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A robust Deep Reinforcement Learning-based Intrusion Detection Scheme (DRL-IDS) for Software-
Defined Networking (SDN) which combines the Long-Short Term Sequence Recurrent Neural Network 
(LFTS-RNN) with the Particle Cloud-Integrated Joint Time- and Feature-Optimization Algorithm (PC-
JTFOA). The hybrid model aims to enhance the security of SDN through the detection and mitigation 
of a wide array of Distributed Denial of Service attacks and network misbehaviors across different SDN 
planes. The LFTS-RNN is used for accurate attack detection and misbehavior identification. Meanwhile, 
the PC-JTFOA optimizes feature selection, load balancing, and energy-efficient routing, thus ensuring 
fast and reliable network traffic management. The deep reinforcement learning approach further 
enables continuous adaptation to changing network behaviors, thus making the model dynamically 
adapt to known as well as emerging attack vectors. The proposed DRL-IDS scheme obtains superior 
performance in experimental results based on the NSL-KDD and WPPD datasets. The LFTS-RNN model 
indicates a highly impressive sensitivity of 98.67% and specificity of 97.42%, while the DRL-IDS model 
presents an detection accuracy of 99.85%. The PC-JTFOA further improves the solution by exhibiting a 
low response time of 1423 ms, which indicates tremendous improvement in computational efficiency. 
A comparative analysis with the existent intrusion detection methods pointed out that the scheme 
proposed not only outperforms other models in terms of detection accuracy as well as adaptability, but 
it also reduces complexity.
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Intrusion Detection Systems (IDS) are essential security controls that monitor computer networks to prevent 
unauthorized access and malicious activities. IDS actively monitors network traffic and system behaviors to 
identify unusual or unauthorized actions. This helps in finding potential threats such as malware, hacking attempts 
and network intrusions that might compromise the security and integrity of systems. The basic purpose of IDS 
is to alert users in real time and protect them from the damage caused by the attack so that network resources 
are safe from internal and external threats1. Software-Defined Networking is a new group of system architecture 
that decouples the control plane from the data plane, allowing centralized control and more flexible management 
of networks. In SDN, the control of a network is abstracted, thus allowing network administrators to control 
the flow of traffic programmatically and to make real-time changes to network configurations through software 
applications2. This architecture offers better scalability, improved efficiency and easier network management 
and enables dynamic reconfiguration of the network in response to changing demands. SDN is increasingly 
being used in large-scale, complex networks because of its agility and cost-effectiveness in managing network 
resources3.

The combination of deep reinforcement learning and advanced algorithms is being chosen, such as the Long 
Short-Term Memory Network (LFTS-RNN) and Particle Colony-Adjusted Jumping Teaching Fish Algorithm 
Optimization Algorithm (PC-JTFOA) along with their capabilities that facilitate the efficiency and flexibility 
that IDS in SDNs offer. DRL ensures autonomy in learning and improving adaptation to new threats at over time, 
making an evolution in attack strategies highly effective. LFTS-RNN works in dealing with sequential data with 
the detection of network-traffic patterns and PC-JTFOA deals with optimizations in resource allocation that 
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minimize the overall response time while enhancing efficiency in detection. All such methods help to increase 
precision, flexibility, and speed in identifying and dealing with complex threats in SDNs4,5.

Traditionally, the Intrusion Detection Systems generally employ signature-based or anomaly-based detection 
methods. The former IDS compares the incoming network traffic with a database of known attack patterns 
from established baseline behavior. These techniques lack the ability to identify new or sophisticated attacks. 
Traditional approaches to IDS face high false positive rates and long response times in cases of large-scale 
networks or real-time data6.

Traditional IDS methods facing challenges include having high computational complexity, efficiency 
in dealing with enormous volumes of network traffic, and not being adaptable enough to emerging threats. 
Signature-based systems cannot identify new, unknown attack patterns, and anomaly-based systems can 
cause too many false positives, leading to alert fatigue. Additionally, traditional systems are often unable to 
scale effectively in dynamic network environments like Software-Defined Networking, where rapid changes in 
network configurations require real-time threat detection and fast response times. These limitations hinder the 
overall security performance, prompting the need for more advanced, machine learning-driven solutions7,8.

The requirement for an adaptive, efficient, and scalable IDS solution that can properly safeguard SDN 
infrastructures against known and unknown threats continues to be a very pertinent issue. There lacks more than 
what is being delivered nowadays through existing IDS approaches toward that end: accuracy and sensitivity and 
response time coupled with the ability to keep an adaptive sense of evolving networking systems. The motivation 
from this research is for development into an advanced SDN IDS using DRL fused with LFTS-RNN and PC-
JTFOA. It shall aim to enhance the accuracy of detection, reduce false positives, and improve adaptability to new 
and evolving threats while ensuring low response time and computational efficiency. Another goal is to provide 
scalability for handling high volumes of data and complex attack patterns in SDN environments9,10. The main 
contributions of the proposed work is listed below.

•	 A DRL-based IDS for Software-Defined Networking focused on an LFTS-RNN approach to determine attack 
patterns and misbehaving actions.

•	 This reserch achives an accuracy 99.85% through the DRL-based IDS model that proves as better compared 
to previous traditional intrusion detection systems.

•	 The Particle Colony-Adjusted Jumping Teaching Fishing Optimization Algorithm (PC-JTFOA) is sued for-
feature selection, load balancing, and energy-efficient data transmission which reduces the computational 
complexity.

•	 The LFTS-RNN model has an impressive sensitivity of 98.67% and specificity of 97.42%, in detecting both 
known and unknown attacks in SDN.

•	 PC-JTFOA reduces the response time to 1423 ms and improves computational efficiency.

The paper organization is structured as follows. The related surveys are illustrated in Sect. 2. Section 3 represents 
the proposed technique’s and the DRL-IDS mrthod. The performance of the proposed method are signified in 
Sect. 4. Finally, Sect. 5 concludes the paper with ideas of future directions.

Literature survey
AlEroud & Alsmadi (2017) outlines an inference-based intrusion detection approach for cyber-attacks against 
SDNs. The method involves an inference engine with anomaly detection from the perspective of real-time attack 
identification. Its focuses on the detection of numerous cyber-attacks across the SDN planes and is versatile to 
different network environments11. Ibrahim & Bhaya (2021) introduces a cloud-based SDN intrusion detection 
system. It adopt a hybrid model, combining machine learning and signature-based techniques. It is focus on 
cloud-based SDN environments, which require unique intrusion detection strategies because of the dynamic 
nature of cloud computing12. Satheesh et al. (2020) proposed flow-based anomaly intrusion detection system 
with the help of machine learning technique with the application of SDN’s using OpenFlow. Flow-based 
detection and analysis method monitor and check patterns and detect anomalies on these networks. It has the 
capacity to handle a real-time huge scale traffic data13.

Alshahrani et al. (2023) discuss the intrusion detection framework for the Industrial Internet of Things (IIoT) 
using SDNs. The approach incorporates SDN and IIoT in detecting security intrusions. It offers an efficient 
method in securing those networks and proposes a novel method in an IIoT environment14,15. Alshammri et al. 
(2022) presents an efficient intrusion detection framework for SDNs focused on cybersecurity applications. Its 
methodology involves a combination of deep learning and network traffic analysis16. Ha et al. (2016) proposed 
traffic sampling for intrusion detection in SDNs. The proposed methodology focuses on sampling-based to 
decrease the volume of required analysis of traffic without impairing detection accuracy. Its advantage lies in 
the efficient management of large-scale network traffic without causing significant computational overhead17. 
Yazdinejadna et al. (2021) present an SDN-based intrusion detection system based on a kangaroo approach. This 
method utilizes the kangaroo optimization algorithm to recognize intrusions by monitoring patterns in network 
traffic. This advantage is that the kangaroo algorithm is novel, making its use improve detection efficiency 
while reducing false positives18. Janabi et al. (2022) deals with overhead reduction in SDN-based IDS by using 
an optimized algorithm. The methodology involves the use of resource-efficient techniques for reducing the 
computational cost of IDS. The advantage lies in optimizing network resources and improving the scalability of 
intrusion detection systems19.

Naqash et al. (2022) presents a statistical analysis-based intrusion detection system for ultra-high-speed 
SDNs. By using statistical techniques, it identify anomalies in high-speed networks. The strength of the approach 
is its capability in handling ultra-high-speed data and fast detection20. Tian et al. (2021) proposed a two-stage 
intrusion detection approach for SDN-based IoT networks. This approach combines signature-based and 
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anomaly-based detection techniques to enhance detection accuracy21. Li et al. (2018) proposes an AI-based 
two-stage intrusion detection system for SDN-enabled IoT networks. The approach integrates machine learning 
models for improving the accuracy of detection. Its strength is in the application of AI, which automates the 
detection process, making the system overall more efficient and adaptable22. Ali & Yousaf (2020) proposed a 
novel three-tier intrusion detection and prevention system for SDNs. The research work makes use of hierarchical 
detection and prevention strategies that aim to curb the threat within SDNs. One advantage of this work is multi-
tier architecture which strengthens the detection and prevention ability at the different levels of the network6.

Bhardwaj et al. (2022) uses a self-organized constraint-based intelligent learning framework in the context 
of network intrusion detection in SDNs. This methodology integrates self-organization and constraint-based 
learning for better intrusion detection improvement. The advantage of the approach is adaptability and flexibility 
in learning patterns within the network traffic, decreasing false positives10. Satheesh et al. (2020) proposed a 
flow-based anomaly intrusion detection system using machine learning for SDNs. It focuses on the usage of the 
OpenFlow protocol in SDNs for traffic monitoring. The advantage lies in its ability to detect network anomalies 
with high accuracy for automated detection13. Abdulqadder et al. (2020) provides a multi-layered intrusion 
detection and prevention system for SDN/NFV-enabled 5G networks with AI-based defense mechanisms. The 
methodology utilizes AI and machine learning techniques to improve the security of SDN/NFV networks in 
5G23. Garg (2022) proposes a self-organized constraint-based intelligent learning framework for SDN network 
intrusion detection. In this approach, the intrusion detection system uses an intelligent learning framework 
to detect and prevent intrusion. It is self-organizes and adapts to novel attack patterns by strengthening the 
detection24. Zavrak & Iskefiyeli (2023) proposes an approach for anomaly detection from multivariate time 
series in SDNs flow-based intrusion detection. The methodology makes use of advanced time-series analysis 
for the discovery of network anomalies25. Alhaidari et al. (2021) proposed an intelligent SDN approach for the 
optimization of cognitive routing using deep extreme learning machine approaches. The proposed approach 
combines cognitive routing with deep learning for efficient routing and intrusion detection. The merits lie in the 
incorporation of deep learning for improved routing as well as the prediction of network traffic26.

Alnaser et al. (2024): This paper optimizes multi-tier scheduling and secure routing in edge-assisted SDWSNs 
using AI techniques. The methodology uses AI for optimizing routing and ensuring secure communication. 
The advantage is its application in edge-assisted networks, improving the security and efficiency of SDWSNs27. 
Setiawan et al. (2022) focuses on encrypted network traffic classification and resource allocation using deep 
learning in SDNs. The methodology relies on deep learning models for the classification of encrypted traffic 
as well as efficient resource allocation. The advantage of this approach is that it can deal with encrypted traffic, 
which is becoming increasingly common in modern networks28. Kipongo et al. (2023) proposes an artificial 
intelligence-based IDS and prevention system in edge-assisted SDWSNs with a modified honeycomb structure. 
The methodology is used for intrusion detection and prevention through AI in SDWSNs. The benefit is its novel 
honeycomb structure, which improves the performance of the system in edge networks29. Phan & Bauschert 
(2022) introduces a deep reinforcement learning-based adaptive intrusion response system for SDNs (DeepAir). 
The methodology is based on deep reinforcement learning that allows the response to attacks to be dynamically 
adjusted30,31.

Table 1 highlights the techniques, data sets, measurements, and limitations of the main IDS methods for 
SDN/IoMT. It shows how the suggested algorithm integrates DRL, LFTS-RNN, and PC-JTFOA in an unusual 
manner to get a low latency, reduced FPR, and excellent accuracy throughout SDN layers.

Additionally to traditional flow-, signature- and anomaly-driven systems for intrusion detection, a variety of 
recent investigations have created machine learning and reinforcement-learning techniques for protecting fluid 
SDN settings. In IoMT and SDN contexts, the combination of CNN–LSTM and deep reinforcement learning 
algorithms (DQN, PPO) was used to continually counteract shifting invasion patterns while achieving high 
precision with low delay32,33.

For encrypted traffic analysis in internet of things SDNs, memory-feedback Generators used together with 
LSTM models have been suggested suggested; they demonstrate better dynamic modeling and resistance to 
geographic alterations34. Similarly, to strengthen anomaly detection in non-stationary situations, RCLNet 
combines CNN/LSTM encoders, self-adaptive focus, with radio frequency feature ranking.

These investigations show how scaling, instability, and feature spaces with high dimensions are dealt with 
in network safety by current RL/DL systems. Our DRL-IDS extends this strategy through integrating an LFTS-
RNN detection with a PC-JTFOA optimizer in order to collaborate on energy-efficient scheduling, scheduling, 
and choice of features across network planes. It additionally specifically displays energy and delay metrics, that 
were overlooked in prior transformer-based or IoMT-focused methods35,36.

Proposed methodology for intrusion detection scheme
The proposed methodology for the IDS uses Deep Reinforcement Learning to increase the accuracy of intrusion 
detection as well as adaptability to dynamic networks. The method trains the DRL agent to inspect network 
traffic patterns and detect intrusion by constantly learning from experiences with the network. The agent uses a 
reward-based system in which it receives positive feedback for correct identification of intrusions and negative 
feedback for false positives or missed threats. Using a deep neural network architecture, the agent can handle 
complex, high-dimensional data, allowing it to identify known as well as unknown attack vectors. The detailed 
explanation of the proposed work SDN is described below.

Deep reinforcement learning-based intrusion detection scheme (DRL-IDS)
DRL-IDS is designed to face the challenges of detecting network anomalies and intrusions in dynamic and 
complex SDN environments. It uses centralized control and programmability, which make it efficient but expose 
it to possible security vulnerabilities. DRL-IDS utilizes Deep Reinforcement Learning (DRL) in the analysis of 
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network traffic, allowing it to act as an intelligent agent autonomously learning from data patterns to detect 
malicious activities. This ability ensures that DRL-IDS adapts very well to the changing nature of network 
threats. The advantages of DRL-IDS lie in its ability to learn and improve through continuous interaction with 
the network environment. Unlike the traditional systems that rely on static rules or pre-trained models, DRL-
IDS dynamically updates its strategies of detection by optimizing the action in a feedback loop. This adaptability 
makes it easier for the system to handle both known attack patterns as well as novel or emerging threats by 
generalizing beyond specific signatures that make it more robust against sophisticated or previously unseen 
intrusion techniques.

In addition, DRL-IDS incorporates state-of-the-art neural network architectures and optimization methods 
to optimize detection performance. DRL helps the system make decisions based on long-term benefits, which 
minimizes false positives and negatives. It not only detects anomalies in real-time but also continuously refines 
its detection model, making it a scalable and efficient solution for intrusion detection in SDN environments, 
where traffic patterns and security risks are highly dynamic. The bellman equation in (1) is derived from the 
principle of optimally in dynamic programming which states that the value of a state action pair is immediate 
reward plus the discounted future reward from the next state. In this equation is the reward for taking action at 
state and is the discount factor.

In addition, DRL-IDS incorporates state-of-the-art neural network architectures and optimization methods 
to optimize detection performance. DRL helps the system make decisions based on long-term benefits, which 
minimizes false positives and negatives. It not only detects anomalies in real-time but also continuously refines 
its detection model, making it a scalable and efficient solution for intrusion detection in SDN environments, 
where traffic patterns and security risks are highly dynamic. The bellman equation in (1) is derived from the 
principle of optimally in dynamic programming which states that the value of a state action pair is immediate 
reward plus the discounted future reward from the next state. In this equation rt is the reward for taking action 
at state st and γ  is the discount factor.

	
Q (st, at) = E

[
rt + γ max

a′
Q(st+1, a′ )

]
� (1)

No. Study/year Technique Dataset(s) Metrics reported Key limitations

1 AlEroud & Alsmadi (2017) Inference-based 
IDS

Custom SDN 
traffic Accuracy 91% Limited to static rules; no latency analysis

2 Satheesh et al. (2020)
Flow-based 
anomaly detection 
(ML)

OpenFlow 
traffic

Acc. 90.8%, FPR 
1.4% High FPR, no adaptive learning

3 Li et al. (2018) AI-based two-stage 
IDS

SDN-enabled 
IoT Acc. 96.3% No feature/load optimisation; modest scalability

4 Phan and Bauschert (2022) – DeepAir30 DRL + adaptive 
response NSL-KDD Acc. 98.2% No energy or latency metrics; focuses only on 

control plane

5 Shaikh et al. (2025) DRL + CNN–LSTM 
for IoMT CICIoMT2024 Acc. 99.5%, F1 99.6% IoMT only; no SDN routing or multi-plane 

evaluation

6 Shaikh et al. (2025) MF-Transformer 
(MF-LSTM)

WUSTL-
EHMS, 
ECU-IoHT, 
X-IIoTID

Acc. 99.8% 
(signature), 99.7% 
(anomaly)

No latency/energy analysis; limited to 
healthcare IoT

7 Shaikh et al. (2024)
RCLNet 
(RF + CNN/
LSTM + Attention)

IoMT traffic Acc. 99.3% Not evaluated on large-scale SDN; no load-
balancing

8 Proposed DRL-IDS DRL + LFTS-
RNN + PC-JTFOA

NSL-KDD, 
WPPD

Acc. 99.85%, Sens. 
98.67%, Spec. 
97.42%, FPR ≤ 0.70%, 
RT ≈ 1.4s

Addresses gaps: combines DRL + RNN with 
feature/load optimisation and energy-aware 
routing; evaluated across SDN planes

9 Proposed DRL-IDS (this work) DRL + LFTS-
RNN + PC-JTFOA

NSL-KDD, 
WPPD, 
ICECIE-2021 
dataset

5-fold CV Acc. 
= 99.72 ± 0.08%; 
F1 = 99.6%; Spec. = 
97.4%; FPR ≤ 0.70%; 
RT ≈ 1.4 s

Addresses gaps: combines DRL, temporal 
modelling, and feature/load optimisation; 
validated with cross-validation and an 
additional dataset to confirm generalisation

9 Author et al. (2023)
DOI:https://doi.org/10.1007/s11042-023-16894-6

AI-based IDS for 
SDN

Benchmark 
SDN dataset

Accuracy ~ 98%, FPR 
not reported

DRL‑IDS achieves higher accuracy and reports 
latency/energy metrics not covered in this work.

10 Author et al. (2025)
DOI:https://doi.org/10.1016/j.compeleceng.2025.110561 Deep-learning IDS IoT/SDN 

hybrid data Acc. 97%, F1 96% DRL‑IDS shows stronger generalisation via 
cross-validation and tests on newer datasets.

11 Author et al. (2024)
DOI:https://doi.org/10.1038/s41598-024-67984-w Hybrid deep IDS Industrial IoT 

traces Acc. 98.5%, FPR ~ 1% Our model integrates PC‑JTFOA for 
optimisation and evaluates across SDN planes.

12 Author et al. (2024)
DOI:https://doi.org/10.1038/s41598-024-75414-0

Transformer-based 
IDS

Cloud SDN 
data

Acc. 99%, no latency 
analysis

DRL‑IDS emphasises low FPR and response 
time, missing in this work.

13 Author et al. (2023)
DOI:https://doi.org/10.1007/s41870-023-01332-5 CNN-LSTM IDS Mixed IoT 

datasets Acc. 98%, F1 97% DRL‑IDS balances accuracy and efficiency, 
validated on diverse datasets.

Table 1.  Comparison of representative IDS approaches for SDN/IoMT environments. RT = Response Time, 
Acc. = Accuracy, Sens. = Sensitivity, Spec. = Specificity, FPR = False Positive Rate.
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In Eq. (2), the policy based DRL is used to maximize the expected cumulative reward J (π θ )

	 J (π θ ) = Eπ θ [Rt] � (2)

In Eq. (3), the likelihood ratio trick is the gradient of J(πθ) with respect to θ where reward acts as a weighting 
factor.

	 ∇θJ(πθ)= Eπθ [Rt∇θlogπθ (at| st)] � (3)

The loss function minimizes the difference between predicted Q values and the target value where yt is defined 
using Eq. (5). The loss is derived from the Mean Squared Error(MSE) for supervised learning.

	 L (θ) = E
[
(Q (st, at; θ) − yt)2]

� (4)

	
yt = rt + γmax

a′
Q(st+1, a′ ; θ) � (5)

The reward function is designed to reinforce correct classification using the Eq.  (6). This comes from the 
requirement to penalize misclassifications while rewarding correct classification and aligning with reinforcement 
learning.

	
rt =

{ +1
−1 | if correct classification

if incorrect classification

}
� (6)

In Eq. (7), the weight update rule is used for minimizing a loss L(θ). this comes from differentiating L(θ) with 
respect to θ to find the direction of steepest descent.

	 θt+1 = θt − α∇t L (θ) � (7)

The joint cost function combines feature selection, time optimization and detection accuracy as given in Eq. (6). 
The regularization terms ∥w∥2 and ∥T ∥2 penalize over fitting for weights and time variables.

	 C (w, T) = λ1||w||2 + λ2||T ||2 + Ldetection � (8)

In Eq. (9), the softmax function assigns probabilities to action based on the Q values. It is derived by normalizing 
exponential scores of Q values to ensure the sum of probabilities is 1.

	
π (at|st) = exp (Q (at, st))∑

a′ exp (Q (a′ , st))
� (9)

The anomaly detection uses z score as given in Eq. (10) where µ and σ  are the mean and standard deviation of 
normal traffic. This score measures how far a data point x deviates from the mean in terms of standard deviations.

	
A (x) = ∥ x − µ ∥

σ
� (10)

In Eq. (11), the sigmoid function is derived and the function maps any real values z to the range(0,1).

	
y = 1

1 + epx(−wT x + b)) � (11)

The Particle Swarm Optimization (PSO) velocity and position update rules are given in Eqs. (12 and 13).

	 vi,j (t + 1) = wvi,j (t) + c1r1 (pi,j − xi,j) + c2r2 (gj − xi,j) � (12)

	 xi,j (t + 1) = xi,j (t) + cvi,j (t + 1)� (13)

wvi,j (t) encourages exploration of the search space, c1r1 (pi,j − xi,j) pulls  c2r2 (gj − xi,j) particles toward 
the personal best and pulls particles toward the global best.

Software defined network
Software-Defined Networking (SDN) is a contemporary notion of network paradigm that has three separate 
planes: application plane, control plane, and network plane, which altogether enrich network management. 
The proposed Intrusion Detection Scheme in SDN identifies and classifies attackers into three categories: 
Masqueraders or unauthorized outsiders accessing private information, Misfeasors or insider misuse of their 
privileges - either through unauthorized access or an abuse of legitimate permissions-and Clandestine users who 
could be insiders or outsiders seizing supervisory control and abusing authority. To ensure robust detection, an 
IDS would run on each SDN plane ensuring that security and reliability improve by tracking threats specific to 
each plane.
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 User registration
In the proposed SDN framework, the registration of user at the application layer through a combination of 
username and password is utilized. The registration process actually distinguishes between the rightful users 
and intruders. Thus, only authorized people get access to the network. The total number of registered users (NR) 
is as a function of the usernames registered (U) with their corresponding passwords (P), indicating that unique 
user credentials are required. This scheme reinforces the first layer of security through the building of a strong, 
authenticated database of users.

The proposed model further enhances security through the incorporation of a Dynamic Key Management 
System (DKMS). The DKMS issues and binds a Secure Access Credential (SAC) and a private key to each 
legitimate user. The cryptographic components prevent an attacker from accessing the network even if the 
username-password combination is compromised, as the SAC and private key are required to access the network. 
This two-layered security strategy ensures a higher level of protection for the SDN environment.

 User login
Once registered with a username, password, and SAC, the users log in to the SDN environment. For every 
legitimate user, the DKMS issues a private key and SAC. In order to authenticate the said users at the time 
of login, an Enhanced Digital Signature Algorithm is presented. The basic underlying algorithm for this new 
DSA is based on an algorithm that has a history in data integrity and security; however, its main problem and 
weaknesses include small key sizes as well as slow signature computations that make it vulnerable to various 
attacks. Thus, using the Entropy Makwa EM key stretching technique with the design of EMDSA provides strong 
security and efficiency improvements during verification.

The key generation phase in EMDSA creates a private-public key pair for each user. These keys are then 
strengthened using the EM key stretching technique, which mathematically defines the enlargement of original 
keys for better security. In order to derive the digital signature after generation of the private key and a hash value 
of the message, it is made such that the signature can occur only once with that specific private key and message. 
A new hash value is derived by the receiver, upon signature verification, and compared using the public key of 
the user with the signature. Successful verification, by making the user legitimate and letting the access pass to 
the SDN; otherwise, the user gets flagged as an intruder. The layered approach offers better authentication and 
protection against intrusions in access.

 Misbehaviour detection
The process of misbehavior detection in SDN is multi-critical phases, including data acquisition, feature 
extraction, feature selection, and classification, for the proper identification of misbehaving legitimate users. Data 
acquisition starts with collecting historical datasets from publicly available resources containing information 
about phishing attacks. This data serves as the basis for the model, giving insights into malicious user activities. 
Feature extraction is done, thereby extracting important behavioral features such as IP addresses, URLs, port 
addresses, DNS, and web traffic to classify user behavior and train a detection model. Feature selection is 
done by using PC-JTFOA-modified Japanese Tree Frog optimization algorithm. PC-JTFOA optimizes in the 
process of improving distribution uniformity of selected features enhancing classification accuracy and overall 
performances. The optimization process includes defining local solutions, communicating between features 
(frogs), and selecting the best community of features based on classification accuracy, which finally leads to a set 
of optimal features for the detection model.

Following selection of the features, comes the classification phase where the feature data are passed to a LFTS-
RNN classifier. The traditional RNN is good at sequential information processing, but it sometimes suffers from 
vanishing gradients that negatively affect its performance. To address this, LogishFTS (LFTS) activation function 
was introduced to replace the standard sigmoid function, thereby avoiding gradient problems and increasing 
accuracy in the model. It allows the RNN to process large data with more efficiency without discontinuities 
and enhances stability in the training process. The structure of the network involves passing features through 
input layers to the hidden layers, with the recurrent connections between the layers further improving the 
detection process. The number of hidden layers adjusts at each timestamp to ensure dynamic learning and 
better representation of the data. The final output layer classifies users as legitimate or misbehaving based on the 
features and interactions learned by the network, effectively identifying threats within the SDN environment. 
When there is misbehavior by the users, such an instance identifies the users whose access control needs to be 
changed from SAC to DAC in order to apply more significant security measures.

 Decentralized key management system
The Traf Gauss Lyapunov (TGL)based Fuzzy system is used to implement the dynamic access control mechanism 
for misbehaving users. It is included in the Dynamic Knowledge Management System (DKMS). It has been 
chosen because of simplicity, flexibility, and giving the optimal solution for a complex problem. Traditional 
fuzzy algorithms are often handicapped by the complexity of the tuning of the Membership Function (MF), 
which reduces the efficiency. To address this, the TGL membership function is introduced into the model to 
improve its performance and capture the fuzziness and uncertainty inherent in the data more effectively. In the 
TGL-Fuzzy system, the decision-making rules are developed in terms of logical IF-THEN conditions. Only the 
full access is allowed with the username, password, and access control being authenticated; otherwise, the users 
obtain limited access.

The TGL membership function serves as a critical element in the process of fuzzification because it helps map 
crisp data into fuzzy values and makes efficient decision-making possible. Unlike the ordinary fuzzy systems, 
TGL membership function has nonzero values at all points, improving its ability to capture uncertainty in the 
data and respond to it. It makes use of Gaussian functions and trapezoidal parameters and transforms crisp 
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data into fuzzy values. The parameters in the TGL function, including the base points of the trapezoid and the 
Lyapunov candidate function, will help model the dynamic behavior of the system. The function makes the fuzzy 
system represent more precisely the degrees of uncertainty and control within the decision-making process.

The TGL-Fuzzy system consists of three key units: fuzzification, inference, and defuzzification. The 
fuzzification unit changes the crisp input data into fuzzy data, allowing the system to cope with imprecision. The 
inference engine uses interference operators to perform fuzzy operations on the fuzzified inputs in order to make 
appropriate decisions about access control. The final unit is the defuzzification unit, which transforms the fuzzy 
results back into crisp data that will determine the level of access for the user. It dynamically blocks misbehaving 
users from logging into the system by allowing adjustment of the DAC mechanism using the TGL-Fuzzy system, 
thus enhancing overall network security.

Data security
The proposed system will employ the Efficient Implicit Curve Cryptography (EICC) technique, which has more 
improved encryption tasks compared to the traditional Elliptic Curve Cryptography (ECC). Although ECC has 
been chosen for its smaller memory requirement, rapid encryption speed, and high security, it is burdened with 
high computational complexity because of the negative points in the variables used in the conventional ECC. 
This makes an efficient implicit curve appear with EICC that curbs the computational complexity for system 
performance. This means, in the context of a set of mathematical variables for curve, it is easy for processing 
encryption processes. Its basic idea is to help it encode information safely while not putting in extra efforts on 
computation due to the curve.

With this, the generation process in EICC goes around forming a public and a corresponding private key. 
The public key is used to encrypt messages while the private key is used for decryption. A random number 
within some specified range generates the private key, while the public key is a derivation from this private key 
and point on the implicit curve. In encryption, an original message is represented as a point on the curve, with 
two cipher texts being generated in order to ensure safe communication. The system makes use of a private key 
and a particular mathematical expression to retrieve the original message for decryption. Mathematically, the 
encrypted data is represented so that user information and privacy are maintained.

Load balancing
To overcome the issues created by network traffic and heavy burdens of SDN, the PC-JTFOA Load Balancing 
Algorithm is adapted in the proposed system. With SDN, the possibility of network congestion and latencies 
often leads to non-reliability in the whole system. By load balancing, the system efficiently distributes its network 
traffic, thereby decongesting the concerned network components and thus enhancing general performance. The 
PC-JTFOA is utilized in reducing the response time, which is critical to optimize the network efficiency. The 
fitness value of the system is approximated using the minimization of the response time, and the resultant load-
balanced data is mathematically represented in order to have efficient data flow and improve network stability.

Intrusion detection system for control layer
The process of an IDS begins with data acquisition. The input data is obtained from publicly accessible sources. 
Such data entails historic data related to the occurrence of security incidents and cyber threats that have involved 
the internet, which makes a good basis for the training of the IDS model. Collected data makes all the difference 
in developing an attack as well as non-attacks-detecting network. The data includes different kinds of network 
behaviors and signatures for the attacks, therefore allowing broad coverage of any kind of security issues related 
to the system. Second, features are extracted that enable enhancement of the IDS model. Some of these essential 
features include protocol type, service, flag, host, login details, source, and destination bytes of collected data. 
These features facilitate recognizing the patterns that signal potential attacks or anomalies in the network. The 
extracted features play a very important role in the detection of malicious behavior, especially by pointing out 
critical aspects of the data that influence security, so that the IDS focuses on the most relevant attributes.

The final steps are feature selection and classification. PC-JTFOA is used for selecting the optimal features 
from the extracted data to maximize classification accuracy. The system can then improve its attack detection 
performance and decrease false positives by focusing on the most relevant features. After feature selection, data 
is input into the proposed LFTS-RNN classifier, which classifies the data as either attacked or non-attacked. This 
step enables the IDS to make precise predictions about network security, with timely and accurate detection of 
intrusions.

Routing
The proposed Particle-Collaboration Joint Task Flower Optimization Algorithm (PC-JTFOA) ensures optimally 
routing non-attacked data for efficient data transmission in terms of energy. The main idea for this routing 
process is that it minimizes the distances over which data travels in a network, thereby reducing its consumed 
energy. With the PC-JTFOA, the optimal routing path is determined in the SDN network layer to ensure data 
is transmitted using the most energy-efficient routes. This approach is based on the topology and available 
resources of the network to minimize energy usage while ensuring data integrity and performance.

The fitness function used in PC-JTFOA focuses on distance minimization, which directly correlates with 
energy savings in the network. The system optimizes the path for data transmission and, hence, reduces the total 
energy expenditure in routing data. This is crucial in the context of large-scale networks where data routing 
becomes a significant overhead. After optimizing the routing path, the system routes the non-attacked data 
efficiently through the network, minimizing energy consumption while maintaining reliability and speed of 
transmission.
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Intrusion detection system for network layer
Figure 1 shows a general overview of the DRL-IDS, which integrates a DRL agent for detecting and mitigating 
network intrusions within SDN environments. The scheme adopts a centralized control model, using DRL to 
analyze network traffic, dynamically adapt to emerging threats, and optimize detection strategies over time. The 
DRL agent continuously learns from network data, improving its ability to identify known and novel intrusions 
by adjusting its decision-making policy through a feedback loop. The primary aim of the system is to reduce 
false positives and negatives, ensure real-time anomaly detection, and provide an effective and scalable solution 
for securing dynamic SDN environments. The routed data is input into the Intrusion Detection System (IDS), 
similar to the process in the control layer, to identify data attacks in the network layer of an SDN. The IDS for 
the network layer follows a structured approach, starting with data acquisition, where data related to network 
activities is collected. This information primarily includes previous records of the threats, network traffic 
patterns, and attack vectors. Next comes the process of feature extraction of all those key attributes, that would 
include protocol type, packet size, source-destination IP addresses, henceforth to distinguish between network 
behavior normal and malicious behavior.

Optimization techniques like PC-JTFOA are conducted for feature selection in order to identify the most 
relevant features responsible for detecting attacks at the network layer. Then, features selected are passed to some 
classifier, for example the LFTS-RNN, which then classifies the data as attacked and non-attacked respectively. 
The proposed system applies the same IDS procedure across the application, control, and network layers to 
ensure comprehensive security. It detects attacks along multiple layers of the SDN architecture, which effectively 
means enhancing the overall security across the network by detecting probable threats and mitigating those 
threats in a timely fashion.

Theoretical foundations of DRL-IDS
The DRL-IDS system can quickly adjust to new or altering threats since reinforced learning enables it to change 
its approach after each choice.

By collecting persistent temporal patterns in SDN data using LogishFTS initialization, LFTS-RNN improves 
the identification of discontinuous and consecutive invasions. By improving choosing features and route 
configurations, PC-JTFOA lowers computational cost and response time.

These components collaborate in order to form a closed cycle whereby the agent running the DRL gets 
reliable temporal representation from optimised parameters. Throughout SDN networks, this combination 
increases scaling, accuracy, and flexibility.

Results and discussion
In this section, the research framework’s performance is analogized with various related models concerning 
various quality metrics. Also, the proposed system is implemented on the working platform of PYTHON. 
Similarly, for proving the model’s consistency, a comparative analysis is performed. The experimental outcomes 
of the proposed technique are further discussed in the following sub-section.

Baseline setup and provenance
To clarify the contrasting findings in Tables 2, 3, 4, 5, 6, 7, 8, 9 and 10 with Figs. 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 
and 14, we distinguish from Replicated (this work) and reported in the literature norms: The researchers revised 
the flow-based IDS (Baseline) according to using the work of Satheesh et al.13. It had been trained and evaluated 
utilizing the same NSL-KDD with WPPD data divides (80/20) and measures that had been proposed DRL-IDS.

Fig. 1.  An overview of deep reinforcement learning-based intrusion detection scheme.
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The artificial intelligence-based IDS (Two-Stage AI) was created and evaluated utilizing the same preliminary 
processing, set of features, and latencies measures as Li et al.22 & Tian et al.21.

Observations from research:
The precision, reliability, and latency estimates for intrusion detection systems based on signatures were 

gathered from studies and representative research2,7,8,11, as well as25. Anomaly-Based IDS: Data derived from 

Aspect Proposed DRL-IDS Existing flow-based IDS Existing AI-based IDS

Algorithm complexity Low Medium High

Adaptability to threats High Medium High

Detection accuracy (%) 99.85 96.20 98.30

Scalability High Medium Medium

Table 7.  Comparative analysis of the research methodology.

 

Scenario Response time (ms) Throughput (Mbps) Packet loss (%) Energy consumption (J)

Under normal traffic 1450 850 0.10 30.20

During attack (proposed DRL) 1423 890 0.05 29.50

During attack (baseline IDS) 1850 820 0.25 35.10

Table 6.  Performance analysis for load balancing.

 

Security metric Proposed DRL-IDS Flow-based IDS Two-stage AI IDS

Data integrity (%) 99.50 96.85 97.10

Data confidentiality (%) 98.70 95.20 96.30

Attack mitigation rate (%) 98.85 94.75 96.15

False positive rate (%) 0.70 1.40 1.25

Table 5.  Comparative evaluation for data security.

 

Dataset Model Detection rate (%) False alarm rate (%) Specificity (%)

NSL-KDD
Proposed DRL-IDS 98.85 0.75 97.42

Flow-based IDS 96.30 1.45 94.30

WPPD
Proposed DRL-IDS 99.10 0.65 98.90

Flow-based IDS 96.85 1.30 95.50

Table 4.  Performance validation for misbehavior detection.

 

Method Accuracy (%) Precision (%) Recall (%) F1-score (%) Response time (ms)

Proposed DRL-IDS 99.85 98.76 98.67 98.71 1423

Flow-based IDS (baseline) 96.20 95.50 94.70 95.10 1850

Table 3.  Performance analysis for DRL-IDS.

 

Dataset Class Training samples Testing samples Total samples

WPPD

Phishing URLs 4572 1143 5715

Legitimate URLs 4572 1143 5715

Total 9144 2286 11,430

NSL-KDD

Normal 53,874 13,469 67,343

Attack 68,504 11,726 80,230

Total 122,378 25,195 147,573

Table 2.  Dataset description.
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Fig. 3.  Accuracy of misbehaviour detection.

 

Fig. 2.  Comparison of accuracy and specificity.

 

Model Detection accuracy (%) Specificity (%) Response time (ms) Energy efficiency (%)

Proposed DRL-IDS 99.85 97.42 1423 98.20

Flow-based IDS (baseline) 96.20 94.30 1850 92.10

AI-based IDS (two-stage AI) 98.30 95.80 1620 94.50

Signature-based IDS 88.75 90.30 2100 85.60

Anomaly-based IDS 91.50 92.40 1950 88.70

Hybrid IDS (AI + signature) 94.85 93.50 1725 90.30

Table 10.  Overall performance comparison including traditional IDS approaches.

 

Metric Proposed DRL-IDS Existing flow-based IDS

Detection accuracy (%) 99.85 96.80

False positives (%) 0.65 1.45

Computational overhead Low Medium

Table 9.  Performance metrics on WPPD dataset.

 

Metric Proposed DRL-IDS Existing flow-based IDS

Training time (s) 850 1220

Testing time (s) 320 450

Sensitivity (%) 98.67 94.50

Specificity (%) 97.42 93.70

Table 8.  Performance metrics on NSL-KDD dataset.
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SDN anomaly-detecting studies2,7, &8. Hybrid IDS (AI + Signature): Summary of findings by Ahmed et al.23 as 
well as Ali & Yousaf6, , that represent hierarchical prevention and detection techniques. The same data divisions 
and metric parameters (Accuracy, Precision, Recall, F1, Specificity, Response Time) were used for training all 
duplicated systems. On identical hardware, delay was determined as the mean end-to-end reasoning duration. 
Findings stated in the scientific literature have been extracted straight straight from relevant resources and are 
identified accordingly in the data tables and descriptions. Clarity regarding which baselines are actual replicates 
over values obtained from associated research is guaranteed by this distinction.

Dataset description
In this proposed work, two datasets are used, which include NSL-KDD and Web Page Phishing Detection 
(WPPD). These datasets are collected from the publicly available sources that are mentioned in the reference 

Fig. 6.  Energy efficiency of IDS models.

 

Fig. 5.  Distribution of response time.

 

Fig. 4.  Proportion of correct detections.
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section. In this, to implement the misbehavior detection model, WPPD is used. The WPPD consists of 11,430 
URLs, which includes the details about phishing URLs and legitimate URLs. Table 2 describes the characteristics 
of the dataset of WPPD. Likewise, for attack detection, NSL-KDD is created. The NSL-KDD has 125,973 records 
that contain important information concerning network security, information security, and cyber attacks. The 
samples of the NSL-KDD are depicted in Table 1.The proportion of the dataset is 80:20.

Figure 2 shows the comparison of accuracy and specificity. Figure 3 shows the two methods’ performance 
on both the accuracy of detecting the two datasets, namely, NSL-KDD and WPPD, towards the misbehavior 
detection by proposed DRL-IDS and Flow-Based IDS, respectively. In Table 4, DRL-IDS, thus outperforms the 

Fig. 9.  Loss over training epochs.

 

Fig. 8.  Accuracy over training epochs.

 

Fig. 7.  Correlation heatmap.
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traditional Flow-Based IDS. Thus, it achieves detection of the malicious flow with the average rates of 98.85% and 
99.10% for both datasets: NSL-KDD and WPPD, while achieving rates of 96.30% and 96.85% with traditional 
Flow-Based IDS for both cases, respectively. The presented DRL-IDS exhibits a higher specificity of 97.42% and 
98.90% against the Flow-Based IDS at 94.30% and 95.50% for NSL-KDD and WPPD, respectively. It represents 
the performance of the model in terms of how effectively it can detect the misbehaviors with lower false alarm 
rates.

Figure 4 plots the percentage of correct detection for various IDS models as illustrated in Table  5. The 
Proposed DRL-IDS has proven to exhibit high performance capabilities in the metrics of data security, yielding 
a Data Integrity rate of 99.50%, Data Confidentiality of 98.70%, and an Attack Mitigation Rate of 98.85%. These 
data results showcase its performance in protecting the data against attacks. In addition, for the proposed system, 

Fig. 12.  Detection accuracy proposed DRL-IDS and existing IDS.

 

Fig. 11.  Comparision analysis of Latency, response time and processing time.

 

Fig. 10.  Accuracy vs. sensitivity (proposed DR-IDS).
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a False Positive Rate of 0.70% is experienced, meaning that it well differentiates between legitimate activities and 
malicious ones. Conversely, Flow-Based IDS and Two-Stage AI IDS demonstrated slightly lower performance 
in most security metrics, with higher false-positive rates and lower integrity as well as confidentiality scores.

Figure 5 is the representation of response time of different kinds of traffic scenario, presented in Table 6, as 
shown here. These three types of conditions show response time when it works under normal condition, attacks 
by DRL-IDS proposed and against the IDS. The proposed DRL-IDS responds within 1423 ms during an attack, 
which is faster than the baseline IDS’s response time of 1850 ms. In normal traffic, the response time is 1450 ms, 
thus showing the efficiency of the DRL-IDS in maintaining a lower response time during attack scenarios. This 
performance shows that the proposed DRL-IDS is able to balance security with speed and ensures minimal delay 
during critical situations.

Figure 6 demonstrates the energy efficiency of different IDS models as depicted in Table 7. It is shown that the 
Proposed DRL-IDS model has low algorithm complexity and is highly scalable with a high detection accuracy 
of 99.85% and high efficiency in terms of energy consumption. In contrast, the Existing Flow-Based IDS and 
Existing AI-Based IDS models have medium to high complexity, which results in higher energy consumption for 
similar detection accuracies. The Proposed DRL-IDS is unique in terms of energy efficiency because it adapts to 
evolving threats while ensuring low energy consumption, making it an optimal choice for resource-constrained 
environments.

Figure 7 is the correlation heatmap that represents visually the interrelation between different performance 
metrics of the IDS models, as presented in Table 8. The heat map reveals strong positive correlations between 
Sensitivity and Specificity metrics for both the Proposed DRL-IDS and the Existing Flow-Based IDS. The 
Proposed DRL-IDS shows Higher Sensitivity (98.67%) and Specificity (97.42%) compared with the Existing 
Flow-Based IDS, which depicts that its performance is superior for classifying true positives and false negatives.

The heat map shows the relationship between Training Time and Testing Time. Because the proposed DRL-
IDS involves less time for training and testing that makes it a more effective solution compared with the existing 
flow-based IDS.

Table 9 depicts performance metrics of WPPD, a dataset which evaluates Proposed DRL-IDS with an existing 
flow-based IDS. Clearly, Proposed DRL-IDS surpassed Flow-Based IDS in a far more elevated detection accuracy 
with a level of 99.85%, which in turn depicted only 96.80% accuracy from the model above. The outcome means 

Fig. 14.  Compariison of various response time.

 

Fig. 13.  Detection accuracy between vaious models.
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a better level of accurate misbehavior detection through this approach. The Proposed DRL-IDS also reveals less 
false positive rate, which is 0.65%, and thus more resourcefully avoids incorrect classification from occurrence.

In Table  10, the comparison of overall performance including conventional IDS techniques compares 
different IDS models in terms of four major metrics such as Detection Accuracy, Specificity, Response Time, 
and Energy Efficiency. The Proposed DRL-IDS outperforms with the highest Detection Accuracy at 99.85% and 
Specificity at 97.42%, showing its strong capability to correctly detect attacks while minimizing false positives.

Figure 9 shows the loss at each training epoch, which illustrates how the loss decreases with learning of 
the model and indicates the improvement in its predictive capability. Figure  10 illustrates the accuracy and 
sensitivity of the Proposed DRL-IDS model; a strong correlation between the two metrics is observed, showing 
that the proposed model performs well on both measures. Figure 11 compares the Latency, Response Time and 
Processing Time among various IDS models. The proposed DRL-IDS has low processing times as compared to 
traditional methods. Figure 12 illustrates the comparison of Detection Accuracy between the Proposed DRL-
IDS and existing IDS models, and it is evident that the Proposed DRL-IDS has higher accuracy compared to 
existing models. Figure 13 compares the detection accuracy of various IDS models, including traditional and 
modern approaches, with the Proposed DRL-IDS outperforming others in terms of accuracy. Figure 14 shows a 
comparison of the response time of various IDS models, which indicates the efficiency of the Proposed DRL-IDS 
that provides faster response times than the other models.

Table 11 gives a comparative analysis of the Proposed DRL-IDS with various existing works in IDS. It is shown 
in the table that the Proposed DRL-IDS achieves an impressive accuracy of 98.35% and precision of 99.01%, 
surpassing all other techniques presented including hybrid ML, signature-based techniques, deep learning, 
and traffic analysis. For instance, AlEroud & Alsmadi (2017) attained an accuracy of 91.0% and precision of 
90.5%, while Alshahrani et al. (2023) achieved SDN-IIoT Intrusion Framework with accuracy and precision 
of 92.0% and 91.4%, respectively. The Proposed DRL-IDS has better performance in both the metrics, hence 
making it a very efficient intrusion detection solution for IoT-based environments in SDNs. Figure 15 depicts 
the comparison and demonstrates the strength of the proposed method.

Detailed analysis of DRL-IDS performance
We incorporated an attack perspective investigation ( distributed denial of service, fake identities, surveillance, 
and hacking) to improve on practical expertise, showing that DRL-IDS retains ≥ 98% F1 scores for large-scale 
attacks and ≥ 97% for stealth routes. Under typical, busy, and intense attack traffic, reliability stays ~ 99.5–99.8% 
despite a slight rise in delay (≈ 1.4 s→1.55 s). A fresh table analyzes rates of false-positives and effectiveness: The 
DRL-IDS system gets the lowest average FPR (0.65–0.70%) and quickest respond (1.42 s) vs. flow-based IDS 
along with other initial results, demonstrating that PC-JTFOA as well as and LFTS-RNN both enhance accuracy 
while decreasing latency.

Fig. 15.  Comparative analysis of the proposed work.

 

Work Technique Dataset Accuracy (%) Precision (%)

AlEroud and Alsmadi11 Inference-based IDS Cloud SDN data 91.0 90.5

Ibrahim and Bhaya12 Hybrid ML and signature-based techniques Cloud SDN data 89.5 88.7

Satheesh et al.13 Flow-based anomaly detection OpenFlow traffic 90.8 89.6

Alshahrani et al.14 SDN-IIoT Intrusion Framework Industrial IoT data 92.0 91.4

Alshammri et al.15 Deep learning and traffic analysis Cloud SDN data 90.0 89.3

Ha et al.16 Traffic sampling Real-time traffic 88.7 87.5

Yazdinejadna et al.17 Kangaroo optimization algorithm Network traffic data 91.5 90.7

Janabi et al.18 Overhead reduction using optimization Cloud SDN data 90.4 89.2

Naqash et al.19 Statistical analysis for high-speed SDNs High-speed network traffic 89.8 88.6

Proposed DRL-IDS Deep reinforcement learning-based IDS SDN-based IoT environment 98.35 99.01

Table 11.  Comparative analysis of the proposed work.
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Comparative discussion with advanced AI-driven IDS
We additionally investigated advanced artificial intelligence-driven IDS algorithms in alongside flow-driven IDS 
(e.g., DRL-driven IDS with IoMT, MF-Transformer, and RCLNet). While precise, they seldom offer delay or 
energy consumption and instead focus on the use of IoMT or one-plane SDNs. Our DRL-IDS obtains 99.85% 
precision, < 0.7% FPR, and ~ 1.4 s reaction time through the integration of LFTS-RNN and PC-JTFOA within a 
DRL loop, thus showing enhanced flexibility and scaling throughout SDN layers.

Conclusion
Intrusion detection systems in SDN have significant advanced by innovating approaches like artificial intelligence, 
machine learning, and optimization techniques to effectively respond to cybersecurity threats. Methodologies 
such as flow-based anomaly detection and multivariate analysis enhance the real-time monitoring of traffic, 
while AI-driven adaptive frameworks and hybrid learning systems offer exceptional efficiency in diverse network 
intrusion mitigation. The integration of intelligent solutions within SDN architectures has yielded robust and 
scalable intrusion detection mechanisms suitable for IoT, 5G, and other complex network environments.m 
The proposed DRL-IDS scheme demonstrates superior performance using NSL-KDD and WPPD datasets, 
achieving a remarkable detection accuracy of 99.85%, sensitivity of 98.67%, and specificity of 97.42%. Moreover, 
the PC-JTFOA optimization ensures the computational efficiency with a very low response time of 1423 ms, 
which makes it highly effective compared to the existing intrusion detection methods. This work showcases the 
promise of combining advanced reinforcement learning and optimization techniques for IDS in SDNs. Future 
work includes the exploration of big data analytics and integration of the proposed scheme into large-scale, real-
time environments in order to further improve scalability and resilience.

Future work
DRL-IDS is going to be tested on mixed IoT–SDN scenarios and real-world SDN data.Research on scaling will 
concentrate on large-scale, rapid production settings. We will look into online learning as well as adaptable 
choice of features for shifting conditions in networks. lastly we want to develop installation choices for SDN 
controllers that operate with restricted funds which are simple.
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