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Efficient data utilization and strong privacy protection are major challenges in Intelligent 
Transportation Systems (ITS), particularly in complex environments with highly distributed Intelligent 
Connected Vehicles (ICVs). Conventional machine learning methods struggle to capture complex 
spatiotemporal dependencies while maintaining data privacy and locality. To overcome these 
limitations, we propose FedGDAN, a Federated Graph Diffusion Attention Network that combines 
graph neural networks (GNNs) with federated learning (FL) to enable collaborative traffic flow 
prediction without sharing raw data. FedGDAN models global spatiotemporal correlations across road 
networks and introduces an adaptive local aggregation mechanism to address non-independent and 
identically data distributions, thereby improving robustness and accuracy. Experiments on real-world 
datasets show that FedGDAN consistently outperforms state-of-the-art centralized and federated 
baselines, achieving 3%–10% gains in Mean Absolute Error.
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In recent years, Intelligent Transportation Systems have garnered widespread attention globally. Particularly 
amid significant breakthroughs in artificial intelligence, deep learning methods have proven effective in 
enhancing traffic management1. Traffic flow prediction (TFP) constitutes a critical component of ITS, as traffic 
congestion severely impacts urban transportation networks. Accurate prediction of road traffic flow thus enables 
authorities to optimize vehicle routing and improve operational efficiency. In ITS, traffic data can be collected 
via various sensors—such as intelligent connected vehicles, cameras, and roadside sensors—providing real-time 
traffic flow information2.

Data serves as a critical driving force for advancing Intelligent Transportation Systems. The data generated by 
ICVs encompasses diverse and highly sensitive categories, including driver biometrics and health data, vehicle 
trajectory and location information, vehicle identity and user identification3. In traditional centralized Intelligent 
Transportation Systems (ITS), after data collection, vehicles operate in a distributed manner, transmitting data 
directly to roadside units (RSUs) or a central cloud for training. This approach is, in principle, complex and 
not well-suited to adapting to environmental changes within a short time frame. Moreover, it necessitates the 
transmission of large volumes of image data, resulting in substantial bandwidth consumption4. Additionally, the 
direct transmission of raw data makes the system more vulnerable to external attacks.

Federated learning is a distributed machine learning paradigm that enables collaborative model training 
while keeping data locally on each device5. It has been widely applied in Intelligent Transportation Systems, 
with its basic architecture illustrated in Fig.  1. Crucially, FL facilitates cross-database collaboration among 
transportation agencies and enterprises, integrating fragmented data resources while breaking down information 
silos6. Furthermore, regulatory frameworks such as the European Union’s General Data Protection Regulation 
(GDPR) and China’s Personal Information Protection Law impose stringent requirements on data processing7, 
making privacy-preserving approaches like FL increasingly essential.

Meanwhile, compared with other tasks in intelligent transportation systems, traffic flow prediction exhibits 
stronger temporal and spatial dependencies8. This is specifically manifested in the fact that prediction results are 
not only affected by the road network topology at the current location but also dynamically change with time 
periods, dates.Traditional time series models (e.g., ARIMA) or grid convolution methods struggle to effectively 
model the complex spatiotemporal dependencies under the non-Euclidean structure of road networks. However, 
unlike these traditional methods that fail to handle non-Euclidean road network structures, methods based on 
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graph neural networks9 have shown outstanding performance in traffic flow prediction, thanks to their inherent 
ability to model complex spatial relationships in irregular network topologies.

In practical urban traffic scenarios, traffic flow data from different road segments or nodes often exhibit 
significant non-independent and identically distributed (Non-IID) characteristics. Such differences are reflected 
not only in the periodic temporal variations of traffic flow but also in the distribution disparities across different 
regions arising from their functional positioning and road structures10–12. For instance, traffic flow is highly 
concentrated on major roads, and there exists a correlation between the traffic flow of road segments and nearby 
buildings such as hospitals and schools. Therefore, the assumption that traffic flow data is independent and 
identically distributed is invalid in most cases.Within the federated learning framework, directly adopting a 
unified global model often struggles to accommodate the heterogeneous needs of various nodes, leading to a 
decline in prediction performance. To address this challenge, this paper introduces a personalized federated 
learning approach. This method can share global knowledge while adapting to the local data distribution of 
different nodes, thereby better capturing the diversity and spatiotemporal variability of traffic data and improving 
the accuracy of traffic flow prediction.

To efficiently accomplish the task of traffic flow forecasting while protecting the privacy of data in intelligent 
connected vehicle systems, we propose a framework called Federated Graph Diffusion Attention Network 
(FedGDAN). This framework integrates a graph neural network–based traffic flow prediction model into a 
federated learning setting. Specifically, we introduce a Graph Diffusion Attention Network (GDAN) as the local 
prediction model on each client, and incorporate a local adaptive aggregation mechanism within the federated 
learning process. In addition, differential privacy techniques are applied to protect the parameters uploaded by 
clients.

FedGDAN achieves distributed and efficient traffic flow prediction through a dual-layer design that combines 
federated learning with graph diffusion attention networks. The local adaptive aggregation mechanism allows 
each client to dynamically adjust the balance between its local model and the global model, thereby alleviating 
the negative effects caused by differences in network topologies across clients. Unlike approaches such as13, 
where clients must upload subgraphs for matrix alignment, our method enables clients to implicitly share their 
local topological information simply by transmitting model parameters. The global topological knowledge is 
then captured through server-side aggregation. Furthermore, by applying differential privacy to the uploaded 
parameters, the framework ensures that even if these parameters are intercepted during transmission or 
aggregation, adversaries cannot infer the clients’ original traffic data or sensitive information. This design 
strengthens the privacy protection barrier at the level of model parameters.

The main contributions are summarized as follows:

•	 To address the problem of traffic flow prediction, this paper proposes FedGDAN, a federated learning frame-
work that protects topological information. The framework integrates a prediction model based on a graph 
diffusion attention network and enables clients to share spatio-temporal information by uploading model 
parameters, without exchanging raw data or subgraph topologies. In this way, FedGDAN provides priva-
cy-preserving traffic flow forecasting.

Fig. 1.  The architecture of FL-enabled ITS.
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•	 In the proposed federated learning (FL) framework, we introduce an Adaptive Local Aggregation (ALA) 
method to mitigate the Non-IID data problem across clients caused by differing traffic scenarios, thereby 
improving the accuracy of collaborative distributed prediction. On top of this, we further incorporate differ-
ential privacy techniques to ensure stronger protection of client data security.

•	 A series of comprehensive case studies are conducted on a real-world traffic dataset to demonstrate the effec-
tiveness of the proposed FedGDAN framework.

Related work
GNN-based approaches for traffic flow prediction
In traffic flow prediction tasks, capturing spatial correlations within the data proves highly beneficial for 
forecasting temporal sequences14. While some studies15,16 employ Convolutional Neural Networks (CNNs) to 
model spatial dependencies in transportation networks, CNNs excel primarily at extracting local spatial features 
from regular grid structures. In contrast, Graph Neural Networks (GNNs) are better suited for capturing spatial 
dependencies within complex, non-grid topologies inherent to transportation networks17.

Therefore, to effectively model the spatiotemporal relationships in traffic networks, researchers have integrated 
GNNs with temporal prediction models. For example, the Temporal Graph Convolutional Network18(T-GCN) 
combines Graph Convolutional Networks with Gated Recurrent Units (GRU); DCRNN? integrates the diffusion 
convolutional network with recurrent neural networks; and AGCRN19 introduces two novel adaptive modules 
to enhance the capability of GCNs, further combining them with recurrent neural networks to model the spatial 
and temporal correlations in traffic sequences.

Although some studies have combined CNNs and GNNs for traffic data modeling20,21, these approaches 
tend to focus on local feature modeling. As a result, they often achieve excellent performance in short-term 
forecasting but may be less effective for long-term predictions. Additionally, attention mechanisms have been 
widely applied in traffic flow prediction. For instance, GMAN22 effectively leverages the attention mechanism 
to capture comprehensive spatiotemporal correlations among traffic features, and employs transform attention 
to mitigate discrepancies between historical and future information. The Attention-based Spatio-Temporal 
Graph Convolutional Network23 (ASTGCN) integrates GCNs for local spatial feature extraction with attention 
mechanisms to capture global spatial features. The Spatio-Temporal Graph Attention Network24 (ST-GAT) 
introduces a novel graph structure called the Individual Spatio-Temporal Graph (IST-graph) to facilitate accurate 
traffic speed prediction through IST-graph-based spatiotemporal point embeddings.

Federated learning for traffic flow prediction
Traffic flow prediction typically requires a substantial volume of traffic data, which may originate from multiple 
sources. As data scales increase, traditional centralized computing paradigms struggle to efficiently handle such 
tasks. As a distributed machine learning paradigm, federated learning offers novel solutions for traffic flow 
prediction. Liu et al.25. proposed a federated gated recurrent unit neural network (FedGRU) for traffic prediction, 
highlighting the limitations of centralized machine learning in privacy preservation and demonstrating the 
advantages of FL in distributed privacy-aware traffic prediction. Qi et al. Zeng et al.26. developed a multi-task FL 
framework incorporating hierarchical clustering to partition traffic data from individual stations into distinct 
clusters. This approach optimizes prediction models through collaborative training across distributed stations 
using localized data clusters. Zhang et al.13. integrated an attention-based spatial-temporal graph neural network 
(ASTGNN) model into a federated learning framework and proposed a differential privacy-based adjacency 
matrix protection method to safeguard topological information.Xia et al.27. employed the Louvain algorithm 
to partition the road network topology and adopted a two-layer Graph Convolutional Network (GCN) to 
capture spatial topological features of traffic data for short-term traffic flow prediction.Shen et al.28. proposed 
a customized spatio-temporal Transformer network to replace conventional Graph Convolutional Networks 
(GCNs) for localized personalized learning among participants, which demonstrates superior capability in 
capturing spatio-temporal characteristics of vehicular data. Liu et al.29. pioneered the adoption of an online 
learning paradigm within the Federated Learning (FL) framework for traffic flow prediction, proposing a novel 
forecasting methodology termed Online Spatio-Temporal Correlation-based Federated Learning (FedOSTC). 
This innovative approach is specifically designed to maintain superior predictive performance even under 
conditions of traffic flow volatility.

Our work distinctively addresses the dual challenges of topological privacy preservation and statistical 
heterogeneity in federated Learning. Unlike prior approaches that either focus solely on privacy13,25 or assume 
IID data distributions26–28, FedGDAN integrates a graph diffusion attention mechanism with adaptive local 
aggregation to simultaneously preserve spatiotemporal data and road network topology, while effectively 
addressing the Non-IID data problem across different clients.

Preliminary
In this section, we first define the problem of traffic prediction on graph-structured traffic networks. Subsequently, 
we introduce the problem of traffic prediction using graph-based deep learning models within the federated 
learning framework.

Traffic forecasting in transportation networks
Traffic flow prediction is a typical time series forecasting problem, which involves forecasting the traffic values at 
future N time points based on the traffic data at previous M time points.
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v̂t+1,...,v̂t+N = argmax

vt+1,...,vt+N

logP
(
vt+1, . . . , vt+N

∣∣vt−M+1, . . . , vt

)
� (1)

In Equation (1), vt ∈ Rn represents the observation vector for t road segments at time n, where each element 
records the historical observation of a single segment. Thanks to the advancement of deep learning, capturing 
temporal dependencies has become relatively straightforward. At any time t, the model can provide a latent 
feature matrix H(t), based on the observations at time t, or prior, which can then be used to predict traffic 
flow for the next timestamp. Assuming Ŷ t+1 represents the predicted value for the next timestamp and Y t+1 
represents the actual value, we can train the model by minimizing the L2 regularized sum of absolute errors, ∣∣∣∣Ŷ t+1 − Y t+1

∣∣∣∣.
In transportation networks, graph-structured data naturally exists. For instance, road topologies, sensor 

node topologies, and others can all be represented as nodes or edges within a graph. In this work, we represent 
a traffic network as an undirected graph G = (V , E , A ) ,where V  is the set of nodes, E  is the set of edges, 
A ∈ RN×N  is the adjacency matrix of, G , which represents the relationship between nodes, N is the number 
of nodes in G . For ∀vi, vj ∈ V  , if vi and vj  are connected, Ai,j = 1, otherwise Ai,j = 0. Alternatively, we 
can set Ai,j  to a weight Wi,j , making A  a weighted adjacency matrix. Graph Convolutional Networks (GCN) 
have gained widespread popularity in the field of graph neural networks due to their effectiveness and simplicity 
across a variety of graph tasks and applications. Specifically, the propagation rule for node representations at 
each layer of a GCN is as follows:

	
Hk+1 = σ

(
∼
D

− 1
2 ∼

A
∼
D

− 1
2

HkW k

)
� (2)

Here, 
∼
A = A + I  represents the augmented adjacency matrix of the given undirected graph G , incorporating 

self-connections to allow nodes to include their own features in the representation updates. I ∈ RN×N  is the 
identity matrix, 

∼
D is a diagonal matrix where each entry 

∼
Dii =

∑
j

∼
Aij . σ is an activation function, such 

as ReLU. W k ∈ RF ×F ′
 s a layer-specific trainable linear transformation matrix, where F and F ′ are the 

dimensions of the node representations at the k-th and (k+1)-th layers.

Traffic prediction in federated learning
In this section, we will develop a federated learning framework for transportation networks. The distinctive 
feature of federated learning is that it involves collaboration among two or more participants to build a 
shared machine learning model, with each participant using only their locally stored data for model training. 
In the transportation sector, such data is typically held by a limited number of organizations, such as ride-
sharing companies and government departments. Each participant i trains a model on their private dataset 
Di = {(xj , yj)}mi

j=1, where xj  represents a feature vector in the transportation network (such as time, location, 
historical traffic flow, etc.), yj  is the corresponding target value, and mi is the total number of samples held 
by participant i. In this study, we assume that there is no overlap between the datasets of any two participants, 
Di ∩ Dj = ∅, which is a common assumption as discussed in research25,30,31. If K participants collaborate to 
train a deep learning model, they ensure that {D1, . . . , DK} remain localized to maintain the privacy of the 
data. Thus, each participant has a local model G ∗

i , and let G ∗ = {G ∗
1 , G ∗

2 , . . . , G ∗
K} be the collection of these 

local models. The local model parameters, denoted as θi, are optimized on the local data using a specific loss 
function Li:

	
Li (θi) = 1

mi

mi∑
j=1

L (G ∗
i (xj ; θi) , yj)� (3)

Here, L  denotes the loss function. Upon completion of the training locally, the model parameters θi are 
transmitted to the server. The server aggregates the local model parameters from the participants to obtain the 
current global model parameters θt. In each training round, participants utilize the current global model to 
update their local model parameters:

	 θi
t+1 = θt − η∇Li (θt)� (4)

Methodology
This section first introduces a graph diffusion attention-based spatiotemporal graph neural network as the 
traffic speed prediction model for federated learning clients. Subsequently, we present our proposed client-side 
local adaptive technique, followed by a systematic exposition of the FL-based traffic flow prediction framework, 
FedGDAN.

Model framework and module
Figure 2 illustrates the proposed GDAN (Graph Diffusion Attention Network) framework, which is designed to 
serve as the client-side prediction model within our federated learning framework (FedGDAN) for addressing 
the traffic flow prediction problem. GDAN primarily consists of three components: (1) an encoder and decoder, 
which are responsible for encoding and decoding the prediction data; (2) a spatio-temporal embedding (STE) 
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generator, which produces spatio-temporal embeddings to provide initial spatio-temporal information for the 
encoder and decoder; and (3) a transfer attention layer, which leverages historical and future STEs to refine the 
encoder’s output, thereby mitigating the propagation of errors. It is noteworthy that GDAN constitutes the core 
local model executed by each participating client (e.g., vehicle or roadside unit) during the federated learning 
process in FedGDAN. The following sections provide a more detailed overview of each component of GDAN.

Encoder–decoder architecture
In the multi-step prediction task of traffic flow forecasting, we adopt a sequence-to-sequence (Seq2Seq) 
architecture32 where both the encoder and decoder are constructed using GDAN networks. Specifically, the 
encoder is composed of a concat & linear layer, a graph diffusion attention module, a temporal attention 
module, and a residual & gated fusion layer.The input traffic flow data is first processed by a linear layer to 
obtain H(0)

out ∈ RP ×N×D , where P represents the step of historical traffic signals, N represents the number 
of nodes, D represents the dimension of hidden states inside the model. In the lth layer encoder, the inputs 
consist of the output from the previous layer H(l−1)

out  and the historical spatio-temporal embedding (HSTE) 
EH ∈ RP ×N×D .This output is subsequently sent into two attention modules: the graph diffusion attention 
module and the temporal attention module. The graph diffusion attention module generates H(l)

s , representing 
spatial dependencies, while the temporal attention module produces H(l)

t , reflecting temporal dependencies. 
Finally, these outputs are fused using a residual and gated fusion layer to produce the hidden state representation 
H

(l)
out ∈ RP ×N×D  for the current layer.

Following the encoder, the encoded features H(L)
out  are fed into a transition attention layer to obtain future 

representations H(L+1)
out ∈ RQ×N×D , where L denotes the number of layers in both the encoder and decoder. 

The transformation from H(L+1)
out  incorporates both historical and future embeddings to mitigate errors caused 

by discrepancies between historical and future temporal features.
H

(L+1)
out  serves as the input to the first decoder. The decoder maintains an identical architecture to the 

encoder, with the exception that it utilizes Future Spatio-Temporal Embedding (FSTE) instead of HSTE as the 
input to the concat & linear layer. After processing through the Lth decoder, the output H(2L+1)

out  is passed 
through two linear layers to generate the final prediction Ŷ ∈ RQ×N×C .

Spatial–temporal embedding generator
The state of traffic is jointly influenced by spatial factors (such as road network structure and the distance between 
roads) and temporal factors (such as traffic patterns at different times of day). By integrating spatio-temporal 
information and generating effective Spatio-Temporal Embeddings (STE), the performance of prediction models 
can be significantly improved. The spatio-temporal embedding generator employed in this study consists of two 
main components: a spatial embedding generator and a temporal embedding generator. These components are 
responsible for producing embeddings for spatial and temporal features, respectively. The detailed structure is 
illustrated in Fig. 3.

To capture the spatial structural information of the traffic network, a predefined adjacency matrix generated 
from relative distances is first input. This matrix represents the connectivity relationships among nodes in the 

Fig. 2.  Overview of GDAN structure.
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traffic network. In this study, the Node2Vec33 method is employed to learn such graph structures. Node2Vec 
generates low-dimensional representations of nodes in the graph through a random walk-based approach, 
thereby capturing the similarity and structural relationships between nodes. The learned node representations 
are then fed into two fully connected layers to generate a spatial embedding, which is denoted as evi

S ∈ RD , 
here vi denotes the i-th node in the traffic topology graph of intelligent connected vehicles, and D represents the 
dimension of the spatial embedding.

To capture temporal features, each time step is independently encoded with respect to both “time of day” 
and “day of the week.” These features are denoted as RT  and R7, respectively. By concatenating them, we obtain 
RT +7, which represents a specific moment within a week. The concatenated temporal features are then fed 
into a fully connected (MLP) layer, resulting in a temporal embedding eT ∈ RD . In this model, temporal 
information is divided into two parts: historical and future. The historical temporal information is represented 
as eT

ti
∈ RD , where ti ∈ {t1, t2, . . . tP }, indicating the embeddings for (P) historical time steps. The future 

temporal information is represented as eT
tj

∈ RD , where tj ∈ {tP +1, tP +2, . . . tP +Q} corresponding to the 
embeddings for (Q) future time steps.

Through a broadcast mechanism, the spatial and temporal embeddings of both historical and future time 
steps are aggregated, resulting in the generation of historical spatio-temporal embeddings (HSTE), denoted as 
(EH ∈ RP ×N×D), and future spatio-temporal embeddings (FSTE), denoted as EF ∈ RQ×N×D .

Graph diffusion attention module
To achieve a more refined representation of traffic network topology, this paper develops a graph diffusion 
attention module that captures the spatial dependencies between nodes from both local and global perspectives. 
Conventional graph convolution operations extract features through weighted aggregation over local 
neighborhoods. By contrast, graph diffusion convolution integrates the concept of diffusion processes into data 
processing, accounting for the propagation of information across the spatial domain. This approach enables 
more effective modeling of the global structures inherent in the data, with its corresponding formulation 
presented as follows:

	
HK =

K∑
k=0

AkXW k � (5)

Where X denotes the input features, A represents the adjacency matrix, W k  indicates learnable parameters, 
and HK  denotes the output signals of the graph diffusion convolution.Graph diffusion convolution captures 
multi-level information of nodes and their neighbors by aggregating features across different orders of adjacency 
matrices. However, it still relies on a predefined adjacency matrix, where the weights of neighboring nodes are 
fixed and cannot be dynamically adjusted. Moreover, it does not account for potential relationships between 
nodes that fall outside the given graph structure. These limitations restrict the model’s ability to represent 
complex graph structures. To address this issue, this paper combines Graph Attention Networks34 (GAT) with 
an adaptive matrix, enabling dynamic adjustment of node relationships and improving the model’s capacity to 
capture intricate dependencies within the graph.

When incorporating the concept of Graph Attention Networks (GAT) into diffusion convolution, the 
adjacency matrix of each order Ak  can be replaced by an attention weight matrix α(k). The diffusion convolution 
operation is thus reformulated as:

Fig. 3.  The construction of STE generator.
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	 Hk
A = αkXW k � (6)

Where α(k) represents the attention weight between nodes at the (k)-th order, which is adaptively learned 
through the GAT mechanism.To better capture hidden spatial dependencies, we introduce an adaptive adjacency 
matrix into the model framework to account for the directional characteristics of traffic flow20. The adaptive 
matrix can be represented as:

	 Aadp = softmax
(
Re LU

(
E1ET

2
))

� (7)

Where Here, E1, E2 ∈ RN×C  are learnable parameters initialized randomly, representing the source node 
embeddings and target node embeddings, Aadp ∈ RN×N  represents the forward propagation process of traffic 
flow.

Therefore, the graph diffusion attention Network module can be defined as:

	

Hk
A = σ(αkXW k)

Hk
adp = AadpHk−1

adp

HK
s =

K∑
k=0

Hk
AW k

A + Hk
adpW k

adp

� (8)

Where W k
A, Wadp are learnable parameters, and H0

A, H0
adp = H(0).The Graph Diffusion Attention Module 

employed in this study is illustrated in Fig. 4.

Temporal attention
The traffic condition of a given road segment is not only influenced by the states of adjacent roads, but also 
significantly affected by the historical traffic patterns at that particular location over time. The purpose of the 
temporal attention mechanism is to assign adaptive weights to historical traffic data along the time axis, thereby 
capturing temporal dependencies between different time steps.

To effectively model the temporal dependencies of each node across time, three matrices are constructed for 
each node: a query matrix Q, a key matrix K, a value matrix V. Specifically, for a given node vi at each time step, 
the query, key, and value are defined as follows:

	 Qvi = ft,1
(
H(l)

vi

)
, Kvi = ft,2

(
H(l)

vi

)
, Vvi = ft,3

(
H(l)

vi

)
� (9)

Here ft,1, ft,2, ft,3 denote the transformation functions applied to the node features at different time steps 
through a shared function f. H(l)

vi  represents the feature embedding of node vi at the l-th layer.
The calculation of the similarity between the query Q and the key K followed by normalization to derive the 

attention weights, is performed using the attention mechanism. The formula is expressed as follows:

	
H

(l)
t,vi

= σ

(
softmax

(
Qvi KT

vi√
D

)
Vvi

)
� (10)

Fig. 4.  The construction of graph diffusion attention module.
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Here, σ represents the activation function, and D denotes the dimensionality of the feature space, which is 
utilized to scale the operation and ensure numerical stability. The dot product between Qvi  and Kvi  quantifies 
the correlation between the query and the key. Subsequently, the softmax function normalizes the attention 
score matrix, thereby generating the attention weight matrix. This attention weight matrix is then multiplied 
with the value matrix Vvi  to compute the temporal feature H(l)

t,vi
.

Attention transformation module
To mitigate the error propagation effects caused by discrepancies between historical temporal features and 
predicted future temporal features, an attention transformation module is introduced between the encoder and 
decoder. This module models the correlation between the temporal features of each predicted timestep and 
those of each historical timestep. Consequently, the flow characteristics of the encoded data are transformed 
into representations of the future and subsequently fed into the decoder. Any correlation between the predicted 
temporal length and the historical temporal length is measured by the associated STE metric. The formula is 
described as follows:

	

QF = ft1(EF ), KH = ft2(EH), Vin = ft3(H(L)
out )

Hout = attention(QF , KH , Vin) = σ

(
softmax

(
QF KT

H√
D

)
Vin

)
� (11)

Model parameter protection based on differential privacy
To ensure rigorous privacy guarantees while enabling collaborative traffic flow prediction in intelligent connected 
vehicle systems, we integrate differential privacy (DP) into the FedGDAN framework.

We adopt an honest-but-curious server threat model, in which the server faithfully follows the federated 
learning protocol but may still attempt to infer sensitive information about individual clients from the 
uploaded model parameters35. In addition, we consider the risk of adversaries intercepting model updates 
during communication. Without proper protection, the transmitted parameters could inadvertently reveal 
information about driver behaviors. To mitigate this risk, each client performs a two-step protection process 
before transmitting updates to the server. First, model gradients are clipped to bound the sensitivity of individual 
sample updates. Next, calibrated Gaussian noise is added to the clipped parameters. Only after this preprocessing 
step are the updates uploaded, thereby ensuring stronger privacy protection.

Our framework follows the standard definition of (ϵ, δ)-differential privacy,which provides a quantifiable 
privacy guarantee. Here, ϵ > 0 quantifies the maximum distinguishability between any two neighboring datasets 
Di and D′

i with respect to all possible outputs on database X, while δ denotes the probability that the output 
distribution deviates from the eϵ bound. With a fixed δ, a larger value of ϵ implies weaker privacy protection, 
since it makes the two neighboring datasets easier to distinguish, thereby increasing the risk of privacy leakage.

To enforce (ϵ, δ)- differential privacy, we employ the Gaussian mechanism as described in reference36. In 
particular, Gaussian noise sampled from n ∼ N

(
0, σ2)

 is added to the model parameters, and the noise scale 

is chosen as σ ≥ c∆s/ϵ, where c >
√

2 ln(1.25/δ) holds for ϵ ∈ (0, 1). Here ∆s represents the sensitivity of 
a function s, defined as ∆s = maxDi,D′

i
∥s (Di) − s (D ′

i)∥, with s being a real-valued function. In this way, 
n is the additive noise applied to each data item, ensuring that the transmitted model updates satisfy rigorous 
differential privacy guarantees.

Adaptive local aggregation
In traditional federated learning (e.g., FedAvg), the server distributes the global model to clients, and the local 
model of each client is entirely overwritten by the global model, which serves as the initialization for local 
training. This process can be expressed as:

	 Θ̂t
i := Θt−1

i = Θt−1� (12)

Here Θt−1
i  denotes the local model of client i in round t − 1, and Θt−1 represents the global model. This 

approach assumes that the discrepancy between local and global tasks is minimal, allowing the global model 
to generalize effectively across all clients.This unified initialization paradigm essentially ignores the statistical 
heterogeneity between clients, resulting in a decrease in the accuracy of the FedAvg algorithm under non-IID 
data distribution37.

This paper introduces an improved method that employs element-wise weighted fusion of the global and 
local models, rather than simple overwriting, as shown in Fig. 5. Specifically, a weighted Hadamard product 
(element-wise multiplication) is used to combine the two models, formulated as:

	 Θ̂t
i = Θt−1

i ⊙ Wi,1 + Θt−1 ⊙ Wi,2� (13)

In this equation, ⊙ denotes the Hadamard product, while Wi,1 and Wi,2 are the weighting parameters for the 
local and global models, respectively, subject to the constraint Wi,1 + Wi,2 = 1 (i.e., the weights sum to 1). If 
the traditional overwriting method is applied, it is equivalent to setting Wi,1 = 0 and Wi,2 = 1, meaning the 
global model completely replaces the local model.

Learning these weighting parameters Wi,1 and Wi,2 via gradient methods is challenging. To address this, the 
formulation is redefined as:
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	 Θ̂t
i := Θt−1

i +
(
Θt−1 − Θt−1

i

)
⊙ Wi� (14)

Here, Θt−1 − Θt−1
i  is treated as an “update” term, while element-wise weight clipping is applied to regularize 

these weights:

	 σ(w) = max(0, min(1, w))� (15)

Since the lower layers of deep neural networks typically learn more general features, while the higher layers 
capture task-specific representations, we introduce a method to control the scope of Adaptive Local Aggregation 
(ALA) using a hyperparameter p. In particular, the lower layers of the model are directly aligned with the global 
model, while ALA is applied only to the final linear layer of GDAN. The other layers remain frozen during the 
ALA process, as illustrated in Fig.  6.which effectively reduces the computation overhead. The mathematical 
representation is as follows:

	 Θ̂t
i = Θt−1

i +
(
Θt−1 − Θt−1

i

)
⊙

[
1Θi−p; W p

i

]
� (16)

In this equation, 1Θi−p represents the constant matrix of the lower layers (with all elements initialized to 1), W p
i  

denotes the weighted matrix of the upper layers, and all matrices are initialized to 1 at the beginning.

Fig. 6.  Schematic of ALA Position in GDAN.

 

Fig. 5.  The learning process in ALA.
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During the initialization phase, the weight value for each client i is set to 1. This implies that at the beginning of 
the process, the local model of the client fully relies on the parameters of the global model without any additional 
local adjustments. This initialization strategy simplifies the early model updates and reduces the computational 
complexity during initial training. Throughout the training process, the weights W p

i  are optimized using a 
gradient-based learning method. The update rule is expressed as follows:

	 W p
i ← W p

i − η∇W
p
i

L
(
Θt

i, Dt
i,s, Θt−1)

� (17)

In this equation, η represents the learning rate, ∇W
p
i

 is the gradient with respect to W p
i , L

(
Θt

i, Dt
i,s, Θt−1)

 
denotes the loss function, which is computed using the local dataset Dt

i,s, the local model parameter Θt
i , and the 

global model parameter Θt−1.
To minimize computational burden, during each iteration, client i does not train using the entire dataset Di , 

but rather randomly selects s% of the data samples from Di,s to train W p
i . This approach reduces computational 

load during training, especially for clients with large datasets, thereby significantly alleviating communication 
and computational pressure. Aside from learning W p

i , all other parameters (including those of the global model 
and local model) remain frozen during training, meaning these parameters do not participate in gradient 
updates. This implies that during local adaptive weight updates, computational complexity is further reduced, 
focusing solely on the updates of W p

i .
During the training process, W p

i  is primarily trained during the initial phase (specifically in the second 
iteration) and tends to converge after several training rounds. Since W p

i  learns the weighting strategy between 
the global and local models, it effectively identifies an appropriate weighting scheme early in the training process 
and exhibits minimal changes in subsequent iterations, with updates becoming nearly negligible. Once W p

i  
converges in the second iteration, it can be reused in subsequent iterations. This approach not only reduces 
computational overhead but also eliminates the need to retrain W p

i  in every iteration. For iterations where t > 2 
only a single epoch of training is required for W p

i  to adapt to minor variations in model parameters.
In the first iteration, local adaptation is inactive because the global and local models are identical, i.e., 

Θ0 = Θi
0, ∀i ∈ [N ] Consequently, during the first iteration, each client’s local model is directly copied from the 

global model without any weighting operations.

Learning process of FedGDAN
FedGDAN is a distributed traffic flow prediction algorithm based on the federated learning framework. When 
aggregating parameters, it utilizes the FedAvg algorithm to construct a global model. The FedAvg algorithm can 
be expressed as follows:

	
Θt =

∑
k∈St

nk

n
Θt

i � (18)

where Θt
i  denotes the local model parameters of client i, St represents the set of clients participating in round 

t, nk  corresponds to the local data volume of client k, n =
∑

k∈St
nk  defines the aggregate data volume from 

participating clients in round t, and Θt constitutes the aggregated global model parameters.
When the global model is transmitted back to the client and the client performs local model updates, we 

employ an adaptive local aggregation algorithm.The training process diagram is shown in Fig. 7. The complete 
training workflow, as illustrated by Algorithm  1, outlines the key components of each training round in 
FedGDAN, which include:

•	 Global Model Initialization: The server initializes the global model Θ0 and distributes it to all participating 
clients to provide a common starting point for training.

•	 Local Model Updates: After receiving the global model Θg , each client performs updates using the Adap-
tive Local Algorithm (ALA). This process involves data sampling, localized adaptive training, and parameter 
pruning. To protect privacy, gradients are clipped and calibrated noise is added before uploading parameters 
to the server.

•	 Global Model Aggregation: The server gathers the updated parameters from all clients, integrates them ac-
cording to the participation ratio ρ, and updates the global model through weighted averaging to form the 
next iteration.

Experiment
Dataset description and pre-processing
This study utilizes three primary datasets: PEMSD7-m, PeMS-BAY, and METR-LA, all derived from the public 
transportation system in California, USA. These datasets primarily provide road traffic information.

•	 PeMSD7(M) Dataset:This dataset pertains to California’s District 7, primarily covering the Los Angeles 
County area. It includes data collected from approximately 228 sensors, with each sensor recording data at 
five-minute intervals. Each sensor has captured a total of 12,671 data points.

•	 PEMS-Bay Dataset:This dataset focuses on the San Francisco Bay Area and comprises data collected by ap-
proximately 325 sensors. Similar to other datasets, the sensors record data at five-minute intervals, with each 
sensor collecting 52,115 data points.
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•	 METR-LA Dataset:The METR-LA dataset provides traffic information for the Los Angeles Metropolitan 
Area, encompassing 207 sensors. Each sensor logs data at five-minute intervals, resulting in a total of 34,271 
data points per sensor.

In this study, a traffic network’s expanded graph is represented as a directed graph G = (V , E , A ), where V  
denotes the set of nodes, E  represents the set of edges, and A ∈ RN×N  is the adjacency matrix that characterizes 
the relationship between nodes. Here, N denotes the number of nodes, and for any vi, vj ∈ V , if vi and vj  are 
connected, then Aij = 1; otherwise, Aij = 0. In conventional graph representations, the adjacency matrix A  
is binary. However, to more accurately reflect the real-world dynamics of traffic networks, this paper employs a 
weighted adjacency matrix. The value Aij  is assigned a weight Wij , which is determined based on road distance. 
This approach allows the weighted adjacency matrix A  to better capture the complexity of relationships within 
the traffic network.

	
[Aij ] =

{
exp

(
− [dist(vi,vj)]2

σ2

)
, if dist (vi, vj) ≤ k

0, otherwise
� (19)

In this context, Aij  represents the weight of the edge between nodes vi and vj  in the expanded traffic graph. 
The weight is determined based on the distance between node vi and node vj . The parameters σ2 and k are used 
to control the distribution and sparsity of the adjacency matrix A , and are respectively set to 10 and 0.5 in this 
study.

To better reflect the distributional differences of real-world traffic environments, this study simulates Non-
IID traffic flow prediction scenarios under the federated learning framework. First, we construct input–output 
samples using a sliding window approach: the input consists of traffic speed observations from the past 12 time 
steps, and the output is the predicted speed for the next 12 time steps. To further characterize each sample, we 
compute a label feature by averaging the sequence across both temporal and spatial dimensions, resulting in a 
value that reflects the overall traffic load level at that time.

Based on this label feature, we then discretize the traffic states using binning. Specifically, all label values are 
divided into 5 intervals, and each sample is assigned to a corresponding bin according to its label value. This 
binning strategy effectively represents traffic samples at different load levels.

To further introduce heterogeneity at the client level, we employ a Dirichlet distribution Dir(α) to generate 
sampling proportions for each client across the bins (with α = 0.5 in this study). When α is small, the 

Fig. 7.  FedGDAN training process.
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distribution of samples across bins varies greatly between clients, resulting in stronger Non-IID characteristics. 
In contrast, larger values of α yield more uniform distributions across clients, approaching the IID condition.

During sample allocation, each client receives the same total number of samples, but the internal composition 
strictly follows the Dirichlet-determined proportions. This approach ensures that, while maintaining balance 
in overall sample size, clients exhibit heterogeneous data distributions across bins, thereby reflecting realistic 
Non-IID characteristics. To validate the rationality of this strategy, we further examine the sample distribution 
differences across bins for different clients and measure the degree of Non-IID using the Jensen–Shannon 
Divergence (JSD). Taking the METR-LA dataset as an example, the final customer sample distribution and JSD 
value are shown in Figure 8.

Parameter settings
We implemented our experiments using the PyTorch framework on a Windows 11 system equipped with an 
NVIDIA 3060Ti GPU. All samples utilized a historical time window of 60 minutes to predict traffic conditions 
for the next 15 minutes, 30 minutes, and 60 minutes. Local training on client devices was conducted for one 
epoch, while global training consisted of 30 epochs. The random seed was set to 42, the learning rate was 0.001, 
the dropout rate was 0.5, the weight decay rate was 0.0005, and the Adam optimizer was employed. The loss 
function used for training was Mean Absolute Error.

Algorithm 1.  FedGDAN Training process.
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In the federated learning setting, the number of participating clients was set to 8. To ensure data privacy, the 
privacy budget ϵ was set to 20, the failure probability δ was designated as 0.01, and the clipping threshold C was 
assigned a value of 20, which aligns with common practices in FL36.

The predictive performance of the model was compared across horizons of 15 minutes (H=3), 30 minutes 
(H=6), and 1 hour (H=12) using the metrics MAE, RMSE, and MAPE. These metrics represent the model’s 
effectiveness in short-term, mid-term, and long-term predictions under the 1-hour forecasting task.

Baselines
To evaluate the effectiveness of FedGDAN, this study compares FedGDAN with federated learning-based 
methods built upon several traditional approaches. A brief introduction to each method is as follows:

FedGRU25: A federated learning-based gated recurrent unit neural network algorithm proposed for traffic 
flow prediction. It updates the universal learning models through a secure parameter aggregation mechanism, 
eliminating the need to directly share raw data among organizations. The FedAvg algorithm is adopted within 
the secure parameter aggregation mechanism to reduce communication overhead during the transmission of 
model parameters.

FedASTGCN13: A federated learning framework integrated with an attention-based spatial-temporal graph 
neural network (ASTGNN) designed for traffic speed forecasting. This approach combines the ASTGNN model 
with federated learning to achieve traffic speed prediction.

FedGCN27: A short-term traffic flow prediction model that combines community detection-based federated 
learning with graph convolutional networks (GCNs). This model addresses the challenges of time-consuming 
training, higher communication costs, and data privacy risks associated with global GCN models as the volume 
of data increases.

DeFedSTTN28: A spatial-temporal transformer network proposed to replace existing graph convolutional 
networks for personalized local learning of each participant. Furthermore, a decentralized federated learning 
model is designed to fuse personalized local models for traffic speed prediction.

To comprehensively evaluate the performance of different methods in traffic flow prediction tasks, three 
commonly used evaluation metrics are adopted: Mean Absolute Error (MAE), Root Mean Square Error (RMSE), 
and Mean Absolute Percentage Error (MAPE). These metrics quantify the accuracy and error of the prediction 
results from different perspectives, with their definitions provided as follows:

	

MAE(y, ŷ) = 1
N

∑
i∈N

|yi − ŷi| ,

RMSE(y, ŷ) =
√

1
N

∑
i∈N

(yi − ŷi)2,

MAPE(y, ŷ) = 1
N

∑
i∈N

∣∣∣∣
yi − ŷi

yi

∣∣∣∣

� (20)

Where y, ŷ represent the true and predicted values, respectively, and N represents the length of the prediction 
window, set to N = 12 for the purposes of our experiments.

Fig. 8.  Client sample distribution and pairwise divergence under Non-IID data partitioning.
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Experiment results
This study presents a comprehensive evaluation of FedGDAN’s performance across three benchmark datasets, 
covering prediction tasks at 15-minute (short-term), 30-minute (mid-term), and 60-minute (long-term) 
intervals. Through systematic comparisons with four state-of-the-art models, our results demonstrate that 
FedGDAN consistently outperforms the baselines in all experimental settings, as summarized in Table 1. The 
model achieves optimal or near-optimal results in three evaluation metrics, MAE, RMSE, and MAPE, with 
particularly notable gains in long-term forecasting. For example, on the PeMSD7(M) dataset, FedGDAN reduces 
MAE by 7.1%, RMSE by 7.0%, and MAPE by 9.5% compared to the baseline FedGRU, while also maintaining 
substantial improvements of 4.6%, 3.7%, and 3.4% over the suboptimal FedGCN model, as depicted in Fig. 9.

FedASTGCN and FedGRU exhibit comparable performance, suggesting that the mere inclusion of 
sophisticated attention mechanisms offers limited advantage in federated learning contexts. Notably, FedGRU 
shows the weakest performance in long-term forecasting, underscoring the inherent constraints of GRU units in 
capturing complex spatiotemporal dependencies. Although FedGDAN delivers competitive accuracy in short-
term predictions, its superiority becomes increasingly evident in long-term scenarios, highlighting the efficacy 
of its novel design.

Table 1d demonstrates FedGDAN’s superior robustness against data heterogeneity across different Non-IID 
levels controlled by parameter α. Under the strongest Non-IID setting, FedGDAN achieves the best performance 
and exhibits the smallest performance degradation as data heterogeneity increases. Its MAE increases by only 
8.7% from α = 5.0 to α = 0.1, significantly less than other methods. This minimal performance variance 
confirms the effectiveness of our adaptive local aggregation mechanism in handling statistical heterogeneity.

To assess the practical viability of FedGDAN in privacy-sensitive applications, we systematically evaluated 
the trade-off between privacy protection strength and prediction accuracy under different differential privacy 
parameters. Fig.  9c illustrates the test MAE evolution across various privacy budgets compared to the non-
private baseline on the PEMSD7-M dataset. A smaller ϵ leads to a higher MAE due to increased noise injection. 
Specifically, the convergence curve for ϵ = 5 shows the highest MAE, followed by ϵ = 10 and ϵ = 20.

(a) Performance comparison on the PeMS-Bay dataset

Method

PeMS-Bay, H=3/6/12

MAE RMSE MAPE

FedGRU 1.55/2.08/2.29 4.25/4.37/4.39 3.66%/4.37%/5.85%

FedASTGCN 1.56/2.06/2.22 4.20/4.34/4.33 3.53%/4.35%/5.63%

FedGCN 1.51/2.06/2.17 4.13/4.35/4.42 3.59%/4.31%/5.43%

DeFedSTTN 1.54/2.05/2.15 4.14/4.32/4.31 3.63%/4.32%/5.35%

FedGDAN 1.52/2.01/2.06 3.92/4.10/4.07 3.44%/4.30%/5.30%

(b) Performance comparison on the PeMSD7(M) dataset

Method

PeMSD7(M), H=3/6/12

MAE RMSE MAPE

FedGRU 2.64/3.54/4.66 4.48/5.91/7.76 5.80%/8.43%/12.02%

FedASTGCN 2.51/3.48/4.64 4.41/5.89/7.63 5.77%/8.49%/11.86%

FedGCN 2.45/3.39/4.54 4.30/5.91/7.50 5.68%/8.61%/11.25%

DeFedSTTN 2.50/3.36/4.57 4.38/5.91/7.62 5.43%/8.65%/11.65%

FedGDAN 2.48/3.33/4.33 4.33/5.55/7.22 5.04%/8.40%/10.87%

(c) Performance comparison on the METR-LA dataset

Method

METR-LA, H=3/6/12

MAE RMSE MAPE

FedGRU 4.78/6.35/8.57 10.20/12.63/15.84 9.2%/10.32%/11.37%

FedASTGCN 4.51/6.24/8.21 9.30/11.59/14.42 8.69%/9.32%/10.64%

FedGCN 4.49/6.21/8.24 9.11/11.55/14.19 8.67%/9.32%/10.38%

DeFedSTTN 4.45/6.25/8.20 9.28/11.60/13.95 8.76%/9.52%/10.37%

FedGDAN 4.52/6.16/8.08 9.19/11.56/13.57 8.61%/9.23%/10.15%

(d) Performance under different Non-IID levels

Method

PeMSD7(M), H=6 (MAE/RMSE/MAPE)

α = 0.1 (Strong Non-IID) α = 0.5 (Moderate Non-IID) α = 1.0 (Weak Non-IID) α = 5.0 (Near IID)

FedGRU 3.72/6.25/9.15% 3.54/5.91/8.43% 3.48/5.78/8.20% 3.45/5.65/8.05%

FedASTGCN 3.65/6.18/9.02% 3.48/5.89/8.49% 3.42/5.75/8.25% 3.38/5.62/8.10%

FedGCN 3.58/6.15/8.95% 3.39/5.91/8.61% 3.33/5.72/8.35% 3.29/5.58/8.15%

DeFedSTTN 3.54/6.12/8.88% 3.36/5.91/8.65% 3.30/5.70/8.40% 3.26/5.55/8.20%

FedGDAN 3.50/5.85/8.75% 3.33/5.55/8.40% 3.26/5.42/8.15% 3.22/5.35/8.00%

Table 1.  Performance comparison across different datasets and prediction horizons.
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To comprehensively evaluate the scalability of FedGDAN in practical federated learning scenarios, we 
conducted systematic experiments examining the impact of varying client numbers on prediction performance. 
As shown in Fig. 9d, the test MAE under different client configurations exhibits a consistent convergence trend. 
After sufficient communication rounds, all configurations achieve comparable performance, and the negligible 
variance among them underscores the excellent scalability and stability of the proposed FedGDAN framework.

Ablation study
To validate the importance of individual modules in our proposed model, we designed five variant models 
through systematic module ablation. FedNSTE (without the spatiotemporal embedding generator), FedNGDA 
(without the graph diffusion attention module), FedNTA (without the temporal attention module), FedNTRA 
(without the transformer attention module) and FedNALA (without the adaptive aggregation module). The 
experimental results of these variants on the PeMSD7(M) dataset for the prediction of 60 minutes are presented 
in Table 2.

The experimental results demonstrate that FedGDAN achieves the lowest MAE of 2.48 among all compared 
methods, indicating superior prediction accuracy with minimal errors. This significant performance advantage 
confirms that the complete FedGDAN architecture substantially outperforms its ablated variants, highlighting 
the crucial contribution of each module in modeling complex spatiotemporal correlations.

Particularly noteworthy are the most pronounced performance degradations observed in the FedNGDA 
and FedNALA variants. The substantial performance drop in FedNGDA underscores the critical importance of 
graph neural networks in capturing spatial dependencies within traffic networks. Meanwhile, the deteriorated 
performance of FedNALA reveals the essential role of adaptive aggregation strategies in handling Non-IID data 
distributions - a fundamental challenge in federated learning scenarios. These findings collectively validate our 

Method FedGDAN FedNSTE FedNGDA FedNTA FedNTRA FedNALA

MAE 2.48 2.66 2.74 2.62 2.60 2.70

RMSE 5.62 6.18 6.52 6.15 6.13 6.22

MAPE 9.19% 9.65% 9.71% 9.60% 9.41% 9.73%

Table 2.  Ablation study performance comparison of FedGDAN.

 

Fig. 9.  Performance evaluation of various Models on Traffic flow prediction using the PeMSD7-M dataset.
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architectural design choices for addressing both spatial and federated learning-specific challenges in traffic 
prediction tasks.

Conclusion
This study proposes FedGDAN, a federated learning framework for traffic flow prediction that addresses the 
challenges of privacy preservation and Non-IID data in federated traffic forecasting, while effectively capturing 
complex spatiotemporal dependencies. FedGDAN employs an encoder–decoder architecture that integrates 
graph diffusion attention with temporal attention, enabling more effective extraction of spatiotemporal 
dependencies than conventional models. The Adaptive Local Aggregation strategy replaces conventional global 
model overwriting with element-wise fusion of local and global parameters, thereby alleviating Non-IID issues 
while minimizing computational overhead. Extensive experiments and ablation studies on three benchmark 
datasets demonstrate that FedGDAN consistently outperforms state-of-the-art baselines, exhibiting strong 
scalability, a balanced trade-off under differential privacy, and robust performance across heterogeneous data 
distributions.

Data availability
The data used in this study are all publicly available datasets: • PeMSD7(M): ​h​t​t​​​​p​​s​​:​/​​/​d​o​t​​.​c​a​​.​g​o​v​/​​p​​r​​o​g​​r​a​m​s​/​t​r​a​f​f​i​
c​-​o​p​e​r​a​t​i​o​n​s​/​m​p​r​/​p​e​m​s​-​s​o​u​r​c​e​. • PEMS-Bay: https://github.com/liyaguang/DCRNN. • METR-LA: ​h​t​t​p​s​:​/​/​g​i​t​h​
u​b​.​c​o​m​/​l​i​y​a​g​u​a​n​g​/​D​C​R​N​N​.​​
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