | 5.6054 | 7.4346 | 14.2266 | 52.5626 | 0.6330 | 3.5557
MURF 4.5380 | 7.1545 | 11.4978 |40.4502 | 0.5518 | 2.8215
MFI 57515 | 7.5342 | 11.6499 | 50.5000 | 0.4735 | 2.6305
SuperFusion | 3.5156 | 7.1053 | 8.6737 |41.7396 | 0.5383 |3.2015
SwinFusion | 3.4763 | 7.0892 | 8.0939 |45.0166 | 0.5696 | 2.9825
TextIF 5.1723 | 7.4761 | 12.1064 | 50.2446 | 0.6535 | 2.6815
Ours 5.5274 | 7.2226 |14.2019 | 51.9902 | 0.6066 | 2.7135

Table 8. Results of two-stage experiments on the RoadScene dataset.

Vis 855 63.7 70.2 44.5
Inf 85.0 65.9 744 48.6
CAMF | 85.3 68.2 76.8 50.1
DAT | 84.8 69.7 77.8 50.9
DDB | 857 70.1 78.5 51.6
MUREF | 85.2 71.0 79.1 52.3
MFI 85.6 70.5 78.2 51.0
TextIF | 85.9 71.8 80.0 53.2
Super | 85.4 69.2 77.0 50.0
Swin | 85.8 72.0 80.4 53.7
Ours | 86.1 73.1 81.3 54.4

Table 9. Quantitative comparison of detection metrics on the M3FD dataset.

Figure 18 compares the detection performance of different methods. The proposed fusion method effectively
integrates multispectral data and suppresses interference in the visible image. The fused image contains more
information, producing accurate and complete detections. This further demonstrates the effectiveness of the
proposed method in multispectral detection tasks.

Analysis of CLIP

In DAGM, we utilize CLIP to generate scene degradation vectors. CLIP consists of an image encoder and a text
encoder, and through large-scale data and contrastive learning, it ensures that images and their corresponding
texts can be aligned in a latent space. In this work, we fine-tune the pre-trained CLIP using LoRA to establish
alignment between images and degradation description texts. Existing vision-language models, such as LLaVA
and BLIP, can also achieve this functionality. However, these models have significantly more parameters
and capabilities, many of which are unnecessary for the proposed DAGM. For instance, BLIP can generate
detailed semantic descriptions of input images, and LLaVA can produce specific image descriptors guided by
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Fig. 18. Visual effect comparison of detection experiments on the M3FD dataset.

Method Accuracy (%) | Need Additional Text | Params (M)
CLIP (Ours) | 89.3 No 86

BLIP 85.7 No 109

LLaVA 88.3 Yes 700

Table 10. Comparison of Different Vision-Language Models in Degradation Recognition Tasks.

additional query texts. Moreover, compared to BLIP and LLaVA, CLIP has been extensively validated in zero-
shot recognition and degradation-aware tasks, making it more suitable as general prior knowledge in our fusion
framework. To illustrate the advantages of CLIP in degradation scenario recognition, Table 10 presents the
accuracy and parameter sizes of different vision-language models in the task of recognizing scene degradation
vectors. The data show that CLIP can generate more accurate scene degradation vectors without requiring
additional query texts, and it requires the fewest parameters. Furthermore, CLIP’s encoder architecture is more
compatible with LoRA, facilitating parameter-efficient fine-tuning.

To further validate the effectiveness of the degradation description vectors generated by CLIP in guiding
MOoE expert selection, we visualized the expert activation distributions under different degradation scenarios,
as shown in Fig. 19. On the left of the figure are heatmaps of expert activations for 8-layer MoE under various
degradation scenarios, where the horizontal axis represents expert indices, the vertical axis represents MoE layer
indices, and the color intensity indicates the activation strength of each expert at that layer. On the right are the
average activation curves of each expert across all layers for the corresponding scenarios. The results show that
the expert activation distributions vary significantly across different degradation scenarios. In the fog scenario,
the model tends to activate mid-index experts, indicating that these experts have learned representations
better suited for handling low-contrast and blurred features. In the low-light scenario, activations are primarily
concentrated in the first few experts, suggesting that the model automatically selects expert branches more
sensitive to insufficient illumination. In the rain scenario, specific experts in certain layers are strongly activated,
reflecting the model’s capability to adaptively model striped or local noise features. In the clean scenario, expert
activations are relatively uniform, indicating that the model does not bias toward any particular expert in the
absence of noticeable degradation, thereby maintaining stability in feature processing.

Conclusion
To address the insufficient adaptability of traditional multimodal image fusion methods in complex degraded
scenarios, this paper proposes an adaptive image fusion framework that integrates vision-language large
models with a sparse mixture-of-experts mechanism. By introducing a physics-parameter-based image pre-
enhancement mechanism before fusion and employing degradation description tokens generated by CLIP to
guide experts’ dynamic participation in the fusion process, the proposed method achieves flexible adaptation of
fusion strategies to both the type and severity of image degradation. The designed multi-loss function further
improves the detail quality and structural fidelity of the fused images during the optimization process.

The experimental results validate the broad applicability and robustness of the proposed method across
different modal images and complex scenarios, but the current work focuses on several specific degradation
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Fig. 19. Visualization of expert activation distributions under different degradation scenarios.

types, while images captured by sensors may involve a wider variety of degradations beyond those considered in
this study. To further enhance the generalization capability, one approach is to construct a larger-scale training
dataset that covers as many degradation types as possible, another approach is to employ unsupervised training
strategies to improve the robustness against unknown degradations.

Data availability
The datasets generated and analysed during the current study are available in the Image-Fusion-Network repos-
itory (https://github.com/Young-spec-design/Image-Fusion-Network/releases/tag/ImageData).
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