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GADDA45 inhibits hepatic
lipogenesis through the AMPK/
SREBP1 pathway via reducing
the ubiquitination-mediated
degradation of SIRT1

Yuanyuan Xiao'%°, Renjie Wang®?°, Chaoyu Zhu'#, Qiangian Wang?, Xinyi Wang?,
Wenjing Song?, Shouxia Li%, Fusong Jiang?, JunYin'™ & Li Wei'**

Metabolic dysfunction-associated steatotic liver disease (MASLD) is a globally increasing metabolic
disorder associated with serious health complications. The molecular mechanisms linking stress-
response proteins to hepatic lipogenesis in MASLD remain poorly understood. Here, we identified
GADD45B as a key suppressor of de novo lipogenesis through SIRT1 stabilization. In both methionine-
choline-deficient (MCD) diet-fed mice and palmitic acid (PA)-treated hepatocytes, GADD45

deficiency exacerbated lipid accumulation and upregulated lipogenic genes (SREBP1, FASN, ACC).
Mechanistically, GADD45p directly bound to SIRT1 and inhibited its ubiquitination, thereby prolonging
SIRT1 protein stability. Enhanced SIRT1 stability increased AMPK phosphorylation, which suppressed
SREBP1-mediated transcription of lipogenic targets. Crucially, hepatic overexpression of GADD45f3
reversed PA-induced steatosis in vitro. Our study uncovered a GADD45B/SIRT1-/AMPK axis as a central
regulator of hepatic lipogenesis, proposing GADD45 as a therapeutic target for MASLD.
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The increasing prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) is a significant
global health concern. In accordance with recent consensus recommendations, the condition previously termed
nonalcoholic fatty liver disease (NAFLD) is now defined as MASLD, and nonalcoholic steatohepatitis (NASH)
is now termed metabolic dysfunction-associated steatohepatitis (MASH). Over the last decade, MASLD has
become the predominant cause of chronic liver disease worldwide and now affects more than 25% of the global
population!. MASLD is often linked to obesity, insulin resistance, and metabolic syndromez. It is characterized
by excessive lipid accumulation in hepatocytes, which can progress from simple steatosis to more severe forms,
such as steatohepatitis and cirrhosis. The mechanisms underlying hepatic lipid metabolism are critical for
understanding the pathophysiology of MASLD, yet they remain inadequately explored. De novo lipogenesis
plays a crucial role in the development of MASLD?. This process converts excess glucose or fructose into
fatty acids and triglycerides* and is important for maintaining metabolic homeostasis; however, its increased
activation may cause hepatic steatosis®. Therefore, inhibition of lipogenesis represents a potential therapeutic
strategy for lipid metabolism-related diseases. Previous studies have focused primarily on signaling pathways
involved in lipid regulation, such as sirtuin 1 (SIRT1) and AMP-activated protein kinase (AMPK), whereas the
specific contributions of growth arrest and DNA damage-inducible 453 (GADD45) in this context remain
poorly characterized®”.

GADD45p, a member of the GADD45 family, participates in cellular stress responses, DNA repair, and
apoptosis®. Recent studies have highlighted its potential involvement in glucose and lipid metabolism, suggesting
that GADD453 may be an important regulator in the pathogenesis of MASLD®. However, whether GADD458
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contributes to lipogenesis and thereby affects MASLD remains unclear. A significant gap persists regarding
the mechanistic role of GADD45p in hepatic lipid metabolism, particularly its interactions with established
pathways such as SIRT1/AMPK/sterol regulatory element-binding protein 1 (SREBP1) signaling, which are
crucial for maintaining metabolic homeostasis'®!.

In this study, we provided evidence that SIRT1 was regulated by GADD45p and demonstrated an important
association between them in MASLD. GADD45p interacted with SIRT1 and attenuated its ubiquitin—proteasome
degradation, thereby enhancing its stability. GADD45p deficiency decreased the activity of the SIRT1 target
AMPK, resulting in lipogenesis exacerbation. Our findings highlight a critical role of GADD45p in maintaining
SIRT1 stability and limiting lipogenesis, providing new insights and potential therapeutic strategies for MASLD.

Materials and methods

Reagents and antibodies

Cycloheximide (CHX, Cat# M4879) was purchased from AbMole Bioscience, Inc. MG132 (Cat# S2619) was
purchased from Selleck Chemicals. Palmitic acid (PA, Cat# S-A9165-5G) was purchased from Sigma-Aldrich.
Compound C (CC, Cat# HY-13418) was purchased from Med ChemExpress. Antibodies against FASN (Cat#
ARG55898, 1:1000), HSP90 (Cat# ARG55781, 1:1000), Flag Tag (Cat# ARG62342, 1:1000) and B-Actin (Cat#
ARG65683, 1:1000) were purchased from Arigo. Antibodies against ubiquitin (Cat# 3936, 1:400), AMPK (Cat#
2532, 1:1000), and p-AMPK (Cat# 2531 S, 1:1000) were purchased from Cell Signaling Technology. Antibodies
against SIRT1 (Cat# ab189494, 1:1000), SREBP1 (Cat# ab28481, 1:1000), and ACC1 (Cat# ab45174, 1:1000) were
purchased from Abcam. Antibody against GADD45 (Cat#sc377311, 1:1000) was purchased from Santa Cruz.
HRP-conjugated secondary antibodies against mouse (Servicebio, GB23301) or rabbit (Servicebio, GB23303)
were used.

Animal treatment

All animal experiments were approved by the Animal Research Ethics Committee of Shanghai Sixth People’s
Hospital and conducted in accordance with the National Institutes of Health Guide for the Care and Use of
Laboratory Animals. The study followed all institutional and national guidelines for animal research and
complied with the ARRIVE guidelines to ensure ethical and reproducible practices'2.

Eight-week-old C57BL/6] mice weighing 23-28 g were purchased from Shanghai Sippe-Bk Lab Animal Co.,
Ltd. (Shanghai, China). Animals were maintained in a specific pathogen-free facility under a 12 h light/dark
cycle. After one week of acclimatization, mice were randomly assigned to experimental groups. The methionine-
choline-deficient (MCD) diet (A02082002B; Research Diets, USA) was administered for 4 weeks to induce
MASH, and age-matched mice on a standard chow diet were used as controls.

To knock down hepatic GADD45p, an adeno-associated virus (AAV8; OBiO Technology, Shanghai, China)
carrying a short hairpin RNA targeting GADD453 (pscAAV-U6-shGADD45B3-CMV-EGFP-tWPA) was
constructed (AAV-shGADD458). The target sequence was 5-GCGACAATGACATTGACATCG-3" Control
mice received an AAV-shNC construct (pscAAV-U6-shNC-CMV-EGFP-tWPA). Viruses (2x 10! PFU per
mouse) were purified using cesium chloride gradient centrifugation, dialyzed in PBS containing 10% glycerol,
and administered via tail vein injection 14 days before euthanasia. At the study endpoint, after 12 h of fasting,
mice were euthanized by intraperitoneal injection of 3% sodium pentobarbital (60 mg/kg). Liver tissues were
rapidly dissected, snap-frozen in liquid nitrogen, and stored at — 80 °C for subsequent RNA and protein analysis.

All animal procedures were performed in adherence to the 3R principles (Replacement, Reduction, and
Refinement). Sample size was determined based on prior pilot studies and ethical guidelines, with a minimum
of eight mice per group considered sufficient to achieve statistical power while minimizing animal use. Although
investigators were aware of group allocation during procedures and outcome assessment, all interventions and
data collection followed standardized protocols to minimize bias. Humane endpoints were predefined, and any
animals showing signs of severe distress or irreversible suffering were promptly euthanized to ensure animal
welfare.

Biochemical assays

Blood samples collected from the mice were left at room temperature for 30 min and then centrifuged at 5000
rcf for 5 min at 4 °C. The supernatant was centrifuged again at 10,000 rcf for 5 min at 4 °C. Serum was carefully
transferred into clean 1.5 mL EP tubes and stored at -20 °C until use. Serum levels of aspartate aminotransferase
(AST), alanine aminotransferase (ALT), triglycerides (TG), and gamma-glutamyltransferase (y-GT) were
measured using a fully automated biochemical analyzer (Rayto Technologies, China).

Hematoxylin and eosin (H&E) and Oil Red O staining

For H&E staining, paraffin-embedded liver tissues were sectioned at 4 um thickness. Slides were deparaffinized
in xylene for 5 min (twice), rehydrated through a graded ethanol series (100%, 95%, 85%, 75%), and rinsed in
distilled water. Sections were stained with hematoxylin for 7 min, rinsed, counterstained with eosin for 30 s,
differentiated in acid ethanol for 30 s, washed in distilled water, dehydrated through graded alcohols, cleared in
xylene, and mounted with neutral resin.

For Oil Red O staining, frozen liver Sect. (7 um) were fixed in 4% paraformaldehyde for 10 min, washed with
distilled water, and incubated with freshly prepared Oil Red O working solution (Sigma-Aldrich; 0.5 g Oil Red O
dissolved in 100 mL isopropanol, diluted 3:2 with distilled water, filtered before use) for 8-10 min. Sections were
differentiated in 75% ethanol, rinsed with PBS, counterstained with hematoxylin for 90 s, and mounted using
glycerol gelatin. Slides were examined under an Olympus light microscope.
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Cell culture and treatment

HepG2 cells were cultured in DMEM/high glucose (Cat# SH30243.01; HyClone) supplemented with 10% fetal
bovine serum (Cat#04-001-1ACS; Biological Industries) and 1% penicillin-streptomycin (Cat#C0222; Beyotime,
China) in a 5% CO2 incubator at 37 °C. Cells were treated with fatty acid-free bovine serum albumin or 400 uM
PA for 24 h. Intracellular lipid droplets were stained with Oil Red O and visualized under a light microscope
(Olympus, Tokyo, Japan).

Cell transfection

pSLenti-GADDA4503-3xFlag (GADD45p), control pSLenti-MCS-3xFlag (vector), pLenti-U6-siGADD453-CMV
(siGADD45B:GCATACTCCTTCCACGTTA), and control pSLenti-U6-shNC2-CMV (siNC: TTCTCCGAACG
TGTCACGT) were constructed by OBiO Technology (Shanghai, China). Transfections were performed using
Lipofectamine” LTX & PLUS™ Reagent (Cat# A12621; Invitrogen, NY, USA) according to the manufacturer’s
instructions. Briefly, when HepG2 cells reached 70-80% confluence, solutions A (2.5 pg plasmid DNA, 2.5 uL
PLUS reagent, and 125 uL Opti-MEM) and solution B (5 pL LTX reagent and 125 uL Opti-MEM) were prepared
separately, combined, and incubated for 5 min before being added dropwise to the cell culture medium. Medium
was replaced after 6-8 h. Cells were collected 48 h later for RNA and protein extraction.

In addition, two lentivirus (LV) constructs, LentiCRISPRv2-SIRT1-sgRNA (LV-shSIRT1) and a blank vector
(LV-shNC), were purchased from Fenghbio Biotechnology Co., Ltd. (Hunan, China). HepG2 cells at 80%
confluence were transduced with these constructs at a multiplicity of infection of 50. After 24 h, the medium was
replaced with fresh medium containing FBS, and puromycin (30 pg/mL; Cat# HY-K1057; MedChemExpress)
was applied to select successfully transfected cells. The culture was continued for 2 days, after which cells were
harvested and lysed for Western blotting.

Western blot analysis

Total protein extracts from liver tissues and HepG2 cells were prepared using RIPA buffer containing 50 mM Tris-
HCI, 150 mM NaCl, 5 mM MgCl2, 2 mM EDTA, 1 mM NaF, 1% NP40, and 0.1% SDS. Equal amounts of protein
were denatured in loading buffer, separated by 10-12% SDS-PAGE, and transferred onto polyvinylidene fluoride
membranes. Membranes were blocked with 5% nonfat milk for 1 h at room temperature and then incubated
with primary antibodies overnight at 4 °C. After five washes with PBS containing Tween-20, membranes were
incubated with HRP-conjugated secondary antibodies for 1 h. Protein bands were visualized using an enhanced
chemiluminescence system.

Coimmunoprecipitation (Co-IP)

Cells were washed with PBS and lysed on ice for 30 min with IP lysis solution (Beyotime) supplemented with
protease and phosphatase inhibitors (Thermo Fisher Scientific). After centrifugation, equal amounts of lysates
were incubated overnight at 4 °C with the corresponding antibodies or control IgG, followed by incubation with
20 pl of A/G agarose beads (Cat# 88802; Thermo Fisher Scientific) for 4 h. Immunocomplexes were pelleted,
washed three times with lysis buffer, and eluted with SDS loading buffer (Cat# BL502A; Biosharp Life Sciences,
Hefei, Anhui, China). Samples were then analyzed by immunoblotting with the indicated antibodies.

Quantitative real-time polymerase chain reaction (QRT-PCR)

Total RNA was extracted from cells or liver tissues using TRIzol reagent and reverse transcribed into cDNA with
PrimeScript™ RT Master Mix (Cat# R433-01; Vazyme) according to the manufacturer’s instructions. QRT-PCR
was performed with SYBR Premix Ex Taq™ (Cat#Q312-02; Vazyme), and results were analyzed using LightCycler
480 software (Roche Diagnostics GmbH, Mannheim, Germany). Relative gene expression was quantified using
the 2724 method, with GAPDH as the internal control. Primer sequences are listed in Table S1.

Statistics

Statistical analyses were performed using GraphPad InStat Software (San Diego, CA, USA). Data are presented
as the means + SEM. For animal and cellular experiments, comparisons between two groups were made using a
two-tailed unpaired Student’s t-test. Western blot and morphological images are representative of at least three
experiments. The normality of quantitative data was assessed using the Kolmogorov-Smirnov test. For multiple
group comparisons, one-way ANOVA was applied. Statistical significance was expressed as *P <0.05, **P<0.01,
and ***P<0.001.

Results

Hepatic GADDA45pB expression is decreased in MASLD

By accessing the GEO database, two MASLD datasets, GSE48452 and GSE33814, were analyzed, comprising 37
healthy controls, 39 MASLD patients,and 31 MASH patients. Notably, GADD45p was consistently downregulated
at the mRNA level in both MASLD and MASH groups (Fig. 1A,B). To further validate this finding, GADD458
mRNA and protein levels were examined in mouse liver samples. Consistent with the human data, GADD450
expression was substantially reduced in the livers of MCD diet-fed mice compared with controls (Fig. 1C,D).

Hepatic knockdown of GADD45f exacerbates steatohepatitis in MCD mice

To investigate the role of hepatic GADD45p in steatohepatitis, C57BL/6] mice fed an MCD diet were injected
with adenoviral shRNA targeting GADD45p via the tail vein, which effectively reduced hepatic GADD45p
expression (Fig. 2A,B). Although body weight remained unchanged, liver weight, liver index, and hepatic TG
content were significantly increased in the knockdown group compared with controls (Fig. 2C-E). Consistently,
H&E and Oil Red O staining revealed markedly aggravated hepatic steatosis in GADD45f3-deficient mice

Scientific Reports |

(2025) 15:39026 | https://doi.org/10.1038/s41598-025-24864-1 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

A

-
o
|

-
o
1

-
o
|

o
©
1

o
©
1

GSE48452 B GSE33814

%k %k k*k *

ns

3%k %k %k k

-
N
]

+*

-
o
1

o
®
1

Relative GADD458 mRNA expression
- &
n
|

[
=]
|

=
9]
|

GADD458 mRNA expression

=
—
|

o
3

Relative GADD458 mRNA expression
o
1

1 1 T T
Control MASLD MASH Control MASLD MASH

0.5

Protein GADD45B/HSP90

0.0-

CON MCD CON McD

Fig. 1. Hepatic GADDA45p expression was decreased in MASLD. (A, B) GADD45p mRNA expression levels

in two different MASLD GEO datasets. (C) GADD45p mRNA expression levels in the livers of control diet-fed
(CON) and methionine- and choline-deficient (MCD) diet-fed mice (n = 6). (D) GADD45 protein expression
levels in the livers of control diet-fed mice (CON) and methionine- and choline-deficient diet-fed mice (MCD)
(n=6)."P>0.05,*P < 0.05, **P < 0.01, **P < 0.001.

(Fig. 2EQG). Interestingly, while serum TG, TC, ALT, and AST levels showed no significant differences between
groups (Fig. 2H-K), yGT levels were significantly elevated in the GADD45p-knockdown group (Fig. 2L),
suggesting worsened liver injury. Collectively, these findings demonstrate that hepatic GADD45f3 knockdown
aggravates steatohepatitis in MCD-fed mice.

Hepatic knockdown of GADD45 enhances hepatic lipogenenic gene expression in MCD diet-
fed mice

To investigate how GADDA45p knockdown aggravates hepatic steatosis, we compared the expression of
lipogenesis-related genes in the livers of GADD453-knockdown and control mice fed an MCD diet. MCD
feeding alone significantly upregulated hepatic SREBP1 mRNA expression, and liver-specific knockdown of
GADD45p further increased its expression. Liver-specific knockdown of GADD45p also significantly elevated
the mRNA levels of additional lipogenic genes, FASN and ACC (Fig. 3A). However, the hepatic mRNA levels of
genes related to fatty acid oxidation, fatty acid transport, and lipolysis were unaffected (Fig. 3A). Western blot
analysis confirmed increased hepatic protein levels of SREBP1, FASN, and ACC1 in GADD458-deficient mice,
consistent with the mRNA changes (Fig. 3B). These results indicate that liver-specific knockdown of GADD45(3
enhances hepatic lipogenesis in MCD diet-fed mice.
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Fig. 2. Hepatic knockdown of GADD450 aggravated steatohepatitis in MCD diet-fed mice. (A) Schematic
Diagram of Animal Experimental Procedures (B) GADD45p expression in liver tissues of GADD45p hepatic
knockdown mice compared with the control group (n = 6). (C-E) Liver weight, liver weight/body weight ratio
(liver index), and liver TG levels of each group (n = 6). (F, G) Representative images of H&E and Oil Red O
staining of liver sections from each group (n = 5); scale bar, 100 pm. (H-L) Serum TG, TC, ALT, AST and yGT
levels in each group (n = 5). *P < 0.05, **P < 0.01, ***P < 0.001.

Scientific Reports|  (2025) 15:39026

| https://doi.org/10.1038/s41598-025-24864-1

nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

12+
A 104 [J CON AAV-shNC B MCD AAV-shNC
[ CON AAV-shGADD453 M MCD AAV-shGADD45p ‘i

*

Lipid Metabolism Related Genes mRNA

> o S > s N > o & S
F L S P A N

& S N e A ¢
lipogenesis Oxidation Transport Lipolysis
B MCD AAV-shNC MCD AAV-shGADD458 B MCD AAV-shNC
BE MCD AAV-shGADD45B
20 kDa 3m
GADDA58 [ e e e o e o ] .
ACC! s s s 3
o
N
T
FASN _—— —------—ZSOkDa £
S
=75 kDa e
SREBP1-N | __ __ | o & & = e
Y Y] 150 kba
SREBP1-P ——
—100 kDa = O P
HSPO( | o o cun emp e oy o= VSQ w {Y Q?S é{s
G & &

Fig. 3. Hepatic knockdown of GADD450 increased hepatic lipogenic gene expression in MCD diet-fed
mice. (A) Quantitative PCR analysis of the mRNA expression levels of lipid metabolism-related genes in
the liver tissue of different groups (n = 6). (B) Western blot of ACC1, FASN, nuclear SREBP1 (SREBP1-N)
and cytoplasmic SREBP1 (SREBP1-P) in the liver tissues of different groups (n = 6). *P < 0.05, **P < 0.01,
PP < 0.001.

GADDA45( inhibits PA-induced steatosis and lipogenesis in hepatocytes

To confirm the function of GADD45p in hepatocytes, HepG2 cells were transfected with a GADD45 plasmid.
Western blot analysis verified a significant increase in GADD45p protein levels after transfection (Fig. 4F). Cells
were then treated with 400 pM PA for 24 h to induce steatosis. Oil Red O staining revealed that GADD453
overexpression significantly reduced intracellular lipid accumulation. Consistently, PA stimulation significantly
elevated intracellular TG content, which was blocked by GADD45p overexpression (Fig. 4A-C). These results
indicate that GADD45p upregulation protects hepatocytes from PA-induced steatosis.

The effect of GADD453 on lipogenesis was further examined. qRT-PCR and Western blot analyses
demonstrated that GADD45p overexpression significantly suppressed PA-induced expression of lipogenic
regulators, including SREBP1, ACC1, and FASN (Fig. 4F-H). Conversely, knockdown of GADD45p enhanced
the expression of these genes after PA treatment (Fig. 4A,I-K), which was accompanied by increased lipid
accumulation and aggravated steatosis in hepatocytes (Fig. 4A,D,E). These findings collectively suggest that
GADDA45p exerts a protective effect against hepatic steatosis by inhibiting lipogenesis.

GADD45[ mediates lipogenesis via the SIRT1/AMPK/SREBP1 pathway in hepatocytes

To determine the molecular mechanism by which GADD45p regulates hepatic lipogenesis, we first examined
its effects on the SIRT1/AMPK pathway and downstream SREBP1. In vivo, hepatic knockdown of GADD4503
in MCD-fed mice markedly reduced SIRT1 expression and the p-AMPK/AMPK ratio as shown by both
western blotting and immunohistochemistry (Fig. 5A-C). Consistently, in PA-treated HepG2 cells, GADD453
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Fig. 4. GADD45p inhibited palmitic acid-induced steatosis and lipogenesis in hepatocytes. (A) Oil Red O
staining and area quantification of GADD45p-overexpressing or GADD4503-knockdown HepG2 cells after
treatment with PA. (B-E) Lipid drops, intracellular TG levels, and relative quantification of GADD450-
overexpressing or GADD453-knockdown HepG2 cells after treatment with PA. (F-H) Protein and mRNA
expression levels of FASN, ACC1, and SREBP1 in PA-induced GADD453-overexpressing HepG2 cells

(n = 3). (I-K) Protein and mRNA expression levels of FASN, ACC1, and SREBP1 in PA-induced GADD450-
knockdown HepG2 cells (n = 3).

silencing decreased SIRT1 and p-AMPK/AMPK expression and increased SREBP1 levels, whereas GADD45(
overexpression enhanced SIRT1/AMPK signaling and suppressed SREBP1 expression (Fig. 5D,E). These data
indicate that GADD45p positively regulates the SIRT1/AMPK pathway and thereby inhibits SREBP1-mediated
lipogenesis.

To further confirm whether SIRT1 functions as an upstream regulator of AMPK, rescue experiments were
performed. Lentiviral knockdown of SIRT1 in PA-stimulated HepG2 cells abrogated the increase in p-AMPK/
AMPK and the suppression of SREBP1 conferred by GADD45p overexpression (Fig. 5EG). These results identify
SIRT1 as a key upstream mediator of the p-AMPK/AMPK axis.

Finally, to evaluate whether AMPK is essential for the protective role of GADD45p, HepG2 cells were treated
with the AMPK inhibitor CC. Inhibition of AMPK abolished the effects of GADD45p overexpression, as indicated
by decreased p-AMPK and restored SREBP1 expression (Fig. 5H,I). Together, these findings demonstrate that
GADD45p suppresses lipogenesis in hepatocytes through the SIRT1/AMPK/SREBP1 signaling pathway.

GADDA45( directly interacts with SIRT1

Although GADD45p overexpression increased SIRT1 protein levels, it did not affect SIRT1 mRNA expression
as determined by qRT-PCR (Fig. 6A). We therefore hypothesized that GADD453 may physically associate with
SIRT1. Co-IP assays in PA-induced HepG2 cells confirmed this interaction, as GADD45p was pulled down with
SIRT1 and reciprocally, SIRT1 was detected in anti-GADD453 immunoprecipitates (Fig. 6B). These findings
indicate that GADDA45p directly interacts with SIRT1.
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GADDA45 upregulates SIRT1 levels by inhibiting ubiquitin—-proteasome degradation

To exclude the influence of protein synthesis on SIRT1 levels, and because SIRT1 can be regulated through
ubiquitination, we further examined whether GADD45f affects SIRT1 stability. HepG2 cells transfected with
GADD45p plasmids were treated with CHX, a protein synthesis inhibitor, and SIRT1 protein levels were
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«Fig. 5. GADD450 mediated lipogenesis via the SIRT1/AMPK/SREBP1 pathway in hepatocytes. (A) Western
blot analysis of p-AMPK, AMPK, and SIRT1 expression in liver tissues from GADD45p3-knockdown and
control mice (n = 6). (B, C) Representative IHC staining and relative quantification of p-AMPK and SIRT1
in liver sections from the indicated individuals. (n = 6). (D) Western blot of p-AMPK, AMPK, and SIRT1
expression in GADD453-knockdown HepG2 cells treated with PA (n = 6). (E) Western blot of p-AMPK,
AMPK, and SIRT1 expression in GADD45-overexpressing HepG2 cells treated with PA (n = 6). (F) Western
blot analysis of SIRT1 expression in PA-induced HepG2 cells infected with LV-shSIRT1 or LV-shControl.

(G) SIRT1, p-AMPK/AMPK, and SREBP-1 expression in PA-induced SIRT1 knockdown and GADD4583-
overexpressing HepG2 cells (n = 6). (H) Western blot of p-AMPK/AMPK expression in PA-induced HepG2
cells treated with multiple doses of Compound C. (I) p-AMPK/AMPK and SREBP-1 expression in PA-induced
GADD45p-overexpressing and Compound C-treated HepG2 cells (n = 6).
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Fig. 6. GADDA45p directly interacted with SIRT1. (A) GADD450 and SIRT1 mRNA expression in HepG2 cells
after the overexpression of GADD45p. (B) Coimmunoprecipitation (co-IP) of GADD45p with SIRT1 proteins
in HepG2 cells. The co-IP and western blot data shown are representative of at least 3 independent experiments
with consistent results.

measured. As expected, GADD45p significantly prolonged the half-life of SIRT1, which was decreased by CHX
(Fig. 7A). Conversely, GADD450 knockdown decreased SIRT1 stability in PA-induced HepG2 cells (Fig. 7B),
suggesting that GADD45p maintains SIRT1 levels by inhibiting its degradation rather than promoting protein
synthesis.

The K48-linked ubiquitin-proteasome system (UPS) is a major intracellular protein degradation mechanism.
As shown in Fig. 7C, in the condition of exposing to PA, treatment HepG2 cells with the proteasome inhibitor
MG132, GADD45p overexpression significantly increased SIRT1 protein expression levels compare with
the control group, implicating that the UPS pathway may involve in this process. Furthermore the ubiquitin
immunoprecipitation further revealed that PA exposure mediates SIRT1 ubiquitination, whereas GADD45(3
overexpression reverses these effects. All of these results indicate that GADDA45p increases SIRT1 levels by
inhibiting its ubiquitin-proteasome-mediated degradation.

Based on these results, we propose a mechanistic model: reduced GADD45f expression in hepatocytes of
MASH patients and MCD-fed mice diminishes its interaction with SIRT1, leading to enhanced ubiquitin-
proteasome-mediated degradation of SIRT1. The resulting loss of SIRT1 impairs AMPK phosphorylation,
thereby augmenting SREBP1-mediated de novo fatty acid synthesis. This cascade increases lipogenesis and
exacerbates hepatic steatosis (Fig. 8).

Discussion

MASLD has emerged as a significant global health concern due to its complex pathogenesis, which involves insulin
resistance, oxidative stress, and inflammatory pathways. With the increasing prevalence of obesity and metabolic
syndrome, MASLD is recognized not only as a hepatic disorder but also as a major risk factor for cardiovascular
diseases, type 2 diabetes, and other metabolic disorders. This underscores the urgent need to understand its
mechanisms and develop effective therapeutic strategies'*>!. In this study, we identified GADD45f as a novel
factor contributing to the development and progression of MASLD. GADDA45p is an acidic stress-responsive
protein involved in DNA repair, cell cycle regulation, apoptosis, inflammation, and stress responses through
protein-protein interactions!. Several studies have also implicated GADD45f in lipid metabolism. Dong et al.
have demonstrated that GADD45p was downregulated in multiple clinical datasets and in a murine MASLD
model, where its expression mitigated lipid accumulation and insulin resistance in high-fat diet (HFD)-induced
disease®. Fuhrmeister et al. have reported that under fasting conditions, GADD45f binds FABP1, promoting
its cytoplasmic retention, thereby inhibiting fatty acid uptake and enhancing lipid metabolism'¢. Kim et al.
have revealed that GADD45 suppresses hepatic gluconeogenesis by stabilizing and activating forkhead box
protein O1 (FoxO1), while GADD450 knockout increased expression of lipogenesis-related genes. Furthermore,
GADD45p has been identified as an inducible coactivator of the constitutive androstane receptor (CAR),
promoting rapid liver growth. Cai et al. have also reported that CAR-mediated metabolic regulation depends
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Fig. 7. GADDA45p facilitatef SIRT1 stability by inhibiting its ubiquitin-proteasome degradation. (A) Western
blots of PA-induced GADD45-overexpressing HeG2 cells treated with cycloheximide (CHX; 20 pg/ml) for the
indicated time periods and semiquantification of SIRT1 levels. (B) Western blots of PA-induced GADD4503-
knockdown HeG2 cells treated with cycloheximide (CHX; 20 pg/ml) for the indicated time periods and
semiquantification of SIRT1 levels. (C) Coimmunoprecipitation (co-IP) of SIRT1 with ubiquitin proteins in
PA-induced GADD45p-overexpressing HepG2 cells after treatment with 10 uM MG132 for 8 h (n = 3). The
Co-IP and western blot data shown are representative of 3 independent experiments with consistent results.
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Fig. 8. Working model of GADD45p in the regulation of hepatic steatosis. GADD450 expression is decreased
in hepatocytes fed an MCD diet. A decrease in GADD450 does not interact with Sirtuin 1 (SIRT1) and is
subsequently degraded by ubiquitination. This results in increased lipogenesis and thereby synergistically
aggravates fatty acid accumulation and hepatic steatosis.

on GADD45p, as GADD45B knockout blunted the weight reduction and insulin sensitivity induced by the
CAR agonist TCPOBOP in HFD-fed mice, mechanistically linked to lipogenesis inhibition in hepatocytes!”.
However, further mechanistic studies remain limited. In the present study, we observed that GADD453 mRNA
and protein levels progressively decreased in human and mouse MASLD livers as the disease advanced from
MASLD to MASH. Using a liver-specific GADD45p knockdown model under an MCD diet, we found that
steatosis was aggravated compared with control diet-fed mice. This was accompanied by increased hepatic
expression of lipogenic genes, including SREBP1, FASN, and ACC, consistent with previous findings. In vitro,
GADD45p overexpression in HepG2 cells significantly suppressed fatty acid-induced expression of these genes,
whereas GADD453 knockdown enhanced their expression and lipid accumulation. These data indicate that
GADD45p is involved in hepatic lipid metabolism and fat deposition in MASLD.

To clarify how GADD45p influences hepatic lipid metabolism, we investigated its relationship with AMPK,
a heterotrimeric kinase that regulates cellular energy balance through lipid metabolism. AMPK plays a key role
in promoting hepatic fatty acid oxidation, inhibiting cholesterol and TG synthesis, and repressing lipogenesis'®.
Among its downstream targets, SREBP-1c is a key transcription factor for lipogenesis in the liver’”. AMPK
reduces lipogenic gene expression by phosphorylating SREBP-1c at Ser372, thereby preventing its proteolytic
activation?’. Furthermore, AMPK may suppress SREBP-1c expression through mTOR and LXRa?!. Once
activated, SREBP1 translocates to the nucleus and stimulates the transcription of lipogenic genes such as ACC,
FASN, and stearoyl-CoA desaturase (SCD1)*2-%4. Although AMPK is known to strongly influence lipogenic gene
expression, it has not been established whether GADD450 regulates lipid metabolism through this pathway.
Our study revealed that protein levels associated with the AMPK/SREBP1 axis were significantly altered in vitro
and in vivo under MASLD conditions, and these changes were further modulated by GADD45p. Moreover,
treatment with CC, an ATP-competitive inhibitor of AMPK?, abolished GADD45p-induced activation of
AMPK and its inhibitory effect on lipogenesis. These results indicate that GADD45fB may ameliorate lipid
metabolism dysfunction via the AMPK/SREBP1 pathway in MASLD.

Even though GADD45p affects the AMPK signaling pathway, AMPK activity is regulated primarily by
phosphorylation, and GADD45p does not possess phosphatase activity. In addition, as a scaffold protein,
GADD45p does not directly regulate transcription, prompting us to identify downstream factors potentially
affected by GADD453. We found that SIRT1, a known GADD453-binding partner, mediated its effects on
the AMPK/SREBP1 pathway. This is a key finding of our study in understanding how GADD45f regulates
lipogenesis in MASLD. SIRT1 is a class IIT histone deacetylase that requires nicotinamide adenine (NAD") to
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deacetylate histone and non-histone proteins involved in diverse metabolic processes and stress responses?®?’.
It is widely expressed in multiple tissues and has been implicated in metabolic and age-related diseases?®. SIRT1
regulates adipocyte differentiation, hepatic lipid metabolism, systemic inflammation, nutrient sensing, circadian
rhythms, and particularly lipogenesis®®. Often described as a “master metabolic regulator”, it maintains lipid
homeostasis by modulating several metabolic proteins*®3!. Previous studies have demonstrated that SIRT1
inhibits lipogenic enzymes such as SREBP-1c, thereby alleviating hepatic lipid dysregulation®-34, and can
also suppress ACC and FASN in MASLD*. Importantly, AMPK, the natural regulator of SREBPI, is activated
indirectly by SIRT1 through deacetylation of its upstream kinase®®. Thus, SIRT1 amplifies AMPK activity to
reinforce lipid homeostasis®”*%. These findings align with clinical evidence showing that SIRT1 activators can
alleviate fatty liver in MASLD patients, highlighting its pivotal role in lipid-related disease through the AMPK
pathway*%0. In this study, disruption of SIRT1 expression revealed that the impact of GADD45f on hepatic
lipid synthesis was mediated through the SIRT1/AMPK signaling pathway. We further confirmed the interaction
between GADD45p and SIRT1 in both animal and cell models of steatosis. Consistent with previous reports,
the MCD diet significantly downregulated hepatic SIRT1 expression. In GADDA45p liver-specific knockdown
mice, SIRT1 expression was reduced, and lipogenic genes were significantly increased. Conversely, GADD450
overexpression in HepG2 cells reversed the PA-induced suppression of SIRT1 and upregulation of lipogenic
genes. Together, these results suggest that GADD45p regulates hepatic steatosis by stabilizing SIRT1 expression
and subsequently modulating downstream lipogenic genes.

Another novel finding of our study is that GADD45p was involved in the ubiquitination and stabilization
of SIRT1. We found that GADD45f not only interacted with SIRT1 but also modulated its protein stability.
Previous studies have shown that SIRT1 is regulated through ubiquitin-proteasome degradation and that control
of its ubiquitination is crucial for maintaining stability. Ubiquitination is a key signal for protein degradation,
with ubiquitin ligases catalyzing the covalent attachment of ubiquitin to substrates and extending polyubiquitin
chains. In MASLD, SIRT1 acts as a substrate of E3 ligases, undergoing K48-linked ubiquitination and degradation,
which exacerbates hepatic steatosis*!. Proteomic studies have identified multiple E3 ligases that target SIRT1,
including MDM2 (under oxidative stress-induced cell senescence)*>, SMURF2 (to inhibit proliferation and
tumor formation)*?, CUL4 (to promote autophagy)*, and COP1 (to exacerbate lipid toxicity)*>. Our results
provide the first evidence that GADD450 regulates SIRT1 ubiquitination. GADD45p attenuated the PA-induced
SIRT1 ubiquitination, thereby preserving SIRT1 protein expression and preventing proteasomal degradation.
This novel mechanism highlights GADD45p as a stabilizer of SIRT1, extending its role beyond transcriptional
and metabolic regulation. Although our study revealed that GADD45p bound to SIRT1 and influenced its
ubiquitination, GADD45p itself is not a ubiquitin ligase. Previous studies suggest that the association of adaptor
proteins can provide additional layers of regulation to ubiquitin ligase activity*®. Ubiquitin ligases often function
as part of complexes that include substrate receptors or adaptor proteins, which guide substrate recognition and
catalyze ubiquitination and subsequent degradation®’. Therefore, we speculate that GADD45p may act as an
adaptor protein, facilitating ubiquitin ligase-mediated regulation of SIRT1. Among known E3 ligases, MDM2,
SMURE2, COPI, and CUL4B have been implicated in SIRT1 turnover under different stress and metabolic
conditions, including oxidative stress, lipotoxicity, and tumorigenesis*>*->0. These findings suggest that similar
mechanisms may operate in hepatocytes, and that GADD45B could modulate SIRT1 stability by interacting
with one or more of these ligase complexes. Proteomic screening and targeted co-IP assays are necessary to
determine which ligase mediates this effect in MASLD. Additionally, the specific ubiquitination site on SIRT1
that is affected by GADD45p warrants further exploration.

Notably, the GADD45 family consists of three isoforms, GADD45a, GADD45p, and GADDA45y, that are
structurally homologous and share partially overlapping functions in stress responses®’. GADD45a activates
AMPK to enhance fatty acid oxidation and energy expenditure while suppressing lipogenesis, protecting against
acetaminophen- and diet-induced liver injury®2. Its downregulation under ER stress or fibrosis promotes
steatosis and inflammation®. GADD45p also suppresses hepatic lipogenesis by regulating the SIRT1/AMPK/
SREBP1I axis, as shown in our study. Similarly, GADD45y is expressed in the liver and induced by stress, but
its role in hepatic lipid metabolism remains undefined. Thus, GADD45a and GADD450 may exert related but
mechanistically distinct effects in hepatic lipid metabolism.

Evidence also suggests that GADD45( regulates multiple metabolic and pathological processes in the liver.
It promotes gluconeogenesis through TET1-PGC-1a demethylation, contributing to hyperglycemia in obesity
and diabetes®. Stabilization by HSP72 improves insulin resistance and reduces triglyceride accumulation in
MASLD>. GADD45 also inhibits liver fibrosis by attenuating hepatocyte injury, inflammatory responses,
and fibrogenic signaling pathways®®. Metformin protects against acetaminophen-induced hepatotoxicity via
GADD45B-dependent JNK inhibition®’”. Since metformin improves insulin sensitivity and steatosis in MASLD,
these findings support a protective role of GADD45p in limiting inflammation, fibrosis, and progression to
MASH.

This study has several limitations. First, palmitate-treated HepG2 cells model lipotoxic stress rather than
classical de novo lipogenesis, and the relevance of our findings to glucose-mediated de novo lipogenesis requires
further clarification. Second, the MCD model does not robustly activate de novo lipogenesis, and GADD4503
may influence lipid accumulation via alternative pathways, such as fatty acid uptake or oxidation, which were
not functionally explored. Third, genetic rescue experiments targeting SREBP1 or ACC are necessary to establish
the causal role of this pathway in mediating the GADD45p knockdown phenotype, but could not be performed
due to current resource constraints. Fourth, while GADD45@ expression was analyzed at the mRNA level using
human GEO datasets, direct validation in clinical liver tissues at the protein level was not feasible, limiting
translational strength. Lastly, as HepG2 cells are hepatocarcinoma-derived, their regulatory fidelity may not fully
reflect that of normal hepatocytes. Future studies using human liver tissues, primary hepatocytes, or organoid
models are warranted to validate the GADD453/SIRT1 axis under more physiologically relevant conditions.
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In conclusion, this study underscores the important role of GADD45p in modulating hepatic lipogenesis
through its interaction with SIRT1. By stabilizing SIRT1 and preventing its ubiquitin—proteasome degradation,
GADD45p3 enhances SIRT1 activity and activates the SIRT1/AMPK signaling pathway, thereby suppressing
lipogenesis. These findings provide novel insights into the molecular mechanisms of hepatic lipid metabolism and
identify GADD458 as a potential therapeutic target for the management of MAFLD. Given the increasing global
burden of metabolic liver disorders, further exploration of GADD45p function may support the development of
targeted interventions to mitigate disease progression.

Data availability

RNA sequencing data were obtained from the GEO database (GSE33814, https://www.ncbi.nlm.nih.gov/geo/que
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