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Empirical phenotyping of joint
patient-care data supports
hypothesis-driven investigation
of mechanical ventilation
consequences

J. N. Stroh2*?, Peter D. Sottile?, Yanran Wang*, Bradford J. Smith%5, Tellen D. Bennett%5#,
Marc Moss® & David J. Albers®’

Analyzing patient data under current mechanical ventilation (MV) management processes is essential
to understand MV consequences over time and to hypothesize improvements to care. However,
progress is complicated by the complexity of lung-ventilator system (LVS) interactions, patient-care
and patient-ventilator heterogeneity, and a lack of classification schemes for observable behavior.
Ventilator waveform data originate from patient-ventilator interactions within the LVS while care
processes manage both patients and ventilator settings. This study develops a computational pipeline
to segment joint waveform and care settings timeseries data into phenotypes of the data generating
process. The modular framework supports many methodological choices for representing waveform
data and unsupervised clustering. The pipeline is generalizable although empirical output is data- and
algorithm-dependent. Applied individually to 35 ARDS patients including 8 with COVID-19, a median
of 8 phenotypes capture 97% of data using naive similarity assumptions on waveform and MV settings
data. Individual's phenotypes organize around ventilator mode, PEEP, and tidal volume with additional
delineation of waveform behaviors. However, dynamics are not solely driven by setting changes.
Fewer than 10% of phenotype changes link to ventilator settings directly. Evaluation of phenotype
heterogeneity reveals LVS dynamics that cannot be discretized into sub-phenotypes without
additional data or alternate assumptions. Individual phenotypes may also be aggregated for use in
scalable analysis, as behaviors in the 35 patient cohort comprise 16 cohort-scale LVS types. Further,
output phenotypes compactly discretize the data for longitudinal analysis and may be optimized to
resolve features of interest for specific applications.

Mechanical ventilation (MV) of critical care patients provides life-saving support over periods typically lasting
days to weeks. Over these timescales, ventilator management strategies significantly impact patient outcome'-2.
Modern care protocols and technologies™ emphasize lung-protective strategies® to minimize potentially
deleterious consequences of MV. These include ventilator-induced lung injury (VILI®) and patient-ventilator
dyssynchrony (PVD), a disagreement between ventilator action and patient effort. Both PVD and VILI may
contribute to acute respiratory distress syndrome (ARDS) and ARDS-related mortality’=°. Protective strategies
depend on mechanistic understanding to guide ventilator settings, including positive end-expiratory pressure
(PEEP), tidal volume, and driving pressure!®-12. Despite the effectiveness of protective advances, association
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between MV and ARDS-related mortality remains unacceptably high. Reducing these highly negative outcomes
motivates continued improvement and personalization of VILI-minimizing ventilator strategies!*-!°.

Hypotheses about current care are essential for improving MV, but such scientific inquiry suffers from a lack of
general breath categories and understanding of patient-ventilator variability. MV applied in critical care typically
lasts 3-7 days'®~!8 amidst the context of non-stationary patient conditions and other care procedures. While the
short-duration physiology under MV is understood, analysis of those relationships and MV consequences over
longer therapeutic timescales are limited and hindered by patient- and care-specific heterogeneity. A method for
labeling and classifying MV breaths based on characteristics is desirable to reduce data complexity and facilitate
temporal analysis. Currently, the most accessible classification scheme identifies PVD types from waveform
characteristics. PVD research is rich with ML applications primarily focused on extending manual labels to
larger datasets through supervised methods!'®-?2, identifying PVD waveform characteristics®®, and estimating
event severity?*. However, these labels may be ill-suited for MV research involving temporal analysis: they are
stationary, are not mutually exclusive?!, depend on MV mode characteristics®, and vary in organization?>%.
Another research avenue uses interpretable model-based parametrizations to analyze waveform data?’-3!,
potentially allowing for a wider and more flexbile exploration of breath behavior.

The clinical observables from MV include airway pressure (p), volume (V), and flow timeseries that record
the dynamic interaction between patient lungs and care-managed machine. The human lung-ventilator system
(LVS), rather than an isolated human lung, underlies the data generating process when investigating MV from
waveform-sourced data?®. Moreover, MV management changes ventilator settings; these care factors contextualize
the waveform data within LVS trajectories. The assemblages of coupled LVSs and applied management processes
are the data generating process and the objects of interest for improving MV.

Quantifying clinical consequences of MV on patient health are necessary to evaluate and improve MV care.
This requires linking outcomes to MV descriptors that include both ventilator setting as well as patient-ventilator
interaction, but these LVS categories do not exist. Analysis based on ventilator settings and care processes alone
will not incorporate patient-heterogeneous responses observed in pressure-volume, while those based on PVD
labels that omit ventilator settings. This work addresses the methodological gap in quantifying MV consequences
by developing an unsupervised categorization process to define joint LVS state categories as suitable targets
for consequence association. Namely, it digitizes joint LVS data into interpretable phenotypes based on data
similarities*. This approach reduces the dimensionality of the problem, enabling scalability to larger datasets,
while incorporating the essential data components needed for consequence attribution.

Clinical validation of phenotypes requires linking breath behaviors to outcomes or other MV consequences.
This work develops a generalized process to produce validatable phenotypes with clinical validation an intended
downstream application (“Discussion”).

In this work, phenotype trajectories of individuals are scrutinized in relation to MV management changes
and timeseries of PVD labels to evaluate their consistency and ability to differentiate important characteristics.
The phenotyping examples assign equal weight to LVS feature components to be agnostic about data element
importance. The resulting data segmentation follow ventilator settings changes and persistent variations in
waveform behavior within individuals individuals timeseries, while aggregate cohort-scale analysis shows they
are general enough to mix patients. The main result is a generalized phenotyping pipeline whose empirical results
are data-specific phenotypes. These outputs are not anticipated not generalize beyond the 2-day snippets of 35
ARDS patients on one ventilator model, because the data do not represent the broad diversity of MV breaths.
The data-specific classification approach is tied to context of the data, providing benefits of informativeness and
accuracy generally lost in a universal scheme®.

A robust and systematic process for phenotyping the diverse LVS behaviors is a necessary step toward
quantifying MV consequences and optimization of respiratory management to mitigate VILI. Phenotypes output
by the developed pipeline may be used as a basis for explaining impacts on respiratory health. For example,
one could investigate the distribution of phenotype occurrences, combining both ventilator settings and
patient-ventilator response to them, with temporal changes in driving pressure®® or gas ratios®*>¢. Importantly,
phenotypes in this context data mask low-level heterogeneity to reduce trajectory complexity (“Patient-level
phenotyping”) and provide a standard basis for comparison across patients (“Cohort-scale phenotyping”).

Method

Phenotype identification analyzes LVS data, including waveforms and ventilator settings, using an unsupervised
computational pipeline. This section develops a specific implementation while framing it in a general way. The
process is generalized but its output may not be: empirical phenotypes reflect the data and methods defining them.
The modular workflow enables adjustments to the source data, waveform representation, feature definition, and
segmentation strategy. This permits phenotype generation to accommodate different hypotheses about which
aspects of the patient-ventilator-care system matter when evaluating MV consequence or other targets.

Data

Data including airway pressure, volume, and ventilator settings were captured for a cohort of intubated at
University of Colorado ICUs with ARDS diagnoses, were mechanical ventilated using Hamilton G5 ventilators
(https://www.hamilton-medical.com), and who had substantial risk of VILI. The collection effort and data use
were approved by Colorado Multiple Institutional Review Board protocol (COMIRB, protocol #18-1433) and
follow ethical standards set by COMIRB and the Helsinki Declaration of 1975. Children, pregnant women, and
age-censored elders (> 89 years), and the imprisoned were excluded. Enrollment targeted collection of esophageal
pressures, which are not analyzed in this work, and imposed additional exclusion criteria (viz. esophageal fistula,
variceal bleeding or banding, facial fracture, and recent gastric/esophageal surgery). Eligibility for recording
was contingent on active MV therapy, so patients were necessarily unconscious at the time of enrollment. Each
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patient’s identified proxy decision-maker provided informed consent as unconscious patients could not consent
directly.

Following esophageal balloon placement, continuous recordings up to 48 hours were made directly from
ventilators for 35 MV encounters satisfying enrollment criteria?2. The cohort includes 14 women and 21 men
with median age 58 years and interquartile range (IQR) 24.9 years; 71.4% are white, 34% of which identify as
Hispanic or Latino. Pre-processing comprised removal of breaths with ventilator calibration artifacts and carrying
forward last-known settings values within ventilator modes. Table 1 summarizes clinical and demographic
characteristics of included patients. Data total 1.74 million breaths over 71.14 recording-days (median 1.97(1.56]
days per patient) recorded at 31.25 Hz. Adaptive pressure volume-controlled and pressure-controlled mandatory
ventilation modes (APVCMV and P-CMYV, respectively) account for 84% and 10% of breaths, respectively, with
the remainder in spontaneous/supported (SPONT), synchronized controlled (SCMV), and standby modes. Care
and ventilator management follow the ARDSnet protocols’.

Dyssynchrony labels

Breath-wise PVD identified by supervised ML in previous work!'*?? are used to enrich LVS evolution context and
provide comparison for extracted categories. PVD types were assigned breath-wise to the data using a gradient
boosted decision tree (XGBoost) based on a manually labeled subset. PVD categories include normal (NL),
reverse triggered (RT), early flow limited (eFL), double trigger (DT), and early vent termination (EVT) types as
defined and applied in previous analysis?*”. One-minute moving averages of these breath labels communicate
PVD occurrence over time.

Pipeline

The computational pipeline described is a process for developing phenotypes from joint waveform and MV
care-related data. The method is depicted in Fig. 1 and follows Wang et al.>? by using data-informed parameter
distributions to uncover latent similarities in observed ICU patients. The three main phases (feature construction,
segmentation, and interpretation) involve methodological decisions, which are discussed below both in general
terms and in terms of specific implementation applied to individual patient data. Code developed in MATLAB'’
for the implemented pipeline is available by reasonable request to the authors.

(1) Waveform parametrization: Waveform observations can optionally be digitized to improve comparison
of breath-level data through approximation and regularization of the continuous time signals. Digitization
examples in other work include spectrograms®, clinical parameters'®, model parametrization’!, or signal
processing methods such as polynomials and wavelets.

Detail Count | % | Median | IQR
Monitored (h) 47.1 38.2
Recorded (h) 43.7 39
Age (years) 58.0 24.8
Gender

Female 14 40 54.5 25.0
Male 21 60 58.0 26.5
Race/ethicity

White 25 71.4

Unknown/NA 5 14.3

Black/AA 3 8.6

Al or AK native 1 2.9

More than one race | 1 2.9

ARDS risk

Pneumonia 11 314

COVID 11 314

Sepsis 6 17.1

Other 3 8.6

Pancreatitis 2 5.7

Aspiration 2 5.7

P:F ratio 136.0 77.0
Mortality 8 229

NMB use 9 25.7

Table 1. Tabular summary of the patient cohort and associated data. ‘Monitored’ and ‘Recorded’ denote the
duration spanned by data and length continuous data contents, respectively, in hours. P:F ratio is the PaO,/
FiO, ratio at admission used to qualify ARDS and need for MV, AA African-American, AI American-Indian,
AK Alaska, NMB neuromuscular blockade.

Scientific Reports |

(2025) 15:40488 | https://doi.org/10.1038/s41598-025-24489-4 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Feature Construction Segmentation Interpretation
1.)c wf freq > 3%
)§ 5.)500 q > 3%
€20
£
: MR M
600 | ~ 300
— [
T 400 £
> 200 2200} |
=
0
0 10 20 30 40 50
Patient Record Time (hrs) 0 10 20 30 4‘0 100
Record time (hrs) 0
2
5 10 15 20 25
10-sec L.J'l 10-se! 10-sec Pressure (cm H,0)
s
LT s g L T
param index param index param index a 4 - . -
5 -_..
0 10 20 30 40
Patient Record Time (hrs)
3.)  Append Ventilator Settings Data

Fig. 1. Broad pipeline organization. Raw data (1) are digitally parametrized (2) over short windows, typically
satisfying stationarity assumptions. Distributional parameter estimates are summarized and augmented

with the contextual data of ventilator settings (3) which include information such as ventilator operation
mode, positive-end expiratory pressure (PEEP) or other baseline pressure, flow and pressure triggers, and
minimum mandatory breath rate. Feature vectors, defined by the augmented LVS descriptors, are reduced

to three dimensions (4) where they can be analyzed based on time ordering (top) and structural similarity
via segmentation (bottom). Finally, in (5), temporal evolution of the system is compactly encoded in the
time-ordered LVS descriptor labels and their associated waveform characterizations in an interpretable and
explainable way. The process transforms raw data (1) into a more easily comprehensible form (5).

One empirical parametrization developed for LVS data analysis?® uses an asynchronous ensemble Kalman
smoother (WEnKS)* to transform waveform data segments into parameter distributions (SI A). Specifically,
observations y° (representing pressure or volume data) are mapped to M-dimensional parameter vector samples
{a} of the bayesian posterior distribution p(a|y?). The likelihood function p(y°|a) describes the RMS error
between data y° and simulated counterparts defined by the ordinary differential equation

%Jrg-(y—yo):@(t(mod@);a)- v

Here, g is a fixed smoothing parameter, 6 is constant breath rate over the interval so that ¢t (mod 6) gauges time
within each breath cycle, and yo is the baseline value of the signal (PEEP when y is pressure). The function ¢
in Eq.(1) is a piecewise constant function over the breath cycle with heights determined by parameter vector a,
whose optimal values digitize the observational waveform data (details found in SI A.1 and past work®).

The model construction ensures parameter identification throughout a bayesian ensemble-based inversion.
Consequently, data-informed parameters are unique*® and quantify uncertainties! associated with observation
noise, waveform variability, and model resolution. Breath rate 6 and signal baseline yo are assumed to be stationary
during parameter inference, thereby constraining the window length. Informed by these considerations, this
work uses a moderate resolution model (M = 28) to encode and discriminate essential waveform features over
10-second windows to satisfy stationarity requirements of the inference. Each 10-second window is associated
with a reference value and parameters triplet (yo, 6, {a}).

(2) Parameter distribution summaries: Statistically summarizing waveform parameters estimates over longer
stationary timescales, rather than detailing each breath, is an optional step in the pipeline. This is computationally
advantageous for large dataset phenotyping because it invokes fewer pairwise comparisons of more detailed
objects. The chosen parametrization process (above) samples the data-informed posterior distribution of
parameters on each 10-s window. The estimators used to summarize these samples include mean, quartiles,
variance, and mode, plus non-gaussian measures (skewness, kurtosis, and Kolmogorov-Smirnov distance).
The latter items capture bimodal or asymmetric properties characterizing non-stationary LVS behavior. The
stationary parameters, such as mean period and baseline pressure, are also included in these summary vectors.
Statistical parameter summaries of 10-s windows reduce the temporal sampling rate from 31.25 Hz in raw data
to % Hz while 2D raw data become ~400-dimensional vectors of parameter estimators.

(3) Including care and context information: Appending ventilator settings data to each statistical waveform
parameter summary contextualizes them in the health-care process. Ventilator settings detail the mode of
operation (APVCMYV, PCMV, SCMV, SPONT, standby), targeted quantities (set inspiratory pressure or set tidal
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volume) as well as various machine settings (trigger thresholds, ramp time, mandatory minimum breath rate).
Some ventilator settings such as PEEP and L:E ratio are represented implicitly in waveform descriptors and need
not be explicitly included. Other available factors such as ventilator delivery power are not considered here but
may be included in other applications. Ventilator mode is a nominal variable that is one-hot encoded into a set of
binary variables. However, not all settings are properties of each mode. Waveform properties proxy for ventilator
settings (i.e., observed maximum volume for Vr in PCMV), while missing data with no observable analogs
(e.g., trigger settings) are filled with zero values. MV settings are included in the LVS window summaries as
static properties because settings change infrequently compared with the number of windows or breaths. When
available, other care-originating factors such as patient sedation level, paralytic use, and patient posture are
easily included and may be used to target analysis of specific care regimes. The current implementation considers
only MV settings but future effort might incorporate other care-originating factors like patient sedation level,
paralytic use, and patient posture.

(4) Phenotype labeling: Phenotypes are defined through labels assigned to joint waveform-MV settings based
on content similarity, which can be performed at individual patient or aggregated cohort levels. LVS descriptor
vectors are reduced to lower dimensions so that labeling and assessment occurs in an easily visualized geometry.
Dimensional reduction methods*? include analyses of factors*>** as well manifold methods such as Uniform
Manifold Approximation and Projection (UMAP*>%) and #-distributed Stochastic Neighborhood Embedding
(tSNE*). Group labels are assigned by a clustering process*®*® applied to LVS descriptors in the reduced
coordinate system that describe similarity in a non-dimensional way. Options include space partition methods
(k-means, k-medoids, etc.), kernel-based methods like Support Vector Clustering®’, and density methods like
Density-based Spatial Clustering of Applications with Noise (DBSCAN®1%2),

This study employs UMAP for reduction because it preserves local and global similarity structure of its
input and has a numerically efficient MATLAB' implementation®®. In this instance, the projection assesses
similarity using the uniform Gower distance®*”> because feature vectors contain mixed-type variables. Non-
uniform feature weights may be added to modulate the influence of specific data elements in future applications.
For example, the impact of volume waveform components can be given less weight when investigating MV in
volume control modes. DBSCAN was chosen to label groups for its ability to identify clusters of arbitrary shape,
as LVS feature clouds in the dimensionless UMAP coordinates are often irregular and non-convex (Fig. 1, step
4).

UMAP hyperparameters are fixed (neighborhood size 5 points, minimum distance 0.01) to maximize the
equivalence of similarity-based projections across patients. During DBSCAN labeling, a brief grid-search over
hyperparameters (core point requirement 4-12; neighborhood radius 1.5-5 by 0.5) finds the grouping that
minimize the total distance between centroids to balance group consistency with the number identified of sets.
Segmentation quality depends on data variability which increases over time; this search improves phenotype
resolution uniformity across varying record lengths.

(5) Phenotype interpretation: The terms ‘label’ and ‘phenotype’ below are synonyms because cluster labels
identify consistent groups of 10-second data windows that characterize phenotypes. For example, the model
images of group median parameters characterize the central behavior of pressure and volume waveforms (Fig.
1, step 5 top). Every time point in an MV record carries a phenotype label, which applies to all LVS observables
of the patient at that time regardless of whether they were included among features. For example, downstream
analysis of e.g., FiO, or SpO, could use phenotype identity to stratify data.

Phenotypes and characterizations of LVS data

The pipeline organizes data into discrete phenotypes based on similarity of windowed LVS states. An objective is
to reveal LVS changes without corresponding ventilator settings changes. Such changes suggest the presence of
factors that influence LVS trajectory including changes in patient expectation and breathing pattern (e.g., patient
effort, respiratory drive), lung mechanical function (e.g., VILI progression or recovery from ARDS), or another
aspect of physiology. Other factors like resistance and compliance of ventilator tubes, accumulated moisture, and
changes in sedation and posture influence observed waveforms; these data are not available and remain potential
confounders.

Experimental phenotyping of LVS data

The pipeline described above is applied individually to 35 LVS records defining a context of 2-day periods of a
few ARDS patients. This narrow context provides an opportunity to demonstrate the complexity of characterized
behaviors as phenotype diversity is expected to be limited. There is no a priori reason to expect phenotypes to
organize around particular data elements because the similarity metric (“Pipeline”, item 4) weights components
equally. These experimental applications of the pipeline investigate what data elements impact phenotype structure
and what variability remains in phenotypes. The LVS trajectories are presented as a timeseries of phenotype
labels contextualized by ventilator settings and shown in relation to classified PVD. Pressure-volume (pV)
loop characterizations of each phenotype, computed from the median of relevant parameter estimates, provide
visually summarize waveform data. Such visualizations intend to summarize key features and notable changes
defining the LVS trajectory. Subsequent analysis and discussions employ principal component analysis (PCA),
an empirical signal factorization based on variance minimization*>*. This tool reveals the degree of LVS
variance occurring under during stationarity to investigate non-ventilator temporal changes not identified by
segmentation.

Cohort-scale phenotyping
Direct application of the individual pipeline to cohort data is a computationally expensive problem due to the data
volume (O(10%) 10-s intervals of continuous multi-variables). A simple alternative is to develop cohort-scale
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meta-labels for the population of individual phenotypes. To achieve commensurable features across the cohort,
volume data (in mL) are standardized by separating the scaled magnitude (in mL/kg) from volume waveform
parameters. Pressure waveforms are likewise standardized by zeroing on PEEP or other support pressure and
scaling by driving (peak-minus-baseline) pressure within each window. Feature vectors for cohort clustering are
individual phenotype statistics of baseline pressure, driving pressure, scaled tidal volume, estimated parameters
of normalized waveform data, and associated ventilator settings. Segmentation uses UMAP-DBSCAN as in the
individual case but with different hyperparameter values.

Results

The clinical data associated with ARDS patients (Table 1) are an important and practical phenotyping application
because attentive MV management and patient instability instigate diverse LVS behaviors. This section reports
experiment results from phenotyping individual ARDS patient data records (“Patient-level phenotyping”) and
the assembly of cohort-scale phenotypes (“Cohort-scale phenotyping”). Within individual experiments, the
temporal structure of LVS data labels is examined for consistency and resolution. Phenotypes aggregated across
the cohort produce generalized LVS descriptor characterizations. PVD labels provide additional context for
phenotype labels derived from ventilator settings and waveform characteristics.

Patient-level phenotyping

LVS patient data are identified with 20[14] (median[IRQ]) individual phenotypes, totaling 721 groups across
the cohort. Many of these patient-specific phenotypes capture less than 1% of a given patient LVS record. Over
97[3.1]% of data are captured by 8[6.5] core phenotypes that represent more than 3% of an individual record.
Low-occurrence phenotypes often identify outliers and brief events such as suctioning that may be eliminated
by reducing label specificity via UMAP-DBSCAN hyperparameters. Because record length varies (median[IQR]
47[37] h), over-segmentation is needed to address the more diverse behavior of longer patient records compared
with shorter ones. Over-segmentation addresses the need for record length variation (median[IQR] 47[37] h)
the more diverse behavior of longer patient records compared with shorter ones.

Phenotypes primarily organize around changes in MV settings such as tidal volume, PEEP, and ventilator
mode in all experiments, but they also reflect changes in the patient-ventilator (or LVS) behavior. There is high
correspondence between changes in ventilator settings and persistent changes (lasting longer than 30 seconds)
in individual patient phenotype labels (SI B). Changes in settings are typically (mean(s2l) > 60%) reflected in
label changes, with ~92% of changes in PEEP, MV mode. and V7 inducing label changes. The former assessment
is biased by few settings changes in some patients and by counting changes unlikely to discretely affect waveform
behavior (e.g., trigger sensitivity or mandatory breath rates). However, label-to-settings change coherence (I2s)
is much lower; less than 10% of label changes are associated with ventilator settings changes. Phenotypes capture
LVS variability resulting from care-related changes to MV settings in this data-limited context.

Figures 2 and 3a-d visualize particular aspects of the low-dimensional trajectories in phenotypes for two
patients (#34 and #11 of Table 1, respectively). Their cases are typical of experiments in record length (~24 h),
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Fig. 2. LVS evolution of patient 34. (a-c) The trajectory of phenotype labels, ventilator settings, and externally
identified PVD, respectively with a common horizontal axis of patient record hours. In (b), non-APVCMV
ventilator modes are indicated by shaded regions. In (c), PVD identification over time is depicted by label
occurrence percentage within 1-minute moving windows. The (d) shows the model image of waveform
parameters nearest to the group median, which characterizes breath pV loops of that phenotype [shown with
the same color as (a)]. The occurrence of label #1 is discontinuous in time and occurs under different PEEP
values suggesting waveform shapes vary only in baseline pressure. The PVD-less evolution of the LVS shows
much waveform variation separate from ventilator settings changes. Labeling and coloring in this figure do not
relate to other figures.
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Fig. 3. A representative example: patient 11. The plot panels (a-d) are the same as the previous figure. A flow
trigger ((b), at purple arrows) near 3 and 13 hours are the only MV settings changes besides mode, PEEP,

or tidal volume. The lower panels (e-g) examine the variability during the record interval 15-21 h under
stationary ventilator settings. The mean (dashed black line) coincides with the golden pV loop (label #10) in
the upper plot. The many distinct breath sub-types identified are more similar than to other main types in
the upper plot; as a result, they are grouped together at this choice of hyper-parameters. Internal phenotype
variability suggests continuous LVS changes that may not admit a natural discretization. Colors coordinate
between (a) and (d), and among (e-g). Labeling and coloring in this figure do not relate to other figures.

number of ventilator settings changes, and number of identified phenotypic breaths. SI C provides additional
examples that show the complexity and heterogeneity of the joint LVS-care processes in time. Each joint LVS-
care record shows significant variation over time with complex and non-stationary patterns.

Example 1: Figure 2 illustrates the low-dimensional trajectory of patient 35. Here, the system is driven by
a progression of PEEP reductions and mode changes from APVCMYV to supported spontaneous breaths for
several hours. Most breaths are identified as non-dyssynchronous in externally labeled PVD (c) apart from flow-
limited behavior around 12.5 hours following reduction of PEEP from 10 to 7 cm H,O. However, there is also
heterogeneous behavior indicated by labels (a) during the period from 5 to 12 hours under stationary ventilator
settings (b). The LVS state vacillates between labels #1 and #3 with notably distinct pV characterization (d)
during this period. Irregularity in delivered tidal volume under the APVCMYV and in breath length are likely
explanations for variability here and in other cases.

Example 2: Figure 3 illustrates an analysis of patient 11 whose LVS undergoes multiple changes over a 24-h
data period. A flow trigger increase near 3 h (b) prompts a phenotype change, and the association with eFL and
RT PVD types is reflected in inspiratory coving in pV loops (d, label #1, #2, and #10). The behavior over 7-14.5
h is identified as normal breaths characterized by quite similar phenotypes (#6 and #8); these could be merged
by modifying label specificity (via hyperparameters) or via post-processing. Dyssynchronies return when the
flow trigger (‘Q-trigger’) is returned to its initial value, near 14.25 h. Breaths during brief changes to spontaneous
breathing around 20 and 23 h have markedly different pV characterizations (discontinuous label #12, tan). The
interim period (20.5-22.5 h) consists of primarily normal breaths (label #13, brown) under the default adaptive
pressure volume control mode.

Intra-label variability: a closer look at label #10 of patient 11

The record of patient 11 (Fig. 3) indicates no MV settings changes during 15-21 h. One phenotypic breath
dominates this period (c, blue dashed outline) while various PVD labels intimate variability worth scrutiny.
Principal components during this interval (e) reveal structural waveform changes (f,g) that are not clearly
identified as sub-phenotypes. While pressure characterizations (f) suggest the differences are attributable to
pressure plateau pressure, full characterization indicates ~35% variability in tidal volume (g) as well. This
continuous variation lacks a natural discretization without altering the similarity metric, such as including other
data. Figure SI 3 demonstrates a case where intra-label variability may be discretely resolved.
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Cohort-scale phenotyping
The collection of 721 phenotypes generated from pipeline application to 35 individual records can be used to
identify systemic LVS features of the cohort. Figure 4 presents key properties and labeled data distributions of
16 similarity-based clusters identified in pool of individual phenotypes. This approach to segmenting the full
dataset, relying on hyperparameters and not generalizing from these data, further minimizes variability while
displaying consistent waveform properties and ventilator settings. Labels mix patients (b) while separating PEEP
(c), with exceptions for uncommon ventilation modes (d) applied to few patients. Table 2 and Fig. 4 quantitatively
validate labeling of original data in the general settings. Specifically, labels consistently align with structured
properties of the LVS data. Figure 5 shows the associated non-dimensional waveform characterizations; PEEP,
tidal volume, and peak pressure features are used to normalize these waveform data elements across patients.
Granularity of cohort meta-characterization depends on UMAP-DBSCAN hyper-parameters (UMAP:
neighborhood size 12, minimum distance 1; DBSCAN: epsilon 2.7, min points 5). The small sample size
(IV = 721) lead to robust UMAP representation but high sensitivity to neighborhood size in DBSCAN (SI
D). Chosen parameters aimed to maximize the number of phenotypes while easily communicating waveform
characterizations in an array of figures; the results are qualitatively similar for nearby parameters. Table 2
summarizes the occurrence and properties of the 16 cohort phenotypes.

Synthesis

Experiment results provide insight into the structure and heterogeneity of empirically phenotypes constructed
for 2-day ARDS patient LVS+care data. Based on equally weighted data elements, these groupings primarily
organized around ventilation mode and PEEP followed by tidal volume and internal LVS variability, giving a
hierarchical organized by key MV settings and waveform instability. LVS behavior is shown to vary in several
ways under MV settings stationarity that may be of particular interest for VILI detection and tracking of ARDS
progression. This local variability can be resolved by phenotypes as in Fig. 2a, during hours 5-12, 17-18, 22-23)
and Figure 3a (hours 3-14). Groupings can also mask important breath heterogeneity if phenotypes are too
coarse (e.g., Figure SI le-g and Figure SI 3. Resolution of behavior categories is improvable through UMAP-
DBSCAN parameter optimization or local analysis, such as application of PCA. Heterogeneous phenotypes (e.g.,
Fig. 3e-g) also arise in diverse groups of breaths with continuous local similarity (e.g., Fig. 1, step 4, label #4 in
red). Weighting feature components in the similarity metric can improve sub-type resolution of such behaviors.
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Fig. 4. Membership and data properties associated with cohort phenotypes. Points in (a-d) correspond to

721 individual phenotypes shown in unitless 3D UMAP coordinates that describe similarity (only two axes
depicted, for simplicity). Labels (a) mix patients (b) while defining empirical partitions of other factors of
patient data (c-h). Groupings separate PEEP (¢,g) and ventilator modes (d), which are arguably among the
most important ventilator feature elements. Structured distributional separation occurs for continuous breath
variables such as tidal volume (e), driving pressure (f), and elastance (V1 /(Pmax — Pbase)), g)- PEEP (c) and
ventilator mode (d) of UMAP labels identify the median value of each individual phenotype; probability
densities (e-h) are computed from original data and colored according to (a). Labels and colors of (a) define
the those of (e-h) and Fig. 5. Modes: spontaneous (SPONT), pressure controlled (PC), synchronized controlled
(SC), and adaptive pressure volume controlled (APVC).
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Label # | Total% | Vpat | Npheno | poase | Ap Vi | AP/Vr | MV mode
1 155 |23 101 10 12.1[37] | 63[10] | 19[0.6] | APVCMV
2 138 |22 101 12 142(33] | 60[11] | 23[1.0] | APVCMV
3 14 |1 52 8 127[41] |79(1.3] | 1.5(04] | PCMV*
4 8.4 12 37 14 12.2[6.9] 5.9[0.2] | 2.0[1.3] APVCMV*
5 7.3 11 32 12 15.1(13.6] | 59(0.1] | 27[24] | APVCMV
6 69 |17 |s8 11 13.1(29] | 62[13] |21(0.5] | APVCMV
7 6.3 8 49 14 12.6[2.9] 6.2[1.3] | 1.9[0.7] APVCMV
8 62 11 |49 16 134[23] | 6.0[0.6] | 22[0.6] | APVCMV
9 62 |9 51 16 159(60] |59(2.8] | 26[24] | APVCMV
10 4.1 11 34 8 97[2.7] |68[L5] | L.6[0.4] | APVCMV
11 37 |5 25 5 107[02] | 65[0.7] | 1.7[0.2] | PCMV**
12 34 14 |22 5 89[4.1] |7.0(24] | 12(08] | APVCMV*
13 25 |6 10 8 11.1[14] | 66[1.0] | 1.7[02] | APVCMV
14 1.7 11 27 14 13.3[2.9] 6.0[1.3] | 2.0[0.8] APVCMV
15 15 |5 14 10 135[19] | 65[03] | 21[04] | APVCMV
16 11 10 16 14 213(95] |56[1.8] | 3.7[3.1] | APVCMV

Table 2. Cohort label properties. Columns identify: cohort-level label, percentage of 10-s windows, number
of contained patients (/Npat), number of contained individual phenotypes (Npheno), median[IQR] of baseline
pressures (Pbase, typically PEEP) and pressure change (Ap := Ppeak — Pbase) in cm H,0O, median[IQR] of
tidal volumes (V) in mL/kg, and dominant associated ventilator mode. Values are determined from breath-
level source data whose individual phenotypes share a given cohort phenotype. *=5-10% SPONT, **=10-20%
SPONT, ***= 40% SPONT.
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_— 12
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Fig. 5. Non-dimensional waveform characterizations. Pressure-volume traces correspond to median (bold)
and nearby (thin) window characterizations of each cohort phenotype. Labels and colors correspond to Fig.
4a. Vertical and horizontal scales axes correspond to V := V/Vr and p := (p(t) — Prase)/ (Ppeak — Pbase)s
respectively, per Fig. 4e—g. The dashed line indicates baseline pressure. Cohort phenotypes differentiate
waveform shape characteristics and pressure-volume coordination in conjunction with associated scaling
factors. Intra-group variation is naturally high given the low specificity of each type.
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Additionally, cohort scale analysis is easily computed from a cohort of individual phenotypes. The resulting
phenotypes are specific to the data and algorithm parameters and do not generalize, but the modular pipeline
process may be adapted and manipulated for more specific purposes. Such categorization provides a coarse but
scalable and unified basis for analyzing the evolution of LVSs in terms of their consistent statistical properties.

Discussion

This study presents a framework for extracting meaningful, low-dimensional characterizations of lung-
ventilator system (LVS) states from observable data of managed patient-ventilator systems. Consequently, the
observable LVS data, whose contents define a limited context of application, are reduced to a discrete set of
patient-level phenotypes. The phenotyping pipeline was developed as a generalized process to accommodate
many methodological choices and hypotheses about which LVS factors are important in a given application. This
general methodology contrasts with the construction of a generalized output, as source data insufficiently sample
the breadth of MV processes including other ventilators, sites, patient characteristics, and care protocols. The
approach instead provides a practical means for researchers to explore LVS evolution from data with significant
heterogeneity caused by ventilator adjustments and changes in patient-ventilator dynamics. In particular, the
data-specific phenotypes naturally disentangle effects of MV settings from the human-machine interaction
of the LVS. Research toward improving and personalizing MV benefits from phenotypes that include both
ventilator settings and patient-ventilator interaction. Both LVS factors are necessary to accurately analyze MV
consequences in light of patient and time heterogeneity. The phenotype identification process is intended for
research rather than for MV decision support. The need for a framework to develop hypotheses about temporal
effects of MV and local outcome validation targets from retrospective data motivated the developments presented
in this work.

Experiments on 35 ICU ARDS patients, including 8 COVID-19 cases from 2020, performed segmentation
with uniform LVS feature weights. Fixed similarity assumptions and hyperparameter optimization ranges
were used to define individual-scale phenotypes, which were later compared in cohort-scale phenotyping. LVS
categories reflected null hypotheses that prioritized no particular features of the included data in phenotype
definition. Individual results showed that phenotypes primarily organize by ventilator mode, PEEP, and tidal
volume. This effectively separated care processes from the patient-ventilator component of the data generating
system, while analysis of periods under persistent VM settings showed LVS changes to be more complicated.
Whereas MV settings changes are abrupt, LVSs exhibit a variety of behaviors including continuous but non-
monotonic progression (Fig. 3), transient behavior (Fig. SI 1 ), and alternation between both similar and non-
similar breath patterns (Fig. 3). Phenotype resolution could be adjusted to further delineate certain discrete
variations, while continuous changes resist discretization without feature weighting or other source data.
Continuous changes may result from apparatus properties (such as changes in tube compliance, resistance from
accumulated moisture and bends, and leakage) as well as effects of patient sedation. However, they may also
suggest progressive effects of lung physiology under MV. Investigating such behaviors first requires identifying
categories, like those developed in this work, for which heterogeneity can be calculated.

Validation and interpretation

The created typologies are based on similarities among observable data, making them phenotypes of patient-
ventilator-care data representative of LVS behaviors. Clinical validation of output requires quantitative
comparison with patient state or conditions®’, but such biomarkers of breath behavior do not currently exist.
Further, global outcomes (discharge disposition, 30-day mortality, etc.) are unlikely to relate to local behaviors
observed during 1-2-day segments of MV encounters. Investigation demonstrated label consistency in relation
to changes in PEEP, ventilator mode, and tidal volume for phenotypes based on naive hyperparameters and an
uninformative similarity metric. The analysis qualitatively validates practical application by identifying what
LVS behaviors computed phenotypes did and did not differentiate as well as what variability can be isolated via
hyperparameter tuning.

Phenotypes are more granular than a ventilator settings-based classification (Table SI 1 ) and more
generalized than PVD labels, which target specific behaviors. Label heterogeneity suggests potential label sub-
types so that hierarchical or multi-stage clustering are important refinements in future applications. Although
10-second window scalar phenotypes are directly incomparable to breath-wise vector types of PVD, changes in
label-described behavior strongly coordinate with changes in PVD type. Notably, phenotype variability analysis
and PVD labels identified qualitatively similar temporal patterns (e.g. “Patient-level phenotyping” and SI C)
without dyssynchrony labels informing LVS descriptors. Additionally, esophageal pressures were not encoded
into phenotypes but are required to confirm certain PVD types?!.

Cohort labels demonstrably partition data into groups albeit with an expected high degree of variability
given the reduction of ~1.5 M breaths to 16 categories. Their identification required waveform component
normalization to ensure patient comparability that would benefit from stratified analysis based on mode, PEEP,
and primary control variables. Despite the coarseness of categories, signs of dyssynchrony are apparent in these
median pV shapes such as ineffective triggering (sub-baseline pressures in #5, #15, and #16) and flow limitation
(inspiratory coving in #3, #11, and #15). This indicates that some of the cohort scale phenotypes, while broader
and less specific than PVD types, center on elements of dyssynchronous behavior. Including PVD labels or other
physiological information in feature descriptors may better align phenotypes with PVD labels in applications
targeting LVS specific behaviors.

Innovations, limitations, and improvements
This work discretized joint patient-ventilator-care system data as holistic units to overcome limitations on
analysis imposed by data complexity and heterogeneity. This phenotyping approach is generalizable, suitable
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for other datasets, and can accommodate different feature and clustering options. The process and results are
geared toward data-driven research use rather than clinical informatics or clinical decision support. In scientific
application, practitioner guidance is required to inform data features and their importance relative to target
observable investigated via LVS phenotypes. Nevertheless, the developed method and specific implementation
assumes certain conditions and has limitations.

The presented phenotyping pipeline outputs are neither generalizable nor clinically validated. This is a
consequence of insufficient data to sample all LVS behavior, lack of a “gold standard” MV breath typology, and
absence of LVS state biomarkers. Target biomarkers would aid in feature design of the pipeline through clinical
knowledge and physiology regarding how such observables relate to LVS data used here. What the phenotyping
process provides, however, are categories to which clinical consequences may be attributed in further study.

The pipeline ignored uncommon esophageal pressure data, which are essential to confirm certain
dyssynchronies, because they require high model resolution to resolve and have inconsistencies (gaps, drift) that
limit continuous time characterization. However, these data were used to manually identify PVD in breaths used
in the supervised PVD labeling® featured in validation. The waveform parametrization also relies on ventilator-
identified breath cycles, so the pipeline lacks the flexibility needed to identify double-triggered PVD events that
occur over multiple ventilator cycles. Analysis omitted important potential influences such as neuromuscular
blockade use, position/posture, and airway secretions whose data were not available. LVS descriptors easily can
incorporate these factors to better resolve care-stationary periods and more precisely resolve LVS variability.
Additionally, data reflect only one ventilator model; additional harmonization is needed to compare breaths
generated by different ventilators because mode settings and pV observation points may differ.

Finally, the group identities of empirical phenotypes depend directly on hyperparameters that govern
similarity and specificity. Fixed UMAP parameters reflected a constant local similarity assumption, while
DBSCAN parameters were optimized over a narrow domain to account for differences in record length. The
dimensional reduction process employed a similarity metric with uniform feature weights to limit external
assumptions. Practical applications should incorporate background hypotheses to target feature weights that
emphasize key LVS data features of interest. Further improvements can easily involve outer-loop targeting of
application-specific objectives beyond the generalized scope of this work.

Concluding remarks

This work developed a flexible categorization process for context-constraining data timeseries from patient-
ventilator system under managed care. The research outlined a process of empirically discretizing relevant
observational data capable of isolating patient-ventilator dynamics from care processes and labeling data subsets
based on similarity. Assessing phenotype local heterogeneity is an essential first step in temporal analysis of MV
patient data within the context of applied care. Ongoing work toward formulating hypotheses about system
trajectories related to applied care, local variability, and outcome motivated providing a shared low-dimensional
basis for LVS comparison, which also motivated the construction of cohort-scale phenotypes. These ongoing
efforts are inextricably linked with clinical validation, which requires that quantified clinical consequences of
MYV be tied to phenotypes through hypotheses involving both phenotype definitions (viz., the data and pipeline
choices defining them) and the nature of behavior-to-consequence association. Converting LVS dynamics to
sequential progression through finite states allows the application of symbolic dynamics®®-%°, game theory®!,
discrete-time Markov chains, and large language models. Such tools can extend this work’s investigation to
patient trajectory patterns and their consequences to improve understanding of dynamical effects of current
MYV protocols on patient-ventilator systems.

Data availability
The clinical datasets used and/or analyzed during the current study are not publicly available due to ongoing
collection, lack of patient consent for broad dissemination of their data, and data size (25 GB). Data are available
by reasonable request to the author (J.N. Stroh, jn.stroh@cuanschutz.edu) and will require a data use agreement
with the data owners.
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