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This study introduces “Dangling Centrality,” a novel metric for identifying critical nodes in networks 
by assessing the impact of their link removal on system dynamics. The proposed metric is validated on 
real-world datasets, including Amazon product networks, a Protein–Protein Interaction (PPI) network, 
and a Bitcoin network, offering insights into key products, critical proteins, and influential entities. 
These nodes, as the main pillars of system propagation, are crucial for maintaining the structural and 
functional integrity of the network. By removing the links of these nodes, the network’s stability, 
flow, and communication can be disrupted, highlighting their importance. Additionally, small-scale 
5-node and 6-node networks are analyzed to demonstrate the metric’s behavior in simpler contexts. 
Correlation analyses using Pearson’s, Spearman’s, and Kendall’s coefficients demonstrate alignment 
with traditional centrality metrics while providing a unique perspective. The findings emphasize the 
metric’s practical utility in understanding network vulnerabilities, enhancing resilience, and informing 
system design. Materials and implementations are available at: ​h​t​t​p​s​:​​/​/​g​i​t​h​​u​b​.​c​o​m​​/​U​b​a​i​d​​a​f​a​t​i​​m​a​/​C​e​n​​t​
r​a​l​i​t​​y​-​M​e​a​s​​u​r​e​s.

Keywords  Centrality metrics, Social network analysis, Dangling centrality metric, Bitcoin dataset, Protein–
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The “Social Network Analysis (SNA)” is employed to understand the various connections among individuals, 
families, households, villages, communities, regions, and other social units. Social Networks are a structural 
configuration comprising individuals or groups referred to as "nodes," interconnected by various specific types of 
relationships1–3. Utilizing the findings from SNA can offer valuable insights into various domains such as human 
behavior, public health, organizational dynamics, and political science, thereby enhancing our comprehension of 
social systems and informing decision-making processes4. In5 the study addresses that gap by outlining the SNA 
process, comparing key tools and languages, and highlighting its applications across multidisciplinary areas.

The study in6 presents a comprehensive review of Social Network Analysis (SNA) techniques as applied to 
online social platforms, emphasizing the fundamentals of network representation, structural properties, and key 
analytical measures. It further explores modern developments in SNA applications such as influence modeling, 
link prediction, and information diffusion, while addressing growing concerns related to user privacy. By 
providing a comparative overview of current methodologies and highlighting open research challenges, this work 
aims to support future investigations and practical implementations of SNA in real-world digital environments.

Social Network Analysis (SNA) has seen the development of numerous centrality metrics, each aimed 
at identifying influential nodes within a network. While these metrics such as Degree Centrality, Closeness 
Centrality, and Eigenvector Centrality have proven effective in various contexts, they often face limitations 
in capturing the dynamic nature of real-world networks. For instance, traditional metrics primarily focus on 
connectivity or influence within the network but fail to address scenarios where the absence of critical entities 
disrupts communication. This gap becomes evident in domains such as business networks, biological systems, 
cryptocurrency ecosystems, and healthy lifestyle networks, where identifying nodes critical to maintaining 
seamless communication is paramount.

To address these deficiencies, Dangling Centrality is introduced, focusing on assessing a node’s importance 
by examining the impact of removing its connections or reducing its degree to zero. This method evaluates how 
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the absence of a node link disrupts communication across the entire network, offering a distinct perspective for 
identifying and prioritizing key entities.

In many real-world networks, traditional centrality measures such as Degree Centrality (DC) and 
Betweenness Centrality (BC) focus on the presence and connectivity of nodes within the network. While these 
metrics effectively identify influential nodes based on their structural properties, they often fail to account 
for the criticality of nodes when their absence disrupts communication or network dynamics. For instance, 
in networks with bridge-type connections, the removal of a high-betweenness node may cause significant 
fragmentation. However, certain nodes that may not rank highly in traditional metrics could still play a pivotal 
role in maintaining overall network efficiency. This gap highlights the need for a metric like Dangling Centrality, 
which evaluates the importance of a node by simulating its removal and assessing the resulting impact on 
information flow. For example, in a Protein–Protein Interaction (PPI) network, removing a node identified 
by Dangling Centrality might reveal disruptions in key biological pathways that are overlooked by traditional 
measures. This novel approach offers a complementary perspective, enabling a deeper understanding of node 
criticality and network resilience.

Inferring social networks from real-life datasets
The rapid growth of social networks has spurred interest in Social Network Analysis (SNA) for business 
intelligence. While theoretical advancements in data mining have been made, a gap remains in applying these 
techniques to real-world datasets. Addressing challenges like data acquisition, community structures, and 
network dynamics can unlock business applications7. In the same vein, previous research has applied SNA 
to biological datasets, showcasing its versatility in identifying key role players in any community or network 
graph8,9.

Previous studies in SNA have primarily focused on evaluating how individual nodes influence a network by 
calculating their importance through popular centrality metrics, community detection techniques, and maximal 
clique analysis10. However, less attention has been given to studying the impact of the absence of influential 
nodes within a network. This gap is critical for applications such as business planning, disease prevention, or 
promoting a healthy lifestyle, where the absence of key nodes can disrupt communication or cause system 
failure. To address this, the proposed method evaluates the effect of removing an influential node, referred to as 
a "dangling node," as detailed in Sect. 4.

Contributions of this research

	 i.	 Proposed a novel Dangling Centrality approach for assessing link significance within intricate network 
frameworks in comparison to State-of-the-art (SOTA) conventional centrality measures.

	ii.	 Complete evaluation against the baseline approaches that deal with the analysis of the presence of nodes in 
network datasets. In contrast, the proposed approach focuses on understanding how the removal of a ver-
tex, node, person, protein, or customer can impact network communication dynamics. This presents a new 
method of determining node essentiality based on its communication absence, which can disrupt network 
communication.

	iii.	 The method evaluates the impact of removing critical node links to enable proactive planning and prevent 
communication failures.

Related work
Social Network Analysis (SNA) provides a framework to study the flow of resources, including information, 
among entities. Haythornthwaite11 emphasized the significance of analyzing these exchange patterns, where 
actors act as nodes and relationships represent connections, to improve information delivery and control 
mechanisms. Newman and Girvan12 introduced algorithms for community detection through iterative link 
elimination and stability analysis, laying foundational methods for analyzing network configurations. Houghton13 
highlighted the role of SNA in command and control during emergency services, focusing on network structure 
and information flow.

Fioriti and Marta14 proposed a spectral method to identify sources of disease outbreaks within contact 
networks, demonstrating the application of centrality measures in epidemic analysis. Fiz et al.15 introduced 
"mint centrality," a novel metric tailored for Bitcoin transaction networks, emphasizing the importance of 
customized centrality metrics in unique contexts. Saqr and Alamro16 explored SNA in online problem-based 
learning, showing how centrality measures can reveal the roles of participants in educational interactions.

Atsalakis et al.17 demonstrated the predictive power of a hybrid neuro-fuzzy model for Bitcoin price trends, 
while18 introduced “Isolating Centrality” to detect critical nodes in complex networks, outperforming traditional 
centrality measures. Fatima et al.8 proposed the global clustering coefficient-dependent degree centrality 
(GCCDC) metric, which addressed limitations of existing measures and provided insights into protein–protein 
interaction networks.

Nasiri et al.19 developed Weighted Common Neighbors (WCN), a link prediction method integrating 
centrality measures, highlighting the role of interlayer information in multiplex networks. Zhao and Sun20 
introduced weighted Laplacian energy centrality to identify influential nodes in aviation networks, demonstrating 
the metric’s effectiveness in maintaining network robustness.21 reviewed advancements in machine learning for 
biological networks, underscoring centrality measures’ role in drug interaction prediction and gene identification.

Applications of SNA extend beyond centrality. Hung et al.22 analyzed sentiment and social network 
connections on COVID-19-related tweets, while23 leveraged topological and biological features for SARS-CoV-2 
gene identification. Rostami et al.24 reviewed the application of community detection in healthcare datasets, 
identifying challenges and knowledge gaps in this domain.
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Also,7 addressed the ambiguity in protein interaction strength in PPI networks by introducing Bio-Link 
Strength, a fuzzy membership function that quantifies interactions on a continuous scale. They extended 
traditional centrality measures (degree, closeness, betweenness, eigenvector) to fuzzy measures (e.g., fuzzy 
connectivity, fuzzy influence centrality) and demonstrated the framework’s scalability across multiple PPI 
datasets. Results highlighted the superior performance of fuzzy measures, particularly fuzzy connectivity and 
influence centrality, in identifying crucial proteins, validated through Gene Ontology analysis and correlation 
studies.

While classical Social Network Analysis (SNA) has been widely applied across various domains—ranging 
from sociology to computer science—emerging technologies are now reshaping its scope and capabilities. One 
such advancement is the integration of quantum computing with SNA, giving rise to Quantum Social Network 
Analysis (QSNA). With the integration of quantum computing into network science, QSNA has recently 
emerged as a promising paradigm, offering novel approaches to classical SNA tasks through quantum-enhanced 
algorithms, while addressing the complexity of large-scale social systems23.

These studies collectively illustrate the evolution and significance of centrality measures and network analysis 
in understanding complex systems, from healthcare and finance to online learning and digital currencies. The 
proposed work builds upon this foundation by addressing the limitations of existing centrality metrics and 
introducing new measures tailored for large, real-world datasets.

Utilization of Prominent centrality metrics in the analysis of networks
As per findings presented by various researchers in the literature, the identification of key vertices in a social 
network graph that is G(V, E), where V  demonstrates nodes/vertices and E  demonstrates edges/links can be 
achieved through the calculation of centrality metrics26–29. The following sub-sections provide the mathematical 
formulation of various centrality measures.

Degree centrality metric (DC)
This measure of a node can be recognized by capturing the incoming and outgoing connections of a node1,8,30,31. 
Computation of the degree centrality metric can be easily computed by the formation of an “Adjacency Matrix 
(Ag)”, which is represented in this section by two considered small network graphs and demonstrated as Ag1 
for 5-nodes graph and Ag2 for 6-nodes graph in Eqs. (1) and (2) respectively.

	

Ag1 =


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1 0 1 0 0
1
1
0

1
0
0

0
0
0

0
0
1

0
1
0


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0 1 0 0 1 0
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0
0
1
0

1
1
1
0

0 1 0 1
1 0 1 1
0 1 0 1
1 1 1 0


� (2)

This metric proves valuable in identifying the popularity of nodes and assessing their influence based on the 
degree of connectivity. Figure 1a, b clearly demonstrate which node is highly connected and which node has 
minimum connections. For instance, in Fig. 1b Node ID 5 has a maximum degree (i.e. 4) and Node ID 1 has a 
minimum degree (i.e. 2) shown in Table 1.

Betweenness centrality (BC)
To compute the Betweenness Centrality (BC) for a specific node u, identify all shortest paths between nodes i 
and j that pass through u. The centrality value for u is then obtained by dividing the number of such paths by 
the total number of shortest paths between i and j  in the network8,33. Product with high betweenness measures 
captures that product (node) plays a vital role in the sale of other products (nodes) in the product network34. For 
instance, computation of betweenness centrality (BC) for nodes in Fig. 1b is shown in Table 2.

Closeness centrality (CC)
The Closeness Centrality (CC) of a node is determined by taking the reciprocal of the sum of the shortest paths 
from that node to all other nodes in the network8,35.

Therefore, the “Shortest Path Distance Matrix (SPDM)” was evaluated using Eq.  (3) which is used to 
calculate the closeness centrality measure for every node in Fig. 1b. Node values were calculated using Eq. (3) 
which is tabulated in Table 3. These values clearly show that Node ID 2, Node ID 4 and Node ID 5 are the most 
central nodes. For PPI data, when protein has high ‘CC’ means it is more central protein in the considered yeast 
network.
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For Node ID 1:
The BWC for node 1 is 0

For Node ID 4:
[2,6] → 1/3[3,5] → 1/3[5,3] → 1/3
[6,2] → 1/3. The sum of all sets is the BWC of node 4 i.e. 1.3333

For Node ID 2:
[1,3] → 1/1[1,4] → 1/2[3,1] → 1/1
[3,5] → 1/3[4,1] → 1/2[5,3] → 1/3
The sum of all sets is the BWC of node 2 i.e. 3.6667

For Node ID 5:
[1,4] → 1/2[1,6] → 1/1[2,6] → 1/3[4,1] → 1/2[6,1] → 1/1[6,2] → 1/3
The sum of all sets is the BWC of node 5 i.e. 3.6667

For Node ID 3:
[2,6] → 1/3[6,2] → 1/3
The sum of all sets is the BWC of node 3 i.e. 0.6667

For Node ID 6:
[3,5] → 1/3[5,3] → 1/3. The sum of all sets is the BWC of node 6 i.e. 0.6667

Table 2.  Betweenness Centrality (BC) Computation for a graph in Fig. 1b.

 

Node ID 1 2 3 4 5 6

DC 2 3 3 3 4 3

Table 1.  Degree Centrality (DC) Computation for Fig. 1b.

 

Fig. 1.  Undirected simple networks: a of (5 nodes, 5 edges) and b of (6 nodes, 9 edges).
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SP DM =
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=




0.1250
0.1667
0.1428
0.1667
0.1667
0.1428




� (3)

Eigenvector centrality (EVC)
The EigenVector Centrality (EVC) is used to quantify a node’s significance by focusing on its linked nodes. A 
node that is surrounded by highly linked nodes and has number of links, has the highest EVC8,35,36.

The n number of EigenValues are computed and their corresponding eigenvectors from n × n size of 
Adjacency matrix Ag. EigenVector Centrality (EVC) is computed by applying “Power method” to Adjacency 
Matrix (Ag). For instance, Fig. 1b presented 6 undirected nodes network graph, where Node ID 2, Node ID 4 
and Node ID 5 are connected to highly linked nodes, therefore, it must have highest EVC as computed in Table 4.

Katz centrality (KC)
Katz centrality (KC) is a metric specifically designed for directed networks8,37,38. As in network analysis, the 
amount of centrality measure for a node is not considered but greater or lesser centrality measured is taking into 
account. The Katz centrality (KC) for any node (product) can be calculated using Eq. (4).

	
Ckatz (vi) = α

n∑
j=1

Aj,iCkatz (vi) + β� (4)

The first part of Eq. (4) is supervised by parameter α and is pretty much same to eigenvector centrality and 
⋖ is a unity column matrix. The second part contains the bias term β that avoids the zero centrality measure. 
Therefore, for any node vi Katz centrality (KC) can be computed simplifying Eq.  (4). The simplification is 
represented from Eqs. (5–8).

	 Ckatz = αAT Ckatz + β.⋖� (5)

	 Ckatz − αAT Ckatz = β.⋖� (6)

	 Ckatz

(
1 − αAT

)
= β.⋖� (7)

	 Ckatz = β
(
1 − αAT

)−1
.⋖� (8)

As matrix is inverting, parameter α cannot be supervised first part of Eq. (4) for all values. Computation for a 
network in Fig. 1b is mentioned in Table 5.

•	 If α = 0, EigenVector centrality part of Eq. (4) is removed and there will be the same Katz centrality (KC)” 
value β for all nodes present in the network.

•	 If α is higher, the influence of β is decreased.
•	 If α = 1

λ

(
whereλ, largesteigenvaluecentralityofAT

)
 is taken, then the 

•	
∣∣1 − αAT

∣∣ = 0 that is matrix 1 − αAT  becomes non-invertible that creates uncertainty in computation 
of KC or KC diverges. Generally, α < 1

λ  is a selection criteria for computation of KC properly to attain fast 
convergence.

As λ = 3.4679  is obtained in Table 4 ,assuming α = 0.2andβ = 1
Table 6 presents a comprehensive comparison of the six centrality metrics. The analysis reveals the level of 

influence associated with specific Node IDs within the graphs depicted in Fig. 1a, b. It highlights the identification 
of nodes that play a more pivotal role and examines the dependencies of other nodes on these influential ones for 
effective communication within the network.

Nodes with IDs 2, 4, and 5 consistently exhibit the highest values across all centrality metrics, signifying 
their role as the most influential entities in the simple 6-node network responsible for information transfer 
and communication among other members. In the realm of marketing and product network analysis, the 

Node ID 1 2 3 4 5 6

CC 0.1250 0.1667 0.1428 0.1667 0.1667 0.1428

Table 3.  Closeness Centrality (CC) measure for a simple 6 node network in Fig. 1b.
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EV 5 =
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
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
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Table 4.  Evaluation of EigenVector Centrality (EVC) for Eq. (2).
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significance of Node IDs 2, 4, and 5 can be elucidated by understanding that the prominent presence of these 
nodes (representing products) in a store has the potential to enhance the market value of interconnected 
neighbors (other products).

In the next section, a groundbreaking technique for identifying influential actors within a complex network 
dataset is introduced. To comprehensively assess its efficacy, Dangling Centrality (ϕc) is compared with the 
established centrality metrics discussed in the preceding section.

Dangling centrality (ϕc): a novel metric
The major task in handling graph networks is to determine the key factors that efficiently deliver information 
within the vertices. The novel Dangling Centrality (ϕc) provides a framework to quantify the power of each 
node in a network by deleting its communication with other nodes or, more specifically, by removing its edges 
(links). This approach determines the prominence of each node in conveying information throughout the 
network. The importance of a node is assessed by evaluating its Dangling Centrality, which measures the impact 
on the network’s communication or configuration when the node’s degree is reduced to zero, highlighting how 
its links absence affects the flow of information within the network. The higher the value of Dangling Centrality 
(ϕc), the higher will be its role in the network organization and information delivering.

The term “Dangling” draws attention to the “PageRank” concept, which suggests that a web page with "no 
outgoing links" can be likened to a node that lacks any connections39–41. These studies describe such web pages as 
nodes that do not direct to any other node or web page, referring to them as "Dangling nodes." Building on this 
idea, I have adopted the term “Dangling” to develop a centrality measure aimed at addressing the complexities 
within Social Network Analysis (SNA) studies.
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Table 5.  Evaluation of Katz Centrality for Fig. 2b.

 

Node ID (i) 0 1 2 3 4

∅c(i) 0.72093 0.3953 0.3953 0.58139 0.30232

Table 6.  Dangling Centrality measure for a small undirected graph of 5 nodes.
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Termed Dangling Centrality (ϕc), this novel metric adopts a unique perspective. Unlike traditional 
centrality metrics, which assess the significance of a node based on its connections and communication 
presence, Dangling Centrality (ϕc) takes a distinctive approach by evaluating the consequences of a node links 
absence in the network. This innovative metric provides insights into how network communication dynamics 
are affected when a specific node is removed, offering a nuanced understanding of node importance in the 
context of network structure and robustness.

Also, ϕc(G) uses the Shortest Path Distance Matrix (SPDM) to measure the impact of isolated nodes after 
their edges are removed. When edges are absent, the SPDM highlights how these isolated nodes affect the flow 
of information, with their centrality reflecting the disruption they cause to network connectivity. ϕc(G) of a 
network graph can be measured through Eq. (9) and Eq. (10). Excluding '0' entries in the Shortest-Path Distance 
Matrix (SPDM) when computing ϕc(G). The formula in Eq. (10) is conceptualized based on the motivation of 
evaluating error performance in graph networks. It is defined as the ratio of the difference between the true value 
and the calculated value to the true value (or original value).

Closeness Centrality and Dangling Centrality both utilize the Shortest-Path Distance Matrix (SPDM) to 
assess a node’s importance in a network, but they differ in the steps and interpretation of their calculations. 
In Closeness Centrality, the process starts by computing the SPDM, followed by summing the elements of 
the matrix. Then, the element-wise inverse of the SPDM is taken, providing a measure of centrality based on 
the inverse of the distances to all other nodes. On the other hand, Dangling Centrality also begins with the 
computation of the SPDM, but its second step involves taking the element-wise inverse of SPDM excluding the 0 
entries (those that represent self-loops or non-existent paths). Finally, the sum of the element-wise inverse values 
is computed. The key difference lies in Dangling Centrality’s focus on measuring the impact of a node’s absence: 
it first computes the Dangling Centrality for the original network, then repeats the process after removing the 
node’s edges, yielding a new SPDM. The Dangling Centrality for a node i is then calculated as the difference 
between its centrality in the original and the modified network, normalized by the original centrality (see 
Eq. 10). Thus, Dangling Centrality captures the relative importance of a node by assessing the disruption caused 
by its absence, unlike Closeness Centrality, which purely evaluates the proximity of nodes in terms of network 
distances.

	
ϕc(G) =

∑
G

∑
i̸=j∈G

( 1
SP DM

)
neglecting0values

=
∑

G

∑
i̸=j

(SP DM)−1
element−wise� (9)

Neglecting the 0 value of shortest-path refers to ignoring self-connections or initially disconnected nodes in the 
shortest path calculations. In a network graph, self-connections (where a node has a path to itself) and nodes 
that are initially disconnected do not contribute to strong network communication. Therefore, for Dangling 
Centrality, the 0 values in the shortest path matrix are ignored, as they do not reflect the flow or disruption of 
information within the network. The measure Dangling Centrality (ϕc) for a single node (i) was computed 
using Eq. (10).

	
ϕc (i) = ϕc (G) − ϕc(Gi)

ϕc (G) � (10)

In Eq. (10) the term ϕc(Gi) is a key parameter in computation of Dangling Centrality ϕc (Gi) for a single node 
by making corresponding node (i) degree centrality (DC) equals to zero. The example of five vertices undirected 
graph Fig. 1a is considered. For computation of parameter ϕc(G), Shortest-Path Distance Matrix (SPDM) was 
considered and calculated using Eq. (3).

	

ϕc (G) =
∑

G

∑
i̸=j∈G




∞ 1.00 1.00 1.00 0.5 00
1.00 ∞ 1.00 0.500 0.334
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1.00
0.500

1.00
0.500
0.334

∞
0.500
0.334

0.500
∞

1.00

0.334
1.00
∞


 = 14.336� (11)

	 ϕc (G) = 7.167� (12)

Node IDs Centrality Metrics

Figure 1a Figure 1b DC CC BC EVC KC ϕc

0 1 3 2 0.2 0.1250 8 0 0.6071 0.2726 2.0388 1.0208 0.72093 0.2800

1 2 2 4 0.1428 0.1667 0 3.6667 0.4995 0.4728 1.7597 1.0413 0.3953 0.3733

2 3 2 3 0.1428 0.1428 0 0.6667 0.4995 0.3941 1.7597 1.0311 0.3953 0.3200

3 4 2 4 0.1667 0.1667 6 1.3333 0.3401 0.5000 1.6748 1.0414 0.58139 0.3600

4 5 1 4 0.111 0.1667 0 3.6667 0.1573 0.4728 1.3350 1.0413 0.30232 0.3733

– 6 – 3 – 0.1428 – 0.6667 – 0.3942 – 1.0311 – 0.3200

Table 7.  Comparative chart examining centrality metrics in two unique small graphs.
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In Eq. (12), the overall summation of the element-wise inverse of the Shortest Path Distance Matrix (SPDM) is 
normalized by dividing by 2. This normalization step ensures that the resulting Dangling Centrality values are 
appropriately adjusted for undirected graphs, where each connection is counted twice, once for each direction. 
By dividing by 2, the measure reflects the true importance of the node in the network, maintaining consistency 
with standard practices in centrality calculations for undirected graphs.

After the calculation of SPDM, “Dangling Centrality (ϕc)” was calculated for Node ID 0 (presented 
in Table 6). After turning DC = 0 for Node ID 0, the network configuration is disturbed and there was no 
communication between many nodes in a graph as mentioned in Fig. 1a, b. Therefore, ϕc(G0) is computed using 
Eq. (13) by turning row 1 and column 1 (in SPDM matrix) equals to zero. Moreover, the remaining nodes (in the 
same SPDM matrix) demonstrate no links between other Nodes IDs passing through Node ID 0.

Fig. 4.  Pseudo-code for novel dangling centrality metric.

 

Fig. 3.  Flowchart of dangling centrality evaluation.

 

Small Dataset Centrality Metrics DC BC CC EVC KC

Pearson’s Correlation Coefficient
5 nodes graph

Dangling Centrality
′∅c′

0.8758113 0.9671900 0.9803829 0.5968716 0.8754605

6 nodes graph 0.9897783 0.8882636 0.9911944 0.9566603 0.9897083

Spearman’s Correlation Coefficient
5 nodes graph 0.9176629 0.9176629 1.0000000 0.6842105 0.6842105

6 nodes graph 0.9534626 1.0000000 0.9534626 0.8060599 0.8181818

Kendall’s Correlation Coefficient
5 nodes graph 0.8819171 0.8819171 1.0000000 0.5555556 0.5555556

6 nodes graph 0.9198662 1.0000000 0.9198662 0.6671244 0.6923077

Table 8.  Pearson’s, Spearman’s, and Kendall’s correlation coefficient between dangling centrality and 5 popular 
centrality metrics.

 

Scientific Reports |        (2025) 15:41078 9| https://doi.org/10.1038/s41598-025-24930-8

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


	

ϕc (G0) =
∑

G

∑
i̸=j∈G

1
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0
0
0

1
0
0

0
0
0

0
0
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0
1
0




neglecting0inshortest−walklength

� (13)

As a result, the following changes were observed;

•	 Matrix in denominator of Eq. (13) clears the loss of Node ID 0 that effects the communication between var-
ious nodes of network.

•	 i ̸= j belongs to graph (G) indicates to avoid the diagonal elements of SPDM.
•	 0 element present in SPDM indicates there is no link or exchange between two nodes ids that are iandj. 

Therefore after calculating inverse of each element present in SPDM 0 walk lengths are avoided.

	 ϕc (G0) = 2� (14)

The Dangling Centrality for Node ID 0 will be computed as shown in Eqs. (15) and (16):

Nodes 403,394

Edges 3,387,388

Description Amazon product co-purchasing network from June 1 2003

Source 42,43

Link https://snap.stanford.edu/data/amazon0601.html

Table 10.  Dataset Statistics of Amazon Website June 2003.

 

Nodes 262,111

Edges 1,234,877

Description Amazon product co-purchasing network from March 2 2003

Source 42,43

Link https://snap.stanford.edu/data/amazon0302.html

Table 9.  Dataset Statistics of Amazon Website March 2003.

 

Fig. 5.  Centrality metrics phenomena in Social Network Analysis (SNA).
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ϕc (0) = 7.167 − 2

7.167
� (15)

	 ϕc (0) = 0.7209� (16)

This process is visually represented in Fig. 1a, b, where the network is plotted both before and after the removal 
of the node’s connections. Additionally, Eq.  (13) provides the computation for Node ID 0, showing how the 
removal of its connections alters the degree of other nodes that remain in the network. This approach reflects 
the disruption caused by the absence of the node links and helps in evaluating its centrality within the network.

Table 7 presents a comprehensive comparison of the six centrality metrics. The analysis reveals the level of 
influence associated with specific Node IDs within the graphs depicted in Fig. 1a, b. It highlights the identification 
of nodes that play a more pivotal role and examines the dependencies of other nodes on these influential ones 
for effective communication within the network. For instance, Node ID 0 for Fig. 1a shows the highest centrality 
values for all measures and Node ID 2 for an undirected graph in Fig. 1b shows the highest centrality values for 
all measures.

Table 7 presents the calculated centralities metric for two minor graphs, including the Dangling Centrality 
metric. Furthermore, Table 8 displays Pearson’s, Spearman’s, and Kendall’s correlation coefficient values, 
indicating a robust positive correlation between the dangling centrality and all five traditional centrality metrics: 
DC, BC, CC, EVC, and KC. This demonstrates that the newly introduced Dangling centrality metrics exhibit a 

Fig. 6.  Sample of Adjacency matrix formation for PPI network dataset in R.

 

Nodes 2361

Edges 7182

Description Protein–Protein Interaction (PPI) Network

Source 8,31

Link https://api.semanticscholar.org/CorpusID:219684564

Table 12.  Dataset statistics of PPI network.

 

Nodes 5881

Edges 35,592

Description Bitcoin OTC web of trust network

Source 44

Link ​h​t​t​p​s​:​​​/​​/​s​n​a​​p​.​s​t​a​n​f​o​r​​d​.​e​​​d​u​/​d​a​​​t​a​/​​s​o​​c​-​s​​i​g​​n​-​b​i​t​​​c​o​i​n​​-​o​t​c​.​h​t​m​l

Table 11.  Dataset Statistics of Bitcoin OTC web of trust network.
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robust association and will play a crucial role in identifying essential individuals, nodes, or products within any 
large and intricate real-life network graph. Figures 3 and 4 depicts the flowchart and introduced algorithm for 
Dangling Centrality (ϕc) metric.

Table 6 clears that Node ID 0 is the most influential node in a graph for communication and maintaining 
connection between different parts of graph as it also have maximum “Dangling centrality” like other centrality 
measures shown in Table 7.

In the next section, we delved into the examination of a novel centrality measure called Dangling centrality 
(ϕc), utilizing a real-life datasets. The analysis will focus on understanding how the removal of a vertex, node, 
person, protein, or customer can impact network communication dynamics. This exploration aims to shed light 
on the crucial role of individual components in constructing a robust network graph of information.

Exploring the use of centrality measures in large-scale network analysis
Centrality metrics stand out as frequently employed instruments in real-world scenarios for deriving insights 
from extensive network datasets. A concise discussion on these measures and their practical applications is 
presented in Fig. 5.

There are two large product network datasets analyzed through different Centrality metrics (CM) for 
determination of influential products in marketing and griping the interest of customers that are discussed in 
the following section.

Protein–Protein interaction network

Proteins (Nodes Id)
Degree
(DC)

Betweenness
(BC × 10−4)

Closeness
(CC × 106)

Eigenvector
(EV C)

Katz
(KC)

Dangling
∅c(103)

1 2 0 0 0.0005 1.0020 0.7709

147 57 21.0631 3.0457 0.1523 1.6579 11.4389

209 62 19.3335 3.0473 0.0563 1.7009 11.9993

302 64 17.5064 3.0479 0.4396 1.7740 7.0325

492 56 11.9037 3.0475 0.4368 1.6883 6.4669

566 64 19.7100 3.0475 0.0719 1.7225 10.1602

784 62 20.6946 3.0480 0.1275 1.7041 10.9563

1443 63 20.7643 3.0476 0.0641 1.7047 13.7943

2361 1 0 3.0118 0.0005 1.0010 0.7709

Table 15.  Computation of six centrality metrics for a graph comprising 2361 yeast proteins.

 

Amazon Product Network June 2003

Products (Nodes Id)
Degree
(DC)

Betweenness
(BC × 10−3)

Closeness
(CC × 105)

Eigenvector
(EV C)

Katz
(KC)

Dangling
∅c(103)

0 10 0.4524 5.1939 0.0863 1.1244 1.0877

5 74 311.7653 6.0335 0.5000 1.8879 7.8763

29 31 858.7171 5.0241 0.0012 1.3649 23.1655

500 10 3.8162 4.7700 0.0007 1.1140 1.4639

1000 10 0 0.0124 1.0142e-17 1.0000 0

Table 14.  Computation of six centrality metrics using Large Amazon product graph.

 

Amazon Product Network March 2003

Products (Nodes Id)
Degree
(DC)

Betweenness
(BC × 10−3)

Closeness
(CC × 105)

Eigenvector
(EV C × 104)

Katz
(KC)

Dangling
∅c(103)

0 5 1.2676 9.4984 291.6300 1.0550 2.1400

9 44 285.2227 11.7952 5000.0000 1.4912 45.0319

499 5 2.6992 7.0811 14.6399 1.0529 0.09724

500 6 5.9161 8.2610 16.9986 1.0650 3.1389

1000 4 0 6.3383 6.7448 1.0409 0.4031

Table 13.  Six centrality metrics for the Amazon complex product network.
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Amazon datasets (Amazon product co-purchasing network)

	1.	  The first dataset composed of or (262111nodes, 1234877edges), was collected accessing Amazon web-
pages on 2nd March 2003 (see Table 9). It deals with “Clients Who Purchase This Product Also Purchase” 
article of the Amazon webpage. If an item ‘i’ is repeatedly co-purchased with item ‘j’, which is in directed 
graph demonstrated by edge ‘i’ to ‘j’42.

	2.	 Second data comprised of (403394nodes, 3387388edges) was considered for assessment of “Amazon 
product dataset” that dated June 2003 (see Table 10). This data shared the information regarding behavior of 
frequent buyer in terms of purchasing products in combination43. Dataset was analyzed through organized 
approaches. First approach was transformation in “Adjacency Matrix (Ad)” and the second approach was 
“formation of graph”.

Bitcoin dataset
This cryptocurrency dataset (5,881nodes, 35,592edges) represents a connected graph of individuals engaged 
in Bitcoin transactions on a platform known as "Bitcoin over-the-counter (OTC)," resembling a network where 
users express trust or skepticism towards one another. Due to the anonymity of Bitcoin users, maintaining a 
record of users’ reputations is crucial to prevent transactions with potentially fraudulent or unsafe individuals. 
Participants in the Bitcoin OTC platform assign trust levels to others on a scale ranging from − 10 (complete 
distrust) to + 10 (complete trust), with increments of 1 (see Table 11). This network dataset serves as the primary 
explicitly weighted and labeled graph available for research purposes42,44.

Yeast protein–protein interaction graph: dataset
An interaction dataset (2361nodes, 7182edges) of Saccharomyces Cerevisiae (budding yeast) proteins is 
employed for centrality measure computation to identify key proteins. The network comprises 2361 nodes, 
representing yeast proteins, connected by 7182 directed and unweighted edges that indicate physical interactions 
(see Table 12). Additionally, there are 536 loops within the network31.

Unveiling interactions: adjacency matrix analysis of PPI network dataset
As mentioned earlier, first approach was that “Product network dataset” of Amazon website is converted into 
“Adjacency Matrix (Ag)” for the analysis of dataset, shown in Fig.  6. The matrix Ag  is taken as input for 
computation of centrality metrics and other measures of network analysis for catching significant proteins 
(node) in considered PPI network.

One of the basic tool of SNA, Centrality measures (CM) was discussed comprehensively in this section and 
this method was replicated on two small datasets. Next section contains discussion on more tools of Social 
Network Analysis (SNA) for large real-life Datasets and its comparison with novel Dangling Centrality metric.

Real-life dataset Centrality metrics DC BC CC EVC KC

Pearson’s Correlation Coefficient

Amazon 1

Dangling Centrality
′ϕc′

 0.4620371 0.8154608 0.4049604 0.3679921 0.4650667

Amazon 2 0.2878921 0.6481128 0.2333661 0.1278617 0.2872377

PPI 0.7812787 0.8922564 0.2676383 0.3739042 0.7794644

Bitcoin 0.7855071 0.8896052 0.06693472 0.5780862 0.7710929

Spearman’s Correlation Coefficient

Amazon 1 0.7554034 0.8982081 0.6932152 0.6855223 0.7470634

Amazon 2 0.7787221 0.8381494 0.6618990 0.5943911 0.7933662

PPI 0.6999998 0.7105681 0.5552777 0.6450815 0.7387394

Bitcoin 0.6919743 0.8620611 0.5272577 0.5709354 0.6787683

Kendall’s Correlation Coefficient

Amazon 1 0.5630540 0.7392368 0.4982697 0.4933784 0.5286709

Amazon 2 0.6030667 0.6894940 0.4818794 0.4373180 0.5750534

PPI 0.6008932 0.5924809 0.4555893 0.4772644 0.5659789

Bitcoin 0.5945892 0.8217732 0.4249878 0.4574984 0.5533833

Table 17.  Novel Dangling Centrality comparison with popular centralities through Pearson’s, Spearman’s and 
Kendall’s Correlation Coefficient.

 

Products (Nodes Id)
Degree
(DC)

Betweenness
(BC × 10−4)

Closeness
(CC × 106)

Eigenvector
(EV C)

Katz
(KC)

Dangling
∅c(103)

1 750 48.8032 1.7728 0.1508 1.7883 67.1201

2 754 27.7906 1.7738 0.5000 1.8544 13.5501

500 25 0.2223 1.7625 0.0182 1.0317 1.3792

1000 4 0 1.7608 0.0015 1.0044 0.2918

Table 16.  Centrality computations for Bitcoin large dataset.
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Centrality in context: understanding various real-life networks through graph formation and 
analysis: results and discussion on comparison analysis of our SOTA ′∅c’
PPI network data of 2361 proteins (nodes) can be seen in Fig. 9 and for understanding the influence of proteins 
in the considered network dataset, centrality metrics are measured for 2361 proteins (nodes) of PPI network, 
outcomes are demonstrated in Tables 13 and 14 for 2 Amazon product networks, one PPI network and Bitcoin 
crypto currency network datasets.

Analysis was conducted on the dataset comprising 1001 products from the Amazon website, employing 
six primary centrality metrics to identify the most crucial nodes. The results, as illustrated in Table 13, 
revealed strong interconnections among all six measures. Notably, Node ID 9 emerged as significant across all 
metrics colored with pink. For the extensive dataset of another Amazon website, encompassing “1001 Nodes,” 
computations for all six centrality metrics were performed, as evident in Table 14. These calculations aimed to 
identify pivotal nodes (products) within the graph representing the "Amazon website." Results directed that 
Node ID 5 (highlighted in yellow color) in Amazon product network was an important product because it has 
larger figure of above six centrality metrics, which showed that this node was an essential in concept of business 
strategies. Additionally, Node ID 29 (highlighted in green color) was ranked as the second highest in centrality 
metric calculation, as it also played an important role in business that carried out on Amazon product website 
graph.

From Table 15 outcomes protein/Node ID 1443 that is YKU80 (YMR106C) indicates that this will play 
a crucial role due to highest centrality metrics outcomes, also this is observed through literature by actively 
participating in the recovery and repair of enzymes with restricted functionality and the DNA double-strand 
break pathway. Its primary function involves safeguarding these pathways from the potential introduction of 
errors, thus contributing to the maintenance of genomic integrity. Notably, this yeast protein stands out with 
significant importance, as evidenced by its highest centrality metrics among a dataset of 2361 proteins engaged 
in protein–protein interactions31,45.

SEC27 Node ID 209 in the considered PPI dataset, a component of the Coatomer Complex (YGL137W), 
holds significant importance in the literature due to its integral role in various cellular processes. Notably, it 
shares a substantial 45% sequence resemblance with the mammalian coatomer subunit beta. Functionally, 
SEC27 is responsible for encoding membrane proteins essential for Golgi transportation, acting in conjunction 
with ARF1 for endoplasmic reticulum (ER) processes. Moreover, it actively participates in the initial steps of 

Fig. 7.  Regression plot between Dangling Centrality and DC for Amazon Network June 2003.

 

Fig. 2.  Illustration of the dangling centrality evaluation concept.
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protein sorting in yeast, particularly for endosomal proteins. Its prominence is underscored by the fact that, 
within a dataset of 2361 proteins engaged in protein–protein interactions, SEC27 ranks almost second highest 
in centrality metrics45,46.

Continuing the exploration of yeast protein significance, the third highest protein in centrality metrics within 
the dataset of 2361 proteins is Srp1 i.e. Node ID 147 that is clear from Table 15. This protein introduces a novel 
approach to protein degradation and serves as a distinctive signal receptor in the context of nuclear localization. 
The absence of Srp1 has profound consequence leading to cellular mortality, emphasizing its indispensable role 
in maintaining vital cellular functions and processes45.

Table 16 serves as a computation reference for six centrality metrics applied to the intricate Bitcoin dataset. 
Notably, it is evident that both Node ID 1 and Node ID 2 exhibit the highest measures across all metrics. 
Additionally, the outcomes of the novel metric align with the results obtained from the established centrality 
metrics. Node ID 1 and Node ID 2 emerge as the focal points of highest centrality metrics within the Bitcoin 
network, symbolizing the most connected or popular entities in the realm of cryptocurrency transactions as seen 
in Table 16 results. These nodes serve as key hubs, indicative of their prominence and extensive connections in 
the intricate web of cryptocurrency dealings.

Centrality measures, including the proposed dangling centrality, provide valuable insights into network 
dynamics by identifying critical nodes and their roles. Traditional metrics highlight nodes based on connectivity 
or influence, while dangling centrality uniquely evaluates the network’s resilience to communication loss. This 
allows for the preemptive design of robust systems by analyzing the impact of a node’s link elimination. For 
instance, if communication with a key node is disrupted, alternative pathways can be strategically designed to 

Fig. 9.  Regression plot between Dangling Centrality and CC for Amazon Network June 2003.

 

Fig. 8.  Regression plot between Dangling Centrality and BC for Amazon Network June 2003.
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maintain the network’s functionality, ensuring minimal disruption in complex systems like Bitcoin or other 
interconnected networks.

The proposed dangling centrality measure is strongly related to almost all the centrality metrics in the 
literature which is seen in Table 17. Dangling centrality plays a vital role in the study of large networks by 
knowing the essentiality of nodes. Results on different examples like simple networks in Fig.  2a, b, amazon 
website datasets of different months and some other large data are considered like bit-coin data and disease 
spread data is also extracted from SNAP (Stanford Large Network Dataset1 Collection) and inferred. This work 
mainly focus on product networks like amazon website to promote “Business Intelligence” and biological dataset 
to discuss essentiality of centrality metrics in various real life domains.

The correlation with existing centrality measures is conducted to show that Dangling Centrality does 
not completely diverge from traditional metrics, confirming its relevance in centrality analysis. However, its 
computation and decision-making process are different. Unlike traditional centrality measures, Dangling 
Centrality evaluates the impact of removing all links of a node (i.e., reducing its degree to zero) rather than 
the node’s outright removal. This allows Dangling Centrality to capture how the loss of communication from 
a node affects the overall network, providing insights that other measures may miss. By focusing on the 
disruption caused by a node’s loss of connectivity, Dangling Centrality identifies nodes that play a critical role 

1 1https://snap.stanford.edu/data/

Fig. 11.  Regression plot between Dangling Centrality and KC for Amazon Network June 2003.

 

Fig. 10.  Regression plot between Dangling Centrality and EVC for Amazon Network June 2003.

 

Scientific Reports |        (2025) 15:41078 16| https://doi.org/10.1038/s41598-025-24930-8

www.nature.com/scientificreports/

https://snap.stanford.edu/data/
http://www.nature.com/scientificreports


in the network’s communication flow, which is particularly useful for understanding network robustness and 
identifying potentially vulnerable points.

Figures 7, 8, 9, and 10 displaying regression plots on R, each depicting the positive and strong associations 
between our SOTA Dangling Centrality and well-established centrality measures, including DC, BC, CC, 
EVC, and KC. These plots represent the complex dataset of Amazon Product Network of June 2003, showcasing 
the positive and strong associations between Dangling Centrality and established centrality measures such as 
DC, BC, CC, EVC, and KC. The analyses emphasize the significant positive correlation observed with the novel 
centrality measure in the intricate context of Amazon data1.

The proposed methodology demonstrates a strong positive correlation, as shown in Figs. 7, 8, 9, 10 and 11, 
indicating that Dangling Centrality aligns with established centrality measures like DC, BC, CC, EVC, and KC. 
This suggests that Dangling Centrality is consistent with traditional methods while introducing a critical new 
perspective. Unlike existing metrics that evaluate the importance of a node based on its presence, Dangling 
Centrality assesses its significance by considering the impact of its communication absence. This novel approach 
is crucial for policymakers, as neglecting such nodes or factors can disrupt communication across the entire 
network, making it essential for effective system design and planning.

The work on Dangling Centrality differs from Dynamic Age in that, it focuses on the disruption of network 
communication and information flow when a node’s links are removed, rather than just assessing the change in 
the largest eigenvalue of the adjacency matrix47. The comparison between Dynamic Age and Dangling Centrality 
has been updated. Both measures evaluate the node’s importance by assessing the disruption caused when a 
node is removed from the network.

Limitations of the proposed method
Dangling Centrality can be studied first to assess the absence or loss of key entity links in a network. By identifying 
alternative nodes and their roles, this metric helps in decision-making to avoid communication failures in the 
system, offering a more proactive approach compared to traditional metrics. However, it has some limitations:

Increased Computational Time for Large Networks:
As the network size increases, the computational time for calculating Dangling Centrality slightly increases, 

which may affect its efficiency for very large-scale networks.
Domain Expertise Required for Decision Making:
To effectively utilize Dangling Centrality across diverse domain datasets, specialized knowledge is required to 

identify which entity edges/links, when removed, would disrupt network communication and stability.
Complexity in Assessing Communication Disruption:
The metric may not easily identify which node communication absences will lead to significant 

communication breakdowns, as this depends on the specific context and structure of the network, requiring 
deep domain understanding for accurate assessment.

Conclusions
This research work introduced the novel Dangling Centrality (ϕC) metric and evaluated its effectiveness using 
two “Amazon product networks,” a PPI network, and a Bitcoin network dataset. The input data was mined 
and transformed into adjacency matrices for analyzing social network structures. Our analysis revealed a 
robust connection between Dangling Centrality and five established centrality metrics—DC, BC, CC, EVC, 
and KC. However, while Pearson’s, Spearman’s, and Kendall’s correlation coefficients were applied to confirm 
that Dangling Centrality results align with existing literature metrics, the conceptual utilization (ϕC) of 
diverges significantly. Unlike traditional metrics, Dangling Centrality focuses on the impact of the absence of 
node links, products, proteins, or individuals in disrupting network communication. This distinct approach 
was demonstrated through the study of four real-world datasets and two simple network graph examples. The 
results highlight the complementary role of Dangling Centrality, particularly in pre-designed networks where its 
unique perspective enhances the understanding of node importance and network dynamics.

The proposed metric has been comprehensively evaluated on both small-scale and large-scale networks. 
Small-scale networks include examples with 5 nodes and 5 edges, as well as 6 nodes and 9 edges. Large-scale 
networks encompass real-world datasets, such as two Amazon datasets (262,111 nodes and 1,234,877 edges; 
403,394 nodes and 3,387,388 edges), the Bitcoin cryptocurrency network (5,881 nodes and 35,592 edges), and 
a Protein–Protein Interaction (PPI) network (2,361 nodes and 7,182 edges). These evaluations demonstrate the 
metric’s effectiveness in identifying node importance while maintaining computational efficiency, highlighting 
its adaptability and relevance for analyzing networks of diverse sizes and domains.

Dangling Centrality plays a critical role in proactive decision-making, allowing planners to implement 
strategies that preserve system stability, even when key elements are temporarily missing. By identifying 
vulnerable points, this metric supports preemptive measures to maintain the network’s integrity during 
disruptions.

Future directions
Future dimensions and studies for Dangling Centrality include its application to time-dependent communications, 
such as dynamic networks, where the network structure and node interactions evolve over time. This would 
provide deeper insights into the resilience of networks in changing environments. Additionally, Dangling 
Centrality can be extended to evaluate weighted network graphs, where the strength of connections between 
nodes is taken into account, allowing for more nuanced analysis of node importance based on both connectivity 
and weight. These extensions would enhance the versatility of Dangling Centrality, making it applicable to a 
broader range of real-world scenarios.
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This48 study effectively demonstrates how fuzzy logic and centrality measures can enhance link prediction 
in online social networks by revealing hidden structural patterns. As an extension, Dangling Centrality can be 
applied to detect nodes with low immediate influence but high potential for future connectivity. This can provide 
valuable insights for predicting emerging links, especially in dynamic or partially observed network applications 
in49.

Similarly, the study like in50, future research can investigate the role of dangling centrality in identifying 
less obvious yet strategically important nodes for influence maximization. Integrating this concept with our 
proposed framework may enhance the detection of hidden influencers, particularly in multilayer or dynamic 
social networks.

Data availability
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