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Molecular dynamics simulations play an important role in investigating biological systems. However, 
simulating large-scale systems can be computationally expensive, which can be improved by the 
employment of a coarse-graining force field. This study focuses on the automated parametrization 
of small molecules within the CGCompiler framework. This optimization approach utilizes a mixed-
variable particle swarm algorithm to avoid the manual tweaking of parameters. Particularly, the 
optimization focuses on matching experimentally known log P values of partitioning in water-
octanol phases, reproducing atomistic density profiles in lipid bilayers, and optimizing overall shape 
and volume aspects of the modeled atomistic molecules. After the atomistic to coarse-grained 
mapping, the model’s accuracy is evaluated through a fitness function, which combines structural 
and dynamic targets, to accurately capture the shape and behavior of the small molecule in question. 
Through the investigation of the interactions between small molecules and cellular membranes, this 
optimization process supports the development of accurate coarse-grained models for small molecules 
relevant to drug discovery. Our work demonstrates promising results in automating the high-fidelity 
parametrization of small molecules using the Martini 3 force-field guided by experimental log P values.

Molecular dynamics (MD) simulations are a vital tool in the field of molecular biology and drug discovery, 
offering a highly-detailed insight of (bio)molecules at an atomic level1,2. To explore and analyze more complex 
systems over larger length and longer time scales, the use of coarse-grained strategies becomes essential3. The 
widespread adoption of coarse-grained force fields like the Martini model for biomolecular simulations stems 
from their ability to merge common chemical groups consisting of multiple heavy atoms into distinct single 
interaction sites4–7. This approach has become particularly popular because of its transferability across various 
applications in biomolecular science, soft matter, and nanoscience. The downside of the building block approach 
is that the parametrization of molecules within coarse-grained models is a highly frustrating and tedious task, as 
chemical groups must be encoded into one out of hundreds of predefined bead types.

Beyond ongoing efforts to create databases of already-parametrized molecules based on human parametrization 
efforts, such as the Martini database6, work is underway to fully automate this pipeline. This automation aims 
to enable the parametrization of existing small molecule databases widely used in pharmaceutical research 
for drug development purposes. To this end, multiple automated approaches have been proposed, including 
machine learning-based methods (e.g., graph neural networks) and artificial intelligence-driven techniques 
(e.g., evolutionary algorithms and swarm optimization)8–14. These automated approaches optimize molecular 
parametrization workflows, thereby accelerating drug discovery timelines through the efficient exploration 
of molecular configurations enabled by coarse-grained modeling methodologies15,16. Additionally, automated 
parametrization could help address the challenge of keeping up with the rapidly growing number of known 
compounds and targets in drug discovery. Yet, while automated approaches can generate initial parametrizations 
quickly, they often lack the nuanced understanding of molecular behavior that comes from careful reproduction 
of properties derived from atomistic simulations and experiments.

To this end, we are developing the CGCompiler12 approach that automizes high-fidelity (re)parametrization 
within the Martini 3 model using mixed-variable particle swarm optimization. This method circumvents 
the problem of assigning predefined nonbonded interaction types (discrete variables) while simultaneously 
optimizing bond length (continuous variables). By overcoming the inherent dependency between nonbonded 
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and bonded interactions, CGCompiler performs a multiobjective optimization that matches provided targets 
derived from atomistic simulations as well as experimentally derived targets.

The standard parametrization procedure entails the manual setting of all initial (trial) force-field parameters 
and their subsequent changes to fit the desired properties. The CGCompiler requires only the initial mapping of 
the atomistic structure and its coarse-grained parametrization. This step can greatly benefit from the development 
of automated mapping schemes13,14, whose crude parametrization also provides a valuable starting point for 
refinement by CGCompiler. Afterwards a mixed-variable particle swarm optimization algorithm is employed 
to accomplish the molecule’s optimization, thereby overcoming the hurdles of tweaking the parameters by hand 
and facilitating a more accurate and efficient parametrization. The model is evaluated based on a list of properties 
and their target values provided by the user (fitness function).

Partition coefficients, particularly octanol-water partition coefficients, play a crucial role in small molecule 
and drug design17–19. They serve as primary indicators of hydrophobicity and membrane permeability, making 
them essential tools in assessing a compound’s potential as a drug candidate. Given that the octanol-water 
partition coefficients of common small molecules have been well experimentally determined, reproducing these 
coefficients represents the primary goal in guiding the parametrization of small molecules.

In addition to partition coefficients, atomistic density profiles within lipid bilayers provide a complementary 
and membrane-specific target for parametrization. Unlike bulk partitioning, density profiles investigate 
the spatial distribution and orientation of molecules across the heterogeneous lateral membrane interface 
directly, capturing interactions with different chemical groups within the lipid and the insertion depth within 
the bilayer20–23. Incorporating such information allows coarse-grained models to more precisely account for 
additional structural and electrostatic effects that are often absent when optimizing solely against octanol–water 
partitioning free energies. Furthermore, the density profiles of individual beads correspond to the orientation 
of molecules in the membrane, enabling more precise parametrization of the local molecular chemistry within 
molecules that are not uniquely determined by log P values alone.

For this purpose, we extended CGCompiler to optimize molecules based on the free energy of transfer 
between octanol and water phases, as well as based on the atomistic density profiles within lipid bilayers. 
We also incorporated a scheme for the bonded parameters to simultaneously match the Solvent Accessible 
Surface Area (SASA). Our focus is on the parametrization of dopamine and serotonin, two biologically highly 
relevant neurotransmitters. Their roles in mediating both physiological and psychological processes make them 
important targets for parametrization24–27. Furthermore, the investigation of the interactions between dopamine 
and serotonin and cellular membranes, as well as their receptors, is fundamental to understanding and treating 
a variety of neurological disorders28,29.

We report a significant advance in the automated parametrization of small molecules within the Martini 3 
force field by extending CGCompiler to simultaneously optimize against experimental log P values and atomistic 
density profiles in lipid bilayers. The inclusion of the density profiles of mapped interaction sites provides a direct 
membrane-specific target alongside bulk partitioning data, ensuring more accurate reproduction of molecular 
orientation and insertion behavior at biologically relevant interfaces. Incorporating diverse targets improves the 
accuracy of membrane interaction modeling and enhances the capability of coarse-grained parametrization to 
account for subtle but biologically relevant effects, such as electrostatic interactions(the presence of net charge) 
and local molecular chemistry.

Methods
The initial step in the coarse-graining process involved determining the grouping of atoms into beads. For 
dopamine, the process was carried out by hand and the result can be seen in Fig. 1. For the initial mapping of 
serotonin, we used Auto-Martini13, but a finer adjustment of the parameters was necessary for Martini 3.

CGCompiler
Small molecule parametrization in Martini 3 requires careful adjustment of many parameters to match several 
goals. Identifying the right parameters to improve specific behaviors, especially in complex interactions, is 
a difficult and time-consuming task. Automation becomes crucial for handling large molecule databases, 
organizing the parametrization process into a clear, hierarchical system. One automated method is Particle 
Swarm Optimization (PSO), known for efficiently finding the best solutions in complex, multidimensional 
spaces. PSO is ideal for optimizing continuous variables in coarse-grained models, though it faces challenges 
with predefined, discrete parameters in building block models like Martini. The CGCompiler Python package12 
provides efficient coarse-grained molecule parametrization through mixed-variable particle swarm optimization. 
This method optimizes both categorical (predefined bead types) and continuous (bonds, angles, dihedrals, etc.) 
variables simultaneously. Built on the GROMACS simulation engine30–33, CGCompiler substantially simplifies 
force field parametrization, particularly for building-block approaches.

The parametrization workflow, which can be seen in Fig. 2, involves selecting mapping and bead sizes, 
assigning chemical bead types, and choosing bonded terms and parameters. The presented algorithm optimizes 
bead size, chemical bead type, and bonded parameters simultaneously. The workflow includes the user providing 
the target data and creating a set of CG training systems. The optimization algorithm iteratively generates 
candidate solutions, runs MD simulations, scores solutions based on how well targets are reproduced, updates 
solutions using the swarm’s knowledge, and repeats until termination criteria are met.

The parametrization of small molecules made it imperative to introduce new targets and devise alternative 
methodologies for their calculation within the domain of the CGCompiler. As small molecules are much smaller 
and more flexible than proteins or lipids, additional metrics are needed to capture their physical properties. One 
of the relevant targets for small molecules is the Solvent Accessible Surface Area (SASA). It is a widely used 
metric in molecular biology and computational chemistry that quantifies the extent of a molecule’s surface that 
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is accessible to a solvent34. This measurement is crucial in understanding the interactions, dynamics, as well 
as the structures of biomolecules in various environments. The SASA target value was obtained through the 
GROMACS tool gmx sasa, computed as an average through high-sampling atomistic simulations of each small 
molecule. Due to the reduced resolution of coarse-grained models, perfect agreement with atomistic SASA is 
not expected. Nonetheless, including SASA as an objective provides a useful guide for capturing the overall 
molecular shape and solvent-exposed surface during parametrization.

Investigating the behavior and thermodynamic properties of small molecules across different solvents is an 
important task, which is often expressed through the partition coefficient or equivalently log P value. Therefore, 
we implemented the calculation of the partition coefficient into the CGCompiler through the application of the 
Multistate Bennett Acceptance Ratio (MBAR) method35,36. This approach allowed us to accurately compute the 
necessary free energy of transfer for determining the partition coefficient, as defined by the equation adapted 
from37 to account for the free energy transfer from octanol to water instead of water to octanol:

	
logP = ∆Gtransfer

RT ln(10) � (1)

Fig. 2.  Representation of the CGCompiler framework, adapted from12. The octanol training system is 
portrayed by a mint green colour, while water is portrayed by a light blue colour.

 

Fig. 1.  Snapshot of the coarse-grained models of dopamine (a) and serotonin (b). Atoms are colored by 
element type, while the blue coarse-grained bead marks the charged group. The bead labels serve as references 
to subsequent figures.
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where

	 ∆Gtransfer = ∆Go→g − ∆Gw→g � (2)

The calculation of solvation free energies in octanol and water typically employs a thermodynamic cycle involving 
transfer to the gas phase to establish a system-independent reference state. However, this approach presents 
significant challenges in accuracy. The transfer free energy (∆Gtransfer) is computed as the difference between 
∆Go→g  and ∆Gw→g , where the subscripts o → g and w → g denote transfer to the gas phase. These individual 
terms involve large values of several hundred kJ/mol due to the switching off of non-bonded interactions during 
the alchemical transformation. As a result, typical sampling errors of several kJ/mol become comparable to the 
magnitude of ∆Gtransfer itself, rendering the calculations inherently inaccurate and computationally expensive 
for high-throughput applications.

To circumvent these limitations, we implement a chemical perturbation scheme utilizing a fixed reference 
topology with a predetermined ∆Gref

o→w  value38. This approach enables the calculation of transfer free energies 
for newly parametrized molecules according to the equation:

	 ∆Gnew
o→w =

(
∆Gref

o→g − ∆Gref
w→g

)
+

(
∆∆Gref→new

w − ∆∆Gref→new
o

)
� (3)

where ∆∆Gref→new represents the relative free energy difference between new molecule parameters and 
reference parameters, obtained through on-the-fly chemical perturbation, and ∆Gref denotes the known 
reference free energies of the predefined reference molecule. It is however important to emphasize that precise 
determination of ∆Gref is crucial as it establishes the fundamental reference point for all subsequent log P 
estimations obtained via chemical perturbation and therefore largely determines the systematic error.

Optimizing parametrization solely on the octanol-water partitioning free energies may lack several key 
membrane-specific interactions, including electrostatic effects with lipid headgroups and the ordered structural 
characteristics of the membrane interface. Therefore, we investigated the interfacial behavior of small molecules at 
lipid membranes by calculating local density profiles within a coarse-grained POPC membrane, as an additional 
objective in the multi-objective optimization scheme. These calculations were compared against atomistic 
simulations of our small molecules using the CHARMM36 force field, computed through the GROMACS tool 
gmx density. It is important to symmetrize the density profiles, as the slow binding and unbinding kinetics of 
small molecules can result in highly asymmetric profiles, skewing the density matching process. As the leaflet 
affinity is by definition identical for a symmetric bilayer, symmetrizing the density profile is fully justified.

The convergence behavior in swarm optimization algorithms exhibits a direct correlation with problem 
dimensionality. As the number of dimensions increases, maintaining sufficient population diversity requires 
proportionally larger swarm sizes. In our implementation, we employed swarm sizes of 72 particles for dopamine-
related parameters (six interaction sites) and 48 particles for serotonin-related parameters (five interaction sites), 
balancing computational efficiency with the molecular complexity of each system. These specific choices of 
parameters were guided by a balance between computational efficiency and convergence quality. Larger swarms 
tend to improve global search capabilities, but beyond certain sizes, the computational cost is not reflected in 
the convergence quality. We implemented a consistent optimization protocol across both systems, utilizing 50 
iterations per convergence cycle. Equal weights (1.0) were assigned to objective functions within each system to 
maintain balanced optimization dynamics.

Fitness function
The CGCompiler evaluates parametrization performance using a cost function.

	
cost =

∑
o

wofo� (4)

This function aims to be minimized and consists of multiple normalized objective functions (fo), each assigned 
a user-defined weight (wo). These weights enable users to prioritize and balance the significance of various 
parametrization goals. In our parametrization procedure we used four objective functions of equal weights, 
namely SASA, bond distributions39,40, the octanol-water partition coefficient, and mapped-bead density 
distributions.

Atomistic simulations
For the generation of target bond and density distribution data, we conducted atomistic simulations of the small 
molecule in a 3nm cubic box of water (≈ 900 molecules) and in a (6, 6, 8)nm box of water-POPC (≈ 6400 
water and 85 POPC molecules) using the CHARMM36 force field41–43. After an energy minimization and NPT 
equilibration of 100ns, followed a production run of 1µs. During production, we used a time step of 2fs, the 
velocity-rescale algorithm as the thermostat with a coupling time of τt = 0.1ps, and the Parinnelo-Rahman as a 
barostat with a coupling time of τp = 2.0ps.

Coarse-grained simulations
In the CGCompiler, we conducted three parallel sets of simulations of the small molecules in GROMACS 2023.2; 
once in water, once in two separate boxes of water and octanol for the free energy calculations, and once in 
water-POPC membrane. The same models of small molecules were used and evaluated in all training systems. In 
the first system, we chose the fitness as a function of SASA and the bond distribution data. In the second system, 
we used the value of log P as the fitness and we compared it to the value from experimental data listed in Table 
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1. In the third training system, we chose the fitness as a function of the mapped-bead density distribution. In the 
first and third training systems, we obtained the reference data from our high-sampling atomistic simulations.

For the first and third training system, we conducted the required energy minimization and two stages of 
NPT equilibration with time steps dt = 2fs and 20fs, followed by a production run of 400ns with a time step of 
20fs. During production, we used the velocity-rescale algorithm as the thermostat with a coupling time of τt = 1
ps, and the Parinnelo-Rahman as a barostat with a coupling time of τp = 12.0ps. For the subsequent free energy 
calculation simulations, we chose the following lambda states: 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.55, 0.6, 0.63, 0.65, 0.68, 
0.7, 0.72, 0.73, 0.75, 0.77, 0.8, 0.85, 0.9, 0.95, 1.0. These simulations entailed a production run of 10ns for each 
different lambda state, using the same settings as in the initial training system.

Results
The CGCompiler generates optimized dopamine and serotonin parameters in .itp format. Figure 3 shows the 
convergence behavior of CGCompiler’s total cost function across 50 iterations. This composite metric combines 
four normalized objective functions: bond distributions, solvent accessible surface area (SASA), octanol-water 
partition coefficient (log POW ), and density distributions.

In Fig. 4, we have plotted the bond distribution comparison between the best candidate solutions from the 
CGCompiler with the atomistic reference data. Distribution overlap was optimized using the earth mover’s 
distance criterion12. The Earth Mover’s Distance (EMD) is a measure of dissimilarity between two probability 
distributions that captures the minimum amount of work needed to transform one distribution into another. 
Using EMD rather than peak fitting has the advantage of effectively capturing both the peak position and width 
of a distribution within a single parameter. In our dopamine model the bonds are between beads C1-C5 and C5-
N, which are located in the dopamine tail. In our serotonin model, the bond is between C4-Q1, where Q1 is the 
serotonin tail. The relevant beads are labeled in Fig. 1. We can see that there is good agreement with the means 
of the atomistic target distributions though the width of the distribution generally tends to be somewhat wider 
within the coarse-grained model particularly in case of C4-Q1. Though a stronger force constant would result 
in a narrower bond distribution, it may potentially compromise simultaneous optimization of other objectives, 
including SASA calculations that determine molecular shape and volume and even log P values and local density 
profiles. We, however, note that the optimization outcome represents the best balance among four objectives 
rather than optimal performance for any single objective.

The log P values presented in Table 1 demonstrate strong agreement between experimental and calculated 
values, indicating that the models are expected to effectively capture the overall oil-water partitioning tendencies 
of these small molecules, including their insertion behavior within biological lipid membranes. The composition 
of the optimized molecules and their relative hydrophobicity can be seen in Fig. 5.

In biology, dopamine and serotonin tend to bind strongly to lipid membranes47,48. In our simulations, as can 
be seen in Fig. 6, the density profile of dopamine shows peak positions at slightly shallower insertion depths 

Fig. 3.  Cost function convergence for CG dopamine (a) and serotonin (b). g8best indicates the 8 best 
candidate solutions of the swarm. The mean value of the cost function of the whole swarm is portrayed in blue 
scatter points, while the entire range of cost function values is shown as a shaded gray region.

 

logP Dopamine Serotonin

Experimental Value -0.99 0.21

CGCompiler Value −1.008 ± 0.004 0.211 ± 0.002

Table 1.  Comparison of experimental and computational partition coefficient value. Experimental values were 
taken from44,45. The errors represent the standard deviation of the free energy difference, propagated to log P.
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compared to the atomistic reference. Serotonin exhibits a closer matching of insertion depths overall, although 
there is still a noteworthy shift toward shallower insertion depths. Both molecules show slightly elevated binding 
energies compared to the atomistic reference.

To validate our automated parametrization approach against human efforts, we parametrized small 
molecules that are already available in the Martini 3 database6. For dopamine and serotonin there still exists no 
corresponding human-made model. Pyrrolidine and phenol were selected as small molecules because they are 
small, favorably interact with lipid membranes, and somewhat resemble dopamine and serotonin. As a starting 
point of the optimization we used the corresponding models from the Martini 3 small molecule database. We 
followed the same parametrization protocol as with dopamine and serotonin, maintaining the same components 
of the cost function, with the exception of phenol, whose ring structure is based on bond constraints of a fixed 
length (no bond distribution). Target partition coefficients for both molecules were obtained from the PubChem 
XLogP3 3.0 tool49. Figure 7 shows the convergence behavior of CGCompiler’s total cost function across 50 
iterations.

The CGCompiler log P values presented in Table 2 are sufficiently close to the predicted values, indicating 
that the models are expected to effectively capture the overall oil-water partitioning tendencies of pyrrolidine 
and phenol. The composition of the optimized molecules and their relative hydrophobicity can be seen in Fig. 8.

In Fig. 9, pyrrolidine membrane insertions match well with the atomistic reference, although the human-
made coarse-grained reference (CG reference) exhibits elevated values. However, the insertion depth of bead 
SC5 shows slightly poorer agreement with the human-made coarse-grained reference based on peak position. 
Based on peak height and concomitant distribution width, however, performance is better. This is because the 
EMD criterion considers all overall distribution features, not just the peak position. For phenol, both insertion 

Fig. 5.  Visualization of the hydrophobicity scale for bead types in the optimized CG models of dopamine (a) 
and serotonin (b), adapted from46.

 

Fig. 4.  Bond distribution comparison between AA target data and CGCompiler output of the beads in the 
dopamine (a) and serotonin tail (b). The bonds are between the beads that are labeled in Fig. 1. gbest portrays 
the best candidate solution. The next best candidate solutions are portrayed in gray.
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logP Pyrrolidine Phenol

Predicted Value 0.5 1.5

CGCompiler Value 0.5486 ± 0.0015 1.4786 ± 0.0018
M3 Database Value 0.859 ± 0.0015 0.590 ± 0.0017

Table 2.  Comparison of predicted, CGCompiler, and Martini 3 database partition coefficient value. Predicted 
data were taken from49. The errors represent the standard deviation of the free energy difference, propagated to 
log P.

 

Fig. 7.  Cost function convergence for CG pyrrolidine (a) and phenol (b). g8best indicates the 8 best candidate 
solutions of the swarm. The mean value of the cost function of the whole swarm is portrayed in blue scatter 
points, while the entire range of cost function values is shown as a shaded gray region.

 

Fig. 6.  Direct density comparison of mapped beads in atomistic and coarse-grained dopamine (a) and 
serotonin (b) as a function of the distance from the center of the POPC membrane. gbest portrays the best 
candidate solution. The next best candidate solutions are portrayed in gray.
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depths and binding energies display closer agreement overall. The human-made phenol model is clearly too 
hydrophilic, as evidenced by a log P value that is too small and membrane insertion that is too shallow.

For both molecules, a consistent tendency toward shallower insertion depths compared to atomistic 
simulation remains, similar to what was previously observed for dopamine and serotonin. This suggests that 
matching log P values natively results in a somewhat shallower membrane insertion and therefore molecules 
behave effectively too hydrophilic when interacting with lipid membranes. Interestingly, this tendency aligns 
with recent reports of overly hydrophilic protein-membrane interactions in Martini 350–52, indicating that this 
issue may extend beyond amino acids. Some care must be taken, as our log P value simulations were based on 
dry octanol, in accordance with Ref.37, whereas the human-based model used hydrated octanol containing a 0.3 
mole fraction of water6. For small molecules with log P values close to 0 (e.g. pyrrolidine with a log P value of 
0.5), the difference in solvation free energy between wet and dry octanol is expected to be negligible.

Finally, in Fig. 10, we plot the bond distribution comparison between the best candidate solutions from 
CGCompiler and the atomistic reference data. The overlap of the distributions was optimized using the Earth 
Mover’s Distance criterion12. As can be seen, there is good agreement with the mean of the atomistic target 
distribution.

Discussion
The parametrization of molecules within building block coarse-grained models is a highly laborious and tedious 
task, as chemical groups must be encoded into one out of hundreds of predefined bead types. Recent advances 
in computational chemistry have led to the development of several automated approaches for molecular 

Fig. 9.  Direct density comparison of mapped beads in atomistic, CGCompiler output and coarse-grained 
Martini 3 database pyrrolidine (a) and phenol (b) as a function of the distance from the center of the POPC 
membrane. The next best candidate solutions are portrayed in gray.

 

Fig. 8.  Visualization of the hydrophobicity scale for bead types in the optimized CG models of pyrrolidine (a) 
and phenol (b), adapted from46.
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parametrization, including machine learning-based methods and artificial intelligence-driven techniques8–14. 
Building upon our CGCompiler framework12, we have enhanced the parametrization capabilities within 
the Martini 3 force field through the integration of mixed-variable particle optimization. This advancement 
specifically targets high-fidelity parametrization of small molecules by incorporating experimental partitioning 
data, atomistic density profiles, and molecular volume/shape considerations into the optimization process. The 
current implementation demonstrates strong potential for automated parametrization of small molecules in the 
Martini 3 force field, offering significant advantages over ongoing manual parametrization efforts6. It enables 
precise molecular characterization through systematic integration of experimental partitioning data with 
structural and dynamical information from atomistic simulations regarding molecular flexibility, volume, and 
shape. This simultaneous optimization of multiple competing objectives can exceed human capabilities.

The octanol-water partition coefficient represents a fundamental metric in molecular characterization, 
providing essential insights into solubility properties across different solvents and interfacial behaviors. As a 
cornerstone of building-block coarse-grained force field methodology, the log P value delivers a comprehensive 
measure of molecular partitioning. While this metric offers valuable predictions regarding membrane permeation 
and insertion properties, solely parametrizing molecules based on reproducing log P values faces two critical 
limitations: (i) Chemical locality: The log P value contains limited information about chemical locality effects 
across the molecule, particularly concerning hydrophobicity distribution around interaction sites. (ii) Effect of 
charge: Charged molecules such as serotonin and dopamine exhibit amphiphilic nature at the octanol-water 
interface, yet the explicit effect of charge itself is not captured in the parametrization due to the absence of partial 
charges within the coarse-grained model.

To address these limitations while maintaining accurate log P values, we have additionally implemented 
local density profile comparison of mapped beads within lipid membranes as an additional objective function in 
CGCompiler. The lipid membrane interface provides a more physiologically relevant environment and features 
additional interactions with zwitterionic head groups as well as the presence of a distinct liquid crystalline 
ordering. Although experimental measurements of membrane-molecule interactions remain more challenging 
to obtain than octanol-water partitioning data, this limitation can be effectively bridged through strategic 
application of atomistic simulations. In our optimization framework, experimental octanol–water partitioning 
free energies are reproduced alongside atomistic density profiles of membrane interactions, ensuring accurate 
parametrization of both bulk partitioning and membrane-specific behaviors. This dual-target strategy enhances 
predictive accuracy while maintaining computational tractability by leveraging the complementary strengths of 
experimental and atomistic references.

Our computational analysis shows that combining log P values with accurately reproducing local density 
profiles for individually mapped beads in coarse-grained simulations provides valuable insight into the overall 
molecular orientation and behavior at membrane interfaces. This serves as a benchmark for model quality. 
However, the question remains as to which matched features are most important for the quality of the model, 
as well as how to define model quality. For now, this is still human-determined. In our current simulations, 
we assigned the same weight to matching bond distributions, log P values and membrane density profiles. We 
observed that matching (dry) octanol log P values results in a tendency for shallower membrane insertion than 
in atomistic simulations. This is consistent with an inherent more hydrophilic nature. Similarly, precise matching 
of density profiles is anticipated to result in molecules that are inherently too hydrophobic, according to their 
log P value in (dry) octanol. Our log P value simulations were based on dry octanol according to the puristic 

Fig. 10.  Bond distribution comparison between AA target data and CGCompiler output of the beads in 
pyrrolidine. gbest portrays the best candidate solution. The next best candidate solutions are portrayed in gray.
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physical chemical standard, other studies often include a 0.3 mole fraction of water conform with more common 
pharmaceutical practices. However, when both are available, we would argue that dry octanol log P values should 
always be preferred to wet octanol log P values. This is because coarse-grained models are unable to model either 
the local interfacial structure or the substantial concomitant entropic surfactant effects caused by water-octanol 
micellization, which significantly affects the solvation of small molecules53.

Ultimately, due to the inherent uncertainty surrounding the accuracy of the modeled reference systems, it 
is surprisingly difficult to make a fair comparison of model quality. Within our limited framework of reference, 
the resulting optimized models performed better overall than human-made models, which is not surprising 
given that optimization aims to improve performance within such a framework. In this study, equal weights 
(1.0) were initially assigned to all objective functions. Thoroughly optimizing these weights would require a 
computationally demanding process that is beyond the scope of this study. As part of the force field’s philosophy, 
matching some targets, such as log P values, may be deemed more essential than matching others, such as bond 
distributions, whose width tends to deviate inherently from atomistic simulations. This choice of weighting 
could be improved in future studies to better align with the philosophy of force fields54. However, the quality 
of the (automated) parametrization remains natively restricted by a limited, human-defined target set. The 
models that provide the best fit within that benchmarking subset are not necessarily the models that perform 
best in other domains. This is the prevailing problem in force-field parametrization. It is debatable whether 
a model optimized for most of the domains can be considered optimal when it performs more weakly in an 
individual domain of interest. Similarly, we anticipate that our models will natively perform best in the area of 
lipid membrane interactions with small molecules, as well as the subsequent change in membrane properties55.

While the automated high-fidelity parametrization of small molecules using mixed-variable swarm 
optimization represents a significant technological advance, it remains a computationally intensive endeavor 
that requires substantial computational resources. Even with access to dedicated computing infrastructure, 
parametrization of individual molecules necessitates several days of computational time. Consequently, 
systematic application of this methodology to extensive molecular databases containing millions of compounds 
is computationally prohibitive. Instead, we envision its primary utility in research contexts requiring highly 
accurate coarse-grained models for focused studies involving smaller sets of specifically targeted small molecules.

Data availability
The itp files for dopamine, serotonin, pyrrolidine and phenol are provided in the appendix. Remaining datasets 
generated during and/or analyzed during the current study are available from the corresponding author on 
reasonable request.
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