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Dangling centrality highlights
critical nodes by evaluating

network stability through link
removal

Ubaida Fatima®?, Saman Hina? & Muhammad Wasif?

This study introduces “Dangling Centrality,” a novel metric for identifying critical nodes in networks
by assessing the impact of their link removal on system dynamics. The proposed metric is validated on
real-world datasets, including Amazon product networks, a Protein—Protein Interaction (PPI) network,
and a Bitcoin network, offering insights into key products, critical proteins, and influential entities.
These nodes, as the main pillars of system propagation, are crucial for maintaining the structural and
functional integrity of the network. By removing the links of these nodes, the network’s stability,
flow, and communication can be disrupted, highlighting their importance. Additionally, small-scale
5-node and 6-node networks are analyzed to demonstrate the metric’s behavior in simpler contexts.
Correlation analyses using Pearson'’s, Spearman’s, and Kendall’s coefficients demonstrate alignment
with traditional centrality metrics while providing a unique perspective. The findings emphasize the
metric’s practical utility in understanding network vulnerabilities, enhancing resilience, and informing
system design. Materials and implementations are available at: https://github.com/Ubaidafatima/Cent
rality-Measures.

Keywords Centrality metrics, Social network analysis, Dangling centrality metric, Bitcoin dataset, Protein-
protein interaction network

The “Social Network Analysis (SNA)” is employed to understand the various connections among individuals,
families, households, villages, communities, regions, and other social units. Social Networks are a structural
configuration comprising individuals or groups referred to as "nodes," interconnected by various specific types of
relationships! . Utilizing the findings from SNA can offer valuable insights into various domains such as human
behavior, public health, organizational dynamics, and political science, thereby enhancing our comprehension of
social systems and informing decision-making processes®. In® the study addresses that gap by outlining the SNA
process, comparing key tools and languages, and highlighting its applications across multidisciplinary areas.

The study in® presents a comprehensive review of Social Network Analysis (SNA) techniques as applied to
online social platforms, emphasizing the fundamentals of network representation, structural properties, and key
analytical measures. It further explores modern developments in SNA applications such as influence modeling,
link prediction, and information diffusion, while addressing growing concerns related to user privacy. By
providing a comparative overview of current methodologies and highlighting open research challenges, this work
aims to support future investigations and practical implementations of SNA in real-world digital environments.

Social Network Analysis (SNA) has seen the development of numerous centrality metrics, each aimed
at identifying influential nodes within a network. While these metrics such as Degree Centrality, Closeness
Centrality, and Eigenvector Centrality have proven effective in various contexts, they often face limitations
in capturing the dynamic nature of real-world networks. For instance, traditional metrics primarily focus on
connectivity or influence within the network but fail to address scenarios where the absence of critical entities
disrupts communication. This gap becomes evident in domains such as business networks, biological systems,
cryptocurrency ecosystems, and healthy lifestyle networks, where identifying nodes critical to maintaining
seamless communication is paramount.

To address these deficiencies, Dangling Centrality is introduced, focusing on assessing a node’s importance
by examining the impact of removing its connections or reducing its degree to zero. This method evaluates how
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the absence of a node link disrupts communication across the entire network, offering a distinct perspective for
identifying and prioritizing key entities.

In many real-world networks, traditional centrality measures such as Degree Centrality (DC) and
Betweenness Centrality (BC) focus on the presence and connectivity of nodes within the network. While these
metrics effectively identify influential nodes based on their structural properties, they often fail to account
for the criticality of nodes when their absence disrupts communication or network dynamics. For instance,
in networks with bridge-type connections, the removal of a high-betweenness node may cause significant
fragmentation. However, certain nodes that may not rank highly in traditional metrics could still play a pivotal
role in maintaining overall network efficiency. This gap highlights the need for a metric like Dangling Centrality,
which evaluates the importance of a node by simulating its removal and assessing the resulting impact on
information flow. For example, in a Protein-Protein Interaction (PPI) network, removing a node identified
by Dangling Centrality might reveal disruptions in key biological pathways that are overlooked by traditional
measures. This novel approach offers a complementary perspective, enabling a deeper understanding of node
criticality and network resilience.

Inferring social networks from real-life datasets

The rapid growth of social networks has spurred interest in Social Network Analysis (SNA) for business
intelligence. While theoretical advancements in data mining have been made, a gap remains in applying these
techniques to real-world datasets. Addressing challenges like data acquisition, community structures, and
network dynamics can unlock business applications’. In the same vein, previous research has applied SNA
to biological datasets, showcasing its versatility in identifying key role players in any community or network
graph®’.

Previous studies in SNA have primarily focused on evaluating how individual nodes influence a network by
calculating their importance through popular centrality metrics, community detection techniques, and maximal
clique analysis'®. However, less attention has been given to studying the impact of the absence of influential
nodes within a network. This gap is critical for applications such as business planning, disease prevention, or
promoting a healthy lifestyle, where the absence of key nodes can disrupt communication or cause system
failure. To address this, the proposed method evaluates the effect of removing an influential node, referred to as
a "dangling node," as detailed in Sect. 4.

Contributions of this research

i. Proposed a novel Dangling Centrality approach for assessing link significance within intricate network
frameworks in comparison to State-of-the-art (SOTA) conventional centrality measures.

ii. Complete evaluation against the baseline approaches that deal with the analysis of the presence of nodes in
network datasets. In contrast, the proposed approach focuses on understanding how the removal of a ver-
tex, node, person, protein, or customer can impact network communication dynamics. This presents a new
method of determining node essentiality based on its communication absence, which can disrupt network
communication.

iii. The method evaluates the impact of removing critical node links to enable proactive planning and prevent
communication failures.

Related work

Social Network Analysis (SNA) provides a framework to study the flow of resources, including information,
among entities. Haythornthwaite!! emphasized the significance of analyzing these exchange patterns, where
actors act as nodes and relationships represent connections, to improve information delivery and control
mechanisms. Newman and Girvan!? introduced algorithms for community detection through iterative link
elimination and stability analysis, laying foundational methods for analyzing network configurations. Houghton'?
highlighted the role of SNA in command and control during emergency services, focusing on network structure
and information flow.

Fioriti and Marta'* proposed a spectral method to identify sources of disease outbreaks within contact
networks, demonstrating the application of centrality measures in epidemic analysis. Fiz et al.'® introduced
"mint centrality," a novel metric tailored for Bitcoin transaction networks, emphasizing the importance of
customized centrality metrics in unique contexts. Saqr and Alamro!® explored SNA in online problem-based
learning, showing how centrality measures can reveal the roles of participants in educational interactions.

Atsalakis et al.'” demonstrated the predictive power of a hybrid neuro-fuzzy model for Bitcoin price trends,
while!8 introduced “Isolating Centrality” to detect critical nodes in complex networks, outperforming traditional
centrality measures. Fatima et al.® proposed the global clustering coefficient-dependent degree centrality
(GCCDC) metric, which addressed limitations of existing measures and provided insights into protein-protein
interaction networks.

Nasiri et al.!' developed Weighted Common Neighbors (WCN), a link prediction method integrating
centrality measures, highlighting the role of interlayer information in multiplex networks. Zhao and Sun?
introduced weighted Laplacian energy centrality to identify influential nodes in aviation networks, demonstrating
the metric’s effectiveness in maintaining network robustness.?! reviewed advancements in machine learning for
biological networks, underscoring centrality measures’ role in drug interaction prediction and gene identification.

Applications of SNA extend beyond centrality. Hung et al.?? analyzed sentiment and social network
connections on COVID-19-related tweets, while?* leveraged topological and biological features for SARS-CoV-2
gene identification. Rostami et al.?* reviewed the application of community detection in healthcare datasets,
identifying challenges and knowledge gaps in this domain.
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Also,” addressed the ambiguity in protein interaction strength in PPI networks by introducing Bio-Link
Strength, a fuzzy membership function that quantifies interactions on a continuous scale. They extended
traditional centrality measures (degree, closeness, betweenness, eigenvector) to fuzzy measures (e.g., fuzzy
connectivity, fuzzy influence centrality) and demonstrated the frameworK’s scalability across multiple PPI
datasets. Results highlighted the superior performance of fuzzy measures, particularly fuzzy connectivity and
influence centrality, in identifying crucial proteins, validated through Gene Ontology analysis and correlation
studies.

While classical Social Network Analysis (SNA) has been widely applied across various domains—ranging
from sociology to computer science—emerging technologies are now reshaping its scope and capabilities. One
such advancement is the integration of quantum computing with SNA, giving rise to Quantum Social Network
Analysis (QSNA). With the integration of quantum computing into network science, QSNA has recently
emerged as a promising paradigm, offering novel approaches to classical SNA tasks through quantum-enhanced
algorithms, while addressing the complexity of large-scale social systems?>.

These studies collectively illustrate the evolution and significance of centrality measures and network analysis
in understanding complex systems, from healthcare and finance to online learning and digital currencies. The
proposed work builds upon this foundation by addressing the limitations of existing centrality metrics and
introducing new measures tailored for large, real-world datasets.

Utilization of Prominent centrality metrics in the analysis of networks

As per findings presented by various researchers in the literature, the identification of key vertices in a social
network graph that is G(V, E), where V' demonstrates nodes/vertices and E demonstrates edges/links can be
achieved through the calculation of centrality metrics?®-%°. The following sub-sections provide the mathematical
formulation of various centrality measures.

Degree centrality metric (DC)

This measure of a node can be recognized by capturing the incoming and outgoing connections of a node
Computation of the degree centrality metric can be easily computed by the formation of an “Adjacency Matrix
(Ag)”, which is represented in this section by two considered small network graphs and demonstrated as Ag:
for 5-nodes graph and A4 for 6-nodes graph in Eqgs. (1) and (2) respectively.

1,8,30,31

0 1 110
10 10 0
Ag=| 1 1 0 0 0 (1)
1 0 0 0 1
o 0 0 1 0
0 1 00 10
1 0 11 10
0 1 01 01
Az = 1 10 11 @)
1 1 01 0 1
0 0 11 10

This metric proves valuable in identifying the popularity of nodes and assessing their influence based on the
degree of connectivity. Figure la, b clearly demonstrate which node is highly connected and which node has
minimum connections. For instance, in Fig. 1b Node ID 5 has a maximum degree (i.e. 4) and Node ID 1 has a
minimum degree (i.e. 2) shown in Table 1.

Betweenness centrality (BC)

To compute the Betweenness Centrality (BC) for a specific node w, identify all shortest paths between nodes ¢
and j that pass through w. The centrality value for u is then obtained by dividing the number of such paths by
the total number of shortest paths between i and j in the network®3?. Product with high betweenness measures
captures that product (node) plays a vital role in the sale of other products (nodes) in the product network®*. For
instance, computation of betweenness centrality (BC) for nodes in Fig. 1b is shown in Table 2.

Closeness centrality (CC)
The Closeness Centrality (CC) of a node is determined by taking the reciprocal of the sum of the shortest paths
from that node to all other nodes in the network®3.

Therefore, the “Shortest Path Distance Matrix (SPDM)” was evaluated using Eq. (3) which is used to
calculate the closeness centrality measure for every node in Fig. 1b. Node values were calculated using Eq. (3)
which is tabulated in Table 3. These values clearly show that Node ID 2, Node ID 4 and Node ID 5 are the most
central nodes. For PPI data, when protein has high ‘CC’ means it is more central protein in the considered yeast
network.
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Fig. 1. Undirected simple networks: a of (5 nodes, 5 edges) and b of (6 nodes, 9 edges).
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Table 1. Degree Centrality (DC) Computation for Fig. 1b.

For Node ID 4:
For Node ID 1: > 21 1 /al
'IhreBWCfornodeliso [2,6] — 1/3[3,5] — 1/3[5,3] — 1/3
[6,2] — 1/3. The sum of all sets is the BWC of node 4 i.e. 1.3333
For Node ID 2: .
(1,3] — 1/1[1,4] — 1/2[3,1] — 1/1 For Node ID 5

(1,4] — 1/2[1,6] — 1/1[2,6] — 1/3[4,1] — 1/2[6,1] — 1/1[6,2] — 1/3
[3,5] — 1/3[4’1]. = 1/2[5,3] — 1/3 The sum of all sets is the BWC of node 5 i.e. 3.6667
The sum of all sets is the BWC of node 2 i.e. 3.6667
For Node ID 3: For Node ID 6:
[2,6] — 1/3[6,2] — 1/3 corNode D6 ) )
The sum of all sets is the BWC of node 3 i.e. 0.6667 [3,5] — 1/3[5,3] — 1/3. The sum of all sets is the BWC of node 6 i.e. 0.6667

Table 2. Betweenness Centrality (BC) Computation for a graph in Fig. 1b.

Scientific Reports|  (2025) 15:41078 | https://doi.org/10.1038/s41598-025-24930-8 nature portfolio



http://www.nature.com/scientificreports

www.nature.com/scientificreports/

NodeID | 1 2 3 4 5 6
CcC 0.1250 | 0.1667 | 0.1428 | 0.1667 | 0.1667 | 0.1428

Table 3. Closeness Centrality (CC) measure for a simple 6 node network in Fig. 1b.

001 2 2 1 2 8
101 1 1 2 6
210 1 2 1 7
SPDM=1{5 1 | o 1 1 |=p SPDM=| g
11 210 1 6
2 2 1 11 0 7 \
0.1250 S
: 0.1667
L | 01428
= CC(i) = S SPDM — | 0.1667
0.1667
0.1428

Eigenvector centrality (EVC)
The EigenVector Centrality (EVC) is used to quantify a node’s significance by focusing on its linked nodes. A
node that is surrounded by highly linked nodes and has number of links, has the highest EVC?3>3,

The n number of EigenValues are computed and their corresponding eigenvectors from n x n size of
Adjacency matrix A,. EigenVector Centrality (EVC) is computed by applying “Power method” to Adjacency
Matrix (Ag). For instance, Fig. 1b presented 6 undirected nodes network graph, where Node ID 2, Node ID 4
and Node ID 5 are connected to highly linked nodes, therefore, it must have highest EVC as computed in Table 4.

Katz centrality (KC)

Katz centrality (KC) is a metric specifically designed for directed networks®37%. As in network analysis, the
amount of centrality measure for a node is not considered but greater or lesser centrality measured is taking into
account. The Katz centrality (KC) for any node (product) can be calculated using Eq. (4).

Crat> (V) =« Z A;jiCrat> (Vi) + B (4)

j=1

The first part of Eq. (4) is supervised by parameter o and is pretty much same to eigenvector centrality and
< is a unity column matrix. The second part contains the bias term 3 that avoids the zero centrality measure.
Therefore, for any node v; Katz centrality (KC) can be computed simplifying Eq. (4). The simplification is
represented from Egs. (5-8).

Chrats = @A Char, + B.< (5)
Cratz — @A Cparz = B.< (6)

Chrat= (1—aA”) = B.< )
Crats = B(1 = aAT) < (8)

As matrix is inverting, parameter  cannot be supervised first part of Eq. (4) for all values. Computation for a
network in Fig. 1b is mentioned in Table 5.

o If a = 0, EigenVector centrality part of Eq. (4) is removed and there will be the same Katz centrality (KC)”
value S for all nodes present in the network.

o If v is higher, the influence of 8 is decreased.

o Ifa= % (where)\, largesteigerwaluecentralityofAT) is taken, then the

. |1 — aAT| = 0 that is matrix 1 — A becomes non-invertible that creates uncertainty in computation

of KC or KC diverges. Generally, o < 1 is a selection criteria for computation of KC properly to attain fast
convergence.

As A = 3.4679 is obtained in Table 4 ,assuming o = 0.2andg = 1

Table 6 presents a comprehensive comparison of the six centrality metrics. The analysis reveals the level of
influence associated with specific Node IDs within the graphs depicted in Fig. 1a, b. It highlights the identification
of nodes that play a more pivotal role and examines the dependencies of other nodes on these influential ones for
effective communication within the network.

Nodes with IDs 2, 4, and 5 consistently exhibit the highest values across all centrality metrics, signifying
their role as the most influential entities in the simple 6-node network responsible for information transfer
and communication among other members. In the realm of marketing and product network analysis, the
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= 3.4641
EV2
EVC2 = L
n2

0.2760
0.4485
0.3795
0.4830
0.4485
0.3795

— Iteration#2

o — 0.95622 + 1.55382 + 1.31482
- +1.6733% + 1.55382 + 1.31482

T0 1 0 0 1 0 1 01 0 0 1 0 0.2760
1 0 1 1 1 0 1 1 0 1 1 1 0 0.4485
01 0 1 0 1 1 o 1 0 1 0 1 0.3795
EVi=19¢9 1 1 0 1 1 1 EV3=19 1 1 0 1 1 0.4830
1 1 0 1 0 1 1 11 0 1 0 1 0.4485
L0 0 1 1 1 0 1 Lo 0 1 1 1 0 0.3795
ro2 r 0.8971
4 1.5872
| 3 | 13111
=1 4 = | 1.6562
4 1.5872
L 3 | 1.3111
Normalizedvalue = nl
n3 — 0.89712 + 1.58722 + 1.31112
- \/22 142 132 442 142 1+ 32 T \/ +1.6562% +1.5872% + 1.31112
= 8.3666 = 3.4675
0.2390 0.2587
V1 0.4781 v 0.4577
_ | o0.3586 B | o0.3781
BVel === oars1 EVCE3=—o== | 04776
0.4781 0.4577
0.3586 0.3781
— Iteration#1 — Iteration#3
T0 1 0 0 1 0 0.2390 ro 1 0 0 1 0 0.2587
1 0 1 1 1 0 0.4781 1 0 1 1 1 0 0.4577
o 1 0 1 0 1 0.3586 o 1 0 1 0 1 0.3781
EVzZ=19 1 1 0 1 1 0.4781 EVa=19 1 1 0 1 1 0.4776
1 1 0 1 0 1 0.4781 1 1 0 1 0 1 0.4577
Lo 0 1 1 1 0 0.3586 Lo 0 1 1 1 0 0.3781
© 0.9562 r 0.9154
1.5538 1.5722
| 1.3148 | 1.3134
=1 1.6733 = | 16717
1.5538 1.5722
| 1.3148 | 1.3134

nd — 0.91542 + 1.57222 + 1.31342
- +1.6717% 4+ 1.57222 4 1.31342

= 3.4679

0.2640

EVa 0.4533

pver= EVE_ | bt
n4 :

0.4533

0.3787

— Iteration#4

EV5 =

oO—OOrO

OO
HOROFRO
RO =O
HOROR

0.9067
1.5781
1.3141
= | 1.6642
1.5781
| 1.3141

0.2640
0.4533
0.3787
0.4820
0.4533
0.3787

ORFF=OO

EV5
EVC5 =
nb

0.2615
0.4551
0.3789
0.4799
0.4551
0.3789

nd = \/0.90672 + 1.57812 4 1.31412 4 1.66422 + 1.57812 + 1.31412

= 3.4679 — A(Principal Eigenvalue)

— Iteration#5

Table 4. Evaluation of EigenVector Centrality (EVC) for Eq. (2).

Scientific Reports |

(2025) 15:41078

| https://doi.org/10.1038/s41598-025-24930-8

nature portfolio



http://www.nature.com/scientificreports

www.nature.com/scientificreports/

1 00 0 0 O
01 000 0
00 1 0 0 0
Chratz = 1x 00 0 1 0 0
00 0 0 1 0
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01 00 1 0 -1 1
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—02" | g 1 1 o 1 1 |1
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o 00 1L 0 0 0
katz = 000 0 1 0 0
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r00 02 00 00 02 00 -1 1
02 00 02 02 02 00 1
00 02 00 02 00 02 1
| 0o 02 02 00 02 02 |1
02 02 00 02 00 02 1
L 00 00 02 02 02 0 1
r1.00 -0.2 —02 —02 0.00 -1 1
Z0.2 1.00 -02 0.00 0.00 1
Craps = —02 —0.2 1.00 000 0.00 «| 1
—02 0.00 000 1.00 -0.2 !
| 0,00 0.0 000 -02 1.00 !
" 2.4059
3.5146
| 300335
= | 36192
3.5146
| 3.0335

Table 5. Evaluation of Katz Centrality for Fig. 2b.

NodeID (2) | o 1 2 3 4

D(1) 0.72093 | 0.3953 | 0.3953 | 0.58139 | 0.30232

Table 6. Dangling Centrality measure for a small undirected graph of 5 nodes.

significance of Node IDs 2, 4, and 5 can be elucidated by understanding that the prominent presence of these
nodes (representing products) in a store has the potential to enhance the market value of interconnected
neighbors (other products).

In the next section, a groundbreaking technique for identifying influential actors within a complex network
dataset is introduced. To comprehensively assess its efficacy, Dangling Centrality (¢,) is compared with the
established centrality metrics discussed in the preceding section.

Dangling centrality (¢, ): a novel metric

The major task in handling graph networks is to determine the key factors that efficiently deliver information
within the vertices. The novel Dangling Centrality (¢,) provides a framework to quantify the power of each
node in a network by deleting its communication with other nodes or, more specifically, by removing its edges
(links). This approach determines the prominence of each node in conveying information throughout the
network. The importance of a node is assessed by evaluating its Dangling Centrality, which measures the impact
on the network’s communication or configuration when the node’s degree is reduced to zero, highlighting how
its links absence affects the flow of information within the network. The higher the value of Dangling Centrality
(¢c), the higher will be its role in the network organization and information delivering.

The term “Dangling” draws attention to the “PageRank” concept, which suggests that a web page with "no
outgoing links" can be likened to a node that lacks any connections®~*!. These studies describe such web pages as
nodes that do not direct to any other node or web page, referring to them as "Dangling nodes." Building on this
idea, I have adopted the term “Dangling” to develop a centrality measure aimed at addressing the complexities
within Social Network Analysis (SNA) studies.
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Termed Dangling Centrality (¢.), this novel metric adopts a unique perspective. Unlike traditional
centrality metrics, which assess the significance of a node based on its connections and communication
presence, Dangling Centrality (¢,.) takes a distinctive approach by evaluating the consequences of a node links
absence in the network. This innovative metric provides insights into how network communication dynamics
are affected when a specific node is removed, offering a nuanced understanding of node importance in the
context of network structure and robustness.

Also, ¢.(G) uses the Shortest Path Distance Matrix (SPDM) to measure the impact of isolated nodes after
their edges are removed. When edges are absent, the SPDM highlights how these isolated nodes affect the flow
of information, with their centrality reflecting the disruption they cause to network connectivity. ¢.(G) of a
network graph can be measured through Eq. (9) and Eq. (10). Excluding '0' entries in the Shortest-Path Distance
Matrix (SPDM) when computing ¢.(G). The formula in Eq. (10) is conceptualized based on the motivation of
evaluating error performance in graph networks. It is defined as the ratio of the difference between the true value
and the calculated value to the true value (or original value).

Closeness Centrality and Dangling Centrality both utilize the Shortest-Path Distance Matrix (SPDM) to
assess a node’s importance in a network, but they differ in the steps and interpretation of their calculations.
In Closeness Centrality, the process starts by computing the SPDM, followed by summing the elements of
the matrix. Then, the element-wise inverse of the SPDM is taken, providing a measure of centrality based on
the inverse of the distances to all other nodes. On the other hand, Dangling Centrality also begins with the
computation of the SPDM, but its second step involves taking the element-wise inverse of SPDM excluding the 0
entries (those that represent self-loops or non-existent paths). Finally, the sum of the element-wise inverse values
is computed. The key difference lies in Dangling Centrality’s focus on measuring the impact of a node’s absence:
it first computes the Dangling Centrality for the original network, then repeats the process after removing the
node’s edges, yielding a new SPDM. The Dangling Centrality for a node i is then calculated as the difference
between its centrality in the original and the modified network, normalized by the original centrality (see
Eq. 10). Thus, Dangling Centrality captures the relative importance of a node by assessing the disruption caused
by its absence, unlike Closeness Centrality, which purely evaluates the proximity of nodes in terms of network
distances.

1 -
¢C(G) - Z Z (SPDM)neglectingOUalues - Z Z (SPDM)elimentfwise (9)

G i#jEG G i#j

Neglecting the 0 value of shortest-path refers to ignoring self-connections or initially disconnected nodes in the
shortest path calculations. In a network graph, self-connections (where a node has a path to itself) and nodes
that are initially disconnected do not contribute to strong network communication. Therefore, for Dangling
Centrality, the 0 values in the shortest path matrix are ignored, as they do not reflect the flow or disruption of
information within the network. The measure Dangling Centrality (¢.) for a single node () was computed
using Eq. (10).

N 0c(G) — 9.(Gi)

be (1) = ———=—— (10)
O="0@

In Eq. (10) the term ¢, (G;) is a key parameter in computation of Dangling Centrality ¢, (G;) for a single node

by making corresponding node (%) degree centrality (DC) equals to zero. The example of five vertices undirected

graph Fig. 1a is considered. For computation of parameter ¢, (G ), Shortest-Path Distance Matrix (SPDM) was

considered and calculated using Eq. (3).

00 1.00 1.00 1.00 0.5 00
1.00 00 1.00 0.500 0.334
b (G) = Z Z 1.00 1.00 00 0.500  0.334 = 14336 (11)
o ot 1.00 0.500 0.500 00 1.00
0.500  0.334 0.334 1.00 00
b (G) = 7.167 (12)
Node IDs Centrality Metrics
Figure 1a | Figure 1b | DC | CC BC EVC KC P
0 1 312102 0.1250 |8 |0 0.6071 | 0.2726 | 2.0388 | 1.0208 | 0.72093 | 0.2800
1 2 2 (4 10.1428 | 0.1667 | 0 | 3.6667 | 0.4995 | 0.4728 | 1.7597 | 1.0413 | 0.3953 0.3733
2 3 2 (3 ]0.1428 | 0.1428 | 0 | 0.6667 | 0.4995 | 0.3941 | 1.7597 | 1.0311 | 0.3953 0.3200
3 4 2 (4 10.1667 | 0.1667 | 6 | 1.3333 | 0.3401 | 0.5000 | 1.6748 | 1.0414 | 0.58139 | 0.3600
4 5 114 10.111 0.1667 | 0 | 3.6667 | 0.1573 | 0.4728 | 1.3350 | 1.0413 | 0.30232 | 0.3733
- 6 3 - 0.1428 | - | 0.6667 - 0.3942 - 1.0311 - 0.3200

Table 7. Comparative chart examining centrality metrics in two unique small graphs.
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Small Dataset | Centrality Metrics | DC BC CcC EVC KC

5 nodes graph 0.8758113 | 0.9671900 | 0.9803829 | 0.5968716 | 0.8754605
Pearson’s Correlation Coefficient

6 nodes graph 0.9897783 | 0.8882636 | 0.9911944 | 0.9566603 | 0.9897083

5 nodes graph | Dangling Centrality | 0-9176629 | 0.9176629 | 1.0000000 | 0.6842105 | 0.6842105
Spearman’s Correlation Coefficient

6 nodes graph 191 0.9534626 | 1.0000000 | 0.9534626 | 0.8060599 | 0.8181818

5 nodes graph 0.8819171 | 0.8819171 | 1.0000000 | 0.5555556 | 0.5555556
Kendall’s Correlation Coefficient

6 nodes graph 0.9198662 | 1.0000000 | 0.9198662 | 0.6671244 | 0.6923077

Table 8. Pearson’s, Spearman’s, and Kendall’s correlation coefficient between dangling centrality and 5 popular

centrality metrics.

Formation of
Network Data | SPDM Evaluation

) Adjacency Matrix
Collection G | ‘A" for G
\ y L 9 J
Dang_ling ) (2.)=[92.(G)-2.(G)le, | Sum of Element-wise
Centrall.fy for < (G) Inverse of SPDM for
Node ID V" i.e. (9,), / | Forany Node D" | G, i.e. 8(G)

Fig. 3. Flowchart of dangling centrality evaluation.

‘ Sum of Element-wise
‘ Inverse of SPDM for
G i.e. 0¢(G)

| SPDM Evaluation
for Gi

| (After Node ID ' DC=0) |

Algorithm: Dangling Centrality Computation

Step 1: Install Libraries for SNA
Step 2: Input A5 —» G(V,E)
Step 3: Calculation of SPDM(G)

1
then ¢¢(6) = TeZixsec (sro.u(c))
fori=1:V
Ali,il =0
SPDM(G;)

$c(6); = 2 .-:,Zec (smlw)

dc(G) — (G
bc(6)

negelecting 0 value of shortest-path

neglecting 0 value of shrtest-path

oc(i) =

end
Step 4: Output: ¢c(1), pc(2), $c(3), ... ... (V)

Fig. 4. Pseudo-code for novel dangling centrality metric.

In Eq. (12), the overall summation of the element-wise inverse of the Shortest Path Distance Matrix (SPDM) is

normalized by dividing by 2. This normalization step ensures that the resulting Dangling Centrality values are
appropriately adjusted for undirected graphs, where each connection is counted twice, once for each direction.

By dividing by 2, the measure reflects the true importance of the node in the network, maintaining consistency

with standard practices in centrality calculations for undirected graphs.

After the calculation of SPDM, “Dangling Centrality (¢.)” was calculated for Node ID 0 (presented
in Table 6). After turning DC' = 0 for Node ID 0, the network configuration is disturbed and there was no
communication between many nodes in a graph as mentioned in Fig. 1a, b. Therefore, ¢ (Go) is computed using
Eq. (13) by turning row 1 and column 1 (in SPDM matrix) equals to zero. Moreover, the remaining nodes (in the
same SPDM matrix) demonstrate no links between other Nodes IDs passing through Node ID 0.
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I Degree: How many individuals can this person approach directly?

l Betweennness: How likely is this person to be the most direct route
between two people in the network?

Closeness: How fast can this person reach everyone in the network?

l Eigen\Vector: How well this person connected to other well-connected
people?

I i{atz: How this person is overall interconnected in a network?

»: How this person absence can effect his connections in the

Fig. 5. Centrality metrics phenomena in Social Network Analysis (SNA).

Nodes 262,111

Edges 1,234,877

Description | Amazon product co-purchasing network from March 2 2003
Source 243

Link https://snap.stanford.edu/data/amazon0302.html

Table 9. Dataset Statistics of Amazon Website March 2003.

Nodes 403,394

Edges 3,387,388

Description | Amazon product co-purchasing network from June 12003
Source 42:43

Link https://snap.stanford.edu/data/amazon0601.html

Table 10. Dataset Statistics of Amazon Website June 2003.

be(Go) =" Y 5

2T 00 0

i#je 0 0 1 0 0
0o 1 O 0 0 (13)
0 0 o 0 1
0 0 0O 1 0

neglectingOinshortest—walklength
As a result, the following changes were observed;

« Matrix in denominator of Eq. (13) clears the loss of Node ID 0 that effects the communication between var-
ious nodes of network.

o i # j belongs to graph (G) indicates to avoid the diagonal elements of SPDM.

« 0 element present in SPDM indicates there is no link or exchange between two nodes ids that are zandj.
Therefore after calculating inverse of each element present in SPDM 0 walk lengths are avoided.

¢ (Go) =2 (14)

The Dangling Centrality for Node ID 0 will be computed as shown in Eqs. (15) and (16):
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Nodes 5881

Edges 35,592

Description | Bitcoin OTC web of trust network

Source 4

Link https://snap.stanford.edu/data/soc-sign-bitcoin-otc.html

Table 11. Dataset Statistics of Bitcoin OTC web of trust network.

Nodes 2361

Edges 7182

Description | Protein-Protein Interaction (PPI) Network

Source 831

Link https://api.semanticscholar.org/CorpusID:219684564

Table 12. Dataset statistics of PPI network.

* nodes 3 a 5 6 7 8 9 10 1 12 13 14 15 16 17 18
1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0
S 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
7 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0
13 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
18 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Fig. 6. Sample of Adjacency matrix formation for PPI network dataset in R.
60 (0) = 7.167 —2 (15)
7.167

be (0) = 0.7209 (16)

This process is visually represented in Fig. 1a, b, where the network is plotted both before and after the removal

of the node’s connections. Additionally, Eq. (13) provides the computation for Node ID 0, showing how the

removal of its connections alters the degree of other nodes that remain in the network. This approach reflects

the disruption caused by the absence of the node links and helps in evaluating its centrality within the network.

Table 7 presents a comprehensive comparison of the six centrality metrics. The analysis reveals the level of
influence associated with specific Node IDs within the graphs depicted in Fig. 1a, b. It highlights the identification
of nodes that play a more pivotal role and examines the dependencies of other nodes on these influential ones
for effective communication within the network. For instance, Node ID 0 for Fig. 1a shows the highest centrality
values for all measures and Node ID 2 for an undirected graph in Fig. 1b shows the highest centrality values for
all measures.

Table 7 presents the calculated centralities metric for two minor graphs, including the Dangling Centrality
metric. Furthermore, Table 8 displays Pearson’s, Spearman’s, and Kendall's correlation coefficient values,
indicating a robust positive correlation between the dangling centrality and all five traditional centrality metrics:
DC, BC, CC, EVC, and KC. This demonstrates that the newly introduced Dangling centrality metrics exhibit a
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Amazon Product Network March 2003

Degree | Bety s Cl . Eigenvector . Katz Dangling
Products (Nodes Id) | (DC) (BC x107°) | (CC x 10°) [(EVC X 10%) | (KC) |©@.(10%)
0 5 1.2676 9.4984 291.6300 1.0550 | 2.1400
9 44 285.2227 11.7952 5000.0000 1.4912 | 45.0319
499 5 2.6992 7.0811 14.6399 1.0529 | 0.09724
500 6 59161 8.2610 16.9986 1.0650 | 3.1389
1000 4 0 6.3383 6.7448 1.0409 | 0.4031

Table 13. Six centrality metrics for the Amazon complex product network.

Amazon Product Network June 2003

Degree | Bety s Cl - Eigenvector | Katz Dangl‘ul§
Products (Nodes Id) | (DC) (BC x 107°) | (CC x 10°) [(EVC) (KC) | @.(10%)
0 10 0.4524 5.1939 0.0863 1.1244 | 1.0877
5 74 311.7653 6.0335 0.5000 1.8879 | 7.8763
29 31 858.7171 5.0241 0.0012 1.3649 | 23.1655
500 10 3.8162 4.7700 0.0007 1.1140 | 1.4639
1000 10 0 0.0124 1.0142e-17 1.0000 | O

Table 14. Computation of six centrality metrics using Large Amazon product graph.

Protein-Protein interaction network

. Degree | Betv . Cl o Eigenvector | Katz Danglin§
Proteins (Nodes Id) | (DC) (BC x 10~ %) | (CC x 10°) [(EVC) (KC) | @.(10%)
1 2 0 0 0.0005 1.0020 | 0.7709
147 57 21.0631 3.0457 0.1523 1.6579 | 11.4389
209 62 19.3335 3.0473 0.0563 1.7009 | 11.9993
302 64 17.5064 3.0479 0.4396 1.7740 | 7.0325
492 56 11.9037 3.0475 0.4368 1.6883 6.4669
566 64 19.7100 3.0475 0.0719 1.7225 | 10.1602
784 62 20.6946 3.0480 0.1275 1.7041 | 10.9563
1443 63 20.7643 3.0476 0.0641 1.7047 | 13.7943
2361 1 0 3.0118 0.0005 1.0010 | 0.7709

Table 15. Computation of six centrality metrics for a graph comprising 2361 yeast proteins.

robust association and will play a crucial role in identifying essential individuals, nodes, or products within any
large and intricate real-life network graph. Figures 3 and 4 depicts the flowchart and introduced algorithm for
Dangling Centrality (¢,) metric.

Table 6 clears that Node ID 0 is the most influential node in a graph for communication and maintaining
connection between different parts of graph as it also have maximum “Dangling centrality” like other centrality
measures shown in Table 7.

In the next section, we delved into the examination of a novel centrality measure called Dangling centrality
(¢.)s utilizing a real-life datasets. The analysis will focus on understanding how the removal of a vertex, node,
person, protein, or customer can impact network communication dynamics. This exploration aims to shed light
on the crucial role of individual components in constructing a robust network graph of information.

Exploring the use of centrality measures in large-scale network analysis
Centrality metrics stand out as frequently employed instruments in real-world scenarios for deriving insights
from extensive network datasets. A concise discussion on these measures and their practical applications is
presented in Fig. 5.

There are two large product network datasets analyzed through different Centrality metrics (CM) for
determination of influential products in marketing and griping the interest of customers that are discussed in
the following section.
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Degree | Betv . Cl o Eigenvector | Katz Danglin§
Products (Nodes Id) | (DC) (BC x 107%) | (CC x 10°%) | (EVC) (KC) | @.(10%)
1 750 48.8032 1.7728 0.1508 1.7883 | 67.1201
2 754 27.7906 1.7738 0.5000 1.8544 | 13.5501
500 25 0.2223 1.7625 0.0182 1.0317 | 1.3792
1000 4 0 1.7608 0.0015 1.0044 | 0.2918

Table 16. Centrality computations for Bitcoin large dataset.

Real-life dataset | Centrality metrics | DC BC CcC EVC KC

Amazon 1 0.4620371 | 0.8154608 | 0.4049604 | 0.3679921 | 0.4650667

Amazon 2 0.2878921 | 0.6481128 | 0.2333661 | 0.1278617 | 0.2872377
Pearson’s Correlation Coeflicient

PPI 0.7812787 | 0.8922564 | 0.2676383 | 0.3739042 | 0.7794644

Bitcoin 0.7855071 | 0.8896052 | 0.06693472 | 0.5780862 | 0.7710929

Amazon 1 0.7554034 | 0.8982081 | 0.6932152 | 0.6855223 | 0.7470634

: ) | Amazon2 Dangling Centrality | 07787221 | 0.8381494 | 0.6618990 | 0.5943911 | 0.7933662

Spearman’s Correlation Coefficient 1 1

PPI P 0.6999998 | 0.7105681 | 0.5552777 | 0.6450815 | 0.7387394

Bitcoin 0.6919743 | 0.8620611 | 0.5272577 | 0.5709354 | 0.6787683

Amazon 1 0.5630540 | 0.7392368 | 0.4982697 | 0.4933784 | 0.5286709

Amazon 2 0.6030667 | 0.6894940 | 0.4818794 | 0.4373180 | 0.5750534
Kendall's Correlation Coefficient

PPI 0.6008932 | 0.5924809 | 0.4555893 | 0.4772644 | 0.5659789

Bitcoin 0.5945892 | 0.8217732 | 0.4249878 | 0.4574984 | 0.5533833

Table 17. Novel Dangling Centrality comparison with popular centralities through Pearson’s, Spearman’s and
Kendall’'s Correlation Coefficient.

Amazon datasets (Amazon product co-purchasing network)

1. 'The first dataset composed of or (262111nodes, 1234877edges), was collected accessing Amazon web-
pages on 2nd March 2003 (see Table 9). It deals with “Clients Who Purchase This Product Also Purchase”
article of the Amazon webpage. If an item ‘%’ is repeatedly co-purchased with item ‘%, which is in directed
graph demonstrated by edge ‘i’ to 5%

2. Second data comprised of (403394nodes, 3387388edges) was considered for assessment of “Amazon
product dataset” that dated June 2003 (see Table 10). This data shared the information regarding behavior of
frequent buyer in terms of purchasing products in combination®’. Dataset was analyzed through organized
approaches. First approach was transformation in “Adjacency Matrix (Ad)” and the second approach was
“formation of graph”.

Bitcoin dataset

This cryptocurrency dataset (5,881nodes, 35,592edges) represents a connected graph of individuals engaged
in Bitcoin transactions on a platform known as "Bitcoin over-the-counter (OTC)," resembling a network where
users express trust or skepticism towards one another. Due to the anonymity of Bitcoin users, maintaining a
record of users’ reputations is crucial to prevent transactions with potentially fraudulent or unsafe individuals.
Participants in the Bitcoin OTC platform assign trust levels to others on a scale ranging from — 10 (complete
distrust) to+ 10 (complete trust), with increments of 1 (see Table 11). This network dataset serves as the primary
explicitly weighted and labeled graph available for research purposes??#4.

Yeast protein—protein interaction graph: dataset

An interaction dataset (2361nodes, 7182edges) of Saccharomyces Cerevisiae (budding yeast) proteins is
employed for centrality measure computation to identify key proteins. The network comprises 2361 nodes,
representing yeast proteins, connected by 7182 directed and unweighted edges that indicate physical interactions
(see Table 12). Additionally, there are 536 loops within the network>!.

Unveiling interactions: adjacency matrix analysis of PPl network dataset
As mentioned earlier, first approach was that “Product network dataset” of Amazon website is converted into
“Adjacency Matrix (A,)” for the analysis of dataset, shown in Fig. 6. The matrix Ay is taken as input for
computation of centrality metrics and other measures of network analysis for catching significant proteins
(node) in considered PPI network.

One of the basic tool of SNA, Centrality measures (CM) was discussed comprehensively in this section and
this method was replicated on two small datasets. Next section contains discussion on more tools of Social
Network Analysis (SNA) for large real-life Datasets and its comparison with novel Dangling Centrality metric.
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(a) (b)

Fig. 2. Tllustration of the dangling centrality evaluation concept.

Degree Centrality vs Dangling Centrality
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Fig. 7. Regression plot between Dangling Centrality and DC for Amazon Network June 2003.

Centrality in context: understanding various real-life networks through graph formation and
analysis: results and discussion on comparison analysis of our SOTA &’

PPI network data of 2361 proteins (nodes) can be seen in Fig. 9 and for understanding the influence of proteins
in the considered network dataset, centrality metrics are measured for 2361 proteins (nodes) of PPI network,
outcomes are demonstrated in Tables 13 and 14 for 2 Amazon product networks, one PPI network and Bitcoin
crypto currency network datasets.

Analysis was conducted on the dataset comprising 1001 products from the Amazon website, employing
six primary centrality metrics to identify the most crucial nodes. The results, as illustrated in Table 13,
revealed strong interconnections among all six measures. Notably, Node ID 9 emerged as significant across all
metrics colored with pink. For the extensive dataset of another Amazon website, encompassing “1001 Nodes,”
computations for all six centrality metrics were performed, as evident in Table 14. These calculations aimed to
identify pivotal nodes (products) within the graph representing the "Amazon website." Results directed that
Node ID 5 (highlighted in yellow color) in Amazon product network was an important product because it has
larger figure of above six centrality metrics, which showed that this node was an essential in concept of business
strategies. Additionally, Node ID 29 (highlighted in green color) was ranked as the second highest in centrality
metric calculation, as it also played an important role in business that carried out on Amazon product website
graph.

From Table 15 outcomes protein/Node ID 1443 that is YKU80 (YMR106C) indicates that this will play
a crucial role due to highest centrality metrics outcomes, also this is observed through literature by actively
participating in the recovery and repair of enzymes with restricted functionality and the DNA double-strand
break pathway. Its primary function involves safeguarding these pathways from the potential introduction of
errors, thus contributing to the maintenance of genomic integrity. Notably, this yeast protein stands out with
significant importance, as evidenced by its highest centrality metrics among a dataset of 2361 proteins engaged
in protein-protein interactions'*.

SEC27 Node ID 209 in the considered PPI dataset, a component of the Coatomer Complex (YGL137W),
holds significant importance in the literature due to its integral role in various cellular processes. Notably, it
shares a substantial 45% sequence resemblance with the mammalian coatomer subunit beta. Functionally,
SEC27 is responsible for encoding membrane proteins essential for Golgi transportation, acting in conjunction
with ARF1 for endoplasmic reticulum (ER) processes. Moreover, it actively participates in the initial steps of
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Fig. 8. Regression plot between Dangling Centrality and BC for Amazon Network June 2003.
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Fig. 9. Regression plot between Dangling Centrality and CC for Amazon Network June 2003.

protein sorting in yeast, particularly for endosomal proteins. Its prominence is underscored by the fact that,
within a dataset of 2361 proteins engaged in protein-protein interactions, SEC27 ranks almost second highest
in centrality metrics*>°.

Continuing the exploration of yeast protein significance, the third highest protein in centrality metrics within
the dataset of 2361 proteins is Srpl i.e. Node ID 147 that is clear from Table 15. This protein introduces a novel
approach to protein degradation and serves as a distinctive signal receptor in the context of nuclear localization.
The absence of Srp1 has profound consequence leading to cellular mortality, emphasizing its indispensable role
in maintaining vital cellular functions and processes*.

Table 16 serves as a computation reference for six centrality metrics applied to the intricate Bitcoin dataset.
Notably, it is evident that both Node ID 1 and Node ID 2 exhibit the highest measures across all metrics.
Additionally, the outcomes of the novel metric align with the results obtained from the established centrality
metrics. Node ID 1 and Node ID 2 emerge as the focal points of highest centrality metrics within the Bitcoin
network, symbolizing the most connected or popular entities in the realm of cryptocurrency transactions as seen
in Table 16 results. These nodes serve as key hubs, indicative of their prominence and extensive connections in
the intricate web of cryptocurrency dealings.

Centrality measures, including the proposed dangling centrality, provide valuable insights into network
dynamics by identifying critical nodes and their roles. Traditional metrics highlight nodes based on connectivity
or influence, while dangling centrality uniquely evaluates the network’ resilience to communication loss. This
allows for the preemptive design of robust systems by analyzing the impact of a node’s link elimination. For
instance, if communication with a key node is disrupted, alternative pathways can be strategically designed to
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Fig. 10. Regression plot between Dangling Centrality and EVC for Amazon Network June 2003.
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Fig. 11. Regression plot between Dangling Centrality and KC for Amazon Network June 2003.

maintain the network’s functionality, ensuring minimal disruption in complex systems like Bitcoin or other
interconnected networks.

The proposed dangling centrality measure is strongly related to almost all the centrality metrics in the
literature which is seen in Table 17. Dangling centrality plays a vital role in the study of large networks by
knowing the essentiality of nodes. Results on different examples like simple networks in Fig. 2a, b, amazon
website datasets of different months and some other large data are considered like bit-coin data and disease
spread data is also extracted from SNAP (Stanford Large Network Dataset! Collection) and inferred. This work
mainly focus on product networks like amazon website to promote “Business Intelligence” and biological dataset
to discuss essentiality of centrality metrics in various real life domains.

The correlation with existing centrality measures is conducted to show that Dangling Centrality does
not completely diverge from traditional metrics, confirming its relevance in centrality analysis. However, its
computation and decision-making process are different. Unlike traditional centrality measures, Dangling
Centrality evaluates the impact of removing all links of a node (i.e., reducing its degree to zero) rather than
the node’s outright removal. This allows Dangling Centrality to capture how the loss of communication from
a node affects the overall network, providing insights that other measures may miss. By focusing on the
disruption caused by a node’s loss of connectivity, Dangling Centrality identifies nodes that play a critical role

https://snap.stanford.edu/data/

Scientific Reports |

(2025) 15:41078 | https://doi.org/10.1038/541598-025-24930-8

nature portfolio


https://snap.stanford.edu/data/
http://www.nature.com/scientificreports

www.nature.com/scientificreports/

in the network’s communication flow, which is particularly useful for understanding network robustness and
identifying potentially vulnerable points.

Figures 7, 8, 9, and 10 displaying regression plots on R, each depicting the positive and strong associations
between our SOTA Dangling Centrality and well-established centrality measures, including DC, BC, CC,
EVC, and KC. These plots represent the complex dataset of Amazon Product Network of June 2003, showcasing
the positive and strong associations between Dangling Centrality and established centrality measures such as
DC, BC, CC, EVC, and KC. The analyses emphasize the significant positive correlation observed with the novel
centrality measure in the intricate context of Amazon data'.

The proposed methodology demonstrates a strong positive correlation, as shown in Figs. 7, 8,9, 10 and 11,
indicating that Dangling Centrality aligns with established centrality measures like DC, BC, CC, EVC, and KC.
This suggests that Dangling Centrality is consistent with traditional methods while introducing a critical new
perspective. Unlike existing metrics that evaluate the importance of a node based on its presence, Dangling
Centrality assesses its significance by considering the impact of its communication absence. This novel approach
is crucial for policymakers, as neglecting such nodes or factors can disrupt communication across the entire
network, making it essential for effective system design and planning.

The work on Dangling Centrality differs from Dynamic Age in that, it focuses on the disruption of network
communication and information flow when a node’s links are removed, rather than just assessing the change in
the largest eigenvalue of the adjacency matrix*’. The comparison between Dynamic Age and Dangling Centrality
has been updated. Both measures evaluate the node’s importance by assessing the disruption caused when a
node is removed from the network.

Limitations of the proposed method
Dangling Centrality can be studied first to assess the absence or loss of key entity links in a network. By identifying
alternative nodes and their roles, this metric helps in decision-making to avoid communication failures in the
system, offering a more proactive approach compared to traditional metrics. However, it has some limitations:

Increased Computational Time for Large Networks:

As the network size increases, the computational time for calculating Dangling Centrality slightly increases,
which may affect its efficiency for very large-scale networks.

Domain Expertise Required for Decision Making:

To effectively utilize Dangling Centrality across diverse domain datasets, specialized knowledge is required to
identify which entity edges/links, when removed, would disrupt network communication and stability.

Complexity in Assessing Communication Disruption:

The metric may not easily identify which node communication absences will lead to significant
communication breakdowns, as this depends on the specific context and structure of the network, requiring
deep domain understanding for accurate assessment.

Conclusions

This research work introduced the novel Dangling Centrality (¢~ ) metric and evaluated its effectiveness using
two “Amazon product networks,” a PPI network, and a Bitcoin network dataset. The input data was mined
and transformed into adjacency matrices for analyzing social network structures. Our analysis revealed a
robust connection between Dangling Centrality and five established centrality metrics—DC, BC, CC, EVC,
and KC. However, while Pearson’s, Spearman’s, and Kendall’s correlation coefficients were applied to confirm
that Dangling Centrality results align with existing literature metrics, the conceptual utilization (¢s) of
diverges significantly. Unlike traditional metrics, Dangling Centrality focuses on the impact of the absence of
node links, products, proteins, or individuals in disrupting network communication. This distinct approach
was demonstrated through the study of four real-world datasets and two simple network graph examples. The
results highlight the complementary role of Dangling Centrality, particularly in pre-designed networks where its
unique perspective enhances the understanding of node importance and network dynamics.

The proposed metric has been comprehensively evaluated on both small-scale and large-scale networks.
Small-scale networks include examples with 5 nodes and 5 edges, as well as 6 nodes and 9 edges. Large-scale
networks encompass real-world datasets, such as two Amazon datasets (262,111 nodes and 1,234,877 edges;
403,394 nodes and 3,387,388 edges), the Bitcoin cryptocurrency network (5,881 nodes and 35,592 edges), and
a Protein—Protein Interaction (PPI) network (2,361 nodes and 7,182 edges). These evaluations demonstrate the
metric’s effectiveness in identifying node importance while maintaining computational efficiency, highlighting
its adaptability and relevance for analyzing networks of diverse sizes and domains.

Dangling Centrality plays a critical role in proactive decision-making, allowing planners to implement
strategies that preserve system stability, even when key elements are temporarily missing. By identifying
vulnerable points, this metric supports preemptive measures to maintain the network’s integrity during
disruptions.

Future directions

Future dimensions and studies for Dangling Centrality include its application to time-dependent communications,
such as dynamic networks, where the network structure and node interactions evolve over time. This would
provide deeper insights into the resilience of networks in changing environments. Additionally, Dangling
Centrality can be extended to evaluate weighted network graphs, where the strength of connections between
nodes is taken into account, allowing for more nuanced analysis of node importance based on both connectivity
and weight. These extensions would enhance the versatility of Dangling Centrality, making it applicable to a
broader range of real-world scenarios.
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This* study effectively demonstrates how fuzzy logic and centrality measures can enhance link prediction
in online social networks by revealing hidden structural patterns. As an extension, Dangling Centrality can be
applied to detect nodes with low immediate influence but high potential for future connectivity. This can provide

valuable insights for predicting emerging links, especially in dynamic or partially observed network applications
.49
in®.

Similarly, the study like in®, future research can investigate the role of dangling centrality in identifying
less obvious yet strategically important nodes for influence maximization. Integrating this concept with our
proposed framework may enhance the detection of hidden influencers, particularly in multilayer or dynamic

social networks.

Data availability
Data is cited in the manuscript and extracted from [http://snap.stanford.edu/data/] (http:/snap.stanford.edu/da
ta).
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