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Due to the proliferation of Internet of Things (IoT)-based Wireless Sensor Networks (WSN) technology 
in different phases of various sectors, comprehensive solutions related to energy consumption and 
security are indispensable. However, in traditional methods for energy optimization and anomaly 
detection in WSNs there are certain issues: An inability to process real-time data, unavailability to 
extend the adaptation to behave and respond with dynamic network conditions, and poorly suited for 
continuously evolving anomalies. These limitations contribute to the decrease of the system’s overall 
performance and dependability in actual big and complicated sociotechnical networks. To overcome 
these challenges, this research presents LEGO-WSN (Long Short-Term Memory (LSTM) with Attention 
Mechanism and Genetic Algorithm (GA) Optimization for WSNs), an intelligent solution for improving 
energy efficiency and real-time faulty node identification of WSNs. The proposed LEGO-WSN combines 
GA and LSTM to enhance energy optimization and improve the detection of anomalies. The work 
discussed here introduces a novel approach called LEGO-WSN, which incorporates LSTM with the help 
of an attention layer along with a Genetic Algorithm for the operation of fault diagnosis in anomaly 
detection. The GA improves the network transmission parameters and plans the sensor’s operations, 
while the LSTM structure, complemented by attention mechanisms, identify the features of time 
series to encode blackhole attacks. The data set for the purpose of this study can be obtained from 
Kaggle and is a real life WSN data with variety of different environmental and network conditions. The 
impact of the proposed GA-LSTM model is measured in terms of energy consumption and real-time 
anomaly detection while also aims at flexibility in terms of the network environment in which it is 
implemented. The results show substantial enhancements in energy efficiency, with a 20% reduction in 
energy consumption, and high accuracy in anomaly detection, achieving 99% accuracy, 98% precision, 
and 99% recall. LEGO-WSN demonstrates a novel, scalable, and reliable solution for optimizing WSN 
performance while enhancing security and energy efficiency.
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WSN consist of several numbers of sensor nodes which are small in size, inexpensive and low power, having 
multiple functionalities and they transmit data to each other through wireless and short range. Here, the 
placement of the authorizer sensor nodes was arbitrary in the needed area for the monitoring and detection 
work according to the applications1. WSN’s is roughly defined by some characteristics like energy, load, power, 
coverage, delay, and so on, of these characteristics need to be optimized in order to guarantee the quality of service. 
In real implementation, these attributes are complementary so they must be optimized hence improvement of 
their performance in working conditions will be enhanced2. New technologies in wireless systems enable the 
creation of low power sensor nodes which are referred to as motes that operate through radio signals linked 
in a WSN3. WSNs are networks of self-sufficient nodes with embedded sensors and are commonly used for 
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tracking or detecting objects, conditions, environment, or physical events including heat and humidity and 
noise4. However, one of the biggest issues with WSNs is the dependability of these sensor nodes; for example, 
it may be practically impossible to recharge or replace the batteries of multiple thousands of nodes deployed in 
a remote location5. Due to the limitations of battery power, only energy conservative computations and low-
power communication systems can be used6. Data fusion and relaying are two successful approaches which can 
minimize the energy usage in WSNs because it removes the need for periodic repetition of data collection and 
also has a lesser infrastructure cost7. Thus, the suggestion and application of energy efficient routing protocols 
are central for enhancing WSN performance and reliability. The application of WSN for data communication can 
be enhanced effectively with an optimum management of available resources, greatly meeting the requirements 
of data transfer as well as saving energy8. New data analysis and continual tracking are beneficial in enhancing 
the efficacy and dependability of energy systems due to Artificial Intelligence9.

WSNs being extensively flexible and applicable to a broad spectrum of domains like environmental and 
climatic changes, healthcare, smart cities, warfare, and industry applications10. With the trend towards 
establishing the connectivity of every item in the world known as the Internet of Things today, their capacity for 
collecting, processing, and relaying data from remote regions and hard to access areas makes them invaluable11. 
The various sensor nodes used in these networks, being low-cost and power efficient, requires to be designed in 
such a way that it can operate satisfactorily in diverse environment12. Nevertheless, several factors pose challenges 
to the effectiveness of the WSNs and also their durability13. For example, in case of sensor nodes, the network 
topology is inherently large and constantly evolving due to node failure, mobility of nodes and interference14. 
These problems result in high energy use, unpredictable device interaction, and network overcrowding. Another 
major problem is security which in the blackhole attack can cause significant disruptions to the networks 
functioning, including data loss, energy depletion and misunderstandings between nodes. Solutions to these 
problems require the design of robust and robust adaptable protocols that are capable of overcoming these 
challenges while at the same time, minimizing energy consumption15.

High system throughput and minimal response times are crucial in various applications, including remote 
patient monitoring or surveillance networks of armies16. For example, in medical WSNs, the focal concentrations 
are to capture and transmit vital signs for a constantly high number of patients without much delay and, 
consequently, an anomaly in the operation of the network may pose a threat to patients’ lives. Therefore, there 
is a need to provide better quality guarantee with respect to the signal transmission and energy consumption as 
well as security against possible attacks17. In the context of wireless sensor networks, a blackhole attack occurs 
when a malicious node consumes all network traffic without letting it to reach its destination18 as shown in Fig. 
1. Data loss, performance degradation in the network, and vulnerability to security are the primary results of 
this kind of attack19. The proposed approach of using LSTM networks with attention mechanisms is significant 
in contrast to traditional anomaly detection methods that often depend on simple statistical models or machine 
learning algorithms. Long-term dependencies are captured by the LSTM, and through the attention mechanism, 
focus is placed on the most relevant features to make accurate detection of anomalies such as blackhole attacks in 
dynamic WSN environments. This approach can be adaptive to the changing nature of WSNs and hence improve 
detection performance while being energy efficient.

Problem statement
 

Fig. 1.  Blackhole attack.
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•	 Most existing energy optimization methods struggle to scale effectively in large and dense IoT environments, 
such as smart cities, due to the increasing number of interconnected devices.

•	  Many intrusion detection systems exhibit high false alarm rates, reducing their reliability in detecting anom-
alies, including zero-day attacks.

•	  Existing routing and optimization protocols often fail to balance energy efficiency and network performance, 
leading to premature depletion of battery-powered IoT devices27.

•	  Current anomaly detection approaches are not lightweight or fast enough to perform real-time detection, 
which is critical for maintaining system efficiency and security.

•	  Continuous data flow optimization methods often neglect runtime anomalies or fail to bypass faulty nodes 
efficiently, resulting in higher energy consumption22. 

 

Highlights of the proposed study

•	 A novel hybrid framework combining LSTM with attention mechanism and GA for blackhole attack recogni-
tion and energy optimization in IoT-driven WSNs.

•	 The proposed method detects blackhole attacks in real-time, improving network security by identifying ma-
licious nodes and enhancing fault diagnosis in WSNs.

•	 The integration of GA optimizes energy consumption, enhancing the overall sustainability and efficiency of 
the WSNs by reducing energy usage during data transmission and routing.

•	 The method is scalable across different network sizes, ensuring its applicability in both small and large-scale 
IoT systems.

•	 The study emphasizes efficient data transmission even in the presence of blackhole attacks, maintaining the 
integrity of communication across nodes.

Related works
Humayun et al.20 propose energy optimization is one of the challenges in smart cities, and this paper focuses 
on the problem area and integrates advanced technologies such as IoT, 5G, and cloud computing. The model 
proposed here can be implemented in energy saving in smart homes and smart cities like lampposts, structure 
and posters, smart homes and smart parking. Smart city electrical appliances will have IoT sensors to monitor 
movements and respond to commands over the network All data communication between communication 
channels and the cloud will be transported through 5G technology where cloud technology will be used to 
store and access information optimally. Mathematical modeling was used to assess the suggested model and the 
outcomes designated that it has potential to enhance smart cities energy use.

The study by Nagaraju et al.21 presents an energy capable secure routing solution for IoT applications in 
integrated WSNs. The scheme suggest a secured path for the transferring of the IoT data over the nodes through 
the various energy sensors using the multipath link routing session method. TEEN variants employed in hybrid 
ad hoc network are hybrid based TEEN that improves the energy and network lifetime, ubiquitous data storage 
protocol that improves the data storage ability. Based on the results obtained during the simulation of the 
proposed protocol and comparing it with two other present routing protocols, it has been found that some 
performance parameters like throughput, energy efficiency, end-to-end delay, storage and network life and data 
storage capacity has also increased. The major design concern in HWSNs therefore is security provision in End-
to-End communication.

Luo et al.22 describes the Mathematical Programming Model for improving the runtime characteristics of 
continues data-flow applications in IoT context. It uses a simple anomaly detection algorithm to predict the 
reliability of nodes and incorporates this reliability into an optimisation loop to predict the overall task delay. 
The-energy optimization problem for the continuous data flow with latency constraints is posed as a mixed 
integer nonlinear programming problem and a max flow algorithm based on block coordinate descend approach 
is described as well. The above strategy has only been used in the simulation environment, if applied the new 
strategy is more energy consumption efficient than the benchmark strategy. At the same time there is outlined 
the issue of the subsequent improvement of energy utilization efficiency in IoT applications.

Sarwar et al.23 discuss smart environment was brought about by the IoT which has transformed human 
activities, but these are accompanied by threats to security and privacy. While many IDS has been proposed 
for IoT networks, the problem space has only grown and variants of optimization such as PSO face limitations. 
Individuals utilize the SBPSO to implement feature collection for this paper, and propose an improved method, 
the IDSBPSO method, with the addition of a dynamic search space reduction approach, as well as the integration 
of dynamic parameters into SBPSO. The proposed IDS was aimed to detect or identify different sort of high 
risk data traffic in IoT networks. Experiments were performed using IoTID20 and UNSW-NB15 datasets, and 
it has been seen that the proposed model increases its accuracy besides having fewer user-input features and a 
remarkably low computational cost as well as predicting time as compared to the basic PSO model.

Ahmad et al.24 shows categories of IoT architecture have expanded over the years to launch more connected 
devices and input/output data. The other issue that have to consider is the security as the threat of the new zero-
day cyberattacks are real. Network-based IDS or NIDS can be efficient solution for protection of IoT networks 
as they operate with network traffic. However, a recent NIDS is effective only in detecting anomalies with a high 
FAR. This paper outlines a mechanism for fast abetment of IoT network anomaly detection utilizing MI and 
DNN, which is proposed. When the 35 best numerical features with MI instead of 80 numerical features were 
used, performance decreased, and complexity was decreased. The detection accuracy had further been improved 
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by 0.99 − 3.45% at an aggregate level using DL-based models, and for the top five categorical and numerical 
features only.

Samani et al.25 evaluate the real data resulting from hundreds of networked digital PIR occupancy sensors 
installed in the LED luminaires of a moderately recent IoT-BEMS in a large California building. A technique 
for detecting deviations in such a data flow. Equally, make use of the outputs in entering the building efficiency 
to develop a window those which can provide demand response services. Further, they also offer the load 
forecasting of the lighting load for this building using deep neural model that is developed this dependable 
predictable performance. From the analysis, the authors demonstrate that this approach can ensure 30% load 
shedding to the lighting fixtures.

Lydia et al.26 propose green IoT is already affecting to other domains like health care systems, smart city 
and transportation system to better the dissipation. However, how much has environmental decrement been 
reduced in green media networks is still a research question and a commercial issue in the 21 st century. This 
paper provides DL-based detection of anomalies for IoT applications along with green energy efficient routing. 
The procedure to restrict data in the experimental settings is as follows: GEER-DLAD, for the error lossy 
compression of data communication, and the MSO for route selection. DLAD process thus entails the use of the 
RNN-LSTM model for the function of anomaly detection on the IoT communication network. Thus, the generic 
experimental enhancement strategy for improving both the energy efficiency of the GEER-DLAD model and the 
model’s detection capability was established.

Sivakumar et al.27 discuss industry 4.0 which is also referred to as the fourth industrial revolution is 
characterised by technologies such as IoT Big data and AI amongst others. In industrial applications especially 
where there is increased usage of connected devices, the energy efficiency of the sensors takes the central 
stage. In this study, a new energy optimization model for the sensor nodes in the context of Industry 4.0 
considering energy efficiency and conservation and energy harvesting is proposed. It consists of dynamic power 
management, scheduling, and harvesting methods which thus reduces power utilization density to meet the 
required performance. It is predicted that the proposed framework would improve the performance of the 
sensor node to make operation more efficient and affordable.

Revanesh et al.28 design of WSNs has been focused on how to prolong the lifetime of the WSNs through 
reasonable utilization of energy. Such models require fewer numbers of sensors to measure the physical 
properties of environment, while consuming more power in relation to the resulting readings quality. The major 
disadvantage of WSNs is in areas that require monitoring or tracking because of power supply in batteries. 
Several routing protocols have emerged to solve this problem among them being; but where or how to cover 
the network period holding in mind the capacities of sensors is still a question. The research also identifies 
some neural networks that include LEACH and EESR since they enhance network performance and reliability. 
EESR implements from the physical model an improved Levenberg–Marquardt Neural Network thus improving 
energy efficiency. It is generalizable that IDS developed based on ANN can detect the anomalous movements 
based on the optimum feature selection.

Saheed et al.29 discuss critical infrastructures use SCADA systems for supervision and command from a 
distance, however, classic intrusion detection systems are ineffective against various cyber threats. Even today’s 
traditional security measures such as firewalls and anti-virus programs are ineffective for protecting SCADA 
systems. To tackle these problems, a novel ELM is suggested for intrusion identification in SCADA frameworks 
from the MSU gas pipeline and water utility, and also the UNSW-NB15 datasets. Data preprocessing similarly 
applies unity normalization, and feature extraction applies PCA. GWO is applied for optimization of classifiers 
including bagging, stacking, Adaboost, Naive Bayes and Support Vector Machine. The results suggest that the 
use of PCA + GWO enhanced performance by strengthening the SCADA system.

Ramalingam et al.30 discuss the issue of energy efficiency in WSNs, in which continuous sensor consumption 
rapidly depletes node batteries. The suggested work develops a hybrid model based on Fuzzy system with a 
combination of Adaptive Sailfish Optimizer (ASFO) to select cluster head and an enhanced Elephant Herd 
Optimization to use shortest-path routing. The approach implemented in MATLAB and compared with IABC-C, 
GA, PSO, and HCCHE, the method enhances QoS metrics, with a packet delivery ratio of 99.8, a latency of 1.12 
s, throughput of 98 bps, an energy usage of 10.90 mJ, a network lifetime of 5400 cycles, and a packet loss ratio of 
0.6%. Limitations are that it is based on simulation data, and integration of heterogeneous WSN environments 
might be problematic regarding scalability.

Dhanasekaran et al.31 discuss the issue of malware identification in 5G networks, where APIs, calls, and SMS 
make it difficult to detect an attack. This proposed work proposes a lightweight CNN with a sequential LSTM 
layer, which is trained on the Malimg dataset, to successfully classify malware. Results show high performance 
with an accuracy of 99.8% and F1-score of 0.9925, which is 12.8% more accurate and 14% higher F1-score than 
the current models. The strategy emphasizes the deep learning promise of safe 5G and IoT set-ups. These are 
limited by the fact that it refers to a single dataset and might have certain difficulties in real-time implementation 
in heterogeneous network environments.

The reviewed literature Table 1 emphasizes the importance of energy optimization and security in IoT-
based systems, especially in smart cities, Industry 4.0, and critical infrastructures. Techniques such as routing 
protocols, anomaly detection, and feature selection have been proposed to improve energy efficiency and 
system reliability. Hybrid protocols in heterogeneity WSN for routing secure, mathematical models, particularly 
optimization of energy using energy efficiency in continuous flows in data, and DL-based anomaly detection in 
green networks of IoT. Sophisticated approaches like IDSBPSO, GEER-DLAD, hybrid models based on ensemble 
technique and its applications for improvement and optimizing energy use while advancing intrusion detection 
techniques. These studies demonstrate improvements in performance metrics such as energy efficiency, network 
lifetime, and anomaly detection accuracy, which underscores the importance of integrating security and energy 
management in IoT systems. Current research of energy optimization, routing, and anomaly detecting in IoT 
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and WSNs typically have constraints of processing real time data. The simulation-based approaches of Luo et 
al.22 and Ramalingam et al.30 are only limited to simulation approaches, whereas the methods by Lydia et al.26 
and Saheed et al.29 are confined to in-experimental or offline systems. These drawbacks prevent their use in 
dynamic networks where decisions made on time are of the essence. The proposed GA-optimized LSTM with 
attention mechanism fills this gap by making the real-time routing and detection of anomalies efficient, at the 
same time making the network more energy efficient and stable. Unlike the previous works that concentrate on 
single factors such as energy optimization, routing, or anomaly detection, the proposed method combines GA-
based optimization with LSTM and attention to concentrate on both energy efficiency and anomaly detection. 
As opposed to a majority of the extant literature, it trades performance of routing, accuracy of detection, and 
computational efficiency in dynamically WSN environments. The proposed research presents a new LEGO-
WSN paradigm that sequentially applies LSTM with Attention for anomaly detection and optimization using 
Genetic Algorithm for energy-aware routing. Differently from other existing research that addresses security and 
energy efficiency independently, the framework innovatively integrates real-time detection of blackhole attacks 
with dynamic routing reconfiguration to guarantee both network lifespan and robustness against malicious 
disruptions in WSNs.

Proposed AI powered framework for autonomous energy optimization and anomaly 
detection in WSN
The proposed methodology integrates LSTM with an Attention Mechanism and GA to enhance energy 
optimization and detect blackhole attacks in WSNs. Initially, data preprocessing steps such as handling missing 
data, normalization, and splitting the dataset into training and testing sets are performed to ensure data quality 
and uniformity. It is applied to the LSTM model with attention enhancement for real-time anomaly detection. 
The LSTM layers used in this work are specifically designed to extract temporal patterns and dependencies from 
time-series sensor data. On its part, the attention mechanism identifies critical features by focusing on crucial 
time steps. With all these, this combined framework achieves high accuracy in detection of blackhole attacks 
which distinguish malicious behavior from normal operations. GA optimizes energy efficiency in the network. It 
starts with the initialization of a population by routing solutions, followed by fitness evaluation based on energy 
consumption, data transmission efficiency, and path length. Crossover and mutation operations refine solutions 
iteratively, ultimately selecting the optimal routing paths to ensure minimal energy usage while maintaining 
network performance. The outputs from the LSTM and GA modules are integrated, enabling real-time decision-
making. The method shows better anomaly detection and energy optimization providing a robust framework for 
the operation of WSNs securely and efficiently.

The Fig. 2 presents the LEGO-WSN as a framework for anomaly detection in WSNs. Data is gathered from 
the network and then cleaned up and again divided into training and testing sets. The training data is passed 
through LSTM with attention where the net learns to attend the training data to find patterns. The output of each 
LSTM layer is then fine-tuned using a genetic algorithm in an effort to increase power efficiency. Moreover, new 
data is classified as blackhole or normal using the optimized model.

References Focus Key Findings Limitations

Humayun et 
al.20

Energy optimization in smart cities integrating 
IoT, 5G, and cloud computing

Model enhances energy use in smart homes, lampposts, 
smart parking; cloud stores data efficiently; 5G enables fast 
communication

Primarily simulation-based; real-world 
deployment not tested

Nagaraju et 
al.21

Secure and energy-aware routing in IoT-
enabled WSNs

TEEN variants and multipath routing improve energy efficiency, 
throughput, storage, network lifetime

Security concerns remain in end-to-end 
communication; scalability not tested

Luo et al.22 Energy optimization for continuous data-flow 
applications

Mixed integer nonlinear programming with max-flow algorithm 
reduces energy consumption in simulation

Only tested in simulation; real-world 
efficiency may differ

Sarwar et al.23 IDS for IoT networks using optimized PSO 
(IDSBPSO)

Improved anomaly detection accuracy, low computational cost, 
fewer features required

Limited to IoTID20 and UNSW-NB15 
datasets; may not generalize to other datasets

Ahmad et al.24 NIDS for IoT anomaly detection using MI 
and DNN Reduced feature set improves detection accuracy by 0.99–3.45% High false alarm rate possible; dataset-

specific performance

Samani et al.25 Load forecasting and deviation detection in 
IoT-BEMS

Achieved 30% load shedding in LED luminaires using DNN-
based model

Limited to one building; may not generalize 
to other environments

Lydia et al.26 Green IoT routing with DL-based anomaly 
detection

GEER-DLAD with LSTM improves energy efficiency and 
detection capability

Limited experimental settings; real-world 
deployment challenges

Sivakumar et 
al.27

Energy optimization in Industry 4.0 sensor 
nodes

Dynamic power management, scheduling, and harvesting 
improve energy efficiency

Applicability to heterogeneous industrial 
networks not fully validated

Revanesh et 
al.28

Prolonging WSN lifetime via neural networks 
(LEACH, EESR)

Improved energy efficiency and reliability using LM-NN; reduces 
number of sensors needed

Battery-powered nodes still limited; 
monitoring in large-scale WSNs challenging

Saheed et al.29 IDS in SCADA systems using ELM + PCA 
+ GWO

Optimized classifiers improve detection performance in SCADA 
systems

Limited to MSU gas pipeline and water 
utility datasets; may not generalize

Ramalingam 
et al.30

Hybrid energy-efficient WSN routing (Fuzzy + 
ASFO + EHO)

QoS metrics improved; PDR 99.8%, latency 1.12s, throughput 
98bps

Simulation-based; heterogeneous WSN 
scalability not tested

Dhanasekaran 
et al.31 Malware detection in 5G using CNN-LSTM High accuracy (99.8%) and F1-score (0.9925); outperforms 

existing models
Single dataset; challenges in heterogeneous 
real-time network deployment

Table 1.  Review of existing Techniques.
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Data collection
The proposed approach collects data from a WSN, which monitors different environment parameters including 
temperature, humidity, as well as energy consumption. Each entry includes more than 374,662 records and 
incorporates features that include node status, distance to the cluster head, data transmission metrics, as well 
as energy consumption, and are labeled either “Normal” or “Blackhole” attacks for real-time fault diagnosis. It 
processes the data to deal with missing values, normalize the features, and split the dataset into training and 
testing for model development and evaluation32.

Data pre-processing
To prepare the dataset for model training, a number of data pre-processing approaches have been applied in the 
study on energy optimization and blackhole attack detection in IoT-driven WSNs. First, in handling missing 
data, a gap in the dataset was identified and addressed. These kinds of gaps may result due to sensor failure or 
during transmission. Missing values are imputed through techniques such as mean, median, or mode imputation 
for numerical features in order to keep the data complete and usable.

	
simputed =

∑n

i=1si

o
� (1)

In Eq. (1) simputed is the imputed value for the missing data point. si are the observed values in the feature. o is 
the total number of observed values in the feature.

Normalization was then applied to scale the numerical features, including “Dist_To_CH” and Consumed 
Energy, to a common range so that features with larger scales were not dominating the model performance, and 
algorithms such as LSTM, which are sensitive to scaling of features to perform optimally. The Min-Max scaler is 
typically used in normalizing data between 0and 1. In Eq. (2).

	
vnormalized = v − vmin

vmax − vmin
� (2)

Finally, the dataset is divided into training and testing sets to ensure that the model has been trained on a 
significant portion of the data usually 80% and is validated on unseen data 20% to test its generality. The 
splitting ensures fair evaluation of the model since reliability in metrics for anomaly detection as well as energy 
optimization performance. Thus, all these pre-processing together improve the model’s strength in effective 
blackhole attacks detection.

LSTM for Blackhole attack detection in WSNs
This study uses LSTM networks with an Attention Mechanism to identify anomalies, like Blackhole attacks, 
in WSNs. LSTM is a type of RNN which has been developed to remove the problem of vanishing gradients 
in traditional RNNs, especially when dealing with long-term dependencies in time-series data. LSTM is 

Fig. 2.  Proposed framework.
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particularly suited for use in tasks involving sequential data, making it the optimal choice for anomaly detection 
for time-series sensor data by WSNs. These networks cause abnormal patterns in network metrics such as packet 
delivery ratio, energy consumption, and data transmission behavior, thus disrupting normal communication. 
LSTM models are effective in identifying these anomalies by learning temporal dependencies and recognizing 
deviations from normal network behavior over time. Diagnosis of faults is an important task in WSNs, especially 
when abnormalities such as Blackhole attacks occur. These assaults take place when an unauthorized node 
provides information that it has the shortest path to a target and then alters and eliminates packets instead of 
passing them on. This results in poor throughput performance which is characterised by low PDR, high latency 
and high energy consumption.

Blackhole attacks are modeled as real-time anomalies to the context that encompasses fault diagnosis in this 
study. To observe the sensor nodes periodically and look for behavioural anomaly that is symptom of an attack, 
a DL model including LSTM networks and an Attention Mechanism is implemented. LSTM application results 
are effective because it is highly capable of learning the temporal relations inherent in daily sequential data 
and that are more capable of spotting minor anomalies in network behavior over time is shown in Fig. 3. The 
Attention Mechanism improves this process by paying attention to such features as a significant drop in PDR 
level or increased energy consumption which are typical in Blackhole attacks. These features includes energy 
consumption, distances between each vector to the cluster heads and transmission rates from the cluster heads 
which are detected using the trained LSTM model with Attention Mechanism.

These are energy consumption, distances between each vector to the cluster heads and transmission 
rates from the cluster heads which are detected using the trained LSTM model with Attention Mechanism. 
This method not only quickly identify Blackhole attacks, but also allows for timely fault diagnosis in a way 
that causes minimal disruption to the network. Key steps in identifying Blackhole Attacks include input data 
representation, which captures patterns that can reflect the presence of Blackhole attacks in sensor network 
metrics like “Is_CH, Dist_To_CH, Consumed Energy, and Data_Sent_To_BS”. The feature learning process used 
in this work aims at identifying informative features for normal network traffic and Blackhole attacks. In WSNs, 
Is_CH feature represents Boolean values such as whether a node is a Cluster Head or not and “Dist_To_CH” 
represents distances and spatial relations. These deviations may have arrests in routing that deviate from standard 
distances. Energy_consumed is the amount of energy which is consumed by node and “Data_Sent_To_BS” is 
the magnitude of forwarded data. These features are passed through the LSTM model in a sequential manner to 
pick up on temporal dependencies and spatial behaviour that are inherent in network activity so as to effectively 
capture the amount of temporal-spatial information in the extracted features accurately.

The four main components of LSTM units are the Forget Gate, which discards previous cell state information; 
the Input Gate, which adds new information; the Output Gate which determines the current time step’s output, 
which is then passed to the next time step; and the Hidden State, which is the output at each time step.

	 et = σ (gf . [ca−1,va] + se� (3)

Fig. 3.  LSTM with attention mechanism architecture.
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In Eq. (3) et is the forget gate output at time t, σ  is the sigmoid activation function, gf  is the weight matrix 
associated with the forget gate, ca−1 is the previous hidden state, va is the current input vector at time t. seis 
the bias term.

	 pt = σ (gp. [ca−1,va] + sp� (4)

In Eq. (4) ptis the input gate output at time t. gp is the weight matrix associated with the input gate.

	 l̂t = tanh(gl. [ca−1,va] + sl� (5)

In Eq. (5) l̂tis the candidate cell state at time t. glis the weight matrix associated with the candidate cell state. 
Update the cell state are represented in Eq. (6). Where lt is the cell state at time t.

	 lt = et.lt−1 + pt .̂lt� (6)

	 ut = σ (gu. [ca−1,va] + su� (7)

In Eq. (7) utis the output gate at time t, gu is the weight matrix associated with the output gate.

	 dt = ut.tanh (lt)� (8)

In Eq. (8) dt​ is the hidden state at time t, lt is the cell state at time t, ut is the output gate at time t. The hidden 
state dt is the output of the LSTM unit at time step t, which is used as input for the next time step or the next 
layer. A feature of LSTM networks is the ability for storing and reconstructing information over long sequences, 
therefore it makes them perfect for handling time-series data such as those obtained from WSN sensors.

Input Transformation: The feature vector of every time step ( pt) is passed to the LSTM. This vector contains 
all metrics. Hidden State Representation: The hidden state of the LSTM is a dynamic representation of learned 
features at time t. This state recursively updates the new information while maintaining the context of prior 
observations. Adaptive Weighting: The model learns which features are most important for distinguishing 
normal from anomalous behavior by adjusting the weight matrices ( gp, gl, gf ​) during training. It learns to 
identify the irregularities that characterize Blackhole attacks by analyzing features like energy consumption and 
routing patterns. Though LSTMs are good in handling sequential data, the problem of focusing on the most 
significant parts of the string is challenging when the string is long. To counter this, Attention Mechanism is 
incorporated into the LSTM network used for the system. The attention mechanism can help the model give 
more attention to segments of the input sequence that is relevant for the task at hand, which is a crucial element 
in identifying Blackhole attacks and in minimizing energy consumption in WSNs. The attention mechanism 
makes use of a pointer and makes much of the input sequence have more importance than others. The attention 
mechanism works by assigning different weights to different parts of the input sequence. It allows the network 
to focus more on the relevant parts of the sequence and less on the irrelevant parts, essentially “attending” to the 
most important information at each time step.

For each time step t an attention score α t is computed. This score determines the importance of the current 
input with respect to the output. The attention score is calculated as Eq. (9).

	 α t = softmax (at)� (9)

Where atis the attention score for the t − th time step, calculated as Eq. (10).

	 at = wa.
[
ca, ca−1

]
+ sa� (10)

Where wa is the weight vector, and sa is the bias term. Once the attention scores ​ α t are computed, they are 
used to weight the hidden states at each time step. The weighted sum of hidden states is then used to compute 
the final output for the current time step:

	
Zt =

∑T

i=1
α idi� (11)

In Eq. (11) T is the total number of time steps, and di is the hidden state at the i − th time step. This process 
helps the model focus on the relevant parts of the sequence, thus improving the performance of anomaly 
detection and energy optimization.

The final output is calculated based on the combination of weighted sums of hidden states and outputs from 
the LSTM network. Thus, the overall focus would be more on important parts of the input sequence. It enables 
the data processing sequentially to have timely detection of anomalies. Thus, the proposed mechanism is used 
for reliable security of a dynamic IoT network. The approach mainly makes use of feature learning as well as 
temporal analysis while detecting Blackhole attacks in WSNs. Thus, temporal analysis indicates that the model is 
able to analyze WSN node behavior during some specific time period to find out the unusual activity. Blackhole 
attacks can also be of temporal features that show that at some time step or continuously at some subsequent 
time steps, a node behaves differently than before. Sequential data processing LSTM also performs a pass on the 
network data one time step at a time. For instance, a series of values of energy consumed by a node at different 
time instants ([ x1, x2, . . . . . . .xt]) are taken as inputs to the LSTM in order to learn how such a metric change. 
Blackhole attacks create distinctive patterns in node metrics over time.
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PDR is a sharp or long-term decline of the amount of information delivered to the base station. Energy 
Consumption: Abnormal energy consumption behaviors intended by the intention of deceitful nodes to 
response to confirmed data. Routing Changes: Due to its excessive selection as a Cluster Head or its disturbing 
behavior on the routing tables. For example, a Blackhole attack might cause a node to intercept and drop packets 
which would mean that packets are being dropped over a sequence of time steps. LSTM analyze such deviations 
over the sequence to raise alarm of the attack. Dynamic Anomaly Detection: These decrease and increase values 
compared with the present state, that the model termed as ht, are compared with patterns of the past stored in 
the memory cells of the LSTM and are categorized as an anomalous state. Threshold-Based Classification: The 
outcome of this LSTM layer is passed directly into a dense layer that actually gives the anomaly scores. If the 
node utilization crosses preset limit, then a node is considered to be under attack. The Attention Mechanism 
focuses on the most critical time steps or features in the sequence, improving the detection of subtle anomalies. 
Alignment Scores ( et​): Calculated for each time step to determine its importance is shown in Eq. (12).

	 et = score(dt, l)� (12)

Attention Weights ( α t​): Normalize the scores to prioritize certain time steps is shown in Eq. (13).

	
α t = exp (et)∑

t
exp (et)

� (13)

Context Vector ( ct) : Summarizes the sequence by focusing on key anomaliesis shown in Eq. (14).

	
ct =

∑
t
α t.dt� (14)

The Attention Mechanism ensures that sudden drop in PDR or spike in energy consumption is not overlooked. 
The model assesses incoming network data and marks anomalies such as high energy usage or the lack of data 
forwarding from specific nodes as possible Blackhole attacks. Benefits associated with LSTM include temporal 
dependence learning, real-time processing, and scalability. It can capture long-term dependencies in network 
behavior, which distinguishes normal fluctuations from attack-induced anomalies. The outcome features from 
the LSTM are then fed into GA, which optimizes feature selection and enhances the model’s detection accuracy 
for anomalies. The LSTM with Attention mechanism is used to analyse the network behavior as a normal 
activity or anomalous blackhole. The output of the classification is then sent to the GA module that re-optimizes 
dynamically routing paths and cluster head assignments. Particularly, by a detected blackhole, GA excludes the 
compromised node of the solution space when evolving chromosomes thus guaranteeing energy efficiency as 
well as secure routing. Therefore, it is a decision level integration where anomaly detection controls routing 
optimization and not the two modules working concurrently.

Genetic algorithm for energy optimization
The GA is used in the proposed LEGO-WSN framework in a cluster-based routing approach that is similar to 
Low-Energy Adaptive Clustering Hierarchy (LEACH) protocol. LEACH is an energy efficient routing protocol 
used in WSNs which is known to be energy efficient and forms groups of nodes into clusters with cluster heads 
(CHs) playing the role of aggregating and transmitting data to the base station. Nevertheless, the uneven energy 
depletion and low network lifetime is commonly observed in LEACH with the use of static CH selection. To 
address this, GA is a dynamic optimization of the cluster head assigning and routing path selection by coded 
these parameters into chromosomes. The fitness criterion is used to assess all candidate routing configurations 
with respect to: Energy consumption per node, Packet delivery ratio (PDR), Routing path length. The variant of 
GA undergoes selection and crossover as well as mutation processes to come up with an optimal routing strategy 
to balance the amount of energy used at each node and still achieve efficient transmission of data. This explicit 
integration guarantees not only routing decisions which are immune to blackhole disruption, but also energy-
conscious, and this has the overall effect of increasing the lifetime of the entire network.

GA is used to fine tune the parameters governing energy proficient routing and anomaly detection in WSNs 
that suffer from blackhole attacks. GA emulates the process of natural selection where a few elite solutions 
transform a multitude of solution/genes through selection, crossover, and mutation to bring out optimal solution/
genes. In this study GA is applied to fulfill two major objectives, Energy Optimization: Reducing the energy 
consumed by the nodes in the network while maintaining the overall performance of the network. Anomaly 
Detection Enhancement, Fine-tune on LSTM parameters, and Feature weighting, improvement in the efficiency 
of Blackhole attack detection. The steps of GA are as follows:

Initialization of the population
A population of potential solutions (individuals) is randomly generated. Each individual represents a possible 
configuration of routing paths, cluster head assignments, or anomaly detection parameters.

Chromosome representation  In this study, chromosomes can encode: Node-specific parameters (e.g., energy 
consumption thresholds, routing decisions). Detection parameters for LSTM (e.g., attention weights or feature 
importance values). Chromosomes are represented as binary strings or real-valued vectors. For example: Chro-
mosome: [0.8, 0.5, 1, 75.32, 130.08, 2.4], where each gene corresponds to specific node metrics or model 
parameters. Population Size: A fixed number of chromosomes (e.g., 50–100) form the initial population.
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Fitness function evaluation
Each chromosome in the population is evaluated using a fitness function, which quantifies its effectiveness.

Energy optimization fitness function  The fitness function minimizes energy consumption across the network 
while ensuring sufficient packet delivery to the base station.

	
Fenergy = 1

α .Etotal + β .
(

1
P DR

) � (15)

In Eq. (15) Etotal means total energy consumption of the network. P DR means packet delivery ratio (0–1 
range). α , β  refers weighting factors to balance energy vs. reliability.

Anomaly detection fitness function  The fitness function for LSTM parameters optimizes detection accuracy 
by maximizing the F1-score.

LEGO-WSN employs Genetic Algorithms to optimize the routing by assessing the individual chromosomes 
with the weighted fitness function that balances the energy efficiency, PDR and latency. The total fitness value is 
given as Eq. (16).

	
F = α .

(
1 − Econsumed

Einital

)
+ β .PDR + γ ·

(
1 − Delay

Delaymax

)
� (16)

Where Econsumed​ is the energy consumed per node, Einital is the initial energy, PDR is the packet 
delivery ratio, and Delay is the average end-to-end delay. The coefficients α , β ,γ  show the weighting 
variables that compensate the contribution of both metrics. They were experimentally adjusted in this study 
α = 0.5, β = 0.3, and γ = 0.2, putting more importance on energy efficiency yet ensuring a reliable 
delivery and low latency. This formulation guarantees that routing decisions made by GA will meet substantial 
energy saving and at the same time will not affect the reliability of packet delivery and responsiveness of the 
WSN.

Selection process
Chromosomes with higher fitness are more likely to be selected for reproduction. The following selection 
techniques are used:

Roulette wheel selection  Chromosomes are selected probabilistically based on their fitness values. The higher 
the fitness, the greater the probability of selection.

Tournament selection  A group of chromosomes is randomly chosen, and the one with the highest fitness is 
selected for reproduction.

Genetic operations
Crossover (Recombination)  Two parent chromosomes are combined to produce offspring, ensuring the ex-
change of genetic material.

Single-Point crossover  A single crossover point is selected, and genes from two parents are swapped beyond 
this point.

Uniform crossover  Each gene is independently swapped with a probability pc​.

Mutation  Random changes are introduced in offspring to maintain diversity in the population and explore 
new solutions. Mutation Rate ( pm​): Typically set to a low value (e.g., 0.01 − 0.1). Example Mutation, Original 
Chromosome: [0.8, 0.5, 1, 75.32, 130.08], Mutated Chromosome: [0.8, 0.7, 1, 75.32, 130.08]

Replacement of the population
The offspring replace the least fit individuals in the population to form the next generation.

Step 6. Iterative evolution  The process of selection, crossover, mutation, and replacement is repeated for a fixed 
number of generations or until convergence.

Stopping criteria  When a predefined number of generations is reached, the fitness value of the best solution 
stabilizes and shows no significant improvement. In GA, termination criteria play a crucial role in deciding when 
to stop the iterative process. Common criteria include reaching a predefined number of generations or achieving 
fitness value stabilization, where the best solution shows no significant improvement over successive genera-
tions, indicating convergence towards an optimal or near-optimal solution. The Next-Generation AI-Powered 
Framework involves LSTM-Attention mechanism and GA for efficient energy management and real time detec-
tion of Blackhole attack in IoT triggered WSNs. The combination of LSTM-Attention mechanism aids towards 
accurate analysis of sensor data for detecting Blackhole attacks by capturing temporal patterns for useful features 
of the anomaly. GA therefore serves to determine the best data routing path and minimize energy use in the 
network as shown in Fig. 4. The framework operates on actual-time data from working systems, handles lack-
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ing values, scales measures, and splits information into coaching and check datasets. Pseudocode for proposed 
framework is given in algorithm 1.

GA-based WSN routing requires that nodes share population information, fitness information and routing 
paths to inform genetic operations which incurs communication overhead on energy efficiency. This is managed 
by the framework by distributing only the necessary fitness and routing information, but not the full population, 
resulting in less redundancy in communications. The operations of selection, crossover, and mutation are done 
locally with little frequent global exchanges. The trade-off between local computation and selective coordination 
enables the GA to be able to converge to near-optimal routing solutions without compromising network 
performance. The information shared between stations is tightly regulated by the framework, achieving efficient 
routing in dynamic WSNs with little energy usage or communication latency.

Network membership in a WSN environment can be dynamic as nodes can join or leave. The routing scheme 
proposed as a GA-based scheme specifically takes into consideration these dynamics.

Node Leaving (Departure): When a node comes to an end of its energy or when it stops functioning the 
lack of periodic status report or transmission acknowledgments indicates a departure. The GA eliminates the 
matching gene of the chromosome representation and re-computes fitness values of impacted routing paths. The 
data packets are redirected to different nodes, and the network connectivity and energy balance is preserved 
even after a node is lost.

Node Joining (Arrival): A new node is introduced into the network and broadcasts a join request with its 
status information namely residual energy, location as well as communication range. The GA incorporates this 
node into the chromosome representation, and the fitness function is once again re-assessed to see whether the 
new node should be a forwarding relay, cluster head, or a normal sensor. In case the addition of the new node 
decreases the total energy consumption or minimizes routing paths, GA changes routing configuration.

GA supports the use of the most up-to-date information on the topology by updating the chromosome 
structure each time a node has joined or left to ensure that the routing population always represents the actual 
topology. The resulting ability to achieve routing solutions that are almost optimal even when the conditions of 
the network dynamically vary is made possible by this ongoing recalibration.

The LEGO-WSN framework of LSTM + Attention + GA incorporation is sequentially executed based on a 
pipeline with a LEACH-based routing protocol framework clustering. The LSTM with Attention module first 
constantly tracks the temporal-spatial characteristics of the WSN, including the percentage of packets delivered, 
the amount of energy spent, and routing patterns, and decides whether the network is in a normal or an 
anomalous state (blackhole attack). This categorization is a decision flag to the following GA module. In case 
of normal behavior, GA goes on with standard optimization by optimizing cluster head selection and routing 
paths to reduce total energy usage and distribute node load evenly. In contrast, a blackhole is detected, and the 
GA optimizer will eliminate the rogue node off its candidate solution space when evolving chromosomes to 

Fig. 4.  LSTM with attention mechanism - GA optimization for energy optimization and anomaly detection.
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avoid routing along spoilt paths. This leads to attack-resistant routes that are adaptive in nature. Integration 
therefore takes place at the decision level with the result of anomaly detection directly limiting and controlling 
the evolutionary search of GA forming an integrated system in which GA is coordinated by the result of anomaly 
detection to optimize energy in an anomaly-aware manner.

The LSTM, Attention Mechanism and GA are sequentially integrated in a pipeline with feedback in the 
proposed LEGO-WSN architecture. The input to LSTM module is time-series WSN traffic information, such 
as the node status, the distance to cluster head, the energy consumed as well as the data transmitted to the base 
station. The LSTM liberates the temporal dependencies, and the Attention Mechanism weighs more emphasis to 
the key time steps and characteristics, which signify anomalous behavior. The result is the binary classification of 
each node which may be normal or anomalous (blackhole attack). This classification is subsequently transmitted 
to the GA module, which carries out cluster based optimization of routing based on a LEACH inspired 
protocol. Blackhole nodes are not allowed to be in a routing path when undergoing evolution via GA. The GA 
considers solutions presented by candidates according to energy usage, ratio of packet delivery, and latency. The 
implementation of a feedback loop is done such that the optimized solution of the routing with GA is observed 
in real-time, and the discrepancies in the work of the network (e.g., the appearance of abnormal energy spikes 
or PDR drops) are returned to the LSTM module. This enables the LSTM to dynamically update its attention 
weights and detection thresholds, which leads to better accuracies in anomaly detection and positive energy 
efficiency in changing network conditions. Therefore, the framework is a combination of anomaly detection, 
energy optimization in a sequence with iterative feedback, which makes sure that WSNs operate adaptively, 
securely, and efficiently.

Algorithm 1: Proposed LEGO-WSN for Energy Optimization and Anomaly Detection.
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The suggested LEGO-WSN model has been developed and tested with regard to identifying blackhole attacks 
in the WSN. The blackhole attack is also an anomaly where the malicious node claims to offer the shortest path 
to the destination node and then discards all packets being sent to it. The anomaly creates unique signature 
in the WSN traffic, including a sudden decrease in PDR, unusual energy usage, and unusual routing patterns, 
which are successfully identified in the LSTM with Attention model. Currently, the framework fails to explicitly 
identify other anomalies, including; grayhole, Sybil, wormhole, sinkhole, denial-of-service attacks since the 
dataset utilized in this study (SmartSensors WSN Dataset) has labels of normal traffic and blackhole attacks 
only. Accordingly, binary classification (normal vs. blackhole) has been trained on the model. Although other 
anomalies might exhibit behavioural similarities with blackhole attacks (e.g., drop of packets during grayhole 
attacks), they would need more training data with multi-class attack labels to detect them correctly. Therefore, 
LEGO-WSN is restricted in its detection to the two classes. Simultaneously, GA element of LEGO-WSN is not 
an anomaly detector but an energy optimizer. GA optimizes routing path choice and cluster head assignment 
through energy minimization but maintaining the same efficiency in packet delivery. The anomaly detection 
and optimization modules are connected in a sequence: once the LSTM detects the activity of the blackhole, the 
GA will modify the routing and energy management plan to ensure the efficient network operation during the 
attack.

Result and discussion
The findings of the proposed methodology using LSTM with Attention Mechanism and GA for real-time 
detection of blackhole attack and energy optimization in WSNs are described. Tool efficiency is evaluated 
utilizing accuracy, precision, recall, F1-score, throughput, trust level and packet delivery ratio to demonstrate 
the applicability of the proposed framework. When compared with the traditional methodologies, the essence of 
the suggested approach is illuminated in terms of its ability to guarantee the secure, energy efficient and reliable 
operation of WSNs in real-time environment.

The simulation parameters describe the WSN architecture for assessing the performance of the proposed 
methodology. MATLAB is used for implementation of the framework. These settings make it possible to 
obtain realistic and well-scaled performance under different conditions profoundly under the conditions of 
the blackhole attack or energy saving. The Table 2 highlights some of the significant parameters that are usually 
provided as input into proposed framework for real-time anomaly detection and energy optimization in IoT-
driven WSNs. Network area size is defined as 1000 m x 1000 m; each network has 1000 nodes; and initial energy 
of each node is 2 Joule. Consequently, the attack scenario uses LSTM with an attention mechanism to identify 
blackholes. Energy efficient routing is done using GA. Features such as transmission energy, packets size and 
simulation time characterises the anomaly detection.

Energy optimization performance
The GA implementation substantially enhances the energy efficiency in WSNs. As a result of employing GA in 
order to modify current routing schemes and fine-tune node functionality with regard to energy expenditure, the 
average energy per node decreases significantly. This has been shown in the study where, energy consumption 
has been reduced by a maximum of 35% therby indicating that GA improves energy efficiency.

Table 3 compares key metrics before and after optimization. Results show a reduction in average energy 
consumption from 2.5 J to 2.0 J, significant energy savings from 4% to 20%, improved data transmission efficiency 
from 75% to 90%, and reduced routing path length from 15 m to 12 m, indicating improved network operation.

The Fig. 5 shows the impact of energy optimization measures on various metrics in a network. After 
optimization, average energy consumption per node decreased significantly, leading to substantial energy 
savings. Data transmission efficiency and routing path length also improved, likely contributing to the overall 
energy reduction.

Parameter Value

Network Area 1000 m × 1000 m

Number of Nodes 1000

Packet Size 512 bytes

Simulation Time 2000 s

Initial Energy per Node 2 Joules

Transmission Energy 50 nJ/bit

Receiving Energy 50 nJ/bit

Data Transmission Rate 250 kbps

Attack Scenario Blackhole Attack

Detection Model LSTM with Attention

Optimization Algorithm Genetic Algorithm

Mobility Model Static Nodes

Base Station Location Center of the Network

Deployment Type Random Uniform

Table 2.  Experimental setup.
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Table 4 presents a comparison of energy consumption before and after applying the GA optimization across 
various network sizes. This table shows a significant reduction in energy consumption, with energy savings 
ranging from 37.5% to 40.5%, demonstrating the effectiveness of GA in optimizing energy usage in Wireless 
Sensor Networks.

The Fig. 6 illustrates energy consumption in a network before and after applying GA optimization for various 
network sizes. The height of each light blue bar represents the initial energy consumption without optimization, 
while the height of the corresponding orange bar shows the energy consumption after GA optimization. The 
difference between the heights of the bars, visualized by the connected dots, represents the percentage of energy 
savings achieved through the optimization process. The graph demonstrates that GA optimization consistently 
reduces energy consumption across different network sizes, with increasing energy savings as the network size 
grows.

Blackhole detection performance
Blackhole attack detection performance is crucial in identifying malicious nodes in WSNs that disrupt 
communication by dropping all received packets. Before a blackhole attack, packet loss is minimal as the network 
operates normally. However, after a blackhole attack, packet loss increases significantly because the malicious 
node drops all packets, leading to degraded network performance. After the blackhole attack starts (post-100 
simulated seconds), the system exhibits noticeable disruptions. The receive rate and packets received fluctuate 
irregularly, with sudden drops at certain intervals, marked by red points indicating the attack’s worsening 

Network Size Energy Consumption (mWh) Before GA Energy Consumption (mWh) After GA Energy Savings (%)

50 nodes 7.2 4.5 37.5%

100 nodes 10.5 6.3 40.0%

200 nodes 15.3 9.2 39.9%

500 nodes 24.8 15.0 39.5%

1000 nodes 38.9 23.1 40.5%

Table 4.  Comparing energy consumption before and after GA optimization.

 

Fig. 5.  Energy optimization performance.

 

Metric Before Optimization After Optimization

Average Energy Consumed (per node) 2.5 J 2.0 J

Energy Savings 4% 20%

Data Transmission Efficiency 75% 90%

Routing Path Length 15 m 12 m

Table 3.  Energy optimization performance.
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impact. These interruptions highlight significant packet losses and reduced network performance due to the 
blackhole attack. The oscillating patterns reflect compromised data transmission as the attack manipulates the 
flow, causing instability in the wireless sensor network’s operation.

The Fig. 7 shows the number of packets given in various flow ID. This proves that most of the flow IDs have 
sent comparably small packets compared to the few flow IDs that sent much larger packets.

The Fig. 8 represents the number of packets received by various flow IDs. It clearly indicates that a majority 
of the flow IDs have received relatively small number of packets while a very few have received a remarkably 
large number of packets.

The Figure 9 shows the number of lost packets for different flow IDs. Most flow IDs have lost a small number 
of packets, while a few flow IDs have experienced significantly more packet loss. This suggests that network 
congestion or other issues might be affecting specific flows more than others.

The Figure 10 illustrates the relationship between Packet Loss Ratio and Flow IDs across 1000 flows. The 
Packet Loss Ratio is plotted on the y-axis, while the Flow IDs are on the x-axis. The graph exhibits a high degree 
of variability, with the Packet Loss Ratio fluctuating significantly for different flow IDs. The values range from 
near 0 to a peak of approximately 300. The pattern suggests no obvious trend, with packet loss ratios distributed 
irregularly across all flow IDs.

The Fig. 11 displays before the blackhole attack begins (up to approximately 100 simulated seconds), the 
system shows stable performance with a steady increase in both the receive rate and the number of packets 
received. There is no significant disruption, and the metrics progress linearly, indicating a normal and efficient 
data transmission process in the wireless sensor network. This phase reflects an uninterrupted, healthy network 

Fig. 7.  Packet transmitted.

 

Fig. 6.  Energy consumption before and after GA.
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environment where data packets are reliably transmitted and received without loss or interference from malicious 
activities.

After the blackhole attack starts (post-100 simulated seconds), the system exhibits noticeable disruptions 
is shown in Figure 12. The receive rate and packets received fluctuate irregularly, with sudden drop at certain 
intervals, marked by red points indicating the attack’s worsening impact. These interruptions highlight significant 
packet losses and reduced network performance due to the blackhole attack. The oscillating patterns reflect 
compromised data transmission as the attack manipulates the flow, causing instability in the wireless sensor 
network’s operation. This phase demonstrates the adverse effects of malicious activities on the system’s reliability 
and efficiency.

The Fig. 13 shows how a blackhole attack affects network throughput under different mobility conditions. As 
the number of malicious nodes increases, throughput decreases in both static and mobile networks. However, 
the mobile network with a speed of 30 m/s experiences a steeper decline in throughput compared to the static 
network, indicating that mobility can worsen the impact of blackhole attacks.

The Figure 14 displays the performance of a classification model in detecting blackhole attacks. The 
diagonal values (5550 and 10200) represent the number of correct predictions for blackhole and normal traffic, 
respectively. The off-diagonal values (50 and 250) indicate the number of misclassifications. The color intensity 
reflects the frequency of each outcome, with darker shades indicating higher counts. 1 The model appears to be 
effective at identifying normal traffic but has a higher false positive rate for blackhole attacks.

Fig. 9.  Lost packet.

 

Fig. 8.  Packet received.
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Packet delivery ratio for normal and Blackhole nodes
PDR is the ratio of successfully delivered packets to the total packets sent in a network. It is a critical metric for 
evaluating network reliability and performance. In this study, PDR has highlighted the effect of blackhole attacks 
on data delivery. The proposed method improves PDR by mitigating packet loss caused by malicious nodes, thus 
ensuring more stable and reliable communication in wireless sensor networks.

The Fig. 15 shows the PDR as a function of time for the normal and blackhole nodes. A steady packet delivery 
success drops off the normal node PDR, while the blackhole node one falls steeply at the start and remains low 
at later times. This suggests a complete disruption of packet deliveries in blackhole attacks during the start and 
remaining small values in the rest period.

Trust level evaluation
Trust Level Evaluation is an important process to measure the reliability and security of nodes in a WSN. It 
determines how trustworthy a node is by considering metrics like behavior patterns, data integrity, and detection 
of anomalies, such as blackhole attacks. This metric is used to ensure secure communication and optimize 
energy usage by identifying and isolating malicious nodes. The proposed method demonstrates superior trust 
level outcomes compared to traditional approaches.

The Table 5 compares the attained trust levels of various methods that achieve blackhole attack detection in 
WSN. The proposed method with combined LSTM and GA obtains maximum trust level as 0.98 and dominates 

Fig. 11.  Before blackhole attack.

 

Fig. 10.  Lost packet ratio.
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other methods such as RF, K-Means Clustering, ANN, as well as static threshold-based approach for detection, 
showing its greater reliance and accuracy.

Energy efficiency and optimization comparison
Energy efficiency and optimization comparison show the efficiency of proposed Genetic Algorithm in reducing 
the energy consumption in wireless sensor networks. Optimizing routing path and cluster head selection lowers 
the energy consumed per node by up to 40% providing high performance and reliability in data transmission.

The Table 6 shows performance metrics of the LSTM model former and post-optimization. Metrics such 
as precision, recall, detection accuracy, and F1-score had improved. The optimization had also reduced energy 
consumption by 20% per node and improved data transmission by 15%. These improvements point out the 
effectiveness of this proposed methodology in achieving precise blackhole attack detection coupled with energy-
efficient operations on wireless sensor networks.

Fig. 13.  Throughput of blackhole attack.

 

Fig. 12.  After blackhole attack.

 

Scientific Reports |        (2025) 15:41104 18| https://doi.org/10.1038/s41598-025-24968-8

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Figure 16 shows average energy consumption before and after GA optimization of a routing scheme. The 
left bar represents the initial energy consumption without optimization, and the right bar represents the energy 
consumption after GA optimization. A red line connects the tops of the bars, indicating the percentage of energy 
reduction achieved. The graph shows significant energy consumption reduction after the GA optimization, 
which emphasizes the effectiveness of the optimization in improving energy efficiency.

The Fig. 17 shows the energy consumptions of cluster head and non-cluster head nodes in a WSN before and 
after application of GA optimization. Here, the height of the light blue bar represents initial energy consumption 

Fig. 15.  PDR for normal and blackhole nodes.

 

Fig. 14.  Confusion Matrix for Blackhole Attack Detection.

 

Scientific Reports |        (2025) 15:41104 19| https://doi.org/10.1038/s41598-025-24968-8

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


without optimization. On the other hand, the height of the orange bar represents the energy consumption after 
application of GA optimization. The differences between the heights of the bars represent as percentages the 
amount of energy savings achieved by the process. The graph shows how significant energy consumption is 
reduced with both CH and non-CH nodes due to the use of GA optimization for achieving efficiency in wireless 
sensor networks.

Figure 18. shows the evolutions of best fitness score over the generations in genetic algorithm optimization 
process. The fitness score is a measure for the quality of the solutions plotted versus the number of generations 
in the process of GA. The diagram shows an upward trend over generations with a steady improvement in 
the fitness score. This indicates that the GA is performing exploration effectively in the solution space and 
converging towards a better solution as the optimization process progresses.

Performance assessment
In the proposed LEGO-WSN model, the performance evaluation is based on various metrics to holistically 
evaluate both the anomaly detection and the energy optimization in WSN. Accuracy, precision, and recall, 
and F1-score are used to test how well the LSTM with Attention Mechanism recognizes normal and blackhole 
nodes, which is the effectiveness of the detectors. It is expressed in Eqs. (17), (18), (19) and (20) used for 
the performance evaluation of metrics that can measure the efficiency of the blackhole attack detection and 

Fig. 16.  Energy consumption before and after GA optimization.

 

Metric Before Optimization After Optimization

Accuracy 94% 99%

Precision 90% 98%

Recall 91% 99%

F1-Score 90.5% 98.5%

Average Energy Consumed (per node) 2.5 J 2.0 J

Data Transmission Efficiency 75% 90%

Table 6.  Performance of LSTM before and after Optimization.

 

Method Trust Level

Proposed Method LEGO-WSN 0.98

Random Forest 0.89

K-Means Clustering 0.88

ANN 0.92

Static Threshold-Based Detection 0.87

Table 5.  Trust level comparison for different Methods.
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Fig. 18.  Energy consumption per node before and after GA optimization.

 

Fig. 17.  Energy consumption in nodes.
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energy optimization. The accuracy measures overall correctness in detection, and the precision measures the 
number of attacks correctly detected by the model. Recall computes the detection of all the attack instances 
by the model. F1-score balances between the two aforementioned parameters. TP as true positive, TN as true 
negative, FP as false positive, and FN as false negative. Energy consumption efficiency and data transmission 
efficiency are measured so the optimization made can be seen in terms of using or consuming the resources. 
These measurements explain the proposed method for strong, efficient, and reliable real-time anomaly detection 
using IoT-driven wireless sensor networks and its energy optimisations.

The effectiveness of the protocol in minimizing energy expenditure is determined by the average energy 
consumed (J per node) and the energy saved (%) and is vital in the lifetime of resource limited WSN nodes. 
The efficiency of data transmission (%) is used to show the quality of communication as it measures the ratio 
of successful transmissions. Packet delivery ratio (PDR) guarantees that the packets sent to a destination arrive 
at the destination, it is one of the measures of a routing stability. Network latency (ms) is used to determine 
the delay in the delivery of the packet which is vital in evaluating real time applicability. Throughput (kbps) 
is taken as a measure of data-handling potential in various network conditions. Furthermore, the trust level 
measure is also integrated to determine the effectiveness of anomaly detection, as well as, to provide a secure 
data forwarding. Collectively, the metrics show a comprehensive overview of energy efficiency, communication 
stability, and anomaly detection efficiency. The efficiency of the optimization of network energy expenditure in 
terms of the average energy used per node, energy saving, and the routing path length is indicated by energy-
related metrics is shown in Eqs. (21), (22) and (23). The performance of the network is also measured by the 
ratio of the number of packets delivered, the network latency, the throughput, and data transmission efficiency 
so that the optimized routing can ensure reliable and timely communications is shown in Eqs. (26), (27). The 
level of trust is also regarded to measure the reliability of the node and combine both security and performance 
in an overall assessment of the proposed framework is shown in Eq. (25).

	
Accuracy = T P + T N

T P + T N + F P + F N
� (17)

	
P recision = T P

T P + F P
� (18)

	
Recall = T P

T P + F N
� (19)

	
F 1 = P recision. Recall

P reciion + Recall
� (20)

	
Eavg =

∑ N

i=1Ei

N
� (21)

	
Energy Savings (%) = Ebaseline − Eproposed

Ebaseline
× 100� (22)

	
Data Transmission Efficiency (%) = Successful transmissions

Total transmissions
× 100� (23)

	
PDR = Number of packets received

Number of packets sent
� (24)

	
Trust Level = Reliable interactions

Total interactions
� (25)

	
Latency =

∑ M

i=1 (treceive,i − tsend,i)
M

� (26)

	
Throughput = Total data received (kb)

T otal time (s) � (27)

The suggested LEGO-WSN delivers more precision, recall, and a better F1-score when compared to related 
approaches for identifying blackhole attacks and enhancing energy usage; details in Table 7. Under the considered 

Method Accuracy Precision Recall F1-Score Energy Efficiency

Proposed LEGO-WSN (LSTM + GA) 99% 98% 99% 98% 20% Savings

Random Forest33 92% 90% 91% 90.5% 10% Savings

K-means Clustering34 89% 88% 87% 87.5% 5% Savings

ANN23 95% 93% 94% 93.5% 12% Savings

Static Threshold Method35 80% 75% 78% 76% 2% Savings

Table 7.  Comparison of existing methods.
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attack scenarios, the approach delivers up to 20% energy conservation. Under all attack types, this framework 
ensures secure and effective communication.

Figure 19 Performance metrics of the proposed method for a classification task. The metrics indicated are 
accuracy, precision, recall, and F1-score. Each of the metrics is very high, ranging from 98% to 99%. This means 
that the proposed method is very efficient in classifying the data with minimal false positives and false negatives. 
The balanced performance at all metrics shows that the algorithm is strong and can handle both positive and 
negative samples in the dataset.

The performance metrics Table 8 show the effectiveness of the proposed model within accuracy, efficiency 
and reliability dimensions. Accuracy (99%), precision (98%), recall (99%), and F1-score (98.5%) are the system 
values, which means that it has a strong ability to detect and classify anomalies. The energy saving is seen in the 
energy consumption of 2.0 J per node which is 20% energy savings on average. The efficiency of data transmission 
is 90% with the path length of the routes being optimized at 12 m. This network has a high level of reliability of 
0.98 in terms of packet delivery ratio and trust level. In addition, the low latency (85 ms) and high throughput 
(230 kbps) also emphasize secure power-efficient communication.

Discussion
The analysis shows that the proposed LEGO-WSN framework, which integrates LSTM with the attention 
mechanism in enabling GA, enhances the blackhole attack identification and energy efficiency in IoT-based 

Metric Value

Accuracy (%) 99

Precision (%) 98

Recall (%) 99

F1-Score (%) 98

Average Energy Consumed (per node, J) 2.0

Energy Savings (%) 20

Data Transmission Efficiency (%) 90

Packet Delivery Ratio 0.98

Trust Level 0.98

Network Latency (ms) 85

Throughput (kbps) 230

Table 8.  Performance metrics of the proposed WSN framework.

 

Fig. 19.  Proposed method performance.
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WSNs. The proposed method had impressive accuracy of 99% which has the ability of overcoming the main 
drawbacks of traditional machine learning methods like Random Forest, K-means clustering and Artificial 
Neural Networks. The proposed method can also detect anomalies, guarantee secure communication and 
increase the productivity of the networks. In addition, LEGO-WSN operate with 20% less power, providing 
improved energy control which is a crucial aspect for sustainability of WSN. The PDR results obtained showed 
that LEGO-WSN offered optimal performance even in blackhole attack situations proving its reliability in real-
time anomaly detection. Moreover, the proposed method demonstrated significant increase in energy saving and 
increased energy to data transmission ratio. However, there are some constraints that have been pointed in the 
study; for example, the study relied on massive quantities of datasets for LSTM modeling while GA optimisation 
is a computationally intensive process. Despite the encouraging results achieved with LEGO-WSN, further work 
can be carried out in terms scalability and computational complexity that would enable the translation into 
larger, somehow more dynamic WSN scenarios. In summary, the findings demonstrate that LEGO-WSN can be 
used for self-organised energy minimisation and self-supervised anomaly identification in future IoT systems. 
The proposed framework assumes medium network stability, and the fast joining/leaving nodes are not handled 
much. The overhead of communication in GAs is also introduced, and LSTM with attention upsurges the 
complexity of computation, which may be a bottleneck in the application of ultra-low-power nodes and large-
scale WSN systems. Future directions will include adaptive and distributed GA strategies, lightweight GA-LSTM 
models to accomplishment of edge deployments, incorporation of security mechanisms, and large-scale tests to 
increase the extent of scalability, power efficiency, and robustness in highly dynamic and resource-constrained 
WSN settings.

Conclusion and future scope
The proposed LSTM and attention mechanism integrated with GA, the LEGO-WSN framework provides 
substantial methods to achieve real time anomaly detection and energy optimization within IoT WSNs. As 
evidenced in this work, LEGO-WSN achieves high Blackhole detection accuracy of 99% higher than conventional 
Machine Learning models of Random forest, K-mean clustering, and ANN. Regarding the energy efficiency 
aspect, the combined approach of the presented method improved energy savings up to 20% while at the same 
time improving the efficiency of data transmission. The analysis of the PDR validated the system’s ability to 
provide a reliable wireless communication even if blackhole attacks were applied during the experiments, 
indicating that LEGO-WSN can also be robust during real conditions. Further, GA for energy optimization use 
in the nodes helped in decreasing the energy utilization in the network thereby enhancing sustainability in the 
long run.

However, several areas can act as the reason for improvement. Firstly, the work can be extended to make 
LEGO –WSN scalable to larger in terms of number of nodes network for which LSTM and GA might become 
computationally expensive. If the model were to be fine-tuned for large networks, it would be possible for 
greater IoT networks to also benefit from the model. Moreover, the addition of other complicated techniques 
like reinforcement learning or hybrid models can be considered because of the enhancement of blackhole attack 
detection accuracy and an optimal network solution. Further, it would be interesting to use LEGO-WSN with 
more generic multiple types of attacks, other than blackhole targeted at WSNs and analyze results which can 
help to construct a better overall security system. The experiments that include real-time deployment and 
comparison of the proposed method with other competing methods in actual IoT settings would complete the 
overall strategy, which could respond to the inquiries about feasibility and efficiency of the proposed method 
concerning large-scale and real-life implementation.

Data availability
The datasets generated and/or analysed during the current study are available in Kaggle repository. ​h​t​t​p​s​:​​/​/​w​w​w​
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