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Image fusion is a pivotal technology that effectively integrates multimodal image information to 
obtain clearer imaging, and it has wide applications in fields such as environmental monitoring, 
reconnaissance, and night vision. However, the majority of extant fusion methods neglect the issue 
of image degradation caused by inclement weather conditions in real-world scenarios. This results in a 
deficiency of clarity and detail representation of fused images in complex environments. The proposed 
method is an adaptive multimodal image fusion technique that is suitable for extreme scenarios, and 
it solves the imaging problem when the scene is affected by degraded interference. Firstly, a pre-
enhancement module based on physical parameters is utilised to adaptively enhance the degraded 
image. The primary objective is to execute preliminary filtration of deleterious interference in the input 
degraded image. Subsequently, a gate-based sparse expert mixing mechanism was introduced, guided 
by degraded text descriptions generated by large visual-language models. This method facilitates 
the establishment of a dynamically sparse network structure, thereby enabling the overall model to 
manage complex and diverse input degradation information with greater flexibility. Finally, in order 
to enhance fusion performance to an even greater extent, a composite loss function has been devised. 
This function incorporates pixel-level loss, gradient loss, reconstruction loss and mutual information 
loss, thereby effectively improving the modal discrimination and detail retention ability of the fused 
image. The experimental results demonstrate that the proposed method significantly outperforms 
mainstream methods on multiple public datasets and in degraded scenarios such as smog, low light, 
and overexposure, demonstrating superior performance in terms of image clarity and quantitative 
metrics.
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Multimodal image fusion is an important research direction in computer vision1. This technique integrates 
complementary information from different sensors or imaging configurations to generate fused images with 
richer details and higher contrast. Due to hardware limitations, images captured by a single sensor or under 
specific imaging conditions frequently contain only partial information about a given scene2.. For example, 
visible images capture scene textures and details through reflected light, providing rich visual information 
under adequate illumination. However, in low-light environments, the ability of visible images to present details 
is limited-object boundaries and features are often difficult to distinguish3.. In contrast, infrared images are 
formed by sensing thermal radiation from the scene, remaining unaffected by ambient lighting and relying 
primarily on the thermal properties of objects. As such, they have clear advantages in nighttime or low-visibility 
conditions, enabling distinct thermal source identification. However, infrared images typically have lower 
contrast, insufficient detail resolution, and lack the rich texture information of visible images, which can hinder 
advanced vision tasks such as detection and segmentation. By fusing infrared and visible images, their respective 
advantages can be effectively combined: the fused image retains the rich texture and color of visible imagery 
while enhancing visibility in low-light environments, thereby improving the overall image quality. Owing to its 
outstanding capability for information integration and strong visual performance, image fusion has been widely 
applied in remote sensing4, medical imaging5, target detection6, and other fields.
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In recent years, deep learning (DL) methods has driven significant innovation in the field of image fusion. 
Autoencoders (AEs)7, convolutional neural networks (CNNs)8 and generative adversarial networks (GANs)9 
are the mainstream approaches in this domain. Deep learning can automatically learn and extract complex 
data features, achieving more efficient and accurate multimodal information fusion. For instance, convolutional 
neural networks (CNNs) are widely used for feature extraction to get rich spatial information in complex 
scenes and thereby enhancing the detail representation capability of fused images10. And generative adversarial 
networks (GANs) can effectively improve image quality while reducing artifacts and noise that may arise during 
the fusion process through adversarial training11.

However, most existing image fusion methods are designed for ideal conditions source images and fail to 
adequately account for the commonly occurring problem of image degradation in real-world scenarios12. As 
shown in Fig. 1(a), the fused image often lacks satisfactory clarity when negative interference information is 
present in the scene. Although some studies have attempted to improve the quality of source images through 
preprocessing techniques, but these approaches typically separate the preprocessing and fusion stages. This 
separation results in insufficient coordination between the cascaded tasks, which can lead to error accumulation 
and low efficiency13.

On the other hand, some studies have attempted to construct end to end fusion models, and training them 
specifically for certain types of degradation in order to get the handling of degraded images during the fusion 
process, but their applicability remains limited for the complexity of degradation in real-world applications14. 
Image degradation in real scenes is highly uncertain and diverse, images captured at different times may be subject 
to markedly different types of degradation. For example, daytime visible images are prone to overexposure caused 
by strong light interference, whereas nighttime images are generally affected by low illumination and increased 
noise. Even at the same moment, different modalities may simultaneously suffer from multiple combined 
degradations, such as the coexistence of low brightness and reduced contrast. Relying on a single-task model 
with dedicated training would require building multiple image restoration models for different degradation 
combinations under such circumstances, which would significantly increase system deployment complexity 
and computational resource consumption. It would also raise the burden of model switching and management, 
because it is difficult to meet the requirements of efficient fusion in rapidly changing environments15. Moreover, 
due to the uncontrollable nature of image degradation, even images affected by the same type of degradation can 
vary greatly in severity. For severely degraded images, more intensive restoration and enhancement operations 
are required. But for lightly degraded images, applying a uniform fusion strategy may lead to over-restoration16. 
The fusion requirements of each image often differ according to its inherent characteristics. Consequently, it is 
necessary to develop fusion methods that can dynamically adapt to the severity of degradation, so as to produce 
more accurate and adaptive fusion results.

To address the above issues, we propose an adaptive multimodal image fusion method for extreme scenarios. 
Built upon a deep neural network, the method integrates a gated mixture-of-experts (MoE) mechanism and 
leverages scene degradation descriptions generated by a vision–language large model, enabling comprehensive 
representation of the complementary information between visible and infrared images in the feature space. 
Unlike traditional approaches, our model not only achieves efficient multimodal information fusion at 
intermediate feature layers but also incorporates mutual information loss along with multiple auxiliary loss 
functions, effectively enhancing the discriminability and detail representation of the fused images. Specifically, 
the method first performs physics-parameter-based pre-enhancement separately on the visible and infrared 
images. Then employs a routing mechanism to dynamically allocate expert networks based on the content and 
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Fig. 1.  Comparison between conventional image fusion methods and the proposed fusion method.
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degradation severity of the input images, allowing the fusion strategy to adapt to different types and levels of 
degradation while balancing detail preservation and robustness. In terms of loss design, we adopt a combination 
of pixel-level loss, gradient loss, reconstruction loss, and other auxiliary losses to ensure that the fused results 
outperform single-modality images in both visual quality and structural integrity. Our approach eliminates 
the need to train separate models for different degradation types, it achieves adaptive handling of complex 
and variable degradation scenarios through a unified end-to-end framework, significantly simplifying system 
deployment and reducing computational resource consumption. As shown in Fig. 1(b), our method delivers a 
level of clarity in degraded scenarios that conventional methods fail to achieve. Overall, our contributions can 
be summarized as follows:

1. We pioneer the integration of CLIP-generated degradation description vectors into multimodal image 
fusion, introducing a gated mixture-of-experts mechanism for dynamic expert selection, which significantly 
enhances adaptability in degraded environments.

2. We propose a physical-parameter pre-enhancement module that incorporates real-world physical 
degradation patterns into deep models, substantially improving perceptual robustness under extreme conditions.

3. We design a composite loss function that balances low-level image quality and high-level semantic 
consistency, thereby achieving superior fusion performance across diverse scenarios.

Related work
In this section, we review image fusion, image fusion in degraded scenes and the mix of expert (MoE) techniques.

Deep learning–based multimodal image fusion methods
With the rapid development of deep learning technology, deep neural networks have gradually become the 
mainstream approach for handling complex visual tasks. Deep learning–driven image fusion methods can be 
broadly categorized into techniques based on convolutional neural networks (CNNs), generative adversarial 
networks (GANs), and transformers, each demonstrating unique advantages in different application scenarios.

Xu et al.17 employed a multi-layer convolutional structure combined with a channel selection mechanism 
to develop a multimodal image fusion model whose performance far surpasses that of traditional statistical 
methods. Xu et al.18 proposed U²Fusion, which integrates dense networks with information metrics to 
adaptively assess the importance of different modal images. Generative adversarial networks (GANs), through 
the adversarial interplay between discriminator and generator, can produce more refined fused images. Ma et 
al.19 were among the first to introduce GANs into image fusion tasks, where the discriminator supervises the 
generator to produce fused images with richer texture. Subsequent research further adopted dual-discriminator 
architectures to distinguish subtle differences between fused images and source images, such as in DDcGAN20. 
With the introduction of the self-attention mechanism, transformer models have achieved breakthroughs in 
image fusion. Wang et al.21 combined residual blocks with transformer networks to significantly improve fusion 
quality. Zhao et al.22 proposed a dual-branch transformer network capable of effectively handling multimodal 
image fusion.

In summary, deep learning based methods can automatically learn the intrinsic features and representations 
of data, enabling the extraction of high-level image features and overcoming the limitations of traditional 
approaches. These methods are capable of preserving more detail information during feature extraction 
and fusion, fully exploiting the complementary information between different modalities, and significantly 
enhancing the quality and diagnostic value of fused images.

Degraded image fusion methods
Despite the significant progress achieved by deep learning–based multimodal image fusion methods, but image 
degradation remains a critical challenge to be addressed. To tackle this issue, many recent studies have begun 
exploring ways to address degradation during the fusion process.

Early solutions for mitigating the effects of multiple degradations often adopted two stage method. For 
example, RDMFuse23 decouples illumination and reflectance of visible images through Retinex decomposition. 
Although this approach can alleviate low-light issues, but it is ineffective against noise and resolution 
degradation. As the development of deep learning, recent years have seen the emergence of a series of end to end 
models that jointly perform degradation suppression and cross-modal feature fusion within a single network. 
The detail-preserving and robust DAFusion24 is primarily characterized by its degradation-aware module, 
which dynamically identifies and suppresses various degradations to achieve simultaneous restoration and 
fusion. Aimed at providing clear and information-rich fusion results, even under extreme low-light and noisy 
conditions, the proposed Text-IF25 integrates semantic text prompts into a transformer backbone and enables 
fine-grained regulation of degradation suppression via text–vision interaction. In addition, DRMF26 leverages 
conditional diffusion priors and a composable diffusion module to simulate complex degradation distributions 
and jointly learn composite fusion rules.

Despite the significant progress made by the aforementioned all-in-one methods, most of them rely on 
synthetic quadruplet datasets or single-modality restoration corpora. As a result, they are prone to overfitting 
or performance degradation in real-world scenarios involving cross-modal combined degradations and domain 
shifts. In addition, the lack of an explicit modality–degradation decoupling mechanism limits their adaptability 
to novel types of degradation. To address these challenges, Section Method of this paper presents the overall 
fusion architecture of our proposed method, which performs degradation classification and expert routing at 
the feature level to achieve flexible decoupling and recombination along both modality and quality dimensions, 
thereby enhancing scalability and robustness.
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Mixture of Experts
Mixture of Experts (MoE)6 is a deep learning architecture that improves computational efficiency by selectively 
activating only a subset of experts.

Recently years, the application of MoE in the field of computer vision has attracted widespread attention 
particularly in vision transformers (ViTs). V-MoE27 is a sparsified architecture which proposed a method to 
improve computational efficiency by replacing part of the dense feed-forward layers with MoE layers. Patcher28 
introduced a vision transformer architecture combined with MoE to enhance segmentation accuracy. M3ViT29 
achieves efficient multitask learning through model–accelerator co-design, which integrates MoE layers into 
the ViT backbone to activate task-specific experts during training, and activating only the sparse expert paths 
relevant to the current task during inference.

These studies demonstrate the wide-ranging applications of MoE in computer vision. The introduction of 
MoE not only improves computational efficiency but also maintains high performance in complex vision tasks. 
In this study, the MoE will be extended to make it suitable for multimodal image fusion under multi-degradation 
scenarios.

Method
To address the unpredictable degradation commonly found in real-world images, we propose a novel degradation 
guided mixture-of-experts fusion network. Our framework consists of three main module. Prior Knowledge–
Based Image Enhancement (PKDM) is employed to preliminarily remove degradations in the image, while the 
Degradation-Aware Guidance Module (DAGM) generates scene degradation vectors. And the Degradation-
Guided Mixture of Experts (DGME) then utilizes the generated vectors from DAGM to guide the MoE to 
enhance the sparsity of the model.

Prior knowledge–based image enhancement (PKDM)
This section normalizes source images affected by various types of degradation to a more stable feature space 
through a series of differentiable transformations, thereby reducing the input variance that downstream MoE 
network need to process. The overall structure of PKDM is shown in Fig. 2.

Sequential enhancement of visible images
A visible image Ivis ∈ RH×W ×3 will be processed through three main modules which is dehazing, low-light 
enhancement and deraining. The output of each module is fused with the input via a learnable weight which 
enables adaptive control over the enhancement strength.

Dehazing module: A CNN network Ndehaze is used to predict the global atmospheric light A and the scene 
transmission map t(x) for Ivis. The dehazed image Ivis,d can be obtained:

	
Ivis,d = Ivis − A

max(t(x), t0) + A� (1)

where x denotes the pixel coordinate, t0 denotes a small positive constant which is used to clip t(x) to avoid 
instability caused by division by values close to zero.

Low-light enhancement module: This module adopts an iterative enhancement strategy. A CNN network 
Nlle predicts a series of parameters {Rk}N

k=1 and enhances Ivis,1 iteratively. Let N = 8:
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Fig. 2.  The overall structure of the serialized enhancement of the visible image.
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Here, I(0)
vis,L = Ivis,d. σ(·) is the Sigmoid function, which maps the parameter values to the range (0, 1). This 

iterative process ensures a gradual and stable improvement in image brightness and contrast.
Deraining module: This module aims to remove rain streaks from the image. A CNN sub-network Nderain 

is trained to predict the background (i.e., rain-free image) Brain. The final enhanced visible image I ′
vis from this 

module is directly given by:

	 I ′
vis = Brain� (3)

In our implementation, the outputs of the enhancement modules are not simply connected. Instead, We utilize 
a learnable weighted residual connection to fuse the output of each enhancement into the target feature stream:

	 Iout = Iin · (1 + ω) + Enhance(Iin)� (4)

Here, Enhance(·) denotes an enhancement operation (e.g., dehazing), and ω is a learnable scalar weight. This 
design ensures the preservation of the intensity flow path from input to output and avoids lossing intensity 
information. In addition, by reducing reliance on the enhancement modules (when ω approaches −1 and the 
enhancement effect is weak), it enables adaptive control of the enhancement strength.

Structural enhancement of infrared images
Although infrared images Iir ∈ RH×W ×1 are generally insensitive to illumination, they often suffer from low 
contrast and blurred texture details. To enhance their structural information for improved subsequent fusion, 
we introduce a learnable sharpening filter. This process performs residual addition based on the Laplacian of 
the image:

	 I ′
ir = Iir + λ · L(Iir)� (5)

Here, L(·) denotes a fixed 3×3 convolution-based Laplacian operator, which is used to extract high-frequency 
edge information from the image. The sharpening strength parameter λ is not a fixed hyperparameter, but a 
learnable scalar. This allows the network, during end-to-end training, to determine the optimal sharpening 
strength for the current task based on the overall loss.

After this complete pre-enhancement process, we obtain a higher-quality and more feature-consistent 
infrared image I ′

ir ∈ RH×W ×1 and visible image I ′
vis ∈ RH×W ×3. For ease of subsequent network processing, 

the single-channel infrared features are duplicated across three channels, resulting in I ′
ir ∈ RH×W ×3, which is 

then fed into the following processing pipeline.

Degradation-aware guidance module (DAGM)
This module extracts the degradation status information directly from the image content, generating a global 
guidance vector ddeg. The overall structure of DAGM is shown in Fig. 3.

Degradation-Aware Guidance Based on LoRA-CLIP: The CLIP image encoder Eclip was fine-tuned with 
Low-Rank Adaptation (LoRA, which updates only about 2–3% of the parameters of the CLIP vision model) 
prior to training larger models, because the representation capacity of small models is limited. We use this 
approach to adjust CLIP attention to degradation features with few parameters. Thus, the module enhances the 
image and extracts high-level features as follows:
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Fig. 3.  The overall structure of the degradation-aware guidance module.
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	 fvis = Eclip

(
Pclip

(
I ′

vis

))
, fir = Eclip

(
Pclip

(
concat

(
I ′

ir, I ′
ir, I ′

ir

)))
� (6)

Here, Pclip(·) represents the standard preprocessing in CLIP, which includes resizing the image to fixed 224×
224 pixels and make it normalized. This process ensures that the single-channel infrared image Iir matches 
the input requirements for the CLIP model. Eclip(·) denotes our fine-tuned LoRA-CLIP encoder. The encoded 
features fvis and fir ∈ Rdclip  (with clip = 512) represent the encoder output. These vectors not only contain 
spatial information but also represent the entire content of the image in a global manner.

Guidance Vector Generation: The extracted feature vectors are first multiplied element-wise. After that, 
a two-layer MLP is applied to reduce the dimension and merge the information. the result is the degradation 
vector ddeg ∈ Rdtext  (with text = 512).

	 ddeg = MLP(fvis ⊙ fir)� (7)

This vector, as a global and compact scene state descriptor, will be used to guide the subsequent MoE network

Degradation-guided mixture of experts (DGME)
The DGME module receives two inputs: the feature map F ∈ RH×W ×C  from the previous layer, and the 
global degradation vector ddeg ∈ Rdtext  generated in Section Degradation-Aware Guidance Module (DAGM). 
The overall structure of DGME is shown in Fig. 4. The overall structure is as follows, which includes two key 
components:

Guidance Control Mechanism: The control mechanism of the guidance is driven by the DGME strategy, 
which uses the global degradation vector ddeg ∈ Rdtext  to guide the fusion of the input feature map F to establish 
a unified expert processing strategy:

	 G = ddegWg + N(0, 1) · Softplus(ddegWnoise)� (8)

Here, the components of the route (Router Bank) are merged through a linear layer to generate Wg . The main 
signal, which uses the global degradation vector ddegWg , is normalized by the linear transformation of ddeg, 
and another unique linear transformation matrix Wnoise is used to compute N(0, 1), which represents standard 
Gaussian noise and helps ensure that all experts are sufficiently distributed to process different types of features. 
To mitigate the risk of overfitting, noise perturbation is introduced into the gating mechanism of the mixture-of-
experts layer. By injecting noise during expert selection, the model avoids relying excessively on a fixed subset of 
experts, thereby promoting a more diverse utilization of expert networks. This stochasticity not only regularizes 
the learning process but also enhances the generalization ability of the model across different scenes.

Sparse Dispatcher Calculation: A sparse dispatcher based on the non-zero values of G distributes the feature 
map F to the active top K experts. In our work, we set K = 2, where the experts are divided into three different 
structures (same height, same width, and different sizes). Such a model has strong ability to handle multi-scale 
features. Specifically, each active expert fully processes its corresponding input data. Then, the outputs from 
these experts are fused together. Finally, the fused result is passed back to the sparse dispatcher, which produces 
the final output of DGME.

	 G = Softmax (TopK(G, K))� (9)

Here, the operation TopK(·) retains the top K values (with K = 2), and after the Softmax operation, the sparse 
dispatcher weight G ∈ RM  (with M = 8) is formed. Then, using G and the expert layers in the expert bank, the 
features are processed to obtain the DGME output.

	
Fout =

k∑
e=1

Ge · Experte(F )� (10)
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Fig. 4.  Overall structural diagram of DGME.
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Here, Ge represents the activation weight of each expert, and Experte(F ) denotes the processing result of the 
input feature F by the expert. In summary, DGME improves image reconstruction accuracy and robustness. This 
is achieved through its strong ability in multi-modal and multi-scale feature selection, which helps identify the 
most suitable expert networks. Such selection enhances image restoration precision. In addition, it also provides 
a more reliable feature foundation for following high-level vision tasks.

In this work, CNN is adopted to construct En within DGME, as it offers advantages in extracting low-level 
features such as edges and textures, which are particularly critical for image fusion under degraded scenes. 
Meanwhile, compared with Transformer or Mamba-based approaches, CNN demonstrates higher computational 
efficiency, making it more suitable for resource-constrained scenarios. Overall, CNN provides an efficient and 
practical solution, whereas introducing Transformer or Mamba architectures may enhance the quality of fused 
images to some extent, but at the cost of significant computational overhead.

Overall structure of the fusion network
The core fusion network follows a multi-scale mixture-of-experts design built on the U-Net framework. It adopts 
an encoder–decoder structure that extracts, merges, and reconstructs features at several semantic levels. The 
overall network structure is illustrated in Fig. 5. First, DGME utilizes the visible and infrared inputs to obtain 
a scene degradation vector. Next, this degradation vector is fed into DGME to generate the activation gates for 
the experts. Then, the visible and infrared images are initially processed by PKDM for preliminary degradation 
removal, after which they are passed into a dual-branch network constructed with DGME to generate the fused 
image, the degradation-free visible image, and the degradation-free infrared image. During training, supervision 
on the fused image ensures that the overall network learns the knowledge of multimodal information fusion, 
while supervision on the degradation-free visible and infrared images ensures that the fused image retains more 
information from the inputs.

At the beginning, the degraded visible and infrared images are sent into PKDM for basic enhancement. The 
enhanced results are then passed to the DGME module, where features are adaptively extracted. A downsampling 
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Fig. 5.  Overall structural diagram of the fusion network.
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layer is used here, which reduces the feature resolution. This step lightens the computation and at the same time 
enlarges the receptive field. This process is applied across four layers, while the DGME layers keep the feature 
shape unchanged. The downsampling layer reduces the feature resolution by half and increases the number of 
feature channels by a factor of 4. Both the visible and infrared branches share the same structure for feature 
extraction. Let the degraded visible image feature at layer 1 and the degraded infrared image feature at layer 1 be 
denoted as F l

vis and F l
inf, respectively. Formally, the process can be written as:

	 F l
vis = Downsample

(
DGME(F l−1

vis )
)

� (11)

	 F l
inf = Downsample

(
DGME(F l−1

inf )
)

� (12)

Here, F l
inf ∈ R2l· H

2l
· W

2l  and F l
vis ∈ R2l· H

2l
· W

2l , where H and W mean the height and width of the features. 
After feature extraction from the visible and infrared images, the extracted multi-layer, multi-modal features are 
concatenated to obtain the fused features. This process can also be expressed as:

	 F l
f = concat(F l

vis, F l
inf)� (13)

Here, concat() denotes the operation of concatenating along the channel axis. After obtaining the multi-layer 
fused features, they are used to form the fused image, which consists of the enhanced visible image and the 
enhanced infrared image. The fusion of the images is achieved through three consecutive DGME layers and 
downsampling layers, followed by the use of three different scales to obtain different output results. The DGME 
layers do not change the shape or resolution of the features, while the downsampling layers reduce the resolution 
of the features to half the original resolution and expand the number of feature channels by a factor of 4. The 
fused feature at the first layer is defined as F 1

f , and the above fusion process can be formulated as:

	 F l
f = Upsample(DGME(F l−1

f )) + F l−1
f � (14)

Here, F l
f ∈ R2l· H

2l
· W

2l , where the definition of the layer number here is consistent with that in the feature 
extraction part. Finally, the fused features are fed into three different convolutional layers for the final channel 
mapping, yielding the reconstructed clean visible image, clean infrared image, and the fused image as the outputs 
of the overall model. Meanwhile, it should be noted that the reconstructed visible and infrared images are only 
used for the computation of the loss function.

Multiple loss functions
We design a multi-loss function to optimize our framework, which is defined as Ltotal. This loss guides the 
network to adapt to the fusion strategy as well as preserve key information from the source images. The total loss 
itself consists of the following components: fusion quality loss, confidence preservation loss, and expert (MoE) 
auxiliary losses. The overall loss function is:

	 Ltotal = αpixLpix + αgradLgrad + αreconLrecon + αauxLaux� (15)

where α(·) represents the weight parameters for each loss, used to balance the significance of each term during 
optimization.

Fusion quality loss
This loss component directly applies to the final generated f, ensuring that both the image strength and structural 
details are optimized to meet high-quality standards.

Strength Loss: When solving the problem of highlighting prominent objects in the fused image(such as 
high-temperature regions in infrared or bright regions in visible images), we maximize the strength information 
in the fusion result. This loss is calculated through the L1 norm as the difference between the fused image f and 
the maximum pixel values in the corresponding regions of the source images (I ′

vis and I ′
ir):

	 Lpix =
∥∥f − max(I ′

vis, I ′
ir)

∥∥
1� (16)

where ∥ · ∥1 means the L1 norm, and the goal is to ensure that the fused image covers the most significant 
features in the target region of interest(ROI).

Gradient Loss: Similarly, we employ a comparable strategy to preserve the strongest gradient information 
during fusion, since gradients correspond to image edges. This loss is defined as:

	 Lgrad =
∥∥∇f − max(∇I ′

vis, ∇I ′
ir)

∥∥
1� (17)

where ∇ represents the Sobel gradient operator. We believe that this design preserves the essential details from 
each source image in the fused result.

Information preservation constraint
Reconstruction Loss: Following this idea, we added a reconstruction task because it helps prevent modality 
collapse, where one source image could be completely ignored. This task requires the network to be able to 
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reconstruct the original source images Îvis and Îir  from the final fused features through an independent 
decoding branch. The loss function is defined as:

	 Lrecon =
∥∥Îvis − I ′

vis

∥∥
1

+
∥∥Îir − I ′

ir

∥∥
1� (18)

This design forces the network to preserve sufficient modality-specific information from the input in its 
intermediate layers. This ensures the completeness of the fusion. Note that the same formula works when the 
input modalities are extended.

Moe auxiliary loss
Considering that the MoE module itself can be effectively and stably trained, we utilize two auxiliary losses, 
Lload and Lmi. These losses are summed over the corresponding MoE-FFN modules in the network, denoted 
as Nmoe.

Load Balancing Loss:This loss prevents the gating network from favouring only a few star experts, so the 
others still get properly trained. This issue is called expert collapse. We adopt the classical load balancing loss 
based on the squared coefficient of variation (CV) of the distribution of expert importance I and expert load L 
within a batch. For a single MoE block, the load balancing loss is defined as:

	 Lload_block = CV 2(I) + CV 2(L)� (19)

where CV() denotes the coefficient of variation. Lload is the sum of this loss over all MoE blocks.
Mutual Information Loss: The last part we need to discuss is the mutual information loss that encourages 

expert specialization. In our framework, the network needs to handle two different tasks: the main fusion task 
(T = t0) and the auxiliary reconstruction task (T = t1). This means our designed loss maximizes the mutual 
information between the expert selection variable E and the task type T(E; T), so that it encourages the model 
to learn distinct expert utilization strategies for different tasks. For a single MoE block, the mutual information 
loss is:

	 Lmi_block = −I(E; T )� (20)

where I() denotes mutual information. The total mutual information loss Lmi is the sum of this loss over all MoE 
blocks in the network.

The combined auxiliary loss is expressed as:

	 Laux = Lload + Lmi� (21)

and is added to the total loss function with a unified weight αaux.
In addition to the noise perturbation, a load balancing loss and a mutual information loss are introduced 

to further reduce the risk of overfitting. The load balancing loss prevents the model from over-relying on a 
small subset of experts by encouraging a more uniform activation of the expert networks, thereby promoting 
diversity in feature learning. Meanwhile, the mutual information loss constrains the learned representations to 
retain informative and discriminative features while suppressing redundancy, which enhances the generalization 
ability of the model. Together, these losses act as regularization terms that mitigate overfitting and improve the 
robustness of the proposed framework.

Experiments
Experimental setup
Dataset
To comprehensively evaluate the generalization ability of the proposed method, four mainstream publicly 
available infrared-visible image fusion datasets are selected: MSRS, RoadScene, M3FD and LLVIP. The original 
images in these datasets all have varying degrees of degradation. For instance, the visible images in the LLVIP 
and MSRS dataset have poor brightness, some visible images in the RoadScene dataset are overexposed, and the 
M3FD dataset suffers from haze degradation. These datasets can adequately test the robustness of the algorithm 
under various degradation scenarios.

Training details
The model is implemented in PyTorch. The proposed network consists of two training stages. In the first 
training phase, DAGM was trained. 100 images for each of four visible light degradation types (Fog, Low 
Light, Overexpose, Normal) were gathered from MSRS, M3FD and RoadScene datasets, with 300 rounds and 
a learning rate of 1e-4. In the second phase, the overall fusion network was trained. 3000 infrared-visible pairs 
with manually corrected visible light degradation labels were collected, training the network for 100 rounds with 
a learning rate of 1e-4. A learning rate decay of 0.99 is applied on both stage1 and stage2. The batch was set to 
16 in the first training phase and 4 in the second. All methods are trained and tested on the same hardware: a 
15-core Intel Xeon Platinum 8474 C CPU and an NVIDIA RTX 4090 GPU with 24GB RAM.
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Evaluation metrics
We evaluate image fusion performance using quantitative and qualitative metrics. Key aspects include 
information richness (EN, SF, AG), structural fidelity (SD), and artifact suppression (QAbf). Higher EN, SF, AG, 
and SD indicate better fusion, while higher QAbf reflects fewer artifacts.

Comparison algorithms
To comprehensively evaluate the fusion performance of our model under complex degradation conditions, 
the experiments are conducted in two stages: DF stage (Direct Fusion) compares the fusion performance 
without any additional restoration. The baselines include the All-in-One degradation fusion algorithm Text-IF, 
DRFM26 and AWFusion30, as well as eight general-purpose fusion algorithms such as CAMF31, DATFuse32, 
DDBFusion33, MURF34, MFI35, SuperFusion36, and SwinFusion37. RF stage (Restoration and Fusion) first applies 
state-of-the-art (SOTA) image restoration models for different degradation types. SCI38 for low-light visible 
images, PrainNet39 for de-raining and LMPEC40 for deblurring. Then feeds the restored images into all the 
aforementioned general fusion methods for fusion. The All-in-One methods (including our proposed method) 
do not perform any input preprocessing and directly reuse the fusion results from the first stage for evaluation. 
All comparison algorithms are executed based on their official implementations and default configurations to 
ensure the fairness and reproducibility of the experimental results.

Comparative experiments
Comparative experiments on the LLVIP dataset
To verify the stability of the proposed method in low-light environments, qualitative comparison experiments are 
conducted on the low-light scene dataset LLVIP. Figures 6 and 7 show the results of the qualitative comparison 
on the LLVIP dataset. The scene selected in Fig. 7 is a surveillance video captured under a bridge. It can be 
observed that, due to insufficient brightness, the visible image barely reveals any information hidden in the 
darkness. The infrared image, being more robust in extreme conditions, clearly displays pedestrian information 
on the zebra crossing, but it fails to show the zebra crossing information and the text on the pole. CAMF reduces 
scene brightness, worsening the low-light problem, while DATFuse keeps the brightness but looks blurry, with 
the pole text almost unreadable. DDBFusion suffers from severe brightness loss and missing colors, while MURF 
further aggravates this issue with weak infrared information. MFI also shows heavy brightness degradation 
along with infrared artifacts, whereas SuperFusion produces only an average result with poorly defined text 
regions. Text-IF and the proposed method both have the ability to restore brightness degradation during fusion. 
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Fig. 7.  Visual effect comparison on the LLVIP dataset.
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Fig. 6.  Visual comparison on the LLVIP dataset.
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The fusion results are not limited by brightness degradation. In extremely dark scenes, we can still achieve clear-
textured results. In comparison, the proposed method shows less color shift, more vibrant colors, and overall, 
richer texture details.

Figure 7 presents a comparison of fusion performance in another representative scene, further demonstrating 
the generalization ability of our approach. The scene reflected in Fig. 7 is a nighttime road scene captured by 
a traffic camera. For the visible image, only a blurry zebra crossing can be seen, with little to no pedestrian 
information visible. The infrared image clearly shows pedestrian information but lacks color information and 
background details that do not emit thermal radiation. Several conventional fusion methods struggle to restore 
the brightness degradation in the visible image during the fusion process, which limits the performance of 
the fused image. Both the proposed method and Text-IF can enhance the scene brightness during the fusion 
process, resulting in more accurate environmental perception. In contrast, the proposed method, with the help 
of accurate color information, achieves better visual effects.

We conducted extensive experiments on the LLVIP dataset to compare multiple infrared and visible image 
fusion methods, and the performance results are summarized in Table 1. The analysis based on multiple 
evaluation metrics shows that the proposed method has a significant advantage in overall performance.

Comparative experiments on the M3FD dataset
The stability of the proposed approach under rainy scenarios was evaluated through comparative experiments 
on the M3FD dataset. Figure 8 presents the results of the visual effect comparison on the M3FD dataset. As 
shown in the figure, the visible image is severely disturbed by water vapor, which limits its visibility. The infrared 
image exhibits stable imaging in rainy conditions but lacks color information and background details that do 
not emit thermal radiation. During the fusion process, CAMF experiences a brightness degradation issue while 
DATFuse amplifies the water vapor information, which does not improve the visibility of the fused image. 
DDBFusion suppresses some water vapor during fusion, but the colors of the fused image suffer noticeably. 
MURF effectively reduces water vapor, yet restoration of degraded areas remains weak. MFI, in contrast, tends to 
amplify water vapor. SuperFusion neither removes nor enhances it, leading to average visual results. TextIF can 
restore degraded regions, but water vapor persists and noticeable artifacts remain. In brief, the proposed method 
effectively corrects the rain degradation information during fusion, and the fused image contains no water vapor 
information, with significantly enhanced infrared details and better visual effects.

An additional set of images with artificial smoke was selected for fusion performance comparison. As shown 
in Fig. 9(a), only nearby grass information and distant building details are visible. In the comparative experiments, 
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Fig. 8.  Visual effect comparison on the M3FD dataset.

 

Method AG EN SF SD VIF MI

CAMF 3.3591 6.8116 11.2577 33.6476 0.5676 2.5035

DATFuse 4.1291 7.0802 15.3527 39.4433 0.7084 3.8725

DDBFusion 3.4963 6.6948 12.1581 31.7495 0.5505 2.3631

Murf 2.8171 6.3976 7.1804 26.2555 0.4109 1.9988

MFI 5.0283 6.7395 18.5830 32.3618 0.6593 2.3089

TextIF 8.8831 7.4173 28.7048 49.4001 0.6492 2.4305

SuperFusion 4.3293 7.1332 16.2125 42.0680 0.6984 3.7571

SwinFusion 5.1646 7.1586 18.6986 44.4828 0.7583 3.6078

DRFM 7.2158 7.4321 23.4567 51.2145 0.9453 2.7894

AWFusion 8.0324 7.6214 27.1234 56.3287 0.9571 2.9012

Ours 10.7784 7.7200 31.9825 62.3594 0.9312 2.7019

Table 1.  Quantitative comparison of metrics on the LLVIP dataset.
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other methods suffer from color loss, artifacts, or incomplete smoke removal. The proposed method, in contrast, 
effectively removes slight smoke in the ground area. Infrared information is well preserved, and grass colors 
remain clear. These results demonstrate the robustness of the proposed method under smoky conditions.

The performance comparison of the proposed method with similar approaches is summarized in Table 2, 
showing that it consistently outperforms existing methods across multiple quantitative metrics. Specifically, 
in terms of clarity (AG), the proposed method achieves 7.9315, a 25.8% improvement over the highest 
competing method, TextIF (6.3028), indicating a significant advantage in detail clarity in the fused image. For 
the information entropy (EN) metric, the proposed method achieves 7.1218, which is significantly higher than 
that of SwinFusion (6.3406) and TextIF (6.4684). This means the fused image have the ability to save more 
source image information. In terms of spatial frequency (SF) and standard deviation (SD), which reflect texture 
details and contrast, the proposed method achieves 22.3913 and 43.8993, far surpassing other methods (e.g., 
SwinFusion (14.1257 and 23.7465)), indicating that the proposed method better enhances texture details and 
overall contrast. Although the proposed method performs slightly lower than some competing methods on 
the visual information fidelity (VIF) and mutual information (MI) metrics, its overall performance remains 
outstanding, especially in the significant improvements in key metrics such as AG and SD. This further confirms 
its superiority in the infrared and visible image fusion task.

Comparative experiments on the RoadScene dataset under normal and slightly overexposed conditions
Figures 10 and 11 show how the proposed method performs in normal scenarios on the RoadScene dataset. In 
the daytime road scene of Fig. 10, the visible image already reveals most of the scene, and adding the infrared 
image brings in extra details. CAMF and DDBFusion lose some brightness, which spoils part of the visible 
information. DATFuse introduces noise, making the fused image a little blurry. MURF and MFI damage visible 
details, and SuperFusion keeps too little infrared data, so the result almost looks like the original visible image. 
Compare TextIF with the proposed method: both perform well, but the proposed method shows fewer odd spots 
and generally looks better overall.

The proposed method was also tested on a nighttime road scene from the RoadScene dataset. Figure 11 shows 
how the fusion works under this circumstance. In the figure, the visible image is heavily affected by glare, but 
the infrared image is not affected. CAMF does well in reducing the glare, and the fused image looks acceptable. 
DATFuse, however, adds too much noise, making the fused image look worse. DDBFusion and MURF handle 
the glare fairly well. MFI loses some color, so the fused image is not very vivid. SuperFusion does not reduce 

AG EN SF SD VIF MI

CAMF 4.5642 6.9521 11.8536 32.0018 0.6260 2.1158

DATFuse 4.3436 5.9243 12.8672 16.4739 0.6109 1.9987

DDBFusion 4.8503 6.7355 12.5040 27.2104 0.6154 1.7056

MURF 3.7982 6.6541 9.1596 27.1661 0.3763 1.5712

MFI 5.1408 6.1752 14.6067 20.7913 0.7278 1.6002

TextIF 6.3028 6.4684 17.5231 24.2346 0.7571 1.8804

SuperFusion 4.3308 6.2160 12.4246 21.5178 0.7510 3.5181

SwinFusion 4.9367 6.3406 14.1257 23.7465 0.8185 3.2255

DRFM 6.8451 6.8724 18.4527 30.1423 0.6521 2.2015

AWFusion 7.2156 7.0458 20.3365 34.8759 0.6672 2.2984

Ours 8.5426 7.1881 23.2540 45.2970 0.6138 2.2463

Table 2.  Quantitative comparison of evaluation metrics on the M3FD dataset.
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Fig. 9.  Visual effect comparison on the M3FD dataset.
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the glare enough, which makes the fusion result poor. Both TextIF and the proposed method deal with the glare 
correctly and give good results, but the proposed method has fewer issues and looks a bit better overall.

Table 3 presents their results on the RoadScene dataset. From the experimental results, it is evident that the 
proposed method exhibits significant advantages in several key metrics. The proposed method achieves 5.5274 
AG, a 6.9% improvement over the second-best performing method, TextIF (5.1723), indicating that the fused 
image retains more detail. The proposed method achieves 14.2019 SF, significantly outperforming all comparison 
methods, especially compared to DDBFusion (10.7936) and TextIF (12.1064), with improvements of 31.5% and 
17.3%, respectively. This further demonstrates its advantage in enhancing texture details. Additionally, in the 
standard deviation (SD) metric, the proposed method surpasses all comparison methods with a value of 51.9902, 
indicating its effectiveness in enhancing image contrast. EN and MI indicate similar performance between the 
proposed method and others. For example, EN is 7.2226, close to TextIF’s 7.4761, and MI is 2.7135, slightly lower 

AG EN SF SD VIF MI

CAMF 3.4829 7.3716 7.9702 44.6738 0.3899 2.2628

DATFuse 3.3694 6.7754 8.6372 29.9683 0.5441 3.0482

DDBFusion 4.5244 7.3178 10.7936 43.1538 0.5314 2.4258

MURF 4.8741 7.1436 10.6670 37.3031 0.4556 1.9314

MFI 4.4034 7.1020 10.7083 36.5785 0.1216 1.5782

TextIF 5.1723 7.4761 12.1064 50.2446 0.6535 2.6815

SuperFusion 3.7004 7.0042 9.3544 42.2800 0.5639 3.3142

SwinFusion 3.6958 7.0324 9.2065 44.5111 0.5838 3.0392

DRFM 4.9821 7.2983 11.8764 46.5217 0.6620 2.8427

AWFusion 5.1345 7.4120 12.9341 48.7324 0.6615 2.9543

Ours 5.5274 7.2226 14.2019 51.9902 0.6066 3.3142

Table 3.  Quantitative comparison of evaluation metrics on the RoadScene dataset.
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Fig. 11.  Visual effect comparison on the RoadScene dataset.
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Fig. 10.  Visual effect comparison on the RoadScene dataset.
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than SuperFusion’s 3.3142. Although the VIF metric is slightly lower than TextIF (0.6535), the proposed method 
still stands out for its overall balanced and excellent performance.

 Comparative experiments on the MSRS dataset
To further validate the generalization capability of the proposed method, we conducted experiments on the 
low-resolution image fusion dataset MSRS. A representative comparison is illustrated in Fig. 12. Due to the 
low illumination in the scenes, the visible images suffer from poor visual quality, making it difficult to observe 
fine details and texture information. Several conventional fusion methods fail to properly adjust the overall 
brightness during the fusion process, resulting in darker fused images with unsatisfactory visual quality. TextIF 
achieves more accurate brightness adjustment by leveraging additional textual guidance. DRFM and AWFusion 
also perform brightness correction, but their enhancement remains insufficient. In contrast, our method not 
only provides reasonable brightness adjustment but also preserves the richest texture details, as confirmed by the 
quantitative results reported in Table 4. However, the fused images generated by our method are less vivid in color 
compared to those of TextIF, since TextIF incorporates an additional color loss to regulate image colorization. 
Nevertheless, the introduction of color loss may reduce the robustness of the algorithm, as erroneous color 
predictions can cause a rapid degradation in overall visual quality, which is evident from the comparisons on 
the M3FD dataset.

 Robustness analysis on challenging samples
To verify the robustness of the proposed method when facing complex samples, we conducted experiments on 
two pairs of images with typical composite degradations. The experimental results are shown in Fig. 13. In the 
visible images, haze, low light, and severe halo effects around headlights coexist. The cross-degradation of the 
visible images significantly increases the difficulty of fusion. DATFuse and SuperFusion are not immune to such 
interference, resulting in fused images with heavy haze and poor visual quality, which indicates weak robustness. 
CAMF, DDBFusion, MURF, and MFI generate fused images without introducing excessive haze, suggesting 
stronger robustness against interference. TextIF, DRFM, and AWFusion are fusion algorithms equipped with 
degradation-removal capabilities, which perform well when dealing with a single degradation type but become 
limited under composite degradations. In particular, DRFM completely fails to adjust brightness during 
fusion. In contrast, our method effectively removes haze interference during fusion and reasonably adjusts the 
brightness of the fused image, demonstrating superior robustness compared to similar methods. However, some 

AG EN SF SD VIF MI

CAMF 3.2451 7.0154 7.8123 42.1589 0.3721 2.1154

DATFuse 3.4882 6.8521 8.4597 31.2045 0.5223 2.9052

DDBFusion 4.3217 7.1029 10.2314 40.8712 0.5129 2.3487

MURF 4.6729 7.0643 10.1187 35.7591 0.4312 1.8896

MFI 4.2214 6.9810 10.0542 34.8325 0.1059 1.4820

TextIF 5.0328 7.3127 11.9845 48.0124 0.6275 2.5513

SuperFusion 3.5683 6.8342 9.1024 40.1213 0.5489 3.1054

SwinFusion 3.6895 6.9984 9.0548 42.9057 0.5710 2.8762

DRFM 4.7924 7.1986 11.3425 44.7316 0.6432 2.7325

AWFusion 5.0142 7.3621 12.0417 46.8243 0.6389 2.8441

Ours 5.3479 7.4782 13.2103 50.1827 0.6124 3.1950

Table 4.  Quantitative comparison of evaluation metrics on the MSRS dataset.
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Fig. 12.  Visual effect comparison on the MSRS dataset.
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shortcomings remain, such as the incomplete removal of haze around headlights. In future work, we will focus on 
addressing the fusion of complex degraded samples to further enhance the robustness of the proposed method.

Ablation studies
Experiments conducted on the LLVIP dataset demonstrated the effectiveness of the proposed PKDM and 
DGME modules. The results of the ablation experiments are shown in Fig. 14. Removing DGME from the 
network caused the model to struggle with balancing multiple degradation tasks, producing generally blurry 
fused images. Without PKDM, the model could not adjust brightness properly, resulting in unnatural colors 
and lighting. These results demonstrate that both modules contribute positively to the network and confirm 
the effectiveness of the proposed method. Table 5 presents the results of the ablation experiments on the 
LLVIP dataset. The data in the table is consistent with the visual comparison in Fig. 15, further validating the 
effectiveness of the proposed modules.

AG EN SF SD VIF MI

w/o. DGME 7.5772 7.3612 24.6282 45.3745 0.8233 2.2051

w/o. PKDM 8.3090 7.5226 26.5944 49.5709 0.8406 2.1544

Ours 10.7338 7.7094 32.9654 59.4140 0.9985 2.7826

Table 5.  Results of ablation experiments on the LLVIP dataset.

 

(a)Vis (b)Inf (c)w/o. DGME (d)w/o. PKDM (e)Ours(a)Vis (b)Inf (c)w/o. DGME (d)w/o. PKDM (e)Ours

Fig. 14.  Visual effect comparison of ablation experiments on the LLVIP dataset.
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Fig. 13.  Comparison of fused images on challenging samples.
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Two-stage experiments
The proposed method is capable of performing degradation restoration during the fusion process. To demonstrate 
that this integrated de-degradation approach is superior to the two-stage processing method of performing 
restoration first and then fusion, two-stage experiments were conducted on the LLVIP and M3FD datasets.

Results of the two-stage experiment on the LLVIP dataset
The SCI algorithm was used to restore low-light visible images, which were then fused with infrared images 
using different methods. Figure 16 shows the visual comparison. The visible image remains almost completely 
dark, while the infrared image stays clear. In the two-stage experiment, most algorithms brighten the scene 
well. Yet, the small car in the dark can only be clearly seen in the fusion result of the proposed method. This 
shows that brightness enhancement alone does not guarantee effective fusion. The proposed method succeeds 
by integrating both tasks efficiently.

Table 6 presents the quantitative results of the two-stage experiments on the LLVIP dataset. The experimental 
results show that the proposed method demonstrates clear advantages in most metrics. Specifically, the proposed 
method achieves 10.7338 AG metric, which is 38.5% higher than the second-best result, result_mfi (7.7467), 
fully proving its outstanding performance in detail enhancement and texture information preservation. The 
proposed method achieves 32.9654 SF score, significantly outperforming SwinFusion (20.1776) and SuperFusion 
(23.6403) by 63.3% and 39.4%, respectively, indicating an absolute advantage in the resolution of texture 
details. In addition, for the standard deviation (SD) metric, the proposed method reaches 59.4139, surpassing 
SuperFusion (58.1386) and SwinFusion (56.6406), showing that it can better enhance image contrast and make 
the fused image more visually striking. For the EN metric, the proposed method achieves 7.7094, ranking among 
the top overall results, further demonstrating the richness of information in the fused images. Although the VIF 
of the proposed method (0.9985) is slightly lower than that of some methods (e.g., SwinFusion at 0.7217), its 
overall balance and comprehensive performance highlight its superior capability in infrared and visible image 
fusion tasks.

(a)Vis (c)CAMF(b)Inf (d)DATFuse (e)DDBFusion

(f)Murf (g)mfi (h)TextIF (i)Superfusion (j)Ours

(a)Vis (c)CAMF(b)Inf (d)DATFuse (e)DDBFusion

(f)Murf (g)mfi (h)TextIF (i)Superfusion (j)Ours

Fig. 16.  Results of the two-stage experiment using PReNet.
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(a)Vis (c)CAMF(b)Inf (d)DATFuse (e)DDBFusion
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Fig. 15.  Visual effect comparison of two-stage experiments using the SCI algorithm.
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Results of the two-stage experiment on the M3FD dataset
The PReNet algorithm was selected to conduct the two-stage experiment on the M3FD dataset. The visual effect 
comparison of the experimental results is shown in Fig. 16. The visible image contains a large amount of raindrop 
interference, which was removed using PReNet before fusion. The result of CAMF shows almost no raindrop 
information, but the fused image loses color. Although there is no raindrop interference in the DATFuse result, 
it amplifies the rain and fog information in the image. DDBFusion experiences brightness degradation during 
fusion, making the image overall darker. The brightness degradation issue is similarly severe in MURF and MFI. 
TextIF introduces artifacts during fusion. SuperFusion fails to fully remove the rain and fog interference during 
fusion. The proposed method produces a clear image with no raindrops or rain/fog interference, achieving 
excellent visual effects.

Table 7 presents the results of the quantitative comparison. The data in the table show that the fusion results 
obtained by the proposed method achieve higher AG, EN, SF, and SD, indicating that the fused images have 
higher clarity. Since the proposed method not only corrects degradation but also increases the distance between 
the original visible image and the fused image, this results in a slight decrease in VIF and MI. However, the 
overall performance remains among the top.

Two-stage experiments on the RoadScene dataset
The LMPEC algorithm was applied for a two-stage experiment on the RoadScene dataset. Figure 17 shows 
the visual comparison. In Fig. 17(a), the visible image is blurred due to overexposure. LMPEC removed the 
blur before further fusion experiments. CAMF loses both brightness and color in the scene. DATFuse gives a 
generally good result but misses line details on the ground. DDBFusion suffers from significant brightness loss, 
producing a dark fused image; MURF shows similar issues. MFI keeps the brightness but the fused image is 
somewhat blurry and lacks local texture. TextIF, SuperFusion, and the proposed method all deliver good results. 
Compared with the others, the proposed method preserves more infrared information and richer local textures. 
Table 8 confirms its advantages in quantitative metrics.

Downstream detection task experiments
To verify the effectiveness of the proposed method in detection tasks, downstream detection experiments 
were conducted on the M3FD dataset based on YOLOv841. The experimental results are shown in Table 9. The 
performance of detection using only visible images is limited due to the presence of complex factors such as 
rain and fog occlusion in the environment, with an mAP50 of only 70.2%, making it difficult to meet robustness 
requirements. Infrared images are more stable in extreme weather and low-light conditions resulting in better 
detection performance. The mAP50 reaches 74.4%, which is 4.2% higher than that of visible images. Infrared 
images, however, lack color and texture, limiting detection accuracy. The proposed method fuses visible and 
infrared images and corrects degradation in the visible images. When using the fused image for detection, mAP50 
rises to 81.3%, 6.9% higher than infrared images alone. Precision climbs to 86.1% and Recall to 73.1%. Overall, 
the fused images clearly improve detection performance, demonstrating the effectiveness of the proposed fusion 
method.

AG EN SF SD VIF MI

CAMF 3.3019 6.1584 12.9361 20.6789 0.4247 2.5872

DATFuse 2.7830 6.6389 9.0604 27.2196 0.4429 2.1754

DDBFusion 4.2498 6.4174 13.1598 24.0018 0.3598 2.0327

MURF 3.7916 6.3550 13.9880 22.4851 0.4823 1.8057

MFI 3.1371 6.3412 12.4083 24.4253 0.4262 2.8009

SuperFusion 3.5920 6.4533 13.6351 26.8145 0.4488 2.6270

TextIF 4.5972 6.6565 16.0716 28.1849 0.5073 2.0344

Ours 8.5426 7.1881 23.2540 45.2970 0.6138 2.2463

Table 7.  Results of two-stage experiments on the M3FD dataset.

 

AG EN SF SD VIF MI

CAMF 5.2484 7.5077 16.6790 52.3174 0.6686 2.5530

DATFuse 5.2541 7.3867 18.9278 50.2754 0.6640 3.5295

DDBFusion 5.7158 7.4522 18.7780 49.9717 0.6476 2.3995

MURF 4.2471 7.0755 10.3238 37.7817 0.4665 2.0355

MFI 7.7467 7.5034 26.5291 50.3920 0.6062 2.1810

SuperFusion 6.9161 7.6421 23.6403 58.1386 0.7010 3.2577

SwinFusion 5.6950 7.5991 20.1776 56.6406 0.7217 3.6006

Ours 10.7784 7.7200 31.9825 62.3594 0.9312 2.7019

Table 6.  Quantitative comparison of two-stage experiment results on the LLVIP dataset.
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Figure 18 compares the detection performance of different methods. The proposed fusion method effectively 
integrates multispectral data and suppresses interference in the visible image. The fused image contains more 
information, producing accurate and complete detections. This further demonstrates the effectiveness of the 
proposed method in multispectral detection tasks.

 Analysis of CLIP
In DAGM, we utilize CLIP to generate scene degradation vectors. CLIP consists of an image encoder and a text 
encoder, and through large-scale data and contrastive learning, it ensures that images and their corresponding 
texts can be aligned in a latent space. In this work, we fine-tune the pre-trained CLIP using LoRA to establish 
alignment between images and degradation description texts. Existing vision-language models, such as LLaVA 
and BLIP, can also achieve this functionality. However, these models have significantly more parameters 
and capabilities, many of which are unnecessary for the proposed DAGM. For instance, BLIP can generate 
detailed semantic descriptions of input images, and LLaVA can produce specific image descriptors guided by 

Modal Precision Recall mAP50 mAP50:95

Vis 85.5 63.7 70.2 44.5

Inf 85.0 65.9 74.4 48.6

CAMF 85.3 68.2 76.8 50.1

DAT 84.8 69.7 77.8 50.9

DDB 85.7 70.1 78.5 51.6

MURF 85.2 71.0 79.1 52.3

MFI 85.6 70.5 78.2 51.0

TextIF 85.9 71.8 80.0 53.2

Super 85.4 69.2 77.0 50.0

Swin 85.8 72.0 80.4 53.7

Ours 86.1 73.1 81.3 54.4

Table 9.  Quantitative comparison of detection metrics on the M3FD dataset.

 

AG EN SF SD VIF MI

CAMF 4.5254 7.3324 10.9142 44.6732 0.5120 2.6946

DATFuse 4.8856 7.3216 12.5070 47.6053 0.5913 3.7133

DDBFusion 5.6054 7.4346 14.2266 52.5626 0.6330 3.5557

MURF 4.5380 7.1545 11.4978 40.4502 0.5518 2.8215

MFI 5.7515 7.5342 11.6499 50.5000 0.4735 2.6305

SuperFusion 3.5156 7.1053 8.6737 41.7396 0.5383 3.2015

SwinFusion 3.4763 7.0892 8.0939 45.0166 0.5696 2.9825

TextIF 5.1723 7.4761 12.1064 50.2446 0.6535 2.6815

Ours 5.5274 7.2226 14.2019 51.9902 0.6066 2.7135

Table 8.  Results of two-stage experiments on the RoadScene dataset.
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Fig. 17.  Results of the two-stage experiment using LMPEC.
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additional query texts. Moreover, compared to BLIP and LLaVA, CLIP has been extensively validated in zero-
shot recognition and degradation-aware tasks, making it more suitable as general prior knowledge in our fusion 
framework. To illustrate the advantages of CLIP in degradation scenario recognition, Table 10 presents the 
accuracy and parameter sizes of different vision-language models in the task of recognizing scene degradation 
vectors. The data show that CLIP can generate more accurate scene degradation vectors without requiring 
additional query texts, and it requires the fewest parameters. Furthermore, CLIP’s encoder architecture is more 
compatible with LoRA, facilitating parameter-efficient fine-tuning.

To further validate the effectiveness of the degradation description vectors generated by CLIP in guiding 
MoE expert selection, we visualized the expert activation distributions under different degradation scenarios, 
as shown in Fig. 19. On the left of the figure are heatmaps of expert activations for 8-layer MoE under various 
degradation scenarios, where the horizontal axis represents expert indices, the vertical axis represents MoE layer 
indices, and the color intensity indicates the activation strength of each expert at that layer. On the right are the 
average activation curves of each expert across all layers for the corresponding scenarios. The results show that 
the expert activation distributions vary significantly across different degradation scenarios. In the fog scenario, 
the model tends to activate mid-index experts, indicating that these experts have learned representations 
better suited for handling low-contrast and blurred features. In the low-light scenario, activations are primarily 
concentrated in the first few experts, suggesting that the model automatically selects expert branches more 
sensitive to insufficient illumination. In the rain scenario, specific experts in certain layers are strongly activated, 
reflecting the model’s capability to adaptively model striped or local noise features. In the clean scenario, expert 
activations are relatively uniform, indicating that the model does not bias toward any particular expert in the 
absence of noticeable degradation, thereby maintaining stability in feature processing.

Conclusion
To address the insufficient adaptability of traditional multimodal image fusion methods in complex degraded 
scenarios, this paper proposes an adaptive image fusion framework that integrates vision-language large 
models with a sparse mixture-of-experts mechanism. By introducing a physics-parameter-based image pre-
enhancement mechanism before fusion and employing degradation description tokens generated by CLIP to 
guide experts’ dynamic participation in the fusion process, the proposed method achieves flexible adaptation of 
fusion strategies to both the type and severity of image degradation. The designed multi-loss function further 
improves the detail quality and structural fidelity of the fused images during the optimization process.

The experimental results validate the broad applicability and robustness of the proposed method across 
different modal images and complex scenarios, but the current work focuses on several specific degradation 

Method Accuracy (%) Need Additional Text Params (M)

CLIP (Ours) 89.3 No 86

BLIP 85.7 No 109

LLaVA 88.3 Yes 700

Table 10.  Comparison of Different Vision-Language Models in Degradation Recognition Tasks.
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Fig. 18.  Visual effect comparison of detection experiments on the M3FD dataset.
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types, while images captured by sensors may involve a wider variety of degradations beyond those considered in 
this study. To further enhance the generalization capability, one approach is to construct a larger-scale training 
dataset that covers as many degradation types as possible, another approach is to employ unsupervised training 
strategies to improve the robustness against unknown degradations.

Data availability
The datasets generated and analysed during the current study are available in the Image-Fusion-Network repos-
itory (https:​​​//gith​ub.​com/Y​oung​-spec-​desig​n/Imag​​e-Fusio​n-Networ​k/r​eleases/tag/ImageData).
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