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Although it is the most common subtype of lung cancer in clinical practice, lung adenocarcinoma 
(LUAD) was proven to be associated with a poor prognosis. In recent years, lactate metabolism has 
been considered an important biological mechanism in lung cancer. However, the mechanisms of 
lactate-related genes in tumour microenvironment (TME) of LUAD are unknown. Lactate-related 
genes modification patterns in 701 LUAD samples from TCGA and GEO database were systematically 
assessed on the basis of 16 lactate-related genes (LRGs).We also identified the correlation of these 
clusters to the TME and immune cell infiltration in the TME. After unsupervised clustering analysis was 
performed, the LUAD samples were divided into three lactate-related gene phenotypes on the basis 
of 36 prognostic lactate-related genes (PLRGs). These molecular subtypes have different immune 
cell infiltration characteristics and pathway enrichment. Using LASSO, a 16-LRG risk signature was 
constructed. The lactate-related signature demonstrated a stable and accurate ability to predict 
the prognosis of LUAD in patients. Furthermore, the lactate-related signature demonstrated 
good predictive ability for immune infiltrating cells, tumour mutation burden, and response to 
immunotherapy. The 16-LRG risk signature was subsequently verified in the GSE50081 GEO cohort. 
This study revealed the significant clinical utility of the 16-LRG risk signature in the understanding 
the TME and prognosis of LUAD. The 16-LRG risk signature is conducive to understanding immune 
cell infiltration in the LUAD TME and contributes to the selection of more effective immunotherapy 
strategies.
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LUAD	� Lung adenocarcinoma
TME	� Tumor microenvironment
LRG	� Lactate-related gene
PLRGs	� Prognostic lactate-related genes
LASSO	� Least absolute shrinkage and selection operator
TCGA	� The cancer genome atlas database
GEO	� Gene expression omnibus database
AUC	� Under the curve
OS	� Overall survival
ssGSEA	� Single-sample gene-set enrichment analysis
DEGs	� Differentially expressed genes
ROC	� Receiver operating characteristic
HR	� Hazard ratio
PCA	� Principal component analysis
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Lung cancer is considered to be the most common cancer worldwide and is correlated with the prevalence of 
tobacco use1,2. In the past few decades, the incidence of lung cancer in China has been increasing3.The proportion 
of non-small cell lung cancer (NSCLC) among all types of lung cancer is 85%4, and lung adenocarcinoma (LUAD) 
is the most common type of NSCLC5. Recently, research has shown the high heterogeneity and complexity of 
LUAD, which is not reflected in the traditional histological classification of LUAD. These findings show that 
tumour classification requires reliable prognostically relevant factors to select more effective treatment strategies 
for patients with lung cancer. Lactic acid provides energy for lung tumour cells, more so than glucose does6. 
Therefore, the lactate pathway may become a novel LUAD treatment target.

Going back to 1930, Otto Warburg proved that cancer cells prefer glycolysis even when their oxygen content 
is normal; this phenomenon is known as the “Warburg effect”7. Lactate, the reduction product of pyruvate via 
lactate dehydrogenase (LDH), is the final product of glycolysis8. In recent years, the role of lactate in tumours 
has been gradually discovered; for example, lactate is the tricarboxylic acid (TCA) cycle carbon source of NSCLC 
and provides energy for tumour cells6, Bergers G and Fendt SM reported that lactate directly promotes the 
invasion and migration of cancer cells9 and Karin Fischer at el. reported that a high concentration of lactate in 
the TME blocks the output of lactate in T cells, thus disrupting their metabolism and function10. These studies 
show that lactate metabolism has the potential to become a new target for tumor therapy11.

Many genes have been confirmed to regulate lactate metabolism12–16. Although research related to lactate 
metabolism has become a hot topic in cancer treatment research, the correlation between the prognosis of lung 
adenocarcinoma (LUAD) in patients and the expression of lactate-related genes remains unclear. Therefore, to 
elucidate the heterogeneity of LUAD, identifying the molecular characteristics of lactate-related genes may aid 
in the early diagnosis and prevention of LUAD and provide clinical insights for the personalized treatment of 
individual LUAD patients.

In this study, 701 LUAD samples from the GEO cohort and the TCGA cohort were classified into phenotypes 
on the basis of 36 genes related to lactate metabolism. LASSO and Cox regression analyses were used to 
construct a new score model to quantify the lactate-related patterns of individual patients. Furthermore, the 
lactate-related signature demonstrated good predictive ability for immune infiltrating cells, tumour mutation 
burden, and response to immunotherapy. The validity of the 16-LRG risk signature was subsequently verified 
in the GEO cohort GSE50081. These results indicate that lactation modification plays a nonnegligible role in 
shaping the characteristics of individual tumour microenvironments. Therefore, we established a scoring system 
to quantify the lactation modification patterns of individual patients, aiming to address early diagnosis and 
prognosis prediction in patients with LUAD.

Materials and methods
Acquisition of LUAD dataset
We downloaded three LUAD datasets: the TCGA-LUAD, GSE30219, and GSE37745 datasets. We removed LUAD 
samples with missing clinical data (such as stage and survival time), ultimately yielding 701 LUAD samples.

Acquisition of LRGs
We accessed the MSigDB website (https://www.gsea-msigdb.org) and searched for the specific subset using 
“lactate” as the keyword. We then downloaded the retrieved specific subset and ultimately obtained 285 LRGs.

Consensus clustering of PLRGs
The “limma” R software package was used for survival analysis, and 36 genes were identified as prognostic 
lactate-related genes (PLRGs) of LUAD, with P < 0.01. By employing the Euclidean distance metric and the 
partition around median (PAM) clustering algorithm, the 'Consensus Cluster Plus’ R package was used for 
cluster analysis, and 1000 cycles were conducted to ensure the reliability of the classification results. We chose 
the case with the best clustering stability between k values of 2 and 9, where k = 3.

Application of GSVA and ssGSEA
GSVA was used to analyse the differences in gene set enrichment among the three lactate-related clusters. 
The gene set “c2.cp.kegg.v7.4.symbols.gmt” from the MSigDB database (https://www.gsea-msigdb.org) was 
obtained to conduct GSEA. As an extension of the GSEA method, ssGSEA was applied to calculate the degree 
of infiltration of 23 kinds of immune cells in each sample with the TIMER, CIBERSORT, CIBERSORT–ABS, 
QUANTISEQ, MCPCOUNTER, XCELL and EPIC methods. Using the ‘GSEABase’ and ‘GSVA’ R packages, 
differential expression-related pathways and immune cells were identified17.

DEGs
DEGs among LUAD patients in the three LA modification patterns were identified with adjusted P < 0.0001 
and log2|FC|> 1 by Bonferroni method18,19. GO annotation and KEGG pathway enrichment analyses were 
performed on the genes identified by the ‘clusterProfiler’ R package20–22.

Construction and validation of the lactate-related signature
Univariate Cox analysis was performed to screen PLRGs. LASSO was used to construct a sixteen-gene 
prognostic signature based on the screened LRGs. The risk score was determined with the formula: risk 
score = ∑(gene × coefficient). To verify the 16-LRG risk signature, an external dataset, GSE50081, was downloaded.

Statistical analysis
R 4.2.0 is used for data processing.
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Results
Screening and genetic variation profile of the prognostic lactate-related genes in LUAD
First, a total of 285 genes were downloaded from the MSigDB, and 36 genes were identified as prognostic lactate-
related genes (PLRGs) of LUAD, with P < 0.01 (Table 1). Prevalent CNV changes were detected in the PLRGs. 
Among them, SLC25A4, SLC13A5 and C1QBP had more CNV deletions. However, the CNV amplification of 
NDUFS6, COX6B1 and MRPL12 was greater (Fig. 1A). The somatic mutations and copy numbers of 36 lactate-
related genes in LUAD were analysed. Only 75 (13.37%) of the 561 samples had lactate-related gene mutations, 
and the overall mutation frequency was low (Fig. 1B). The location of CNV alterations on the chromosome for 
PLRGs were determined (Fig. 1C). Finally, we analysed the differences in the mRNA expression of selected genes 
between tumour and normal samples (Fig. 1D).

Three phenotypes were identified by prognostic lactate-related genes
The correlations between PLRGs are shown in a network diagram (Fig. 2A). For further analysis, we applied a 
consensus clustering algorithm to classify LUAD samples into subgroups on the basis of the 36 PLRGs. When 
k = 2−9, k = 3 indicates the best stability; thus, LUAD patients were classified into three different lactate-related 
molecular clusters (LA clusters) (Fig.  2B–D). Principal component analysis (PCA) revealed three different 
distribution characteristics, which indicated significant consensus clustering results (Fig. 2E). Among LAcluster 
A (n = 180), LAcluster B (n = 291), and LAcluster C (n = 230), LUAD cases in LAcluster B had the best prognosis, 
and LUAD cases in LAcluster C had the worst prognosis (Fig. 2F). Different clinicopathological characteristics 
of individual PLRGs are shown in a heatmap (Fig. 2G).

id HR HR.95L HR.95H p value km

LDHA 1.887588 1.536741 2.318536 1.40E-09 7.37E−11

NDUFA12 1.878866 1.424798 2.477641 7.89E-06 2.97E−05

SLC3A1 1.529748 1.245935 1.878211 4.91E-05 0.064595

MRPL12 1.455573 1.197723 1.768935 0.000161 1.79E−05

ETHE1 1.396104 1.168366 1.668232 0.00024 9.74E−06

COX8A 1.581672 1.236595 2.023044 0.000261 3.16E−06

SLC25A42 0.654933 0.519879 0.82507 0.000328 0.000241

MRPL44 1.670862 1.261496 2.213071 0.000344 2.43E−05

PYGL 1.252772 1.102126 1.42401 0.000566 8.64E−06

FBP1 0.806944 0.713913 0.912099 0.000599 0.000131

DNM1L 1.484825 1.181857 1.865458 0.000686 7.89E−05

HAGH 0.637038 0.490876 0.826722 0.000697 0.000143

NDUFS6 1.386938 1.139045 1.688782 0.001131 5.74E−05

MRPL3 1.505122 1.175941 1.92645 0.001166 0.000195

LDHD 0.822562 0.729505 0.927489 0.001429 0.000778

CYP27A1 0.816377 0.720571 0.924921 0.001446 0.000334

TACO1 1.632588 1.206848 2.208518 0.001475 0.001681

MDH2 1.472153 1.15913 1.869708 0.001521 4.66E−05

DARS2 1.334788 1.115581 1.597068 0.001605 0.000303

NDUFA9 1.487514 1.160408 1.906827 0.001724 0.000532

BOLA3 1.382767 1.126374 1.697521 0.001953 8.42E−05

PNPT1 1.341981 1.105817 1.628582 0.002897 5.62E−06

MLYCD 0.60541 0.432375 0.847693 0.003477 0.002483

NDUFB3 1.501713 1.142739 1.973453 0.003531 0.00013

HPDL 1.19563 1.058395 1.35066 0.004075 0.001567

ISCU 0.638953 0.46832 0.871758 0.004717 0.006262

MRPS7 1.44729 1.116911 1.875395 0.00517 0.000408

MRPS16 1.45413 1.116423 1.89399 0.005491 0.001485

C1QBP 1.306624 1.078194 1.583451 0.006375 0.005107

SLC13A5 1.272535 1.067241 1.51732 0.007254 0.000765

ACAT1 0.758524 0.619908 0.928136 0.007269 0.000948

NDUFA8 1.462401 1.107408 1.931191 0.007382 0.005244

SLC25A4 0.75261 0.608875 0.930276 0.00858 0.00014

COX6B1 1.313202 1.071148 1.609954 0.008763 0.002856

COQ2 1.425049 1.09027 1.862626 0.009527 0.000657

USP18 1.234567 1.051933 1.448909 0.009885 0.01041

Table 1.  36 prognostic lactate-related genes (PLRGs) of LUAD.
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Next, we performed GSVA enrichment analysis. Compared with LAcluster A, LAcluster B was more enriched 
in immune activation, including the JAK–STAT and Fc epsilon RI signalling pathways23,24. Moreover, the enriched 
pathways in LAcluster A were closely related to cellular mechanisms, and LAcluster C was predominantly 
associated with tumour metabolism, such as the P53 signalling pathway and purine metabolism (Fig.  2H). 
Finally, using ssGSEA, the enrichment grades of 23 kinds of immune cells in 3 LAclusters were calculated. As 

Fig. 1.  Genetic variation of PLRGs. (A) The CNV variation frequency of PLRGs. (B) Mutation frequency of 
PLRGs. (C) Location of the CNV alteration of PLRGs on chromosomes. (D) Boxplot of PLRGs expression 
levels.
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Fig. 2.  The construction of LAclusters. (A) Correlations and prognosis of the 36 PLRGs in patients with 
LUAD. (B) Unsupervised clustering of the 36 PLRGs and optimal consensus matrices for k = 3. (C) Consensus 
clustering CDF for k = 2–9 (D) The CDF curve of consensus clustering for k = 2–9. (E) PCA of three LAclusters. 
(F) The overall survival of three LAclusters by KM curves. (G) Heatmaps of the distribution of 36 PLRGs in the 
three LAclusters. (H) GSEA analysis in the three LAclusters. (I) Degree of immune cells infiltration of three 
LAclusters.
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shown in Fig. 2I, 13 kinds of immune cells had increased degrees of immune infiltration in LAcluster B, which 
again proved that LAcluster B was associated with immune activation.

To further investigate the latent biological function of the lactate-related subtypes, we analysed the differences 
in LA-related gene expression among the three subtypes and identified 1208 overlapping LA phenotype-related 
DEGs (Supplementary Fig. 1A). Supplementary Table 1 shows the list of DEGs. GO and KEGG analyses were 
subsequently performed, and the significantly enriched biological processes are shown in Supplementary 
Fig. 1B–E.

Establishment of a sixteen-gene prognostic signature
Cox regression analysis revealed 36 prognosis-related genes (Fig. 3A). Next, LASSO Cox regression was used to 
identify key genes, and the coefficient of genes was computed (Fig. 3B, C). Sixteen genes, including six protective 
genes (SLC25A42, HAGH, LDHD, MLYCD, ISCU and ACAT1) and ten risk genes (LDHA, NDUFA12, SLC3A1, 
ETHE1, MRPL44, PYGL, MDH2, DARS2, HPDL and NDUFA8), were selected to construct the prognostic 
signature. The coefficients of the sixteen genes are listed in Table 2. The risk score of each sample was determined 
by the formula: risk score = ∑(gene × coefficient). The samples were subsequently divided into a high-risk group 
(HRG) and a low-risk group (LRG) according to the median risk score. The distribution of risk scores and 
sample survival status are shown in Fig.  3D. The heatmaps show the expression of 16 genes in the two risk 
groups (Fig. 3E). In addition, survival analysis revealed that compared with LRG samples, HRG samples from 
LUAD patients were associated with poorer prognosis and worse survival (Fig. 3F). Cox univariate (Fig. 3G) 
and multivariate regression (Fig. 3H) analyses revealed that the 16-LRG risk signature was related to the overall 
survival rate of LUAD patients and could predict the prognosis of LUAD in patients.

Assessment of the correlation between the prognostic signature and clinical features
A ROC curve was used to evaluate the predictive value of the prognostic models compared with that of common 
cancer pathological features. The AUC of the 16-LRG risk signature was 0.692 (Fig. 4A). The areas under the 
curve were 0.692, 0.684 and 0.697 for the 1-year, 3-year and 5-year curves, respectively (Fig. 4B). A nomogram 
was constructed to assess the intrinsic value of the 16-LRG risk signature. (Fig. 4C). Calibration plots for 1-year, 
3-year and 5-year OS were constructed to visualize the accuracy of the nomograms (Fig. 4D). We constructed 
a heatmap of the different clinicopathological characteristics associated with individual genes (Fig.  4E). The 
attribute changes in individual LUAD samples were visualized by an alluvial diagram (Fig. 4F).

We further analysed the OS of patients with different clinicopathological features in the high- and low-
risk score groups. The samples were stratified by patient age into an older group (> 65) and a younger group 
(≤ 65), and the high-risk score group had worse survival than the low-risk score group did regardless of age 
(Supplementary Fig. 2A, B). As shown in Supplementary Fig. 2C and D, the outcomes of both sexes could be 
predicted with the 16-LRG risk signature. LUAD patients in the high-risk score group had worse OS in all stages 
(N0, N1–3, T1–T2 and T3–T4) (Supplementary Fig. 2E–H). To summarize, stratified analysis revealed that the 
16-LRG risk signature had prognostic value regardless of age, sex, T stage and N stage.

GSEA, GO and KEGG analysis
The GSEA results revealed that tumours in the HRG were more enriched in tumour-promoting pathways 
and cellular mechanisms, such as the p53 signalling pathway, purine metabolism, the cell cycle, homologous 
recombination and DNA replication. In addition, the metabolic pathways associated with LRG, such as taurine 
and hypo taurine metabolism and primary bile acid biosynthesis, were more enriched (Fig. 5A). DEGs were 
defined as those whose log2|FC| was > 1 and whose FDR was < 0.05 (Fig.  5B). GO and KEGG enrichment 
analyses were then performed on the DEGs (Fig.  5C–F). Overall, the results revealed that the 16-LRG risk 
signature was associated with tumour and biological metabolism.

Immune microenvironment analysis of 16-LRG risk signature
Firstly, using different methods, we explored the immune microenvironment of two risk groups (Fig. 6A). The 
link between the prognostic signature and TME-infiltrating immune cells was analysed (Fig. 6B). Among the 
23 kinds of common immune cells, 14 differed significantly between the HRG and LRG (Fig. 6C). Interestingly, 
immune cells with tumour suppressive effects, such as activated B cells, eosinophils, T-follicular helper cells and 
plasmacytoid dendritic cells, were more highly infiltrated in tumours in the LRG25–27. Through immune function 
analysis, APC coinhibition, CCR, cytolytic activity, MHC class-I, T-cell coinhibition and parainflammation were 
shown to be activated in the HRG. HLA and type-II IFN responses were more strongly activated in the LRG 
(Fig. 6D). To determine whether patients in the HRG had better immunotherapy responses, the differences in 
immune target expression between the two risk groups were analysed (Fig. 6E). Effective immunotherapeutic 
targets such as PDCD1 (PD-1), CD274 (PD-L1) and IDO1 may provide better therapeutic effects for HRG 
patients.

Tumor mutation burden of the 16-LRG risk signature
Because the TMB is associated with the efficacy of immunotherapy, cancer-related gene mutation data were 
utilized to assess the TMB levels in the two risk groups. First, the top 15 genes with the highest mutation 
frequency are shown in Fig. 7A and B by waterfall plots. We defaulted to plotting the TMB data transformed 
by log10 and calculated the TMB scores for both groups. Compared with the LRG, the HRG had higher TMB 
(Fig. 7C). High TMB indicates a poor prognosis in various cancers. In our study, the OS of the high-risk group 
was poor, and the results were consistent with those of other studies. As shown in Fig. 7D, low TMB is associated 
with a worse prognosis in patients with LUAD. Interestingly, low-risk patients with different TMBs had better 

Scientific Reports |        (2025) 15:40972 6| https://doi.org/10.1038/s41598-025-24770-6

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Fig. 3.  Establishing the 16-LRG risk signature and analysis of independent prognostic factor. (A) Forest plots 
showing 36 prognostic LRGs based on Cox univariate regression analysis. (B, C) Cvfit and lambda curves of 
LASSO regression by minimum criteria. (D) Distribution of the risk scores and survival status in high- and 
low-risk groups. (E) Distribution of the 16 genes in high- and low-risk groups. (F) The overall survival of two 
risk groups by KM curves. Univariate Cox regression analysis (G) and multivariate Cox regression analysis (H) 
of clinical features regarding the 16-LRG risk signature.
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OS than high-risk patients with different TMBs did (Fig. 7E). In summary, compared with the TMB, the 16-LRG 
risk signature was more reliable for predicting the prognosis of LUAD.

Verification of the 16-LRG risk signature with an independent LUAD dataset
The GEO dataset GSE50081 was downloaded for independent external validation. The risk scores of the 
GSE50081 patients were calculated by the same formula. By the median risk score, the GSE50081 patients were 
separated into the HRG and the LRG. The distributions of patient risk scores and survival status are shown 
in Fig. 8A. As expected, the K‒M survival curve revealed that patients in the HRG had worse overall survival 
(Fig. 8B). The expression of 16 LRGs in GSE50081 patients was drawn as a heatmap (Fig. 8C). As shown by 
the ROC curve, the AUC of this risk score model was 0.721, which was greater than that of the other common 
clinical features (Fig. 8D). Time-dependent ROC curves were constructed, and the AUCs at 1, 2, and 3 years 
were 0.721, 0.623, and 0.657, respectively (Fig. 8E). Finally, we conducted expression and survival analyses on 
the genes used to establish the model (Supplementary Fig. 3A,B).The Results confirmed the reliability of these 
genes.

Discussion
LUAD, a highly heterogeneous tumour with a low overall survival rate, is the primary subtype of NSCLC28. 
Although we have made some progress in the chemotherapy and immunotherapy of LUAD, the overall 
treatment results are still not satisfactory. Owing to the complexity of the TME and strong heterogeneity of 
LUAD, many patients exhibit drug resistance and insensitivity to treatment29. Therefore, identifying a new 
LUAD classification to contribute to better patient treatment strategies is urgent. In recent years, increasing 
evidence has confirmed the role of lactic acid in promoting processes such as migration, immune escape and 
proliferation in cancer30. High lactate levels have the connection with increased metastasis, tumour recurrence 
and poor result11. These findings suggest that lactic acid can become a tumour treatment target. The role of 
lactic acid in lung cancer is receiving increasing attention. Glucose uptake and increased glycolytic activity are 
metabolic characteristics of lung cancer cells31. Previous studies have proven that human lung tumours may 
use lactate as a carbon source32. In terms of lung cancer immunity, lactate from tumours inactivates immune 
cell proliferation and effector function by acidifying the tumour microenvironment and upregulating PD-L1 
expression10,33. According to the recent literature, increased extracellular lactate levels through the Notch1/
TAZ axis inhibit cytotoxic T-cell activity, leading to the invasive characteristics of lung cancer cells34. Therefore, 
research on the mechanism through which lactate promotes immunotherapy efficacy in LUAD is important. 
However, the relationship between LUAD and the comprehensive role of lactate-related genes is not well defined. 
Therefore, in this study, we explored risk signatures for predicting prognosis in LUAD patients and the immune 
status of their TME. Ultimately, a 16-LRG risk signature was constructed to predict the prognosis and effect of 
immunotherapy of LUAD in patients.

In this study, on the basis of the expression of the 36 PLRGs, LUAD patients were divided into three subtypes. 
Using GSVA enrichment analysis, we further analysed the reasons for the differences among the three subtypes, 
and it was obvious from the findings that the enriched pathways associated with immune activation in LAcluster 
B and LAcluster A were significantly enriched in cellular mechanisms and that LAcluster C was predominantly 
related to tumour mechanisms. Finally, the correlation between the three lactate-related subtypes and TME cell 
infiltration was assessed.

Next, we identified 16 LRGs among the 36 PLRGs to construct a risk signature by LASSO and Cox regression 
analyses. LDHA catalyses the conversion of pyruvate to lactate, fuelling histone lactylation, which promotes 
gene expression linked to cancer progression and immune evasion35. As a component of mitochondrial complex 

id coef

LDHA 0.158335

NDUFA12 0.083557

SLC3A1 0.264693

ETHE1 0.091899

SLC25A42 − 0.12164

MRPL44 0.084094

PYGL 0.039661

HAGH − 0.15262

LDHD − 0.05697

MDH2 0.183567

DARS2 0.144324

MLYCD − 0.16598

HPDL 0.015465

ISCU − 0.20216

ACAT1 − 0.16381

NDUFA8 0.1566

Table 2.  The coefficients of the 16 key genes determined by Lasso Cox regression.
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Fig. 4.  Correlation between clinical information and the 16-LRG risk signature. (A) ROC curves of clinical 
features and risk scores. (B) ROC curves of the 16-LRG risk signature forecasting 1-, 2-, and 3-year OS. (C) 
Nomogram of the 16-LRG risk signature, age, gender, and TNM stage. (D) Calibration curves for internal 
validation of the nomogram according to 1-, 3-, and 5-year OS rate of LUAD samples. (E) The distribution of 
different clinicopathological characteristics in the 16 LRGs. (F) The alluvial diagram of the transformations of 
LAcluster, 16-LRG risk signature (riskscore), and survival status (Fustat).

 

Scientific Reports |        (2025) 15:40972 9| https://doi.org/10.1038/s41598-025-24770-6

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


I, NDUFA12 dysfunction can increase lactate production, indirectly influencing the lactylation landscape that 
supports tumour growth36. SLC3A1 is part of a cysteine/glutamate transporter, influencing redox balance and 
potentially affecting the metabolic shift to lactate generation in cancer cells37. ETHE1 mutations cause sulfide 
toxicity that inhibits mitochondrial respiration, potentially diverting metabolism towards aerobic glycolysis 
and lactate production in tumours38. As a mitochondrial ribosomal protein, MRPL44 is essential for oxidative 

Fig. 5.  GSEA, GO and KEGG analysis. (A) GSEA analysis of the high- and low-risk groups. (B) Volcano plot 
of DEGs between high- and low-risk groups. (C, D) GO analysis by DEGs. (E, F) KEGG analysis indicating 
pathways were significant enriched.
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phosphorylation; its deficiency can promote a glycolytic switch and increase the availability of lactate for 
lactylation39. PYGL encodes glycogen phosphorylase, which breaks down glycogen to provide glucose for 
glycolysis, thereby supplying the pyruvate and lactate necessary for lactylation in cancer40. HAGH degrades toxic 
glycolytic byproducts such as methylglyoxal, protecting cancer cells from damage and ensuring the continued 
glycolytic flux that generates a lactylation substrate41. LDHD oxidizes lactate back to pyruvate, potentially 

Fig. 6.  Immune-related analysis of high-risk group and low-risk group. (A) Heatmap of immune 
microenvironment in high- and low-risk group. (B) Connection of TME-infiltrating cells and the 16-LRG risk 
signature. (C) Boxplot of immune cells infiltration. (D) Immune function analysis. (E) Immune checkpoints 
analyses between LRG and HRG.
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regulating intracellular lactate levels and thereby modulating the pool available for histone lactylation in cancer 
cells42. MDH2 is a key TCA cycle enzyme that maintains metabolic homeostasis; its dysregulation can disrupt 
mitochondrial metabolism and promote a lactogenic environment in tumours43. MLYCD regulates fatty acid 
metabolism, and its loss can lead to metabolic rewiring, which enhances the dependence on glycolysis and 
lactate generation in cancer44. ISCU is essential for iron‒sulfur cluster biogenesis; ISCU deficiency cripples 
mitochondrial respiration, forcing cancer cells to rely on glycolysis and lactate production45. ACAT1 catalyses 
a key step in ketone body and pyruvate metabolism, and its activity can influence the acetyl-CoA/lactyl-CoA 
balance, potentially by competing with or influencing lactylation46. As another core subunit of mitochondrial 
complex I, loss of NDUFA8 impairs oxidative phosphorylation, driving the glycolytic shift that increases lactate 
levels and lactylation in cancer47.

The 16-LRG risk signature classified patients into LRG and HRG groups on the basis of the median risk score, 
and patients in the HRG group had worse survival than those in the LRG group did. Moreover, univariate and 
multivariate Cox regression analyses suggested that the 16-LRG risk signature was an independent prognostic 
marker for LUAD. ROC curves and nomograms have been widely applied to predict the prognosis of cancer 
in patients48,49. ROC analysis was used to visualize time-associated results in patients with LUAD. Moreover, a 
nomogram was constructed by combining the risk score with clinical factors.

Different immune cells play different roles in the tumour microenvironment. For example, the interaction 
and activation between B cells and macrophages are considered key humoral immune effects in inhibiting 
tumour progression50. It has been shown that the extensive infiltration of eosinophils in tumours is related 
to the long-term survival of patients25. Neutrophils were found to have key functions in carcinogenesis51,52. 
Studies have confirmed that neutrophils antagonize metastasis in lung cancer53. The infiltration of T-follicular 
helper cells indicates that these cells are involved in the antitumour immunity of NSCLC26. In this study, more 
activated B cells, eosinophils, immature dendritic cells, mast cells, monocytes, natural killer cells, plasmacytoid 
dendritic cells, and T follicular helper cells were present in the TME in the HRG than in the LRG, and most of 
these cells had positive effects on tumour immunity, which explains why LRG patients have better OS. These 

Fig. 7.  Tumor mutation-related analyses. (A, B) Waterfall plots indicating TMB genes in HRG (A) and LRG 
(B). (C) TMB between the two risk groups. (D) Overall survival of high-TMB and low-TMB groups. (E) 
Overall survival of four groups.
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findings may help us to understand the relationships among lactate levels, TME cell infiltration and LUAD. 
Many studies have confirmed the link between lactate levels and immunosuppression. Lactate helps to establish 
an immunosuppressive environment conducive to cancer cell growth and immune escape54.

This study has several limitations. We did not conduct sufficient in-depth research on the 16 lactate-related 
genes (LRGs) selected, and their detailed mechanisms of action still need further exploration. Future research 

Fig. 8.  Verifying of the 16-LRG risk signature by independent LUAD dataset. (A) The risk-score distribution 
and survival status. (B) Survival curves of two risk groups. (C) Expression of the 16 genes in two risk groups. 
(D) ROC curves of clinical features and risk scores. (E) ROC curves of the 16-LRG risk signature.
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should focus on elucidating the detailed mechanisms of these genes in tumour progression and immune 
response and further verifying their effectiveness and mechanisms as tumour biomarkers and therapeutic targets 
through more in vitro and in vivo experiments. Moreover, this prognostic model requires more clinical patient 
information to verify its feasibility for clinical application.

Conclusion
Three lactate-related molecular subtypes with different prognoses were found in LUAD. Sixteen LRGs were 
identified, and relevant models were constructed. Both the ROC curve and the nomogram confirmed the 
prognostic value of the 16-LRG risk signature, which can serve as an independent prognostic factor for LUAD 
in patients. Considering the heterogeneity of LUAD, the 16-LRG risk signature enhances our characterization of 
TME cell infiltration and suggests more effective immunotherapy strategies.

Data availability
The datasets generated during and/or analysed during the current study are available from GEO ​[​​​h​t​t​p​s​:​/​/​w​w​w​.​
n​c​b​i​.​n​l​m​.​n​i​h​.​g​o​v​/​g​e​o​/​​​​​] (https://www.ncbi.nlm.nih.gov/geo) and TCGA official website ​(​​​h​t​t​p​s​:​/​/​p​o​r​t​a​l​.​g​d​c​.​c​a​n​c​
e​r​.​g​o​v​/​r​e​p​o​s​i​t​o​r​y​​​​​)​.​​
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