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Automated parametrization of
small molecules within the Martini
3 coarse-grained model guided by
experimental log P values

Maria Kelidou?, Kai Steffen Stroh? & Herre Jelger Risselada™”

Molecular dynamics simulations play an important role in investigating biological systems. However,
simulating large-scale systems can be computationally expensive, which can be improved by the
employment of a coarse-graining force field. This study focuses on the automated parametrization

of small molecules within the CGCompiler framework. This optimization approach utilizes a mixed-
variable particle swarm algorithm to avoid the manual tweaking of parameters. Particularly, the
optimization focuses on matching experimentally known log P values of partitioning in water-

octanol phases, reproducing atomistic density profiles in lipid bilayers, and optimizing overall shape
and volume aspects of the modeled atomistic molecules. After the atomistic to coarse-grained
mapping, the model’s accuracy is evaluated through a fitness function, which combines structural

and dynamic targets, to accurately capture the shape and behavior of the small molecule in question.
Through the investigation of the interactions between small molecules and cellular membranes, this
optimization process supports the development of accurate coarse-grained models for small molecules
relevant to drug discovery. Our work demonstrates promising results in automating the high-fidelity
parametrization of small molecules using the Martini 3 force-field guided by experimental log P values.

Molecular dynamics (MD) simulations are a vital tool in the field of molecular biology and drug discovery,
offering a highly-detailed insight of (bio)molecules at an atomic level. To explore and analyze more complex
systems over larger length and longer time scales, the use of coarse-grained strategies becomes essential®. The
widespread adoption of coarse-grained force fields like the Martini model for biomolecular simulations stems
from their ability to merge common chemical groups consisting of multiple heavy atoms into distinct single
interaction sites*~’. This approach has become particularly popular because of its transferability across various
applications in biomolecular science, soft matter, and nanoscience. The downside of the building block approach
is that the parametrization of molecules within coarse-grained models is a highly frustrating and tedious task, as
chemical groups must be encoded into one out of hundreds of predefined bead types.

Beyond ongoingeffortsto create databases ofalready-parametrized moleculesbased on human parametrization
efforts, such as the Martini database®, work is underway to fully automate this pipeline. This automation aims
to enable the parametrization of existing small molecule databases widely used in pharmaceutical research
for drug development purposes. To this end, multiple automated approaches have been proposed, including
machine learning-based methods (e.g., graph neural networks) and artificial intelligence-driven techniques
(e.g., evolutionary algorithms and swarm optimization)®-'%. These automated approaches optimize molecular
parametrization workflows, thereby accelerating drug discovery timelines through the efficient exploration
of molecular configurations enabled by coarse-grained modeling methodologies'>!¢. Additionally, automated
parametrization could help address the challenge of keeping up with the rapidly growing number of known
compounds and targets in drug discovery. Yet, while automated approaches can generate initial parametrizations
quickly, they often lack the nuanced understanding of molecular behavior that comes from careful reproduction
of properties derived from atomistic simulations and experiments.

To this end, we are developing the CGCompiler!? approach that automizes high-fidelity (re)parametrization
within the Martini 3 model using mixed-variable particle swarm optimization. This method circumvents
the problem of assigning predefined nonbonded interaction types (discrete variables) while simultaneously
optimizing bond length (continuous variables). By overcoming the inherent dependency between nonbonded
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and bonded interactions, CGCompiler performs a multiobjective optimization that matches provided targets
derived from atomistic simulations as well as experimentally derived targets.

The standard parametrization procedure entails the manual setting of all initial (trial) force-field parameters
and their subsequent changes to fit the desired properties. The CGCompiler requires only the initial mapping of
the atomistic structure and its coarse-grained parametrization. This step can greatly benefit from the development
of automated mapping schemes'*!*, whose crude parametrization also provides a valuable starting point for
refinement by CGCompiler. Afterwards a mixed-variable particle swarm optimization algorithm is employed
to accomplish the molecule’s optimization, thereby overcoming the hurdles of tweaking the parameters by hand
and facilitating a more accurate and efficient parametrization. The model is evaluated based on a list of properties
and their target values provided by the user (fitness function).

Partition coefficients, particularly octanol-water partition coefficients, play a crucial role in small molecule
and drug design'’~!°. They serve as primary indicators of hydrophobicity and membrane permeability, making
them essential tools in assessing a compound’s potential as a drug candidate. Given that the octanol-water
partition coefficients of common small molecules have been well experimentally determined, reproducing these
coefficients represents the primary goal in guiding the parametrization of small molecules.

In addition to partition coeflicients, atomistic density profiles within lipid bilayers provide a complementary
and membrane-specific target for parametrization. Unlike bulk partitioning, density profiles investigate
the spatial distribution and orientation of molecules across the heterogeneous lateral membrane interface
directly, capturing interactions with different chemical groups within the lipid and the insertion depth within
the bilayer?*-?. Incorporating such information allows coarse-grained models to more precisely account for
additional structural and electrostatic effects that are often absent when optimizing solely against octanol-water
partitioning free energies. Furthermore, the density profiles of individual beads correspond to the orientation
of molecules in the membrane, enabling more precise parametrization of the local molecular chemistry within
molecules that are not uniquely determined by log P values alone.

For this purpose, we extended CGCompiler to optimize molecules based on the free energy of transfer
between octanol and water phases, as well as based on the atomistic density profiles within lipid bilayers.
We also incorporated a scheme for the bonded parameters to simultaneously match the Solvent Accessible
Surface Area (SASA). Our focus is on the parametrization of dopamine and serotonin, two biologically highly
relevant neurotransmitters. Their roles in mediating both physiological and psychological processes make them
important targets for parametrization?-%’. Furthermore, the investigation of the interactions between dopamine
and serotonin and cellular membranes, as well as their receptors, is fundamental to understanding and treating
a variety of neurological disorders>%.

We report a significant advance in the automated parametrization of small molecules within the Martini 3
force field by extending CGCompiler to simultaneously optimize against experimental log P values and atomistic
density profiles in lipid bilayers. The inclusion of the density profiles of mapped interaction sites provides a direct
membrane-specific target alongside bulk partitioning data, ensuring more accurate reproduction of molecular
orientation and insertion behavior at biologically relevant interfaces. Incorporating diverse targets improves the
accuracy of membrane interaction modeling and enhances the capability of coarse-grained parametrization to
account for subtle but biologically relevant effects, such as electrostatic interactions(the presence of net charge)
and local molecular chemistry.

Methods

The initial step in the coarse-graining process involved determining the grouping of atoms into beads. For
dopamine, the process was carried out by hand and the result can be seen in Fig. 1. For the initial mapping of
serotonin, we used Auto-Martini'?, but a finer adjustment of the parameters was necessary for Martini 3.

CGCompiler

Small molecule parametrization in Martini 3 requires careful adjustment of many parameters to match several
goals. Identifying the right parameters to improve specific behaviors, especially in complex interactions, is
a difficult and time-consuming task. Automation becomes crucial for handling large molecule databases,
organizing the parametrization process into a clear, hierarchical system. One automated method is Particle
Swarm Optimization (PSO), known for efficiently finding the best solutions in complex, multidimensional
spaces. PSO is ideal for optimizing continuous variables in coarse-grained models, though it faces challenges
with predefined, discrete parameters in building block models like Martini. The CGCompiler Python package!?
provides efficient coarse-grained molecule parametrization through mixed-variable particle swarm optimization.
This method optimizes both categorical (predefined bead types) and continuous (bonds, angles, dihedrals, etc.)
variables simultaneously. Built on the GROMACS simulation engine**-33, CGCompiler substantially simplifies
force field parametrization, particularly for building-block approaches.

The parametrization workflow, which can be seen in Fig. 2, involves selecting mapping and bead sizes,
assigning chemical bead types, and choosing bonded terms and parameters. The presented algorithm optimizes
bead size, chemical bead type, and bonded parameters simultaneously. The workflow includes the user providing
the target data and creating a set of CG training systems. The optimization algorithm iteratively generates
candidate solutions, runs MD simulations, scores solutions based on how well targets are reproduced, updates
solutions using the swarm’s knowledge, and repeats until termination criteria are met.

The parametrization of small molecules made it imperative to introduce new targets and devise alternative
methodologies for their calculation within the domain of the CGCompiler. As small molecules are much smaller
and more flexible than proteins or lipids, additional metrics are needed to capture their physical properties. One
of the relevant targets for small molecules is the Solvent Accessible Surface Area (SASA). It is a widely used
metric in molecular biology and computational chemistry that quantifies the extent of a molecule’s surface that
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Fig. 1. Snapshot of the coarse-grained models of dopamine (a) and serotonin (b). Atoms are colored by

element type, while the blue coarse-grained bead marks the charged group. The bead labels serve as references
to subsequent figures.
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Fig. 2. Representation of the CGCompiler framework, adapted from!2. The octanol training system is
portrayed by a mint green colour, while water is portrayed by a light blue colour.

is accessible to a solvent®*. This measurement is crucial in understanding the interactions, dynamics, as well
as the structures of biomolecules in various environments. The SASA target value was obtained through the
GROMACS tool gmx sasa, computed as an average through high-sampling atomistic simulations of each small
molecule. Due to the reduced resolution of coarse-grained models, perfect agreement with atomistic SASA is
not expected. Nonetheless, including SASA as an objective provides a useful guide for capturing the overall
molecular shape and solvent-exposed surface during parametrization.

Investigating the behavior and thermodynamic properties of small molecules across different solvents is an
important task, which is often expressed through the partition coeflicient or equivalently log P value. Therefore,
we implemented the calculation of the partition coefficient into the CGCompiler through the application of the
Multistate Bennett Acceptance Ratio (MBAR) method®>*. This approach allowed us to accurately compute the
necessary free energy of transfer for determining the partition coefficient, as defined by the equation adapted
from®” to account for the free energy transfer from octanol to water instead of water to octanol:

AGtransfer

logP = T (10)

(1)
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where

AGtransfclr = AGng - AGw*)g (2)

The calculation of solvation free energies in octanol and water typically employs a thermodynamic cycle involving
transfer to the gas phase to establish a system-independent reference state. However, this approach presents
significant challenges in accuracy. The transfer free energy (AG'ranster) is computed as the difference between
AGo—gand AG - ¢, where the subscripts 0 — g and w — g denote transfer to the gas phase. These individual
terms involve large values of several hundred kJ/mol due to the switching off of non-bonded interactions during
the alchemical transformation. As a result, typical sampling errors of several kJ/mol become comparable to the
magnitude of AG+ranster itself, rendering the calculations inherently inaccurate and computationally expensive
for high-throughput applications.

To circumvent these limitations, we implement a chemical perturbation scheme utilizing a fixed reference
topology with a predetermined AG%, , value®®. This approach enables the calculation of transfer free energies
for newly parametrized molecules according to the equation:

AGYY, = (AGYL, — AGEL ) + (AAGE ™Y — AAGE™V) 3)

where AAG™ "™ represents the relative free energy difference between new molecule parameters and
reference parameters, obtained through on-the-fly chemical perturbation, and AG™ denotes the known
reference free energies of the predefined reference molecule. It is however important to emphasize that precise
determination of AG™' is crucial as it establishes the fundamental reference point for all subsequent log P
estimations obtained via chemical perturbation and therefore largely determines the systematic error.

Optimizing parametrization solely on the octanol-water partitioning free energies may lack several key
membrane-specific interactions, including electrostatic effects with lipid headgroups and the ordered structural
characteristics of the membrane interface. Therefore, we investigated the interfacial behavior of small molecules at
lipid membranes by calculating local density profiles within a coarse-grained POPC membrane, as an additional
objective in the multi-objective optimization scheme. These calculations were compared against atomistic
simulations of our small molecules using the CHARMM36 force field, computed through the GROMACS tool
gmx density. It is important to symmetrize the density profiles, as the slow binding and unbinding kinetics of
small molecules can result in highly asymmetric profiles, skewing the density matching process. As the leaflet
affinity is by definition identical for a symmetric bilayer, symmetrizing the density profile is fully justified.

The convergence behavior in swarm optimization algorithms exhibits a direct correlation with problem
dimensionality. As the number of dimensions increases, maintaining sufficient population diversity requires
proportionallylarger swarm sizes. In our implementation, we employed swarm sizes of 72 particles for dopamine-
related parameters (six interaction sites) and 48 particles for serotonin-related parameters (five interaction sites),
balancing computational efficiency with the molecular complexity of each system. These specific choices of
parameters were guided by a balance between computational efficiency and convergence quality. Larger swarms
tend to improve global search capabilities, but beyond certain sizes, the computational cost is not reflected in
the convergence quality. We implemented a consistent optimization protocol across both systems, utilizing 50
iterations per convergence cycle. Equal weights (1.0) were assigned to objective functions within each system to
maintain balanced optimization dynamics.

Fitness function
The CGCompiler evaluates parametrization performance using a cost function.

cost = Z Wo fo (4)

This function aims to be minimized and consists of multiple normalized objective functions (f,), each assigned
a user-defined weight (w,). These weights enable users to prioritize and balance the significance of various
parametrization goals. In our parametrization procedure we used four objective functions of equal weights,
namely SASA, bond distributions’**, the octanol-water partition coefficient, and mapped-bead density
distributions.

Atomistic simulations

For the generation of target bond and density distribution data, we conducted atomistic simulations of the small
molecule in a 3nm cubic box of water (= 900 molecules) and in a (6, 6, 8)nm box of water-POPC (~~ 6400
water and 85 POPC molecules) using the CHARMM36 force field*!~*. After an energy minimization and NPT
equilibration of 100ns, followed a production run of 1us. During production, we used a time step of 2fs, the
velocity-rescale algorithm as the thermostat with a coupling time of 7; = 0.1ps, and the Parinnelo-Rahman as a
barostat with a coupling time of 7, = 2.0ps.

Coarse-grained simulations

In the CGCompiler, we conducted three parallel sets of simulations of the small molecules in GROMACS 2023.2;
once in water, once in two separate boxes of water and octanol for the free energy calculations, and once in
water-POPC membrane. The same models of small molecules were used and evaluated in all training systems. In
the first system, we chose the fitness as a function of SASA and the bond distribution data. In the second system,
we used the value of log P as the fitness and we compared it to the value from experimental data listed in Table
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logP Dopamine Serotonin

Experimental Value | -0.99 0.21

CGCompiler Value | —1.008 £ 0.004 | 0.211 + 0.002

Table 1. Comparison of experimental and computational partition coeflicient value. Experimental values were
taken from®*>. The errors represent the standard deviation of the free energy difference, propagated to log P.
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Fig. 3. Cost function convergence for CG dopamine (a) and serotonin (b). g8best indicates the 8 best
candidate solutions of the swarm. The mean value of the cost function of the whole swarm is portrayed in blue
scatter points, while the entire range of cost function values is shown as a shaded gray region.

1. In the third training system, we chose the fitness as a function of the mapped-bead density distribution. In the
first and third training systems, we obtained the reference data from our high-sampling atomistic simulations.

For the first and third training system, we conducted the required energy minimization and two stages of
NPT equilibration with time steps dt = 2fs and 20fs, followed by a production run of 400ns with a time step of
20fs. During production, we used the velocity-rescale algorithm as the thermostat with a coupling time of 7z = 1
ps, and the Parinnelo-Rahman as a barostat with a coupling time of 7, = 12.0ps. For the subsequent free energy
calculation simulations, we chose the following lambda states: 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.55, 0.6, 0.63, 0.65, 0.68,
0.7, 0.72, 0.73, 0.75, 0.77, 0.8, 0.85, 0.9, 0.95, 1.0. These simulations entailed a production run of 10ns for each
different lambda state, using the same settings as in the initial training system.

Results

The CGCompiler generates optimized dopamine and serotonin parameters in .itp format. Figure 3 shows the
convergence behavior of CGCompiler’s total cost function across 50 iterations. This composite metric combines
four normalized objective functions: bond distributions, solvent accessible surface area (SASA), octanol-water
partition coefficient (log Pow ), and density distributions.

In Fig. 4, we have plotted the bond distribution comparison between the best candidate solutions from the
CGCompiler with the atomistic reference data. Distribution overlap was optimized using the earth mover’s
distance criterion'?. The Earth Mover’s Distance (EMD) is a measure of dissimilarity between two probability
distributions that captures the minimum amount of work needed to transform one distribution into another.
Using EMD rather than peak fitting has the advantage of effectively capturing both the peak position and width
of a distribution within a single parameter. In our dopamine model the bonds are between beads C1-C5 and C5-
N, which are located in the dopamine tail. In our serotonin model, the bond is between C4-Q1, where Q1 is the
serotonin tail. The relevant beads are labeled in Fig. 1. We can see that there is good agreement with the means
of the atomistic target distributions though the width of the distribution generally tends to be somewhat wider
within the coarse-grained model particularly in case of C4-Q1. Though a stronger force constant would result
in a narrower bond distribution, it may potentially compromise simultaneous optimization of other objectives,
including SASA calculations that determine molecular shape and volume and even log P values and local density
profiles. We, however, note that the optimization outcome represents the best balance among four objectives
rather than optimal performance for any single objective.

The log P values presented in Table 1 demonstrate strong agreement between experimental and calculated
values, indicating that the models are expected to effectively capture the overall oil-water partitioning tendencies
of these small molecules, including their insertion behavior within biological lipid membranes. The composition
of the optimized molecules and their relative hydrophobicity can be seen in Fig. 5.

In biology, dopamine and serotonin tend to bind strongly to lipid membranes*”*. In our simulations, as can
be seen in Fig. 6, the density profile of dopamine shows peak positions at slightly shallower insertion depths
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Fig. 4. Bond distribution comparison between AA target data and CGCompiler output of the beads in the
dopamine (a) and serotonin tail (b). The bonds are between the beads that are labeled in Fig. 1. gbest portrays
the best candidate solution. The next best candidate solutions are portrayed in gray.
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Fig. 5. Visualization of the hydrophobicity scale for bead types in the optimized CG models of dopamine (a)
and serotonin (b), adapted from*®.

compared to the atomistic reference. Serotonin exhibits a closer matching of insertion depths overall, although
there is still a noteworthy shift toward shallower insertion depths. Both molecules show slightly elevated binding
energies compared to the atomistic reference.

To validate our automated parametrization approach against human efforts, we parametrized small
molecules that are already available in the Martini 3 database®. For dopamine and serotonin there still exists no
corresponding human-made model. Pyrrolidine and phenol were selected as small molecules because they are
small, favorably interact with lipid membranes, and somewhat resemble dopamine and serotonin. As a starting
point of the optimization we used the corresponding models from the Martini 3 small molecule database. We
followed the same parametrization protocol as with dopamine and serotonin, maintaining the same components
of the cost function, with the exception of phenol, whose ring structure is based on bond constraints of a fixed
length (no bond distribution). Target partition coefficients for both molecules were obtained from the PubChem
XLogP3 3.0 tool*. Figure 7 shows the convergence behavior of CGCompiler’s total cost function across 50
iterations.

The CGCompiler log P values presented in Table 2 are sufficiently close to the predicted values, indicating
that the models are expected to effectively capture the overall oil-water partitioning tendencies of pyrrolidine
and phenol. The composition of the optimized molecules and their relative hydrophobicity can be seen in Fig. 8.

In Fig. 9, pyrrolidine membrane insertions match well with the atomistic reference, although the human-
made coarse-grained reference (CG reference) exhibits elevated values. However, the insertion depth of bead
SC5 shows slightly poorer agreement with the human-made coarse-grained reference based on peak position.
Based on peak height and concomitant distribution width, however, performance is better. This is because the
EMD criterion considers all overall distribution features, not just the peak position. For phenol, both insertion
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Fig. 6. Direct density comparison of mapped beads in atomistic and coarse-grained dopamine (a) and
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candidate solution. The next best candidate solutions are portrayed in gray.
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Fig. 7. Cost function convergence for CG pyrrolidine (a) and phenol (b). g8best indicates the 8 best candidate
solutions of the swarm. The mean value of the cost function of the whole swarm is portrayed in blue scatter
points, while the entire range of cost function values is shown as a shaded gray region.

logP Pyrrolidine Phenol

Predicted Value 0.5 1.5

CGCompiler Value | 0.5486 + 0.0015 | 1.4786 4 0.0018
M3 Database Value | 0.859 &+ 0.0015 | 0.590 £ 0.0017

Table 2. Comparison of predicted, CGCompiler, and Martini 3 database partition coeflicient value. Predicted
data were taken from®. The errors represent the standard deviation of the free energy difference, propagated to
log P.
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Fig. 8. Visualization of the hydrophobicity scale for bead types in the optimized CG models of pyrrolidine (a)
and phenol (b), adapted from*®.
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Fig. 9. Direct density comparison of mapped beads in atomistic, CGCompiler output and coarse-grained
Martini 3 database pyrrolidine (a) and phenol (b) as a function of the distance from the center of the POPC
membrane. The next best candidate solutions are portrayed in gray.

depths and binding energies display closer agreement overall. The human-made phenol model is clearly too
hydrophilic, as evidenced by a log P value that is too small and membrane insertion that is too shallow.

For both molecules, a consistent tendency toward shallower insertion depths compared to atomistic
simulation remains, similar to what was previously observed for dopamine and serotonin. This suggests that
matching log P values natively results in a somewhat shallower membrane insertion and therefore molecules
behave effectively too hydrophilic when interacting with lipid membranes. Interestingly, this tendency aligns
with recent reports of overly hydrophilic protein-membrane interactions in Martini 3°°-°2, indicating that this
issue may extend beyond amino acids. Some care must be taken, as our log P value simulations were based on
dry octanol, in accordance with Ref.?’, whereas the human-based model used hydrated octanol containing a 0.3
mole fraction of water®. For small molecules with log P values close to 0 (e.g. pyrrolidine with a log P value of
0.5), the difference in solvation free energy between wet and dry octanol is expected to be negligible.

Finally, in Fig. 10, we plot the bond distribution comparison between the best candidate solutions from
CGCompiler and the atomistic reference data. The overlap of the distributions was optimized using the Earth
Mover’s Distance criterion!?. As can be seen, there is good agreement with the mean of the atomistic target
distribution.

Discussion

The parametrization of molecules within building block coarse-grained models is a highly laborious and tedious
task, as chemical groups must be encoded into one out of hundreds of predefined bead types. Recent advances
in computational chemistry have led to the development of several automated approaches for molecular
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parametrization, including machine learning-based methods and artificial intelligence-driven techniques®14.
Building upon our CGCompiler framework!?, we have enhanced the parametrization capabilities within
the Martini 3 force field through the integration of mixed-variable particle optimization. This advancement
specifically targets high-fidelity parametrization of small molecules by incorporating experimental partitioning
data, atomistic density profiles, and molecular volume/shape considerations into the optimization process. The
current implementation demonstrates strong potential for automated parametrization of small molecules in the
Martini 3 force field, offering significant advantages over ongoing manual parametrization efforts’. It enables
precise molecular characterization through systematic integration of experimental partitioning data with
structural and dynamical information from atomistic simulations regarding molecular flexibility, volume, and
shape. This simultaneous optimization of multiple competing objectives can exceed human capabilities.

The octanol-water partition coeflicient represents a fundamental metric in molecular characterization,
providing essential insights into solubility properties across different solvents and interfacial behaviors. As a
cornerstone of building-block coarse-grained force field methodology, the log P value delivers a comprehensive
measure of molecular partitioning. While this metric offers valuable predictions regarding membrane permeation
and insertion properties, solely parametrizing molecules based on reproducing log P values faces two critical
limitations: (i) Chemical locality: The log P value contains limited information about chemical locality effects
across the molecule, particularly concerning hydrophobicity distribution around interaction sites. (ii) Effect of
charge: Charged molecules such as serotonin and dopamine exhibit amphiphilic nature at the octanol-water
interface, yet the explicit effect of charge itself is not captured in the parametrization due to the absence of partial
charges within the coarse-grained model.

To address these limitations while maintaining accurate log P values, we have additionally implemented
local density profile comparison of mapped beads within lipid membranes as an additional objective function in
CGCompiler. The lipid membrane interface provides a more physiologically relevant environment and features
additional interactions with zwitterionic head groups as well as the presence of a distinct liquid crystalline
ordering. Although experimental measurements of membrane-molecule interactions remain more challenging
to obtain than octanol-water partitioning data, this limitation can be effectively bridged through strategic
application of atomistic simulations. In our optimization framework, experimental octanol-water partitioning
free energies are reproduced alongside atomistic density profiles of membrane interactions, ensuring accurate
parametrization of both bulk partitioning and membrane-specific behaviors. This dual-target strategy enhances
predictive accuracy while maintaining computational tractability by leveraging the complementary strengths of
experimental and atomistic references.

Our computational analysis shows that combining log P values with accurately reproducing local density
profiles for individually mapped beads in coarse-grained simulations provides valuable insight into the overall
molecular orientation and behavior at membrane interfaces. This serves as a benchmark for model quality.
However, the question remains as to which matched features are most important for the quality of the model,
as well as how to define model quality. For now, this is still human-determined. In our current simulations,
we assigned the same weight to matching bond distributions, log P values and membrane density profiles. We
observed that matching (dry) octanol log P values results in a tendency for shallower membrane insertion than
in atomistic simulations. This is consistent with an inherent more hydrophilic nature. Similarly, precise matching
of density profiles is anticipated to result in molecules that are inherently too hydrophobic, according to their
log P value in (dry) octanol. Our log P value simulations were based on dry octanol according to the puristic
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physical chemical standard, other studies often include a 0.3 mole fraction of water conform with more common
pharmaceutical practices. However, when both are available, we would argue that dry octanol log P values should
always be preferred to wet octanol log P values. This is because coarse-grained models are unable to model either
the local interfacial structure or the substantial concomitant entropic surfactant effects caused by water-octanol
micellization, which significantly affects the solvation of small molecules®.

Ultimately, due to the inherent uncertainty surrounding the accuracy of the modeled reference systems, it
is surprisingly difficult to make a fair comparison of model quality. Within our limited framework of reference,
the resulting optimized models performed better overall than human-made models, which is not surprising
given that optimization aims to improve performance within such a framework. In this study, equal weights
(1.0) were initially assigned to all objective functions. Thoroughly optimizing these weights would require a
computationally demanding process that is beyond the scope of this study. As part of the force field’s philosophy,
matching some targets, such as log P values, may be deemed more essential than matching others, such as bond
distributions, whose width tends to deviate inherently from atomistic simulations. This choice of weighting
could be improved in future studies to better align with the philosophy of force fields>*. However, the quality
of the (automated) parametrization remains natively restricted by a limited, human-defined target set. The
models that provide the best fit within that benchmarking subset are not necessarily the models that perform
best in other domains. This is the prevailing problem in force-field parametrization. It is debatable whether
a model optimized for most of the domains can be considered optimal when it performs more weakly in an
individual domain of interest. Similarly, we anticipate that our models will natively perform best in the area of
lipid membrane interactions with small molecules, as well as the subsequent change in membrane properties®.

While the automated high-fidelity parametrization of small molecules using mixed-variable swarm
optimization represents a significant technological advance, it remains a computationally intensive endeavor
that requires substantial computational resources. Even with access to dedicated computing infrastructure,
parametrization of individual molecules necessitates several days of computational time. Consequently,
systematic application of this methodology to extensive molecular databases containing millions of compounds
is computationally prohibitive. Instead, we envision its primary utility in research contexts requiring highly
accurate coarse-grained models for focused studies involving smaller sets of specifically targeted small molecules.

Data availability

The itp files for dopamine, serotonin, pyrrolidine and phenol are provided in the appendix. Remaining datasets
generated during and/or analyzed during the current study are available from the corresponding author on
reasonable request.
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