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Certain correlation structures in the data covariance matrix (DCM) used for generalized least squares 
(GLS) regression can result in biased estimates, commonly known in the field of nuclear data evaluation 
as Peele’s Pertinent Puzzle (PPP). This article introduces a generative, forward modeling framework 
within which the PPP bias is characterized through an eigenspectrum analysis of the DCM. This analysis 
highlights the root cause of the bias, generalizes the problem beyond the nuclear data field, and 
provides insight to the problem regimes where it can occur. What follows is an understanding that the 
bias can show up for any experimental neutron time-of-flight data for which systematic uncertainties 
have been quantified. Lastly, a discussion of the adaptation of cross validation approaches that require 
pre-whitening to incorporate the known ‘fix’ to the PPP bias in the GLS estimator.

Generalized least squares (GLS) is a well-established method for regression in the physical sciences and can yield 
maximum likelihood estimates (MLE) in the Bayesian framework with an uninformative prior and Gaussian/
linearity assumptions. GLS is commonly used to infer model parameters in the physical sciences, including in 
the analysis of experimental nuclear data. Both methods are subject to the phenomenon known in the nuclear 
data field as Peelle’s Pertinent Puzzle (PPP), named after its discovery in the context of nuclear data by R.W. 
Peelle1. PPP describes a—sometimes extreme—bias in the GLS estimator that can occur when data have both 
statistical and highly correlated systematic (diagonal and non-zero off-diagonal) covariance. In statistics fields, 
such bias in the GLS estimator was already understood and the alternative, more robust iteratively re-weighted 
least squares (IRLS) estimator would have been suggested2; however, differences in scientific language silo-ed 
the nuclear data field.

In the context of nuclear data, the PPP phenomenon has been extensively explored since its discovery. Peelle’s 
informal memorandum describing the issue1 set off a flurry of work on the topic in the following years. In 
1991, Chiba and Smith3 presented an extensive study of the problem, the background, and a suggested solution. 
They first addressed the use of the least squares method in nuclear data evaluation, acknowledging that some 
assumptions inherent in the proofs of least squares properties are not always met (such as linearity of the model, 
independence of the data covariance matrix (DCM) from the solution, and that the underlying data are normally 
distributed). After limiting the scope to linear relationship, they conclude that least squares is a viable method for 
these problems from both a Probabilistic and a Bayesian perspective. The problem called PPP is then described 
in detail, with a full reproduction of the memorandum, the equations, and the resulting fitted mean lying outside 
of the range of the two data points, which they address (in emphasized text) as such3:

“This is indeed quite proper if one accepts the given absolute values of the covariance matrix elements as 
being correct.”

The remainder of the report focuses on how to avoid the PPP result by modifying the absolute values of the 
covariance matrix. They postulate that the underlying cause of the behavior is the extensive use of fractional 
errors in experimental data analysis. These come from both underlying physics (such as counting statistics) 
and from the analysis equations which often contain multiplicative factors and ratios. Fractional errors applied 
to discrepant data points (an all-too-frequent occurrence in physical measurements) lead to highly discrepant 
absolute errors and the condition known to produce PPP results (when the covariance between two data points 
is larger than the variance of one of the data points).
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In the nuclear data field, fractional errors are typically understood to mean that confidence in the result is not 
dependent on the magnitude of the result. This information is not translated into the least squares framework 
when fractional errors are applied to the data points to produce absolute errors used in regression. Instead, the 
covariance matrix indicates that the confidence in some data points is much higher than the confidence in other 
data points. Chiba and Smith3 provide a workaround to the PPP result by constructing a covariance matrix that 
contains better represents this information. They recommend that the absolute errors should not be calculated 
by multiplying the fractional errors by the measured data points, but rather by multiplying them by a “reasonable 
a priori estimate” of the true mean. How to calculate such an estimate has been the focus of much of the work 
on PPP in the nuclear data field.

In their initial report, Chiba and Smith3 proposed what is essentially the IRLS algorithm as the way to 
determine the a priori estimate. IRLS was later introduced as the MLE for the class of Generalized Linear 
Models, a generalization of ordinary least squares that allows non-linear response functions, bounded response 
variables, and non-normal error distributions4. The use of IRLS (usually not identified as such) has been 
the most popular PPP solution the nuclear data field, with various justifications, derivations, and extensions 
presented in a multitude of papers5–15. Justifications for this method include ‘hidden variables’ which create the 
correlation5,6,9,10,15, that relative experimental uncertainties should be applied to the ‘true’ physical parameter 
being measured rather than the experimental result9,11,12, and the non-linearity inherent in analysis equations 
utilizing ratios7.

Another method to properly represent the confidence in relative uncertainties is to transform the variables, 
rather than the covariance matrix used in the fit. Relative uncertainties lead to non-constant variance, which (1) 
violates the assumptions of GLS, and (2) hints at an underlying non-Gaussian data distribution. Products and 
ratios of normally-distributed variables (the cause of the non-constant variance) are not themselves normally-
distributed, even though they can be close under certain circumstances. Transforming the to log-normal 
distributions, the typical method for handling multiplicative errors4, has been proposed as a method to solve 
PPP16,17 by encoding the meaning of relative uncertainties in the fit.

An exhaustive survey and inter-comparison of the various causes and solutions was performed by the 
Standards CRP18 in anticipation of the release of a new set of nuclear data standards in 200919. The PPP effect 
was split into two categories: the ‘mini-PPP’ effect, caused by relative uncertainties, which leads to lower absolute 
uncertainty on lower values, and the ‘maxi-PPP’ effect, caused by strong positive correlations and discrepant 
uncertainties, which leads to fitted values outside the range of the data. The inter-comparison exercise lead to 
the adoption of the log-transformation for the Standards evaluation due to the impracticality of a full hidden-
variables analysis19. This is consistent with the general recommendation in the field—use as much information 
as possible to avoid the hidden variables problem (something possible in only limited realistic circumstances), 
but if that is not possible, transform the model or the covariance matrix to correctly encode uncertainty 
information (i.e., relative uncertainties are meant to represent confidence that is independent of the magnitude 
of the measurement) into the regression equations.

PPP has been extensively explored in the nuclear data field, so, what does this article contribute? First and 
foremost, we introduce a new interpretation of the PPP bias using generative modeling and eigenspectrum 
decomposition, which generalizes the experimental analysis-focused explanations of PPP to any case of a rank-1 
perturbation on a Hermitian matrix. In this work, generative modeling describes a computational approach that 
presumes the statistical distribution of the data itself is known and can be used to generate effectively infinite, 
statistically consistent samples. This approach is used to consider the inference problem from a frequentist 
perspective and highlight bias with respect to the known generating distribution. Secondly, we leverage the eigen-
decomposition to derive an approximate regime where the PPP bias is expected to occur, thus highlighting what 
elements of the GLS problem exacerbate the bias. Thirdly, as far as the authors understand, the existing literature 
on PPP and its solution in the nuclear data field generally make two assumptions: 1) the systematic error term 
comes from a normalization factor which can therefore be converted to relative errors, and 2) analyses should 
generally not observe the PPP bias if the data at hand are not strongly correlated and/or discrepant. Through the 
interpretation and subsequent numerical demonstration presented here, we show that the PPP bias is not strictly 
limited to either assumption and make the conjecture that it can occur in any neutron time-of-flight data with 
proper uncertainty quantification (i.e., the off diagonal elements are non-zero). Lastly, we discuss how to handle 
cross validation when using IRLS as an estimator, a discussion brought about by emerging methods for nuclear 
resonance evaluation20. To our knowledge, this final point of implementing cross validation with IRLS has not 
been addressed in the context of nuclear data or more broadly for inferential regression in the physical sciences.

Introduction of the classical PPP
In 1987 at Oak Ridge National Laboratory, R.W. Peelle, a physicist doing nuclear data evaluation, described 
having two observations to estimate a shared mean1. While found in many publications, the problem is re-
formulated here in notation consistent with later sections of this article.

The two observations are 20% “fully correlated,” and each have an independent uncertainty of 10%. Relative 
uncertainties are assumed to be “1 sigma” values.

	 y1 = 1.0 ± 10% � (1)

	 y2 = 1.5 ± 10% � (2)

Peelle worked out the GLS estimate of the mean, as is standard in the field. What he found was that the GLS 
estimate of the mean was 0.88 ± 0.25 and fell outside of both observations. We formulate the problem as follows,
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y⃗ =

[1.0
1.5

]
� (3)

	
Σ = 0.12

[
y2

1 0
0 y2

2

]
+ y⃗ 0.22 y⃗T � (4)

	 σ̂2 = (⃗1T Σ−1 1⃗)−1 � (5)

	 µ̂ = σ̂2 (⃗1T Σ−1 y⃗) � (6)

with equation 6 giving the GLS estimate of the mean. Here, we formulate the full covariance (equation 4) as 
a rank-1 perturbation to a diagonal matrix. The first term on the right-hand side of equation 4 represents the 
independent uncertainties on both observations and is a 2x2 diagonal matrix which is always full-rank. The 
second term represents fully correlated uncertainty and can be expanded to a 2x2 matrix; however, that matrix 
will always be rank-1.

PPP succinctly summarized
From the perspective of the authors, PPP describes a false solution mode that comes about from nothing more 
than a violation of the assumptions in the application of GLS by using a particular estimator of the DCM in place 
of the true DCM, that is, an accurate description of the covariance about the true mean. The aforementioned 
correction for PPP (IRLS in statistics fields) gives a better estimate to the DCM based on the current model 
estimate. The false mode will often trend towards 0, this is seen in the classical PPP problem as the estimate is 
below both observations and generally manifests in the nuclear data literature as a negatively biased estimate 
given data that is constrained to be positive. The following explanation of this false mode will expose the general 
trend of the false mode toward 0 and that it is not strict for multi-dimensional, non-linear problems where, more 
generally, the false mode trends toward a nominal or constant signal.

A new framework for PPP
The frequentist interpretation
One challenge in discussing PPP and interpreting the result of the GLS estimator, is that Peelle suggested one set 
of numerical values for the measurements. So, perhaps, one could ask if the values Peelle chose are a statistical 
outlier and the GLS procedure is, in fact, sound but gives an “outlier result” when presented with “outlier data.” 
Therefore, we propose a frequentist approach for generating data samples which, when used in a Bayesian 
estimating procedure (such as GLS), will yield false results, not just once, but for a statistically significant number 
of sampled data. Additionally, this approach provides a way to quantitatively validate the estimating procedure 
by testing the credible intervals predicted by the Bayesian posterior distribution, p(µ).

We define a “data-generating model” with a known true mean and covariance (µtrue and Σtrue) describing a 
multivariate normal distribution, from which we can draw sample data (d⃗),

	 D⃗ ∼ N (µtrue, Σtrue),� (7)

where µtrue is non-zero. We then apply the estimating procedure and empirically construct the credible intervals 
of the Bayesian posterior distribution,

	 P {qα/2 < µtrue < q(1−α)/2} = 1 − α,� (8)

where qα/2 and q(1−α)/2 are the lower and upper α-quantiles of the Bayesian posterior distribution. Within this 
framework, we cannot construct Peelle’s original problem exactly. The reason is that the covariance matrix to 
sample the data is stated in terms of the sampled data itself,

	
Σ = 0.12

[
d2

1 0
0 d2

2

]
+ d⃗ 0.22 d⃗T .� (9)

This recursive definition sheds light on the issue at hand. Herein, we provide a slight but important clarification 
to Peelle’s original statement. The DCM provided is not the true DCM, but rather, is an estimator, Σ̂, of the true 
DCM based on the measured data, the assumed structure of the DCM, and the uncertainty on the normalization 
parameter. This has been understood in several publications3,9,11.

With this interpretation of PPP, we construct the data generating model with the true mean and DCM. The 
generative model follows as: 

	1.	 Draw a data sample, d⃗, from a multi-variate normal distribution, D⃗ ∼ N (µtrue, Σtrue)

	2.	 Calculate the estimated DCM, Σ̂ = 0.12
[

d2
1 0

0 d2
2

]
+ d⃗ 0.22 d⃗T

	3.	 Apply the estimating procedure based on the observed data, d⃗, and the estimated DCM, Σ̂.

Defining the generative model gives us a powerful tool in the demonstration of the PPP phenomenon, that is, 
since we have defined the true mean, µtrue, we can identify false solution modes with certainty.
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Relating to experimental neutron time-of-flight data
Experimental neutron time-of-flight data makes up a significant portion of the observations used in nuclear data 
evaluation. These data will always have a statistical variance component, from radiation counting statistics, and 
one or more systematic components. The systematic components are related to uncertainty on one or more data 
reduction parameters used to mathematically transform the raw radiation counting into the quantity of interest 
(reaction cross section, yield, etc.). The statistical (uncorrelated) and systematic (correlated) components are seen 
in the DCM of the classical PPP problem, with the correlated uncertainty often interpreted as a data reduction 
parameter that scales/normalizes the entire spectrum. Many experimental nuclear reaction cross section data 
have this feature. In fact, evaluators are encouraged to approximate the uncertainty from this, and other, data 
reduction parameters even if it is not explicitly reported21–24.

The PPP phenomenon is often presented with relative uncertainties, one data reduction parameter that 
acts as an overall scaling factor, and in the 2-dimensional form presented in Sec. Introduction of the classical 
PPP. Herein, we expand our study to align more closely with the features of real experimental datasets. We 
demonstrate that the false solution mode associated with PPP can occur for any data reduction parameter for 
which the sensitivity is approximately proportional to the measured data, not just an overall normalization 
factor. We recognize that in real neutron-time-of-flight measurements, there are often more than one data 
reduction parameters and consider this in our analysis. Finally, we generalize the frequentist set up of PPP to an 
arbitrary number of data points (similar to Ref12) by defining the following quantities:

•	 True mean vector, µ⃗true, of arbitrary length, N.

	– True DCM, Σtrue, of arbitrary size, N × N , and constructed as: Σtrue = diag(δ⃗2) + µ⃗true (∆n)2 µ⃗T
true

where, δ⃗ is a vector of stochastic uncertainties on the individual data points
	– where, ∆n, is the normalization uncertainty

•	 Estimated DCM, Σ̂, of arbitrary size, N × N , still constructed as a rank-1 perturbation to a diagonal matrix: 
Σ̂ = diag(δ⃗2) + d⃗ (∆n)2 d⃗T

For both the true and estimated DCM, both δ⃗ and ∆n are known. Varying the value of ∆n will allow a study 
of the impact of the magnitude of the normalization uncertainty and in Subsection The eigen-decomposition 
explanation of the false mode we will derive an approximate threshold value for ∆n for the occurrence of a false 
mode. To give some intuition to the frequentist setup, consider the true mean vector, µ⃗true, to represent the 
underlying true value of the observable quantity of interest in nature.

The eigen-decomposition explanation of the false mode
Setting up the MLE problem results in finding the vector, ˆ⃗µ, which maximizes the likelihood function, L :

	 ˆ⃗µ = argmax L (µ⃗) � (10)

	
L (µ⃗) ∝ exp

[
−1

2(d⃗ − µ⃗)T Σ−1(d⃗ − µ⃗)
]

� (11)

	 χ2(µ⃗) = (d⃗ − µ⃗)T Σ−1(d⃗ − µ⃗) � (12)

	 ˆ⃗µ = argmin χ2(ˆ⃗µ) � (13)

The original contribution of this work is to consider the eigen-decomposition of, Σ, the DCM used in Equation 12:

	 Σ = QΛQT � (14)

	 Σ−1 = QΛ−1QT � (15)

	
χ2(µ⃗) =

∑
i

λ−1
i ||QT

i (d⃗ − µ⃗)||22 � (16)

In equation 16 we see that the traditional χ2-metric becomes a simple sum of the projection of the vector of 
residuals, (d⃗ − µ⃗), on the eigenvectors of the DCM.

Consider the diagonal DCM with only stochastic uncertainties. In this case, the matrix of eigenvectors, Q, is 
just the identity matrix with the eigenvalues equal to the stochastic uncertainty of each data point, represented 
by the vector δ⃗. Under the assumption of similar counting statistics for all data points (a physically justifiable 
assumption for radiation counting experiments as the total number of counts is generally orders of magnitude 
larger than the local changes from the signal being measured), the eigenvalues will be clustered together with 
a relatively tight spread. For example, if the true mean, µ⃗true, has values on the order of 106 and we consider 
Poisson counting statistics, for a purely stochastic DCM estimated based on the measured data, we would expect 
all the values of δ⃗ to be on the order of 103. Similarly, the eigenvalues of the inverse of the DCM, λ⃗−1, would 
be clustered around 10−3. Herein, we will refer to this cluster of the eigenvalues for the stochastic DCM as the 
“bulk.”

Consider a simplified, specific example of the frequentist set up of PPP with N = 4 dimensions,

	 δ⃗ = [1 1 1 1]T .� (17)
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In this case, all the eigenvalues of the stochastic DCM are unity, and the spread of the bulk is zero. Next, we 
identify the addition of the systematic component of the DCM as a rank-1 perturbation to the stochastic data 
covariance,

	 Σ = diag(δ⃗2) + d⃗(∆n)2d⃗T .� (18)

The eigenvalue behavior for a rank-1 perturbation to any symmetric matrix obeys interlacing25,26, which says 
that all but one of the eigenvalues of the combined DCM (stochastic and systematic) will remain bound within 
the bulk and only the top eigenvalue has the possibility to escape above the upper range of the bulk. For example, 
consider an N × N  real symmetric matrix, A, with ordered eigenvalues µ1 ≥ µ2... ≥ µN  and B = A + ρuuT , 
where u is a real column vector and ρ is a scalar. The matrix B has eigenvalues (λ1 ≥ λ2... ≥ λN ) and interlacing 
says that λ1 ≥ µ1 ≥ λ2 ≥ µ2... ≥ λN ≥ µN . This can also be seen from the more general Cauchy interlacing 
theorem27 by embedding the rank-1 perturbation into a bordered matrix C for which A is a principal submatrix,

	
C =

[
A u
uT −1/ρ

]
.� (19)

The Schur compliment of C is equal to B exactly, consequently C will share all eigenvalues of B, plus one additional 
given by −1/ρ. It follows then that Cauchy interlacing of A with C also causes interlacing of A with B.

In the simplified case here, the rank-1 perturbation forces the largest eigenvalue to separate from the bulk. 
The other three eigenvalues remain at unity, bound by the Cauchy interlacing theorem. The value of the largest 
eigenvalue can be determined by subtracting the three fixed eigenvalues from the trace of the matrix (the trace 
of the matrix equals the sum of the eigenvalues),

	 λmax = 1 + ∆n2||d⃗||22.� (20)

For an arbitrary δ⃗, we do not have an analytic expression for the largest eigenvalue. However, in the limit that 
the magnitude of the rank-1 perturbation grows large enough, while the δ⃗ maintains its finite range, then 
Equation 20 becomes predictive and gives good intuition. This is justified by the regime assumption,

	 ⟨δ⃗2⟩ >> (max δ⃗2 − min δ⃗2),� (21)

where ⟨δ⃗2⟩ is the average stochastic uncertainty.
As the magnitude of the rank-1 perturbation grows larger, the trace of the matrix continues to increase 

monotonically, however the sum of all of the eigenvalues, except the largest one, is bounded by the largest value 
in ⃗δ per the interlacing theorem. Therefore, the largest eigenvalue has to absorb the difference and move further 
away from the bulk. For arbitrary δ⃗, the largest eigenvalue separated from the bulk has a lower limit,

	 λmax = max(δ⃗2) + ∆n2||d⃗||22.� (22)

The Bunch–Nielsen–Sorensen formula26 gives an exact equation for the behavior of the eigenvectors due 
to a rank-1 perturbation of a diagonal matrix. To observe the PPP phenomenon, we need only analyze the 
eigenvector corresponding to the eigenvalue which has escaped the bulk. The elements of the eigenvector, q⃗max, 
which corresponds to the largest eigenvalue, λmax are,

	
qj = b

(
1

λmax − δ2
j

)
dj ,� (23)

where b is a constant to ensure that the eigenvector remains normalized. Elements of the data vector, d⃗, appear 
in Equation 23 only because the systematic component of uncertainty is estimated based on the observed data in 
the estimated DCM. This is exactly the cause of the PPP phenomenon.

In the simplified example above, where all elements of δ⃗ are equal, the eigenvector, q⃗max, is exactly aligned 
with the measured data, d⃗, because the term in the parenthesis of Equation 23 is constant for all vector elements, 
j. Again, the regime defined by Equation  21 allows Equation  23 to become predictive for the more realistic 
scenario where all elements of δ⃗ are not equal but the spread is much smaller than the maximum eigenvalue, 
λmax. In this case, q⃗max is nearly-aligned with the experimentally observed data since δ⃗ varies relatively little 
across its elements.

Returning to the eigenvalue decomposition of the χ2 minimization objective in Equation 12, we can explicitly 
pull out the eigen-mode corresponding to the eigenvalue which has escaped the bulk,

	
χ2(µ⃗) = λ−1

max

∣∣∣∣q⃗T
max(d⃗ − µ⃗)

∣∣∣∣2

2
+

N−1∑
i=1

λ−1
i ||QT

i (d⃗ − µ⃗)||22.� (24)

If the range of the values in the bulk (i.e.: max δ⃗2 − min δ⃗2), is much smaller than the maximum eigenvalue, 
λmax, then q⃗max is aligned with the experimentally observed data, d⃗,
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q⃗max ≈ d⃗

||d⃗||2
, � (25)

	
χ2(µ⃗) ≈ λ−1

max

∣∣∣∣∣

∣∣∣∣∣
(

d⃗

||d⃗||2

)T

(d⃗ − µ⃗)

∣∣∣∣∣

∣∣∣∣∣
2

2

+
N−1∑
i=1

λ−1
i ||QT

i (d⃗ − µ⃗)||22, � (26)

where Equation 25 comes about because of the normalization of the eigenvector.
Now, consider the projection of (d⃗ − µ⃗) onto the set of eigenvectors, Q⃗i, for everything but the eigen-mode 

corresponding to λmax. In this case, a minimum of Eq. 26 appears near zero. It can be seen by taking ˆ⃗µ = 0, 
then (d⃗ − ˆ⃗µ) (almost) aligns with the eigen-mode corresponding to λmax and, by definition, becomes (almost) 
orthogonal to all of the other eigenvectors, driving the summation term of Equation 26 towards 0. Thus,

	 χ2(ˆ⃗µ) ≈ λ−1
max||d⃗||22,� (27)

and substituting Eq. 22,

	
χ2(ˆ⃗µ) ≈ ||d⃗||22

max(δ⃗2) + ∆n2||d⃗||22
.� (28)

Note that the same argument can be made for any vector ˆ⃗µ with all elements equal as the vector (d⃗ − ˆ⃗µ) would 
still be (almost) orthogonal to all QT

i  in the summation term of Equation 26.
Equation 28 can also be derived by applying the Woodbury matrix identity28 to the inverse of the estimated 

covariance matrix in the calculation of the χ2 and plugging-in µ̂ = 0:

	 χ2(µ̂) = (d⃗ − µ⃗)T Σ̂−1(d⃗ − µ̂) � (29)

	 χ2(µ̂ = 0) = d⃗T Σ̂−1d⃗ � (30)

	 Σ̂−1 =
(
diag(δ⃗2) + d⃗ (∆n)2 d⃗T

)−1 � (31)

	
Σ̂−1 = diag(δ⃗−2) − diag(δ⃗−2)d⃗d⃗T diag(δ⃗−2)

∆n−2 + d⃗T diag(δ⃗−2)d⃗
� (32)

	
χ2(µ̂ = 0) = d⃗T diag(δ⃗−2)d⃗ −

(
d⃗T diag(δ⃗−2)d⃗

) (
d⃗T diag(δ⃗−2)d⃗

)

∆n−2 + d⃗T diag(δ⃗−2)d⃗
� (33)

	
χ2(µ̂ = 0) =

(
d⃗T diag(δ⃗−2)d⃗

)
−

(
d⃗T diag(δ⃗−2)d⃗

)2

∆n−2 +
(
d⃗T diag(δ⃗−2)d⃗

) � (34)

	
χ2(µ̂ = 0) =

∆n−2 (
d⃗T diag(δ⃗−2)d⃗

)

∆n−2 +
(
d⃗T diag(δ⃗−2)d⃗

) � (35)

	
χ2(µ̂ = 0) =

(
d⃗T diag(δ⃗−2)d⃗

)

1 + ∆n2
(
d⃗T diag(δ⃗−2)d⃗

) � (36)

The final result in Equation 36 is exact. It is slightly different from the approximate result in Equation 28 in 
that the norm of the data vector d⃗ is weighted by the stochastic uncertainty, and assuming that the stochastic 
uncertainties are equal for all of the data points reconciles Equations 36 and Equation 28. Notice, however, that 
for this derivation we needed to know ahead of time that the false mode minima of χ2(µ̂) occurs at µ̂ = 0 when 
all stochastic uncertainties are equivalent.

Derivation of regime where occurrence of a false mode is expected
The global minimum of χ2(µ̂) is zero, which occurs when µ̂ matches the observed data exactly (i.e., µ̂ = d⃗); 
however, µ̂ is often constrained by some model with a desired minimum χ2(µ̂) approximately equal to N, the 
number of observations. More precisely, the expected value of χ2(µ̂) is the number of independent observations 
less the number of independent model parameters—provided that the model is a good representation of the 
underlying data-generating process and there are no systematic biases in the data. However, for non-linear 
models, the effective number of model parameters can be difficult to determine, and if this number is small 
compared to N, its precise value becomes less critical. Therefore, for generality, we take the expected value to be 
χ2(µ̂) ≈ N .

Under conditions of the aligned eigenvector, we know that the false mode minima of χ2(µ̂) will occur at 
µ̂ = 0 with a value given by Equation 28. Therefore, we can establish an approximate threshold where the false 
mode becomes the global minimum,
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||d⃗||22
max(δ⃗2) + ∆n2||d⃗||22

< N,� (37)

where the left hand side represents the false mode minima of χ2(µ̂) and the right hand side represents the 
minima of χ2(µ̂) given by a model that statistically explains the data. Re-arranging, we can see how different 
parameters, particularly the systematic uncertainty, influence this threshold:

	
∆n2||d⃗||22 >

||d⃗||22
N

− max(δ⃗2), � (38)

	
∆n2 >

1
N

− 1
||d⃗||22/max(δ⃗2)

. � (39)

The earlier regime assumption that the spread of elements of δ⃗ is much smaller than the maximum eigenvalue, 
λmax, is restated here:

	 max(δ⃗2) + ∆n2||d⃗||22 >> (max δ⃗2 − min δ⃗2).� (40)

The eigenvalue decomposition of the χ2 metric leads us to conclude that if the systematic uncertainty component 
of the DCM is estimated to be proportional to the measured data, then there is a value of the uncertainty on the 
data reduction parameter which will result in the false solution mode dominating the global objective surface. 
The corollary is even more striking! Notice that an increase in the number of observed data points will increase 
the value of ||d⃗||22 proportional to N. On the right hand side of Equation 39, the term on the right will be less 
than the term on the left so long as the elements di are generally larger than max(δ⃗2), which is roughly equal to 
the data point’s corresponding stochastic uncertainty, δi, per the assumption in Equation 40. As both terms scale 
inversely with N, so should the right hand side, leading to a decrease in the value of ∆n2 necessary to meet the 
condition of Equation 39 and for the false mode to become the global minimum. Under the same conditions, for 
any non-zero uncertainty on the data reduction parameter, with enough data points, the PPP phenomenon will 
occur and the false solution mode will emerge as the global minimum!

There is not a requirement that the right hand side of Equation 39 be positive, the regime where this could 
occur is if a significant number of the data points have a stochastic uncertainty more than 100%. From the 
perspective of the correlation coefficient in the DCM (true or estimated), the the PPP false-mode phenomenon 
is predicted to occur even as the correlation coefficient gets arbitrarily close to zero, given that there are enough 
data points, N. However, the systematic uncertainty cannot be exactly 0 because the derivation of the escaped 
eigenvalue and corresponding eigenvector would not hold.

Extension to multiple data reduction parameters
Additional data reduction parameters adding to the systematic uncertainty are also subject to the Cauchy 
interlacing theorem. Therefore, if we have M data reduction parameters, at most M eigenvalues can separate 
out of the bulk. If the data reduction parameters are correlated, then the preceding discussion can be translated 
to independent linear combinations (another eigenvalue decomposition) of the data reduction parameters. If 
we have multiple data reduction parameters, consider adding the systematic components of uncertainty to the 
stochastic (diagonal) DCM, one at a time, as a series of rank-1 perturbations.

As far as we understand, there is no closed-form prediction for how the eigenvectors change upon further 
rank-1 additions to the DCM for other data reduction parameters. That is, we cannot analytically prove that 
q⃗max will align with d⃗ as in Equation 23. However, we believe that the intuition provided by the observation that 
the first perturbation to the diagonal DCM produces an eigenvector aligned with the data will still be valid upon 
subsequent perturbations. This is supported by limited empirical evidence later in Section 5.2.

Solutions
IRLS: A dynamic estimate of the DCM
One proposed resolution to the PPP phenomenon, originally in Ref.3, that is widely accepted in the nuclear 
data field has been to change the estimator of the DCM from being based on the measured data to based on the 
current best estimator of the mean, ˆ⃗µ,

	 Σ̂fit = diag(δ⃗2) + ˆ⃗µ (∆n)2 ˆ⃗µT .� (41)

Plugging this DCM into Equation  13, the MLE becomes a function of the estimator itself. This requires an 
algorithm known in statistics fields as IRLS which iteratively updates Σ̂fit and asymptotically converges to the 
unbiased MLE15,29. With this DCM, d⃗ in Eqs. 20 and 23 (defining the separated eigenvalue/vector) is replaced 
with ˆ⃗µ . This means that Eq. 25 becomes

	
q⃗max ≈

ˆ⃗µ
|| ˆ⃗µ||2

,� (42)

the left and right terms on the right hand side of Eq. 26 are no longer orthogonal, and the false-minimum at 
ˆ⃗µ = 0 no longer appears.
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Cross-validation and IRLS
Here, we address another challenge that PPP presents. Namely, if the mechanism to avoid the false solution 
mode induced by the data-based estimator of the DCM is to use IRLS, then how can one successfully do cross-
validation for correlated data?

Recent work in nuclear resonance evaluation uses cross validation to determine the number of resonances in 
a given energy range20. In cross-validation, the entirety of the data is separated, ahead of time, into independent 
training and validation subsets. For example, 80% of the data is selected for training and 20% of the data is 
held back for validation. The independence of training and validation sets is vital; if the observational data 
are correlated, data splitting can be done along the independent principal components of the data (eigenvalue 
decomposition of the DCM) in a process often called pre-whitening30. An issue arises upon the implementation 
of IRLS, if the DCM is now to be estimated based on the current fit and the fit continues to change, then how 
could one do the initial splitting of the data into independent subsets for training and validation?

One solution is to stratify correlated data into train and validation parts in a naïve manner and correct 
for correlation in the cross validation score. In cross validation, it is vital that the cross validation score must 
be independent of the training objective function, but it does not necessarily mandate that the training and 
validation data are uncorrelated. This is referred to as cross-validation on non-factorized models and is a 
common method within Gaussian Process regression31. Suppose the experimental data is split into training (d⃗tr) 
and validation (d⃗va) data sets. Assuming normality, the experimental data will follow the normal distribution:

	

[
D⃗tr

D⃗va

]
∼ N

([
µ⃗true

tr
µ⃗true

va

]
,

[
Σtrue

tr,tr Σtrue
tr,va

Σtrue
va,tr Σtrue

va,va

])
� (43)

The model is fit to experimental training data, dtr, finding a mean of ˆ⃗µtr and a DCM estimate, Σ̂tr,tr(ˆ⃗µtr), 
according to IRLS. The fit provides an estimate on the validation data, ˆ⃗µva. The cross validation chi-squared, 
χ2

CV, can be calculated as follows:

	 χ2
CV = (d⃗eff − ˆ⃗µva)T Σ̂−1

eff (d⃗eff − ˆ⃗µva) � (44)

	 d⃗eff = d⃗va − Σ̂va,trΣ̂−1
tr,tr(d⃗tr − ˆ⃗µtr) � (45)

	 Σ̂eff = Σ̂va,va − Σ̂va,trΣ̂−1
tr,trΣ̂tr,va � (46)

Just as Pr(dtr) ∝ exp
(
− 1

2 χ2
tr

)
, where χ2

tr = (d⃗tr − µ⃗tr)T Σ̂−1
tr,tr(d⃗tr − µ⃗tr), we find 

Pr(dva|dtr) ∝ exp
(
− 1

2 χ2
CV

)
. With a correctly specified covariance matrix (i.e. Σ̂ = Σtrue), χ2

CV is 
uncorrelated with the training data. Consider the matrix relationship

	

[
d⃗tr − ˆ⃗µtr

d⃗eff − ˆ⃗µva

]
=

[
I 0

−Σtrue
va,tr

(
Σtrue

tr,tr
)−1

I

] [
d⃗tr − ˆ⃗µtr

d⃗va − ˆ⃗µva

]
.� (47)

Using error propagation on equation 43, assuming ˆ⃗µtr and ˆ⃗µva estimate µ⃗true
tr  and µ⃗true

va , and Σ̂ = Σtrue, one 
finds the covariance matrix

	
Cov

([
d⃗tr

d⃗eff

])
=

[
Σ̂tr,tr 0

0 Σ̂eff

]
.� (48)

d⃗eff is independent of the training data, d⃗tr, and has a covariance of Σ̂eff. Therefore, the cross validation chi-
square goodness of fit is calculated as written in equation 44 and is independent on the training data. In practice, 
Σtrue is unknown and estimated with Σ̂, resulting in correlation on the order of the quality of the DCM estimate. 
Poor DCM estimates may come from improper uncertainty estimation or – in the case of IRLS – poor estimate 
on the fit, µ̂.

Numerical results
Demonstration on linear model
Consider a simplified numerical example involving a linear regression model with two parameters. We generate 
N–dimensional vector samples, d⃗, from d⃗ defined in Eq. 7 with

	 µ⃗true = Xσ⃗true, � (49)

	
σ⃗true =

[1.0
5.0

]
, � (50)

where X is the design matrix defined as
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X =




x1 1
x2 1
...

...
xN 1


 ∈ RN×2,� (51)

and xi represents the independent variable for observation i and the vector x = [x1, x2, . . . , xN ]⊤ ∈ RN  we 
define to be N–linearly spaced values between 0 and 10. That is,

	
xi = 1 + (i − 1)

N − 1 · (10 − 1), i = 1, . . . , N.� (52)

For the numerical demonstration, we no longer need to assume the specific case that the spread of the bulk of 
eigenvalues is 0 (as in Eq. 17), and instead can investigate the more realistic case where ⃗δ = δ0d⃗ . The true DCM 
is then given by

	 Σtrue = δ2
0diag(µ⃗true) + µ⃗true (∆n)2 µ⃗T

true,� (53)

and the estimated DCM for any one sample, d⃗, is given by

	 Σ̂ = δ2
0diag(d⃗) + d⃗ (∆n)2 d⃗T .� (54)

The frequentist interpretation allows us to draw a large number of data samples (10000) and visualize the 
distribution of estimated values (ˆ⃗σ) using the estimated versus true DCM. This is shown in Fig. 1 for a varying 
number of observed data points, N, with δ0 = 0.1 and ∆n = 0.2 resembling the original PPP setup.

We consider the estimates using the true DCM to be what we want to estimate for any given data sample, 
effectively the ground truth for validation. The bias from the estimated DCM is characteristic of the PPP 
phenomenon, and the increase in bias as N increases highlights the relationship derived in Sec.  The eigen-
decomposition explanation of the false mode.

Figure 2 shows the eigenvalue spectrum and dominant eigenvector for a sample from the N = 20 case. We 
observe the separation of a single eigenvalue from the bulk in the left figure. In the right figure, we see that the 
corresponding, dominant eigenvector of the estimated DCM is aligned very closely with the normalized data 
vector while that of the true DCM seems to be aligned with the model.

Extension to neutron transmission data
Transmission data are the least likely neutron time-of-flight data to suffer from the PPP bias and bias from PPP 
effects are often not suspected by evaluators. A major reason is that transmission is a ratio of two measurements 

Fig. 1.  Frequentist validation approach for GLS estimates using the true versus estimated DCM. The former, 
in green (color online), is considered the ground truth and is seen to always be centered around the true mean. 
The PPP bias towards zero is demonstrated by using the estimated DCM, shown in pink (color online). This 
bias is shown to increase with an increase in observed data, N.
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and thus does not require an absolute flux normalization, the reduction parameter most often associated with 
the PPP bias. Instead, small differences in the flux between in-ratio measurements are corrected for with flux 
monitors. Additionally, the in-ratio measurements are often cycled tens of times to further minimize differences. 
As a result, the correlating uncertainty from this correction is generally very small (1-2% or 2-6% with or without 
cycling)22.

The 181 Ta transmission measurements by Brown, et al.32 would not be suspected for PPP; the data are 
not discrepant, the correlated uncertainties are minimized, and there is no overall normalization (i.e., 
Σ̂sys ̸= d⃗(∆n)2d⃗T ). Instead Σ̂sys = J(∆n)2JT  where J is a more general Jacobian describing the derivative 
of the reduced data with respect to the measured/raw data). A PPP false mode was discovered in this data 
and partially inspired the investigation in this article. Its existence—shown in the following figure/table—
demonstrates that the intuitions given by the simplified analytic derivation in Sec The frequentist interpretation 
still hold for real data where (a) there are more than one data reduction parameters (10 in this case) and (b) the 
systematic uncertainty is not an overall normalization.

Figure  3 shows experimental transmission, the ENDF/B-VIII.0 evaluation33, and two candidate models, 
labeled Fit A and Fit B. Table 1 shows the χ2 objective for each model when the DCM is calculated using the 
data (Σ̂data as in Equation 18) and using the fit (Σ̂fit as in Equation 41). The latter corresponds to the converged 
IRLS estimate of the DCM as, for real data, the true DCM requires knowledge of the true mean and is therefore 
not accessible.

Visually, Fit A and the ENDF/B-VIII.0 evaluation follow the data well while Fit B does not. However, 
evaluating the models with a χ2 objective that uses Σ̂data indicates that Fit B is the best. In fact, χ2 << Ndata 
for Fit B indicates that it is too good to be true and is overfitting the data. Meanwhile, the other two models 
have χ2 >> Ndata, indicating that they explain the data very poorly. If instead the models are evaluated with a 
χ2 objective that uses Σ̂fit, the χ2 values agree more with with what we expect: that Fit A and ENDF/B-VIII.0 
explain the data much better than Fit B and none of the fits are fully or over-explaining the data as χ2 > Ndata 
for all. The false mode in the objective χ2(Σ̂data) is explained by the eigen-decomposition of Σ̂data shown in 
Fig. 4. Two out of 10 possible eigenvalues have separated from the bulk, one of which is strongly aligned with 
the data while the other is less so. In this case, it is the second strongest eigenvalue that causes the false mode.

This example highlights the false mode candidate models Fit A and B lie at the global minimum of χ2(Σ̂fit) 
and χ2(Σ̂data) respectively. The models were produced by global optimization of the χ2 objective for MLE 
(Equation 12). During the optimization, the DCM was calculated using Σ̂fit for Fit A and Σ̂data for Fit B. In both 
cases, the starting point was the ENDF/B-VIII.0 evaluation. The SAMMY resonance evaluation code9 was used 
for these calculations along with global optimization methods detailed in Ref.20. In both cases, the optimization 
required iteration to traverse the non-linear objective surface. In the case of χ2(Σ̂fit), Σ̂fit was updated at each 
iteration using the fit from the previous step. This means that the objective surface changes as the optimization 
proceeds and that both the model and the DCM converge simultaneously.

Fig. 2.  Eigen-decomposition analysis of PPP phenomenon for a linear model. The left figure shows the 
eigenvalues of the true and estimated DCM with one separated from the bulk. The right figure shows the 
eigenvector corresponding to the separated/dominating eigenvalue for both the true and estimated DCM, the 
latter of which is shown to align closely with the normalized data vector.
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This is not to say that any SAMMY fit will land in the false mode if Σ̂data is used; as shown in Ref.34, a local 
minimum can exist around a more reasonable result. Still, relying on this local minima is not advisable as it 
may be shallow, it may not agree with the global minima using Σ̂fit, and the magnitude of the χ2 metric can be 
misleading.

Conclusions
In this article, we revisit the well-studied PPP phenomenon through a new lens. The eigenspectrum analysis of 
the incorrect DCM is revealing of the underlying cause of the PPP bias while the generative model allows us 
to compare against a ground truth. The primary contribution of this article is simply a new way to look at the 
problem; however, we recognize a few nuanced, novel contributions.

Considering the assumptions/regimes explored in Section  The frequentist interpretation gives us an 
intuition about how and where this can show up as well as what features influence the bias. The intuition is 
subsequently supported by numerical examples which lead to the conjecture that the PPP bias in GLS estimates 
can show up for any experimental neutron time-of-flight data, regardless of the data quality or functional form 
of the systematic errors. This is somewhat contrary to much of the literature where PPP is discussed in the 
context of relative normalization errors and strongly correlated, discrepant data. It is also commonly found in 
literature that the PPP bias comes about in the regime of small stochastic and large systematic errors. A nuanced 
understanding that follows from the eigenspectrum analysis is that the overall magnitude of the stochastic error 
on the data points, δ⃗, ultimately does not influence the bias; instead, it is the range of the stochastic errors that 
matter. Furthermore, it was shown how stochastic errors interplay with systematic errors and dimensionality to 
influence the bias.

Fit

χ2

Σ̂data Σ̂fit

A 1125.5 502.9

B 153.6 2243.0

ENDF/B-VIII.0 1373.1 525.1

Table 1.  Objective function values for different models using a DCM estimated at the data versus at the model 
fit. The number of experimental data points Ndata = 316 and the number of model parameters Npar = 24

 

Fig. 3.  Experimental transmission data from Ref.32 along with the ENDF/B-VIII.0 evaluation and two 
candidate models. The two candidate models are labeled Fit A and Fit B as they represent the global minima 
of the objective functions χ2(Σ̂fit) and χ2(Σ̂data) respectively. The former corresponds to the IRLS estimator 
and the latter corresponds to standard GLS.
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We want to emphasize that, while it seems a bit extreme, the neutron transmission example given in 
Section Extension to neutron transmission data comes about from using the DCM as reported. This example 
highlights a number of misconceptions about the PPP bias in that it does not have a relative normalization 
uncertainty, the data are not very strongly correlated, and neither do they seem discrepant. In this case, the PPP 
bias comes about as a false global minimum far from the data. In fact, there is a shallow, local minimum closer 
to the data that a global optimization algorithm can easily escape. We expect that the false solution often goes 
unnoticed because of this shallow minimum, especially as analysts often start from a previous evaluation that 
is close to the data and likely are not performing global optimization. Additionally, the local minimum may be 
made more stable with the introduction of other experimental data. We note that even though local minima 
in the GLS estimator may exist close to the data, it still has the possibility to be biased and the IRLS DCM 
should always be used since it is known to give unbiased MLE estimates. The fact that the DCM as reported 
is almost always evaluated at the data presents another issue: IRLS can only be implemented if the systematic 
uncertainty is a simple normalization factor. If more complicated data reduction parameters are used, then 
proper implementation of IRLS requires the individual components of the DCM and the functional relationship 
to the observable. In many cases, this information is not published alongside experimental nuclear data.

Lastly, we present a challenge that the IRLS solution to the PPP bias presents to statistical methods, such 
as cross validation, that leverage independent/orthogonal subsets of data and discuss a potential solution. 
The challenge is that orthogonal components of systematically correlated data require linearly–independent 
principle components of the DCM and IRLS proposes that the DCM changes based on the current estimator. 
In Section Cross-Validation and IRLS we derive a correction to the cross validation score that accounts for this.

Data availability
The linear model data generated and analyzed are fully described in the methods section and can be made avail-
able upon request. The experimental data set analyzed in this article is openly available in the EXFOR database35. 
For questions or data requests, contact the corresponding author Noah A.W. Walton.
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