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Constructing a sixteen lactate-
related gene risk signature for
LUAD to predict the prognosis and
TME by machine learning

Jinjie Wang'?, Deshen Shan'?, Hailong Tang®, Ming Zhao! & Hao Wang**

Although it is the most common subtype of lung cancer in clinical practice, lung adenocarcinoma
(LUAD) was proven to be associated with a poor prognosis. In recent years, lactate metabolism has
been considered an important biological mechanism in lung cancer. However, the mechanisms of
lactate-related genes in tumour microenvironment (TME) of LUAD are unknown. Lactate-related
genes modification patterns in 701 LUAD samples from TCGA and GEO database were systematically
assessed on the basis of 16 lactate-related genes (LRGs).We also identified the correlation of these
clusters to the TME and immune cell infiltration in the TME. After unsupervised clustering analysis was
performed, the LUAD samples were divided into three lactate-related gene phenotypes on the basis
of 36 prognostic lactate-related genes (PLRGs). These molecular subtypes have different immune
cell infiltration characteristics and pathway enrichment. Using LASSO, a 16-LRG risk signature was
constructed. The lactate-related signature demonstrated a stable and accurate ability to predict

the prognosis of LUAD in patients. Furthermore, the lactate-related signature demonstrated

good predictive ability for immune infiltrating cells, tumour mutation burden, and response to
immunotherapy. The 16-LRG risk signature was subsequently verified in the GSE50081 GEO cohort.
This study revealed the significant clinical utility of the 16-LRG risk signature in the understanding
the TME and prognosis of LUAD. The 16-LRG risk signature is conducive to understanding immune
cell infiltration in the LUAD TME and contributes to the selection of more effective immunotherapy
strategies.
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LUAD Lung adenocarcinoma
TME Tumor microenvironment
LRG Lactate-related gene

PLRGs Prognostic lactate-related genes
LASSO Least absolute shrinkage and selection operator
TCGA The cancer genome atlas database

GEO Gene expression omnibus database
AUC Under the curve
(N Overall survival

ssGSEA  Single-sample gene-set enrichment analysis
DEGs Differentially expressed genes

ROC Receiver operating characteristic
HR Hazard ratio
PCA Principal component analysis
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Lung cancer is considered to be the most common cancer worldwide and is correlated with the prevalence of
tobacco use!?. In the past few decades, the incidence of lung cancer in China has been increasing®. The proportion
of non-small cell lung cancer (NSCLC) among all types of lung cancer is 85%*, and lung adenocarcinoma (LUAD)
is the most common type of NSCLC®. Recently, research has shown the high heterogeneity and complexity of
LUAD, which is not reflected in the traditional histological classification of LUAD. These findings show that
tumour classification requires reliable prognostically relevant factors to select more effective treatment strategies
for patients with lung cancer. Lactic acid provides energy for lung tumour cells, more so than glucose does®.
Therefore, the lactate pathway may become a novel LUAD treatment target.

Going back to 1930, Otto Warburg proved that cancer cells prefer glycolysis even when their oxygen content
is normal; this phenomenon is known as the “Warburg effect””. Lactate, the reduction product of pyruvate via
lactate dehydrogenase (LDH), is the final product of glycolysis®. In recent years, the role of lactate in tumours
has been gradually discovered; for example, lactate is the tricarboxylic acid (TCA) cycle carbon source of NSCLC
and provides energy for tumour cells®, Bergers G and Fendt SM reported that lactate directly promotes the
invasion and migration of cancer cells® and Karin Fischer at el. reported that a high concentration of lactate in
the TME blocks the output of lactate in T cells, thus disrupting their metabolism and function!’. These studies
show that lactate metabolism has the potential to become a new target for tumor therapy!'!.

Many genes have been confirmed to regulate lactate metabolism'?~!6. Although research related to lactate
metabolism has become a hot topic in cancer treatment research, the correlation between the prognosis of lung
adenocarcinoma (LUAD) in patients and the expression of lactate-related genes remains unclear. Therefore, to
elucidate the heterogeneity of LUAD, identifying the molecular characteristics of lactate-related genes may aid
in the early diagnosis and prevention of LUAD and provide clinical insights for the personalized treatment of
individual LUAD patients.

In this study, 701 LUAD samples from the GEO cohort and the TCGA cohort were classified into phenotypes
on the basis of 36 genes related to lactate metabolism. LASSO and Cox regression analyses were used to
construct a new score model to quantify the lactate-related patterns of individual patients. Furthermore, the
lactate-related signature demonstrated good predictive ability for immune infiltrating cells, tumour mutation
burden, and response to immunotherapy. The validity of the 16-LRG risk signature was subsequently verified
in the GEO cohort GSE50081. These results indicate that lactation modification plays a nonnegligible role in
shaping the characteristics of individual tumour microenvironments. Therefore, we established a scoring system
to quantify the lactation modification patterns of individual patients, aiming to address early diagnosis and
prognosis prediction in patients with LUAD.

Materials and methods

Acquisition of LUAD dataset

We downloaded three LUAD datasets: the TCGA-LUAD, GSE30219, and GSE37745 datasets. We removed LUAD
samples with missing clinical data (such as stage and survival time), ultimately yielding 701 LUAD samples.

Acquisition of LRGs
We accessed the MSigDB website (https://www.gsea-msigdb.org) and searched for the specific subset using
“lactate” as the keyword. We then downloaded the retrieved specific subset and ultimately obtained 285 LRGs.

Consensus clustering of PLRGs

The “limma” R software package was used for survival analysis, and 36 genes were identified as prognostic
lactate-related genes (PLRGs) of LUAD, with P<0.01. By employing the Euclidean distance metric and the
partition around median (PAM) clustering algorithm, the 'Consensus Cluster Plus’ R package was used for
cluster analysis, and 1000 cycles were conducted to ensure the reliability of the classification results. We chose
the case with the best clustering stability between k values of 2 and 9, where k=3.

Application of GSVA and ssGSEA

GSVA was used to analyse the differences in gene set enrichment among the three lactate-related clusters.
The gene set “c2.cp.kegg.v7.4.symbols.gmt” from the MSigDB database (https://www.gsea-msigdb.org) was
obtained to conduct GSEA. As an extension of the GSEA method, ssGSEA was applied to calculate the degree
of infiltration of 23 kinds of immune cells in each sample with the TIMER, CIBERSORT, CIBERSORT-ABS,
QUANTISEQ, MCPCOUNTER, XCELL and EPIC methods. Using the ‘GSEABase’ and ‘GSVA' R packages,
differential expression-related pathways and immune cells were identified'”.

DEGs

DEGs among LUAD patients in the three LA modification patterns were identified with adjusted P<0.0001
and log2|FC|>1 by Bonferroni method!®!°. GO annotation and KEGG pathway enrichment analyses were
performed on the genes identified by the ‘clusterProfiler’ R package?®-22.

Construction and validation of the lactate-related signature

Univariate Cox analysis was performed to screen PLRGs. LASSO was used to construct a sixteen-gene
prognostic signature based on the screened LRGs. The risk score was determined with the formula: risk
score = Y(gene x coefficient). To verify the 16-LRG risk signature, an external dataset, GSE50081, was downloaded.

Statistical analysis
R 4.2.0 is used for data processing.
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Results

Screening and genetic variation profile of the prognostic lactate-related genes in LUAD

First, a total of 285 genes were downloaded from the MSigDB, and 36 genes were identified as prognostic lactate-
related genes (PLRGs) of LUAD, with P<0.01 (Table 1). Prevalent CNV changes were detected in the PLRGs.
Among them, SLC25A4, SLC13A5 and C1QBP had more CNV deletions. However, the CNV amplification of
NDUFS6, COX6B1 and MRPL12 was greater (Fig. 1A). The somatic mutations and copy numbers of 36 lactate-
related genes in LUAD were analysed. Only 75 (13.37%) of the 561 samples had lactate-related gene mutations,
and the overall mutation frequency was low (Fig. 1B). The location of CNV alterations on the chromosome for
PLRGs were determined (Fig. 1C). Finally, we analysed the differences in the mRNA expression of selected genes
between tumour and normal samples (Fig. 1D).

Three phenotypes were identified by prognostic lactate-related genes

The correlations between PLRGs are shown in a network diagram (Fig. 2A). For further analysis, we applied a
consensus clustering algorithm to classify LUAD samples into subgroups on the basis of the 36 PLRGs. When
k=2-9, k=3 indicates the best stability; thus, LUAD patients were classified into three different lactate-related
molecular clusters (LA clusters) (Fig. 2B-D). Principal component analysis (PCA) revealed three different
distribution characteristics, which indicated significant consensus clustering results (Fig. 2E). Among LAcluster
A (n=180), LAcluster B (n=291), and LAcluster C (n=230), LUAD cases in LAcluster B had the best prognosis,
and LUAD cases in LAcluster C had the worst prognosis (Fig. 2F). Different clinicopathological characteristics
of individual PLRGs are shown in a heatmap (Fig. 2G).

id HR HR.95L | HRY95H | pvalue |km
LDHA 1.887588 | 1.536741 | 2.318536 | 1.40E-09 | 7.37E-11
NDUFAIL2 | 1.878866 | 1.424798 | 2.477641 | 7.89E-06 | 2.97E-05
SLC3A1 1.529748 | 1.245935 | 1.878211 | 4.91E-05 | 0.064595
MRPL12 1.455573 | 1.197723 | 1.768935 | 0.000161 | 1.79E-05
ETHEI1 1.396104 | 1.168366 | 1.668232 | 0.00024 | 9.74E-06
COXS8A 1.581672 | 1.236595 | 2.023044 | 0.000261 | 3.16E-06
SLC25A42 | 0.654933 | 0.519879 | 0.82507 | 0.000328 | 0.000241
MRPL44 1.670862 | 1.261496 | 2.213071 | 0.000344 | 2.43E-05
PYGL 1.252772 | 1.102126 | 1.42401 | 0.000566 | 8.64E-06
FBP1 0.806944 | 0.713913 | 0.912099 | 0.000599 | 0.000131
DNMIL 1.484825 | 1.181857 | 1.865458 | 0.000686 | 7.89E-05
HAGH 0.637038 | 0.490876 | 0.826722 | 0.000697 | 0.000143
NDUFS6 1.386938 | 1.139045 | 1.688782 | 0.001131 | 5.74E-05
MRPL3 1.505122 | 1.175941 | 1.92645 | 0.001166 | 0.000195
LDHD 0.822562 | 0.729505 | 0.927489 | 0.001429 | 0.000778
CYP27A1 | 0.816377 | 0.720571 | 0.924921 | 0.001446 | 0.000334
TACO1 1.632588 | 1.206848 | 2.208518 | 0.001475 | 0.001681
MDH2 1.472153 | 1.15913 | 1.869708 | 0.001521 | 4.66E-05
DARS2 1.334788 | 1.115581 | 1.597068 | 0.001605 | 0.000303
NDUFA9 | 1.487514 | 1.160408 | 1.906827 | 0.001724 | 0.000532
BOLA3 1.382767 | 1.126374 | 1.697521 | 0.001953 | 8.42E-05
PNPT1 1.341981 | 1.105817 | 1.628582 | 0.002897 | 5.62E-06
MLYCD 0.60541 | 0.432375 | 0.847693 | 0.003477 | 0.002483
NDUFB3 | 1.501713 | 1.142739 | 1.973453 | 0.003531 | 0.00013
HPDL 1.19563 | 1.058395 | 1.35066 | 0.004075 | 0.001567
ISCU 0.638953 | 0.46832 | 0.871758 | 0.004717 | 0.006262
MRPS7 1.44729 | 1.116911 | 1.875395 | 0.00517 | 0.000408

MRPS16 1.45413 | 1.116423 | 1.89399 | 0.005491 | 0.001485

C1QBP 1.306624 | 1.078194 | 1.583451 | 0.006375 | 0.005107

SLC13A5 | 1.272535 | 1.067241 | 1.51732 | 0.007254 | 0.000765

ACAT1 0.758524 | 0.619908 | 0.928136 | 0.007269 | 0.000948

NDUFA8 | 1.462401 | 1.107408 | 1.931191 | 0.007382 | 0.005244

SLC25A4 |0.75261 | 0.608875 | 0.930276 | 0.00858 | 0.00014

COX6B1 1.313202 | 1.071148 | 1.609954 | 0.008763 | 0.002856

CcOQ2 1.425049 | 1.09027 | 1.862626 | 0.009527 | 0.000657

USP18 1.234567 | 1.051933 | 1.448909 | 0.009885 | 0.01041

Table 1. 36 prognostic lactate-related genes (PLRGs) of LUAD.
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Fig. 1. Genetic variation of PLRGs. (A) The CNV variation frequency of PLRGs. (B) Mutation frequency of
PLRGs. (C) Location of the CNV alteration of PLRGs on chromosomes. (D) Boxplot of PLRGs expression
levels.

Next, we performed GSVA enrichment analysis. Compared with LAcluster A, LAcluster B was more enriched
inimmuneactivation, including the JAK-STAT and Fc epsilon RI signalling pathways?*?*. Moreover, the enriched
pathways in LAcluster A were closely related to cellular mechanisms, and LAcluster C was predominantly
associated with tumour metabolism, such as the P53 signalling pathway and purine metabolism (Fig. 2H).
Finally, using ssGSEA, the enrichment grades of 23 kinds of immune cells in 3 LAclusters were calculated. As
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Fig. 2. The construction of LAclusters. (A) Correlations and prognosis of the 36 PLRGs in patients with
LUAD. (B) Unsupervised clustering of the 36 PLRGs and optimal consensus matrices for k=3. (C) Consensus
clustering CDF for k=2-9 (D) The CDF curve of consensus clustering for k=2-9. (E) PCA of three LAclusters.
(F) The overall survival of three LAclusters by KM curves. (G) Heatmaps of the distribution of 36 PLRGs in the
three LAclusters. (H) GSEA analysis in the three LAclusters. (I) Degree of immune cells infiltration of three
LAclusters.
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shown in Fig. 2I, 13 kinds of immune cells had increased degrees of immune infiltration in LAcluster B, which
again proved that LAcluster B was associated with immune activation.

To further investigate the latent biological function of the lactate-related subtypes, we analysed the differences
in LA-related gene expression among the three subtypes and identified 1208 overlapping LA phenotype-related
DEGs (Supplementary Fig. 1A). Supplementary Table 1 shows the list of DEGs. GO and KEGG analyses were
subsequently performed, and the significantly enriched biological processes are shown in Supplementary
Fig. 1B-E.

Establishment of a sixteen-gene prognostic signature

Cox regression analysis revealed 36 prognosis-related genes (Fig. 3A). Next, LASSO Cox regression was used to
identify key genes, and the coefficient of genes was computed (Fig. 3B, C). Sixteen genes, including six protective
genes (SLC25A42, HAGH, LDHD, MLYCD, ISCU and ACAT1) and ten risk genes (LDHA, NDUFA12, SLC3Al,
ETHE1, MRPL44, PYGL, MDH2, DARS2, HPDL and NDUFAS), were selected to construct the prognostic
signature. The coefficients of the sixteen genes are listed in Table 2. The risk score of each sample was determined
by the formula: risk score =¥ (gene x coefficient). The samples were subsequently divided into a high-risk group
(HRG) and a low-risk group (LRG) according to the median risk score. The distribution of risk scores and
sample survival status are shown in Fig. 3D. The heatmaps show the expression of 16 genes in the two risk
groups (Fig. 3E). In addition, survival analysis revealed that compared with LRG samples, HRG samples from
LUAD patients were associated with poorer prognosis and worse survival (Fig. 3F). Cox univariate (Fig. 3G)
and multivariate regression (Fig. 3H) analyses revealed that the 16-LRG risk signature was related to the overall
survival rate of LUAD patients and could predict the prognosis of LUAD in patients.

Assessment of the correlation between the prognostic signature and clinical features

A ROC curve was used to evaluate the predictive value of the prognostic models compared with that of common
cancer pathological features. The AUC of the 16-LRG risk signature was 0.692 (Fig. 4A). The areas under the
curve were 0.692, 0.684 and 0.697 for the 1-year, 3-year and 5-year curves, respectively (Fig. 4B). A nomogram
was constructed to assess the intrinsic value of the 16-LRG risk signature. (Fig. 4C). Calibration plots for 1-year,
3-year and 5-year OS were constructed to visualize the accuracy of the nomograms (Fig. 4D). We constructed
a heatmap of the different clinicopathological characteristics associated with individual genes (Fig. 4E). The
attribute changes in individual LUAD samples were visualized by an alluvial diagram (Fig. 4F).

We further analysed the OS of patients with different clinicopathological features in the high- and low-
risk score groups. The samples were stratified by patient age into an older group (>65) and a younger group
(£65), and the high-risk score group had worse survival than the low-risk score group did regardless of age
(Supplementary Fig. 2A, B). As shown in Supplementary Fig. 2C and D, the outcomes of both sexes could be
predicted with the 16-LRG risk signature. LUAD patients in the high-risk score group had worse OS in all stages
(NO, N1-3, T1-T2 and T3-T4) (Supplementary Fig. 2E-H). To summarize, stratified analysis revealed that the
16-LRG risk signature had prognostic value regardless of age, sex, T stage and N stage.

GSEA, GO and KEGG analysis

The GSEA results revealed that tumours in the HRG were more enriched in tumour-promoting pathways
and cellular mechanisms, such as the p53 signalling pathway, purine metabolism, the cell cycle, homologous
recombination and DNA replication. In addition, the metabolic pathways associated with LRG, such as taurine
and hypo taurine metabolism and primary bile acid biosynthesis, were more enriched (Fig. 5A). DEGs were
defined as those whose log2|FC| was>1 and whose FDR was<0.05 (Fig. 5B). GO and KEGG enrichment
analyses were then performed on the DEGs (Fig. 5C-F). Overall, the results revealed that the 16-LRG risk
signature was associated with tumour and biological metabolism.

Immune microenvironment analysis of 16-LRG risk signature

Firstly, using different methods, we explored the immune microenvironment of two risk groups (Fig. 6A). The
link between the prognostic signature and TME-infiltrating immune cells was analysed (Fig. 6B). Among the
23 kinds of common immune cells, 14 differed significantly between the HRG and LRG (Fig. 6C). Interestingly,
immune cells with tumour suppressive effects, such as activated B cells, eosinophils, T-follicular helper cells and
plasmacytoid dendritic cells, were more highly infiltrated in tumours in the LRG*>~?”. Through immune function
analysis, APC coinhibition, CCR, cytolytic activity, MHC class-1, T-cell coinhibition and parainflammation were
shown to be activated in the HRG. HLA and type-II IFN responses were more strongly activated in the LRG
(Fig. 6D). To determine whether patients in the HRG had better immunotherapy responses, the differences in
immune target expression between the two risk groups were analysed (Fig. 6E). Effective immunotherapeutic
targets such as PDCDI (PD-1), CD274 (PD-L1) and IDO1 may provide better therapeutic effects for HRG
patients.

Tumor mutation burden of the 16-LRG risk signature

Because the TMB is associated with the efficacy of immunotherapy, cancer-related gene mutation data were
utilized to assess the TMB levels in the two risk groups. First, the top 15 genes with the highest mutation
frequency are shown in Fig. 7A and B by waterfall plots. We defaulted to plotting the TMB data transformed
by log10 and calculated the TMB scores for both groups. Compared with the LRG, the HRG had higher TMB
(Fig. 7C). High TMB indicates a poor prognosis in various cancers. In our study, the OS of the high-risk group
was poor, and the results were consistent with those of other studies. As shown in Fig. 7D, low TMB is associated
with a worse prognosis in patients with LUAD. Interestingly, low-risk patients with different TMBs had better
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Fig. 3. Establishing the 16-LRG risk signature and analysis of independent prognostic factor. (A) Forest plots
showing 36 prognostic LRGs based on Cox univariate regression analysis. (B, C) Cvfit and lambda curves of
LASSO regression by minimum criteria. (D) Distribution of the risk scores and survival status in high- and
low-risk groups. (E) Distribution of the 16 genes in high- and low-risk groups. (F) The overall survival of two
risk groups by KM curves. Univariate Cox regression analysis (G) and multivariate Cox regression analysis (H)
of clinical features regarding the 16-LRG risk signature.
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id coef

LDHA 0.158335
NDUFA12 | 0.083557
SLC3A1 0.264693
ETHE1 0.091899
SLC25A42 | -0.12164
MRPL44 0.084094

PYGL 0.039661
HAGH —-0.15262
LDHD - 0.05697
MDH2 0.183567
DARS2 0.144324
MLYCD —-0.16598
HPDL 0.015465
ISCU —-0.20216
ACAT1 —-0.16381

NDUFA8 0.1566

Table 2. The coeflicients of the 16 key genes determined by Lasso Cox regression.

OS than high-risk patients with different TMBs did (Fig. 7E). In summary, compared with the TMB, the 16-LRG
risk signature was more reliable for predicting the prognosis of LUAD.

Verification of the 16-LRG risk signature with an independent LUAD dataset

The GEO dataset GSE50081 was downloaded for independent external validation. The risk scores of the
GSE50081 patients were calculated by the same formula. By the median risk score, the GSE50081 patients were
separated into the HRG and the LRG. The distributions of patient risk scores and survival status are shown
in Fig. 8A. As expected, the K-M survival curve revealed that patients in the HRG had worse overall survival
(Fig. 8B). The expression of 16 LRGs in GSE50081 patients was drawn as a heatmap (Fig. 8C). As shown by
the ROC curve, the AUC of this risk score model was 0.721, which was greater than that of the other common
clinical features (Fig. 8D). Time-dependent ROC curves were constructed, and the AUCs at 1, 2, and 3 years
were 0.721, 0.623, and 0.657, respectively (Fig. 8E). Finally, we conducted expression and survival analyses on
the genes used to establish the model (Supplementary Fig. 3A,B).The Results confirmed the reliability of these
genes.

Discussion

LUAD, a highly heterogeneous tumour with a low overall survival rate, is the primary subtype of NSCLC?,
Although we have made some progress in the chemotherapy and immunotherapy of LUAD, the overall
treatment results are still not satisfactory. Owing to the complexity of the TME and strong heterogeneity of
LUAD, many patients exhibit drug resistance and insensitivity to treatment?. Therefore, identifying a new
LUAD cdlassification to contribute to better patient treatment strategies is urgent. In recent years, increasing
evidence has confirmed the role of lactic acid in promoting processes such as migration, immune escape and
proliferation in cancer?, High lactate levels have the connection with increased metastasis, tumour recurrence
and poor result'!. These findings suggest that lactic acid can become a tumour treatment target. The role of
lactic acid in lung cancer is receiving increasing attention. Glucose uptake and increased glycolytic activity are
metabolic characteristics of lung cancer cells*!. Previous studies have proven that human lung tumours may
use lactate as a carbon source®. In terms of lung cancer immunity, lactate from tumours inactivates immune
cell proliferation and effector function by acidifying the tumour microenvironment and upregulating PD-L1
expression!®33, According to the recent literature, increased extracellular lactate levels through the Notch1/
TAZ axis inhibit cytotoxic T-cell activity, leading to the invasive characteristics of lung cancer cells**. Therefore,
research on the mechanism through which lactate promotes immunotherapy efficacy in LUAD is important.
However, the relationship between LUAD and the comprehensive role of lactate-related genes is not well defined.
Therefore, in this study, we explored risk signatures for predicting prognosis in LUAD patients and the immune
status of their TME. Ultimately, a 16-LRG risk signature was constructed to predict the prognosis and effect of
immunotherapy of LUAD in patients.

In this study, on the basis of the expression of the 36 PLRGs, LUAD patients were divided into three subtypes.
Using GSVA enrichment analysis, we further analysed the reasons for the differences among the three subtypes,
and it was obvious from the findings that the enriched pathways associated with immune activation in LAcluster
B and LAcluster A were significantly enriched in cellular mechanisms and that LAcluster C was predominantly
related to tumour mechanisms. Finally, the correlation between the three lactate-related subtypes and TME cell
infiltration was assessed.

Next, we identified 16 LRGs among the 36 PLRGs to construct a risk signature by LASSO and Cox regression
analyses. LDHA catalyses the conversion of pyruvate to lactate, fuelling histone lactylation, which promotes
gene expression linked to cancer progression and immune evasion. As a component of mitochondrial complex
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I, NDUFA12 dysfunction can increase lactate production, indirectly influencing the lactylation landscape that
supports tumour growth. SLC3A1 is part of a cysteine/glutamate transporter, influencing redox balance and
potentially affecting the metabolic shift to lactate generation in cancer cells*’. ETHEI mutations cause sulfide
toxicity that inhibits mitochondrial respiration, potentially diverting metabolism towards aerobic glycolysis
and lactate production in tumours®®. As a mitochondrial ribosomal protein, MRPL44 is essential for oxidative
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Fig. 6. Immune-related analysis of high-risk group and low-risk group. (A) Heatmap of immune
microenvironment in high- and low-risk group. (B) Connection of TME-infiltrating cells and the 16-LRG risk
signature. (C) Boxplot of immune cells infiltration. (D) Immune function analysis. (E) Immune checkpoints
analyses between LRG and HRG.

phosphorylation; its deficiency can promote a glycolytic switch and increase the availability of lactate for
lactylation®®. PYGL encodes glycogen phosphorylase, which breaks down glycogen to provide glucose for
glycolysis, thereby supplying the pyruvate and lactate necessary for lactylation in cancer*’. HAGH degrades toxic
glycolytic byproducts such as methylglyoxal, protecting cancer cells from damage and ensuring the continued

glycolytic flux that generates a lactylation substrate?’. LDHD oxidizes lactate back to pyruvate, potentially
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regulating intracellular lactate levels and thereby modulating the pool available for histone lactylation in cancer
cells*>. MDH2 is a key TCA cycle enzyme that maintains metabolic homeostasis; its dysregulation can disrupt
mitochondrial metabolism and promote a lactogenic environment in tumours*>. MLYCD regulates fatty acid
metabolism, and its loss can lead to metabolic rewiring, which enhances the dependence on glycolysis and
lactate generation in cancer*%. ISCU is essential for iron-sulfur cluster biogenesis; ISCU deficiency cripples
mitochondrial respiration, forcing cancer cells to rely on glycolysis and lactate production®®. ACAT1 catalyses
a key step in ketone body and pyruvate metabolism, and its activity can influence the acetyl-CoA/lactyl-CoA
balance, potentially by competing with or influencing lactylation*®. As another core subunit of mitochondrial
complex I, loss of NDUFAS8 impairs oxidative phosphorylation, driving the glycolytic shift that increases lactate
levels and lactylation in cancer?’.

The 16-LRG risk signature classified patients into LRG and HRG groups on the basis of the median risk score,
and patients in the HRG group had worse survival than those in the LRG group did. Moreover, univariate and
multivariate Cox regression analyses suggested that the 16-LRG risk signature was an independent prognostic
marker for LUAD. ROC curves and nomograms have been widely applied to predict the prognosis of cancer
in patients*®°. ROC analysis was used to visualize time-associated results in patients with LUAD. Moreover, a
nomogram was constructed by combining the risk score with clinical factors.

Different immune cells play different roles in the tumour microenvironment. For example, the interaction
and activation between B cells and macrophages are considered key humoral immune effects in inhibiting
tumour progression®’. It has been shown that the extensive infiltration of eosinophils in tumours is related
to the long-term survival of patients?®. Neutrophils were found to have key functions in carcinogenesis®">2.
Studies have confirmed that neutrophils antagonize metastasis in lung cancer®®. The infiltration of T-follicular
helper cells indicates that these cells are involved in the antitumour immunity of NSCLC?. In this study, more
activated B cells, eosinophils, immature dendritic cells, mast cells, monocytes, natural killer cells, plasmacytoid
dendritic cells, and T follicular helper cells were present in the TME in the HRG than in the LRG, and most of
these cells had positive effects on tumour immunity, which explains why LRG patients have better OS. These
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findings may help us to understand the relationships among lactate levels, TME cell infiltration and LUAD.
Many studies have confirmed the link between lactate levels and immunosuppression. Lactate helps to establish
an immunosuppressive environment conducive to cancer cell growth and immune escape®.

This study has several limitations. We did not conduct sufficient in-depth research on the 16 lactate-related
genes (LRGs) selected, and their detailed mechanisms of action still need further exploration. Future research
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should focus on elucidating the detailed mechanisms of these genes in tumour progression and immune
response and further verifying their effectiveness and mechanisms as tumour biomarkers and therapeutic targets
through more in vitro and in vivo experiments. Moreover, this prognostic model requires more clinical patient
information to verify its feasibility for clinical application.

Conclusion

Three lactate-related molecular subtypes with different prognoses were found in LUAD. Sixteen LRGs were
identified, and relevant models were constructed. Both the ROC curve and the nomogram confirmed the
prognostic value of the 16-LRG risk signature, which can serve as an independent prognostic factor for LUAD
in patients. Considering the heterogeneity of LUAD, the 16-LRG risk signature enhances our characterization of
TME cell infiltration and suggests more effective immunotherapy strategies.

Data availability

The datasets generated during and/or analysed during the current study are available from GEO [https://www.
ncbi.nlm.nih.gov/geo/] (https://www.ncbi.nlm.nih.gov/geo) and TCGA official website (https://portal.gdc.canc
er.gov/repository).
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