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Deep learning tools based on computer vision have emerged as alternative methods for assessing 
radiographic image patterns. These approaches have been explored for various forensic applications, 
including sex and age estimation. This study aimed to evaluate the diagnostic accuracy of a 
Convolutional Neural Network (CNN) in classifying radiographic images by sex and age, focusing on 
the nasal aperture as the morphological feature of interest. The sample comprised 9,349 radiographs 
annotated for the nasal aperture region. A CNN architecture based on the You Only Look Once series—
specifically the intermediate version 11 for object classification (YOLO11m-cls)—was implemented, 
with training performed using 5-fold cross-validation. The overall accuracy rate was 74% (ranging 
from 61% to 88%), and the area under the Receiver Operating Characteristic (ROC) curve was 0.74. 
Correct classification rates were 73% for males and 75.17% for females. Accuracy varied with age, 
showing a 10% decrease among younger individuals compared to older ones. The study confirmed 
the reduced expression of sexually dimorphic traits in younger individuals and supported existing 
recommendations against performing sex estimation in subadults. Within the present methodological 
framework, the nasal aperture demonstrated limited applicability for sex estimation in the studied 
sample, with an accuracy rate corresponding to approximately one misclassification out of every four 
predictions.
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In forensic science, human identification often relies on skeletal and dental morphological features to reconstruct 
a postmortem biological profile1. This profile can be composed of the estimated sex, age, population affinity, 
and stature of an individual2. Modern forensic anthropology has benefited from computer vision and artificial 
intelligence technologies to enhance and optimize its practices3. Some of these resources rely on the virtual 
analysis of the human anatomy by means of three-dimensional (3D) and bidimensional (2D) medical imaging, 
such as computed tomography4,5 and traditional radiography6,7 respectively. While the former allows realistic 
and detailed visualization of bones and teeth,8 the latter offers the advantages of faster data processing and 
transfer, as well as the ability to acquire and store large samples in small spaces. These advantages are especially 
useful when operating computer vision solutions via Convolutional Neural Network (CNN). This is because 
CNNs are deep learning models designed to analyze visual data through successive layers that detect image 
patterns,9 enabling complex feature classification and detection. Recent forensic science studies employing CNN 
to detect and classify anatomical features in radiographs have demonstrated applicability of artificial intelligence 
for sex and age estimation10–15. Among the improvements foreseen for forensic practice, reduction in operator 
interventions and faster processing are expected7.

The nasal aperture is a maxillofacial region of interest when it comes to reconstructing a biological profile 
given its potential populational-16 and sex-specific19,20 variations. For instance, authors19 have demonstrated 
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statistically significant differences between males and females based on the morphometric analyses of the nasal 
width and height in computed tomography scans. However, the mean accuracy rates were below 65%.19 Sexual 
dimorphism has also been reported in the scientific literature when measurements are taken directly from dry 
human skulls20. In this context, nasal height has been highlighted as a sexually dimorphic anatomical feature, 
being greater in males than in females20. Regarding shape, authors have found an absence of sexual dimorphism 
in the nasal aperture in specific populations, namely Black and White South African skulls21. Anthropological 
studies such as these have contributed to the current body of knowledge in the field. However, subsequent 
investigations can be proposed to further expand the scientific understanding of the nasal aperture’s applicability 
for sex estimation. To this end, radiographs of the viscerocranium may serve as valuable resources to facilitate 
large-scale data collection and analytical compatibility with CNN models.

Based on the foregoing, this study aimed to test the diagnostic accuracy of the nasal aperture for sex estimation 
using a semi-automated CNN approach applied to radiographic analysis.

Materials and methods
Study design and ethical aspects
In this study, a diagnostic accuracy test was designed to compare the performance of a CNN (index test) in 
estimating the sex of children, adolescents and young adults through analysis of the nasal aperture on panoramic 
radiographs. The assessment of medical images was conducted retrospectively using an existing database of 
patient records. All radiographs were acquired exclusively for diagnostic, therapeutic or dental treatment 
follow-up purposes, ensuring that no patient was exposed to ionizing radiation solely for research. The outlined 
investigation protocol received approval from the Institutional Committee of Ethics in Human Research at the 
Faculdade São Leopoldo Mandic (Protocol No. 76809023.9.0000.5374) and was reported in accordance with the 
Standards for Reporting of Diagnostic Accuracy Studies (STARD)22, while addressing current key considerations 
regarding dental artificial intelligence research23. The images utilized in this study constituted secondary data 
sourced from an established radiology database (Center of Oral Radiology and Imaging). Access to the data 
was authorized through informed permission granted by the database’s legal custodian. Given the retrospective 
design and the use of anonymized imaging data, the Institutional Committee of Ethics in Human Research at the 
Faculdade São Leopoldo Mandic formally waived the requirement for direct informed consent from individual 
patients.

Participants
The sample consisted of panoramic radiographs (n = 9349) from Brazilian males (n = 4375, 46.8%) and females 
(n = 4974, 53.2%), aged between 6 and 22.9 years (Table 1). The inclusion criteria comprised individuals with at 
least one radiograph with known date of image acquisition, date of birth and recorded sex. The exclusion criteria 
included radiographs showing nose piercings, evidence of trauma or surgery in the middle third of the face 
(e.g., orthopedic fixation devices) or other metallic apparatus in the viscerocranium, or visible signs of skeletal 
deformity. Further dataset partitioning was performed at the participant level, meaning that only one image 
from each patient was assigned to a single split and not to another (i.e. train or validation), thereby preventing 
data leakage and promoting unbiased evaluation of model generalization.

Age interval Males Females

6-6.99 284 297

7-7.99 341 338

8-8.99 292 333

9-9.99 301 330

10-10.99 200 198

11-11.99 210 184

12-12.99 200 212

13-13.99 195 203

14-14.99 199 208

15-15.99 198 223

16-16.99 271 200

17-17.99 200 200

18-18.99 200 196

19-19.99 216 212

20-20.99 417 584

21-21.99 307 517

22-22.99 344 539

Total 4375 4974

Table 1.  – Sample distribution by sex and age. Age intervals expressed in years. Sample size (n): 9349, being 
46.8% males and 53.2% females.
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Analysis
Image anonymization was performed by cropping out the radiographic frames containing the patients’ age and 
sex and image side indicator (left/right). Subsequently, each radiograph was assigned an alphanumeric code 
to facilitate further de-identification. All radiographs were originally similar, as they were obtained from a 
single oral radiology clinic. However, to ensure higher standardization, they were pre-processed to preserve 
their size, image detail, spatial resolution, and quality. Image annotation was performed by five trained forensic 
odontologists experienced in annotations on panoramic radiographs6,7,10,14 using Darwin V7 software package 
(Darwin V7 Labs, London, UK) with its native bounding-box tool. The bounding-box enabled selection of the 
region of interest (ROI) on panoramic radiographs by manually dragging a rectangular outline over the image. 
In the present study, the ROI was the nasal aperture (Fig. 1), enabling a margin of 8–10% to preserve the nasal 
aperture contour and best fit its anatomic context. The images were resized to 224 × 224 pixels, converted to 3 
channels (replication of the grayscale), scaled to the [0,1] range, and min–max normalized per image. Image 
augmentation was applied to the training dataset and included the following transformations with the indicated 
probabilities: random horizontal flip (p = 0.5), rotation of ± 7° (p = 0.5), translation of ± 6% (p = 0.3), zoom 
ranging from 0.9 to 1.1 (p = 0.3), brightness/contrast variation of ± 10% (p = 0.3), Gaussian noise with σ = 0.01 
(p = 0.2) and mild sharpening (p = 0.2). Aggressive cropping was avoided to prevent truncation of the superior 
border of the ROI (nasal aperture region, often located close to the upper limit of the panoramic radiograph).

A deep learning architecture based on the YOLO11m-cls model24,25 was trained over 100 epochs (Table 2). 
Recent studies in the scientific literature have demonstrated the potential of this model series for medical imaging 
applications and have specifically supported its use in two-dimensional radiographic assessments26. This version 
of the model incorporates advanced architectural components, including the introduction of the C3k2 (Cross 
Stage Partial with kernel size 2) block, Spatial Pyramid Pooling – Fast (SPPF), and C2PSA (Convolutional block 
with Parallel Spatial Attention), which contribute to improving the model’s performance in several ways, such 
as enhanced feature extraction.

Categorical cross-entropy loss and L2 regularization (weight decay = 5 × 10⁻⁴) were used in the training, 
implemented in the stochastic gradient descent optimizer with a learning rate of 0.0125, momentum of 0.937, 
100 epochs, and a batch size of 16. Model evaluation was performed with 5-fold cross-validation,27,28 where in 
each iteration approximately 20% of the images (n ≈ 1,869–1,870) were retained as an external test set, while 
from the remaining ~ 80% (n ≈ 7,479–7,480), about 10% was reserved exclusively for monitoring the training 
process. Early stopping was not applied; instead, at the end of 100 epochs, the checkpoint with the lowest 
monitoring loss was selected and subsequently evaluated on the corresponding test fold. We reported the 
average performance across all five folds. The choice of k = 5 represented a balance between computational cost 
and robustness: increasing k linearly raises the training cost (e.g., k = 10 would double the computational burden 
without proportionally improving precision), while with n = 9,349, each fold provided a sufficiently large test set 
to yield stable estimates and a training set large enough to preserve generalization. This arrangement ensured 
that all images were used once as test data, allowed confidence interval estimation from the distribution of fold 
scores, and provided a practically robust yet computationally feasible evaluation strategy. The computer vision 
analysis was performed by two experienced engineers.

Test methods
The reference standards to which the CNN was compared were the individuals’ documented sex (binary: male 
or female) and their chronological age (obtained between the date of birth and date of image acquisition). 
YOLO11m-cls was tested based on its diagnostic performance to classify individuals according to sex after 
analyzing the nasal aperture in all the radiographs (combined sample). Binary classifications considered the 
decision cutoff of 0.5. Next, separate analyses were conducted to assess the diagnostic accuracy of the CNN by 
sex (correct classification of males and females) and by age group. In a subsequent experimental procedure, 
the CNN’s performance was exclusively evaluated for classifying individuals based on age (> 15 or ≤ 15 years). 
Multiclass task decisions considered the highest predicted probability. In this phase, the sample distribution 
was balanced with 4,403 individuals over 15 years and 4,946 individuals age 15 years younger. A subsequent 
age-based analysis was performed separately for males and females. Sample distribution was as follows: males 
over 15 years (n = 1,955), females over 15 years (n = 2,448), males aged 15 years or younger (n = 2,420), and 
females aged 15 years or younger (n = 2,526). It should be noted that this approach used the 15 years as the cut-
off to distinguish younger and older individuals because the bony framework of the nose is estimated to grow 
more noticeably until around 15 years of age in males, and at an earlier age in females29. Moreover, this study 
acknowledges the significant limitations of sex estimation in subadult individuals and emphasizes that it should 
not be recommended in practice, particularly when using the nasal aperture as the evaluated parameter. Instead, 
the analysis of morphological features of viscerocranium and their differences between sexes across age groups 
was proposed and presented as an educational and exploratory approach, aiming to enhance basic anatomical 
understanding and supporting further research in the field.

To quantify the diagnostic accuracy of the nasal aperture in classifying individuals by sex and age, this 
study used metrics commonly employed to assess deep learning models in forensic computer-vision: accuracy, 
precision, recall, sensitivity and specificity. The outcomes were tabulated and visually presented using confusion 
matrices, Receiver Operating Characteristic (ROC) curves with their Area Under the Curve (AUC), and 
Gradient-weighted Class Activation Mapping (Grad-CAM). To account for variability across different datasets, 
mitigate overfitting, and ensure that performance metrics were not biased towards any specific part of the 
dataset, this study calculated the average of each metric across all five folds to obtain an overall measure of 
model performance. Computations were performed on a Linux machine running Ubuntu 22.04, equipped 
with an AMD Ryzen 9 7950X processor, 2 Nvidia™ RTX A5500 24 GB GPUs, and 128 GB of DDR5 RAM. 
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Fig. 1.   Workflow of a convolutional neural network (CNN) applied to panoramic radiographs for the 
estimation of sex and age. A total of 9349 radiographs from individuals aged from 6 to 22.99 years old (y. o.) 
were used. Images, sex, and chronological age were provided as input features. Data were split into five folds 
for cross-validation, with training (blue) and validation (yellow) sets. Image preprocessing was applied prior 
to CNN feature extraction through convolution and pooling layers. Fully connected layers integrated extracted 
features to predict two outcomes: sex (male [♂] vs. female [♀]) and age (> 15 years old vs. ≤ 15 years old).
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All models were developed using TensorFlow API30 version 2.18. Python 3.8.10 was employed for algorithm 
implementation and data wrangling31.

Results
When sex was considered a binary outcome for the CNN’s performance in analyzing the nasal aperture on 
panoramic radiographs, accuracy, precision, recall, sensitivity, and specificity all reached approximately 74%. 
For the combined sample, accuracy rates ranged from 61% to 88%.

In males, accuracy rates ranged from 50% to 90%, while in females they ranged from 54% to 86% (Table 3). 
The correct classification rate was 73% for males and 75.17% for females (Fig. 2). The area under the ROC curve 
was 0.74 (Fig. 3).

When evaluating the CNN’s performance in classifying individuals as below or above 15 years, the correct 
classification rate was 83% for those older than 15 years and 89.5% for those aged 15 years or younger (Fig. 4). 
The correct classification rate for males older than 15 years was 80.5% compared to 76.5% for females. Among 
individuals aged 15 years or younger, the correct classification rate was 72.06% for males and 84.18% for females 
(Fig. 5).

Loss function analysis for sex, age and combined predictions demonstrated a pattern of relevant learning up 
to 50 epochs, with a plateau and subsequent divergence between training and validation curves (Fig. 6).

Grad-CAM analysis revealed stronger signals originating from the central mineralized tissue of the nasal 
aperture, including the nasal septum, as well as from the upper portion of the nasal aperture (Fig. 7).

Discussion
Among the various morphological features of the viscerocranium, the nasal aperture is of special interest 
due to its potential applications in anthropological assessments of population affinity, sex, and age32. To date, 
studies on this topic have been conducted using morphometric19,20,33,35 and morphoscopic analyses,21 through 
direct examination of dry skulls20,21,33 or via medical imaging19,35. The latter has been conducted using imaging 
modalities that are either 3D,19,34 such as computed tomography scans, or 2D,36 such as extraoral radiography.

The present study revisited the topic using artificial intelligence solutions—specifically, CNN-based computer 
vision. A distinctive feature of the current methodological design was the sample composition, which included 
subadults (children and adolescents) as well as young adults. It is important to highlight that sex assessment in 

Accuracy

Age Total Males Females

6-6.99 0.613333 0.684211 0.540541

7-7.99 0.680851 0.608696 0.750000

8-8.99 0.621951 0.627907 0.615385

9-9.99 0.724138 0.666667 0.777778

10-10.99 0.792453 0.807692 0.777778

11-11.99 0.645833 0.500000 0.818182

12-12.99 0.745763 0.709677 0.785714

13-13.99 0.800000 0.937500 0.684211

14-14.99 0.773585 0.750000 0.823529

15-15.99 0.796610 0.794118 0.800000

16-16.99 0.805556 0.837209 0.758621

17-17.99 0.886364 0.909091 0.863636

18-18.99 0.734694 0.781250 0.647059

19-19.99 0.650000 0.633333 0.666667

20-20.99 0.800000 0.767857 0.826087

21-21.99 0.800000 0.853659 0.770270

22-22.99 0.755556 0.684211 0.807692

Table 3.  Accuracy rates presented per age category and sex. Age categories expressed in years.

 

Component Specifics

Backbone YOLO11m24,25

Learning rate 0.0125

Optimizer SGD (momentum: 0.937)24

Batch size 16

Epochs 100

Table 2.   Model architecture. Superscript numerals indicate references.
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individuals under 12 years of age is generally not recommended due to a lack of reliable methods36. The rationale 
for the sample is based on the understanding that, while a sample composed entirely of mature specimens would 
yield more accurate sex estimates, including immature individuals in this diagnostic accuracy experiment allows 
for investigation of how age may influence the expression of morphological features between males and females. 
By doing so, the reduced expression of sexually dimorphic features at a young age was confirmed. For example, 
when the CNN’s sex estimation performance is analyzed separately for individuals under 12 years, the mean 
accuracy rate becomes 67%, representing a 10% decrease compared to individuals aged 12 years and older (Table 
3). This decrease was even more pronounced among males, with a 14% drop. Interestingly, the accuracy rate 
observed using the 12-year threshold remained consistent when the threshold was raised to 15 years. In other 
words, accuracy rates remain considerably low even when the bony framework of the nose is expected to be more 
stable—after the age of 15 years, at least—30 compared to earlier immature phases. This finding underscores the 
importance of considering age37 when planning sex assessment and supports a previous study21 that suggested a 
possible absence of sexual dimorphism in the nasal aperture.

Authors have demonstrated morphological variance of the nasal aperture between populations21. In the 
present study, radiographs were sampled from an existing image database of the Central-West region, which 
likely included Brazilians with diverse populational affinities. A previous radiographic study with a Brazilian 
sample analyzed 97 individuals and found highly significant differences between males and females, with males 
exhibiting greater height, width, and area of the nasal aperture35. Our findings may differ based on methodology, 
including the larger sample size in the present study, the use of different extraoral imaging modalities, and the 
application of deep learning and image pattern analysis rather than the morphometric assessment of height, 
width, and area used by the previous authors35.

Fig. 2.  Confusion matrix comparing real (documental) and predicted sex of the present sample’s males (M) 
and females (F).
 Legend: The correct classification rate of males was 73%, while for females it was 75.17%.
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Compared to other maxillofacial features used for sex assessment, the nasal aperture has demonstrated 
inferior diagnostic accuracy. A study, applying landmarking to computed tomography scans, demonstrated up to 
95% of sex classification accuracy after the analysis of adult human mandibles through machine learning. High 
accuracy rates have also been observed for statistical models based on the combination of cranial measurements 
– including the nasal aperture38,39. This phenomenon can be justified firstly by sample characteristics, covering 
only the adult age range, where sexual dimorphism can be more pronounced. Secondly, by the comprehensive 
approach of the human skull integrating several anatomic features that may express sexual differences. The 
mandible is an example of a bone that undergoes modeling and remodeling influenced by the surrounding 
musculature. Strong muscles, such as the masseters, insert onto the mandible and generate traction vectors in 
different directions. These biomechanical forces contribute to morphological changes and introduce variables 
that can be closely associated with sexual dimorphism. Other examples extend also to the posterior region of the 
skull, such as the sternocleidomastoid muscle and its influence on modeling the mastoid process region, possibly 
leading to differences37 between males and females.

To our knowledge, among the available studies assessing the nasal aperture, the present work is the first to 
apply CNN within an AI-based computer vision framework and includes the largest sample to date. As a result, 
a robust deep learning model was trained, contributing valuable insights to the scientific literature. Given the 
unsatisfactory accuracy rates and the high risk of misclassification, this study does not recommend using the 
nasal aperture as a reliable sexually dimorphic feature, especially considering population-specific variations. 
Moreover, careful interpretation is warranted when considering the study’s methodological approach to testing 
the CNN’s classification of age, which divided the sample into groups below or above the 15-year threshold. At 
first glance, the observed correct classification rates may seem promising; however, this setup posed a relatively 
simple task for the CNN—distinguishing radiographs of children as young as 6 years from young adults up to 
22.9 years old using 15 years as the cutoff. Therefore, moderate to high correct classification rates were expected 
but offer limited practical applicability. Given the suboptimal correct classification rates and the frequency of 
misclassifications, alternative methods should be preferred to the nasal aperture for age assessment. In this 
regard, assessing permanent tooth development using CNN has shown to be a useful approach7,10.

Fig. 3.  Receiver Operating Characteristic (ROC) curve for the assessment of sex. The Area Under the Curve 
(AUC) was 0.74 considering the true positive and false positive values.
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In addition to the presented limitations, the type of imaging modality used in this study should also be 
considered. Panoramic radiographs, while common in extraoral imaging and often available in large datasets, 
capture the nasal aperture with the upper region typically positioned near the superior edge of the image. This 
positioning can cause the outline to appear smoothed or less defined. Moreover, the rotational acquisition 
technique employed in panoramic radiography provides a broad view of the maxillofacial structures but can also 
introduce40. To mitigate these limitations, the images were collected from an oral radiology center that follows 
standardized protocols. Additionally, pure morphometric analyses based on linear measurements—which can 
be biased in panoramic radiographs—were avoided by employing a computer vision approach that assesses 
image patterns. Future radiological studies should consider imaging modalities with fewer distortions, such as 
posteroanterior Caldwell radiography35,41 or Cone Beam Computed Tomography (CBCT). The latter allows for 
realistic assessment of the viscerocranium and dentomaxillofacial structures, along with 3D navigation39.

Another input for future studies is increasing the sample size and exploring not only a single CNN, but also 
alternative models. This is especially relevant because the training curves for all tasks showed a progressive 
reduction in training loss across epochs, indicating that the models were learning patterns from the radiographic 
data. However, the validation loss exhibited a distinct plateau followed by mild to moderate divergence from 
the training curve. This reflects a certain degree of overfitting, meaning that while the models continued to 
improve on the training data, their performance on unseen validation data stabilized or even worsened slightly 
around fifty epochs. Such behavior can be expected in deep learning applications with relatively limited sample 
sizes, where model capacity can exceed the available variability in the dataset. This finding corroborates the 
need for larger and alternative (focusing on sex estimation of adults, for instance) datasets to support stronger 
generalization, and testing additional architectures, regularization strategies, or hyperparameter adjustments in 
future research. Despite this, the models were still able to capture meaningful trends and provide results that 

Fig. 4.  Confusion matrix comparing real (chronological) and predicted age of individuals divided into 
groups > 15 years and ≤ 15 years. The correct classification rate of individuals > 15 years was 83%, while for 
individuals ≤ 15 years it was 89.5%.
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Fig. 6.  Loss function analysis over 100 epochs for sex (A), age (B) and the combined (C) classification tasks. 
Training (blue) and validation (orange) loss curves showing steadily decrease for the former and a plateaued-
increase for the latter after 50 epochs.

 

Fig. 5.  Confusion matrix comparing real (chronological) and predicted age of individuals divided into 
groups > 15 years and ≤ 15 years separately for males (M) and females (F). The correct classification rates of 
females and males > 15 years were 76.5% and 80.5%, respectively, while for females and males ≤ 15 years the 
results were 84.18% and 72.6%, respectively.

 

Scientific Reports |        (2025) 15:40784 9| https://doi.org/10.1038/s41598-025-24593-5

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


support the feasibility of computer-aided approaches in forensic odontology, while making clear that expert 
confirmation remains indispensable.

In addition to these methodological perspectives, future research should also incorporate external validation 
to confirm the generalizability of our findings. External validation using independent datasets from different 
clinical centers is therefore important to test whether the patterns detected in the present study persist across 
populations, imaging protocols, and equipment. Such validation would not only demonstrate reproducibility 
and address potential biases linked to local features, but also clarify the extent to which computer-aided analysis 
of the nasal aperture can contribute to forensic applications, reinforcing that this structure alone is not a robust 
tool for definitive sex or age assessment.

Conclusion
Under the present methodological conditions, the nasal aperture demonstrated limited discriminative power 
for sex classification, with performance metrics indicating an accuracy rate equivalent to one misclassification 
per four cases. A secondary, confirmatory finding was the notable drop in accuracy among younger individuals 
compared to older (mature) ones.

Therefore, the diagnostic accuracy metrics of the nasal aperture assessed from extraoral radiographs can be 
considered unsatisfactory to support its use as the sole anatomical feature for radiographic sex assessment via 
CNN.

Data availability
The data supporting this study’s findings are available from the project supervisor, Prof. Ademir Franco, upon 
reasonable request and with permission from the Center of Oral Radiology and Imaging.
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