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Spatial monitoring of soil macronutrients—especially total nitrogen (TN), available phosphorus (AP), 
and available potassium (AK)—using remote sensing technologies is a promising approach to promote 
precision agriculture. The aim of this study is to evaluate the effectiveness of Sentinel-2 satellite data 
and selected spectral indices in modeling the concentrations of these important soil macronutrients 
on agricultural land. A total of 181 soil samples were collected from a depth of 0–30 cm and analyzed 
in the laboratory using standard methods to determine nitrogen, phosphorus, and potassium content. 
Twelve common spectral indices and a newly proposed index—the standardized spectral reflectance 
index (SSRI), derived from the first principal component of a PCA—were extracted from the Sentinel-2 
data. Linear regression modeling revealed that TN provided the most accurate predictions (R2 = 0.77, 
RMSE = 0.04%, MSE = 0.01, RPIQ = 2.43 (good predictive performance)), followed by AK (R2 = 0.72, 
RMSE = 166.49 ppm, MSE = 0.27, RPIQ = 2.21 (good predictive performance)), while AP showed 
relatively weak model performance (no significant regression and no predictive RPIQ), probably due 
to its limited spectral expression in remote sensing data. The newly introduced SSRI outperformed 
the conventional indices in nitrogen modeling, which is an important novelty of this study. Overall, 
the results indicate that the integration of Sentinel-2 data with optimized spectral indices provides 
a feasible and effective approach for the indirect estimation of TN and, to a lesser extent, AK. The 
application of this method has the potential to reduce reliance on costly field sampling, improve 
fertilizer management, and contribute to the sustainability of agricultural systems. It is recommended 
that multi-temporal Sentinel-2 imagery be used in future studies to refine SSRI extraction and provide 
a rational and innovative method for estimating these critical soil macronutrients.
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The availability of nutrients in the soil is a key factor influencing agricultural productivity, long-term 
sustainability, and environmental quality. Macronutrients, including total nitrogen (TN), available phosphorus 
(AP), and available potassium (AK), are essential elements that directly control fundamental plant physiological 
processes such as cell division, photosynthesis, nutrient uptake, and energy transfer. These nutrients have a 
significant impact on biomass accumulation and yield formation by supporting the metabolic functions and 
structural development of plants1,2. Due to the high requirements of plants, maintaining optimal levels of these 
macronutrients through continuous monitoring, accurate soil testing, and appropriate fertilization strategies is 
crucial for maintaining soil fertility, avoiding nutrient depletion, and improving plant performance. In addition, 
balanced nutrient management also mitigates negative environmental impacts such as nutrient leaching, 
greenhouse gas emissions, and soil degradation3.

Accurate determination of soil macronutrient content is fundamental to precision agriculture as it enables 
site-specific fertilization and minimize the overuse of agrochemicals that can affect soil and water quality4. 
Conventional soil testing methods, such as field sampling followed by chemical analysis in laboratory, are widely 
used but have several limitations, including high cost, high labor intensity, and limited spatial coverage5,6. 
These limitations are particularly important in large-scale or heterogeneous agricultural regions where nutrient 
variability is high and timely decision-making is essential7,8.

Department of Soil Science, Faculty of Agriculture, Urmia University, Urmia, Iran. email:  
m.rsadaghiani@urmia.ac.ir; f.asadzadeh@urmia.ac.ir

OPEN

Scientific Reports |        (2025) 15:41023 1| https://doi.org/10.1038/s41598-025-25034-z

www.nature.com/scientificreports

http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-025-25034-z&domain=pdf&date_stamp=2025-10-21


With the advancement of Earth observation technologies, remote sensing has become a powerful tool for 
characterizing the spatial variability of soil properties. Satellite-based multispectral data, especially from the 
Sentinel-2 platform, has proven to be an effective tool for mapping soil properties due to its high temporal 
frequency, spectral richness, and spatial resolution (10–20  m)2,9–11. Various soil properties, such as texture, 
moisture, organic matter, and nutrient content, can influence the reflectance captured in specific spectral 
bands12. Therefore, remote sensing offers the opportunity to indirectly estimate soil macronutrients on a broad 
scale, with lower costs and improved temporal monitoring13.

Previous studies have applied various machine learning and statistical techniques to model soil nutrient 
distribution using satellite imagery7,14. However, most studies focused on individual nutrients or used simple 
vegetation or soil indices, often neglecting the interdependencies among soil attributes or the full spectral 
potential of the Sentinel-2 data. In addition, the presence of noise, redundancy, and multicollinearity in raw 
spectral bands can affect model performance and reduce generalizability4. To overcome these challenges, 
dimensionality reduction techniques such as principal component analysis (PCA) have become increasingly 
important in soil and environmental modeling8. PCA enables the transformation of correlated spectral bands 
into uncorrelated principal components, preserving the most important spectral variance and reducing noise 
and redundancy. In combination with appropriate standardization techniques, spectral indices derived from 
PCA can increase the robustness and interpretability of remote sensing models and improve their predictive 
performance in complex landscapes1.

In this study, a standardized spectral index called Principal Component Analysis–Standardized Spectral 
index (PCA-SSI) was developed based on PCA and standardization to accurately estimate the spatial variability 
of soil macronutrients—TN, AP, and AK—using Sentinel-2 imagery. The Miandoab plain in northwestern 
Iran was selected as the study area because it is an important agricultural region characterized by high soil 
heterogeneity, variable fertility levels, and diverse cropping systems. Challenges such as nutrient deficiency and 
soil salinization in this region highlight the need for accurate, data-driven methods to monitor macronutrient 
status, as improved soil management here can significantly increase productivity and enhance food security. 
Therefore, the main objectives of this research are: (1) extract the main spectral components from Sentinel-2 
images using PCA, (2) develop a PCA-SSI that integrates the most informative bands for macronutrient 
prediction, (3) model and map the spatial distribution of TN, AP, and AK using this index, and (4) evaluate 
the performance of the proposed index in capturing soil fertility variability across the study area. By combining 
multivariate spectral transformation, statistical standardization, and high-resolution remote sensing data, this 
work provides a robust and practical framework for precise soil nutrients that can be used for digital soil mapping 
and optimized nutrient management programs in semi-arid agricultural systems.

Materials and methods
Geographical, climatic, and soil characteristics of the study region
The study area encompasses approximately 8.3 × 104 km2 of agricultural land in the northwest of Iran, located 
between 45° 50′ 00″ and 46° 20′ 00″ east longitude and 37° 10′ 00″ and 38°50′00″ north latitude (Fig. 1). The 
region is characterized by a semi-arid climate according to the Köppen climate classification, with an average 
annual temperature of around 9  °C. Rainfall patterns are bimodal, with a wet season that lasts from early 
autumn to mid-spring and a dry season that lasts from mid-spring to early autumn. The average annual rainfall 
during the wet period is about 289 mm. The lithological composition of the region is diverse and consists of 
igneous, sedimentary, and metamorphic formations such as diorite, marble, andesitic volcanic rocks, marl, 
limestone, sandstone, shale, conglomerate, and Precambrian granite to granodiorite. These parent materials have 
contributed to the development of different soil types, which are mainly classified as Entisols and Inceptisols and 
show a low to moderate levels of pedogenic development. The main land use is agriculture with the main crops 
being winter wheat, barley, peas, sugar beets, alfalfa, oilseeds, corn, and various fruit crops. Although furrow 
irrigation was the predominant irrigation practice in the past, increasing water scarcity in recent years has led to 
a gradual transition to more water-efficient systems, in particular center pivot irrigation (https://www.swri.ir).

Soil sampling and macronutrient analysis
After delimiting and defining the boundaries of the study area, soil sampling was conducted randomly at 181 
precise geographical locations distributed in the region (Fig. 1). The main objective of sampling strategy was 
to obtain a comprehensive representation of the chemical properties of the surface soils in the plain. At each 
sampling point, composite soil samples were collected from the 0 to 30 cm depth interval. More specifically, 
five subsamples (Fig. 2) were taken at a specific radius around each point and thoroughly mixed into a single 
composite sample Faramarzi et al.15. This depth range was chosen because it encompasses the zone of highest 
biological activity, nutrient exchange, and root development for cultivated plants. After collection, the samples 
were transported to the laboratory where they were air-dried at room temperature, gently ground, and passed 
through a 2 mm mesh sieve to prepare them for chemical analyzes. The concentrations of the key macronutrients 
were then determined according to established standard protocols. Total nitrogen (TN) was quantified using 
the classical Kjeldahl digestion method16. The available phosphorus (AP) was determined using the Olsen 
procedure17, and soil available potassium (AK) concentration was measured using a flame photometric 
technique18. These methods were selected due to their proven suitability for the analysis of calcareous soils, 
which are prevalent in the study region.

Remote sensing data preparation and preprocessing
In this study, Sentinel-2 satellite images—including Band 2 (Blue, 0.458–0.523  μm), Band 3 (Green, 0.53–
0.59 μm), Band 4 (Red, 0.64–0.67 μm), Band 8 (NIR, 0.85–0.88 μm), Band 11 (SWIR1, 1.57–1.65 μm) and Band 
12 (SWIR2, 2.11–2.25 μm)—were used to extract the relevant indices. The data was obtained via the Google 
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Fig. 2.  Soil sampling locations using the 5-point sampling method.

 

Fig. 1.  Study area boundary and sampling locations in Miandoab plain, West Azerbaijan Province.
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Earth Engine platform, a robust cloud-based computing environment designed for large-scale remote sensing 
and geospatial data processing. A specific time window was selected to minimize cloud cover, restricting it 
to less than 10% to ensure data quality. To enhance spectral fidelity and reduce atmospheric interference, an 
atmospheric correction was applied to the images. This process used the physically based SEN2COR algorithm, 
which was developed specifically for Sentinel-2 datasets. SEN2COR uses atmospheric parameters such as water 
vapor, aerosols, and surface pressure to remove scattering and absorption effects, and convert the data from 
top-of-atmosphere (TOA) reflectance to bottom-of-atmosphere (BOA) reflectance. For validation purposes, 
complementary atmospheric correction methods based on empirical models, including dark object subtraction 
(DOS), were also implemented and cross-compared with the SEN2COR outputs. After atmospheric correction, 
all images were subjected to geometric co-registration, and the spectral bands were resampled to a uniform 
spatial resolution of 20 m using bilinear interpolation. This resampling technique was chosen to avoid spatial 
discontinuities and distortions. It is noteworthy that the Sentinel-2 bands (e.g. blue, green, red, and near-infrared 
bands) originally recorded at a resolution of 10  m and those recorded at a resolution of 60  m (typically in 
conjunction with atmospheric correction bands) were rescaled accordingly to the targeted spatial resolution of 
20 m. This harmonization was essential for the subsequent integrated data analysis19.

Standardized spectral reflectance index calculation
To determine the standardized spectral reflectance index (SSRI), all relevant reflectance bands from the Sentinel-2 
images were first atmospherically corrected and spatially resampled to a common resolution. Each band was 
then normalized to a range of [0,1] to eliminate scale disparities among them, according to the Eq. 120,21.

	
Rt = Ri − Ri−min

Ri−max − Ri−min
� (1)

where, Ri denotes the reflectance value of band i and Rt is the normalized reflectance.
PCA was then applied to the matrix of normalized reflectance values. This dimensionality reduction 

technique enabled the extraction of principal spectral patterns by transforming the correlated spectral bands 
into a series of uncorrelated components. The first principal component (PC1), which has the highest variance in 
the spectral data, was selected as the core component of the SSRI. To standardize PC1, a Z-score normalization 
was performed as follows (Eq. 2).

	
SSRI = (P C1 − µ)

σ
� (2)

where, μ and σ represent the mean and standard deviation of PC1 values across the entire image, respectively.
The SSRI enhances spectral contrast and enables effective discrimination of surface features such as vegetation, 

bare soil, water bodies, and urban areas. By integrating spectral information from all relevant bands into a single 
index, the SSRI provides a robust metric for analyzing land cover and assessing spectral variability. Importantly, 
this ensures that the SSRI is not just another spectral index but rather a generalized and standardized framework 
that can be consistently applied across different regions and time periods.

Development of predictive models for spatial distribution of soil macronutrients using the 
SSRI
In this study, prediction models for macronutrient concentrations in soil were developed based on the SSRI. 
First, the point data obtained from chemical soil analyzes were divided into two different subsets. To ensure the 
robustness of the model, a random sampling approach was employed, which 70% of the data used for model 
train and the remaining 30% for test and performance evaluation. After calculating the SSRI values for the entire 
study area, simple linear regression analyzes were performed to investigate the relationships between spectral 
reflectance (expressed by SSRI) and soil chemical properties. Separate regression models were established for 
each macronutrient element, with SSRI as the independent variable and measured nutrient concentration as 
the dependent variable. Using these regression equations and the spatial SSRI map, predictions of nutrient 
concentration were made for each image pixel, resulting in spatial distribution maps of soil macronutrients21.

Model evaluation
To assess the spatial accuracy and reliability of the predictive maps, the estimated nutrient concentrations were 
extracted at the geographic locations corresponding to the points in the test dataset and then compared with the 
actual measured values. The quality of the predictions was assessed using various statistical metrics, including the 
coefficient of determination (R2), root mean square error (RMSE), mean squared error (MSE), and the ratio of 
performance to interquartile distance (RPIQ). While R2, RMSE, and MSE provide information on the overall fit 
and error magnitude, RPIQ offers a scale-independent measure of predictive performance by relating the model 
error to the interquartile range of observed values. This combination of metrics provided a more comprehensive 
understanding of the model’s performance in capturing the spatial variability of soil macronutrients22,23. The 
statistical metrics were calculated as follows (Eqs. 3–6).

	
R2 = 1 −

∑n

n=1(yi − yj)n

∑n

n=1(y − yj)n � (3)
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RMSE =

√√√√ 1
n

n∑
n=1

(yi − yj)n� (4)

	
MSE = 1

n

n∑
n=1

(yi − yj)n� (5)

	
RP IQ = Q3 − Q1

RMSE
= IQR(y)

RMSE
� (6)

where, yi and yj are the observed and predicted values, respectively; y is the mean of the observed values; Q1 
and Q3 represent the first and third quartiles of the observed values; and IQR (y) denotes the interquartile 
range, which is defined as the difference between the third and first quartiles. A higher RPIQ value indicates 
better model performance. Typically, RPIQ values are interpreted as follows: RPIQ > 2 indicates a good model; 
1.5 ≤ RPIQ ≤ 2 indicates an acceptable model; and RPIQ < 1.5 indicates a weak model.

Results
Descriptive statistical analysis of soil macronutrients
The mean TN content in the soil was found to be 0.092%. The minimum and maximum values were recorded 
at 0.010% and 0.80%, respectively. A coefficient of variation (CV) of 75.2% indicates a relatively high variability 
of nitrogen concentrations across the studied soils (Table 1). This heterogeneity may be due to differences in 
agricultural practices, vegetation cover, and the rate of organic matter decomposition at different sites24. Among 
the analyzed macronutrients, AP showed the greatest variability, with a CV of 164.9%, indicating considerable 
variation in its concentration. AP levels ranged from 1.8 to 361.0 ppm, with a mean value of 20.78 ppm (Table 
1). This pronounced variability can be attributed to the dynamic behavior of AP in soils, its particular chemical 
properties, and anthropogenic influences. In contrast to other macronutrients, P is relatively immobile in soil, 
as it frequently becomes fixed in insoluble forms such as calcium, iron, and aluminum phosphates. As a result, 
despite repeated applications of phosphate fertilizers by farmers in each growing season, AP tends to accumulate 
in localized and non-uniform patterns within the soil profile. In addition, many farmers routinely apply 
phosphorus fertilizers each year without conducting soil tests. This practice often leads to excessive phosphorus 
loading in certain areas, and exacerbates spatial heterogeneity. The problem is particularly evident in agricultural 
lands with a long history of chemical fertilizer usage25. The mean AK content was 377.42  ppm, with values 
ranging from 52 to 1321 ppm. The CV for K was 49.3%, indicating moderate variability compared to nitrogen and 
phosphorus (Table 1). This variability can be influenced by factors such as the mineralogical composition of the 
parent material, cropping pattern, irrigation management, and site-specific potassium fertilization practices26,27.

Correlation between spectral bands and soil macronutrients
The Pearson correlation matrix between selected Sentinel-2 spectral bands and three soil macronutrients 
showed that TN had the strongest correlation with spectral reflectance. The correlation coefficients for TN 
were consistently high across all bands and statistically significant a confidence level of 99% (α = 0.01). The 
highest correlation was observed in the green band (Band 3) with a coefficient of 0.878, closely followed by 
the red band (Band 4) with a value of 0.876 (Table 2). These strong associations are likely due to the direct 
influence of nitrogen on chlorophyll content in plants, which significantly affects reflectance in the visible and 
near-infrared (NIR) regions of the spectrum. In contrast, AP showed the weakest correlation with the spectral 
bands. Its correlation coefficients were generally low, ranging from 0.22 to 0.24, and none reached statistical 
significance (Table 2). This weak correlation may reflect relatively low mobility of phosphorus in soil and its 
indirect influence on plant spectral characteristics. AK showed moderate correlations with several spectral 
bands, with the highest correlation observed at Band 11 (SWIR 1), at 0.591 (Table 2). Considering the role of 
potassium in stomatal regulation and plant water balance mechanisms, this relationship is biologically plausible, 
although it is significantly weaker than that observed for nitrogen. Overall, the results indicate that nitrogen 
is more strongly associated with spectral reflectance in the visible, NIR, and SWIR regions, while phosphorus 
exerts a comparatively smaller influence on spectral responses. These results indicate that the nitrogen content 
in soil can be estimated more accurately and reliably by remote sensing data than the other two macronutrients 
investigated.

Statistic TN (%) AP (ppm) AK(ppm)

Minimum 0.01 1.80 52.00

Maximum 0.80 361.00 1321.00

Mean 0.09 20.78 377.42

Standard deviation 0.07 34.28 185.97

CV 75.23 164.94 49.27

Table 1.  Summary of descriptive statistics for soil macronutrient concentrations.
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Correlation analysis between the SSRI and soil macronutrients
PCA was performed to reduce the dimensionality of the spectral data and to extract the most important features 
from selected Sentinel-2 bands. The results showed that the first principal component alone explained 96.31% 
of the total variance in spectral reflectance values (Fig. 3). This high percentage indicates that most of the useful 
information contained in the spectral bands is actually concentrated in the first component. Consequently, this 
component was standardized and referred to as SSRI to be used in the subsequent correlation analyzes with soil 
macronutrients.

Pearson correlation analysis revealed a strong and statistically significant positive correlation between SSRI 
and TN in soil (r = 0.875), significant at the 99% confidence level (Fig. 4). This finding indicates that nitrogen, 
which directly influences chlorophyll concentration and plant greenness, plays a dominant role in controlling 
spectral reflectance variations. A moderate and statistically significant correlation was also observed between 
SSRI and AK (r = 0.560) (Fig.  4). This relationship may reflect the involvement of potassium in important 
physiological processes such as water regulation, photosynthesis efficiency, and cellular structural stability. In 
contrast, the correlation between SSRI and AP was relatively weak (r = 0.230) and not statistically significant at a 
99% confidence level (Fig. 4). This result is consistent with the limited mobility of phosphorus in the soil and its 
indirect influence on the reflectance properties of plants.

Regression analysis of SSRI for estimating soil macronutrient concentrations
To evaluate the potential of the SSRI, derived from Sentinel-2 satellite data, in estimating soil macronutrient 
concentrations, regression analyses were performed for TN, AK, and AP. The results revealed that SSRI had a 

Fig. 3.  PCA of various spectral bands from Sentinel-2 satellite imagery.

 

Variables N AP AK Band 2 Band 3 Band 4 Band 8 Band 11 Band 12

TN 1

AP 0.112 1

AK 0.161 0.319* 1

Band 2 0.861** 0.240* 0.561** 1

Band 3 0.878** 0.224 0.576** 0.959** 1

Band 4 0.876** 0.227 0.574** 0.959** 0.969** 1

Band 8 0.846** 0.241* 0.578** 0.947** 0.953** 0.954** 1

Band 11 0.850** 0.236 0.591** 0.953** 0.953** 0.963** 0.962** 1

Band 12 0.865** 0.224 0.542** 0.961** 0.946** 0.954** 0.944** 0.959** 1

Table 2.  Pearson correlation coefficients between Sentinel-2 spectral bands and soil macronutrients. 
**Correlation is significant at the 0.01 level. *Correlation is significant at the 0.05 level.
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statistically significant linear relationship with TN and AK concentrations, whereas no such relationship was 
observed for AP; consequently, no regression model was developed for phosphorus.

For TN (%), the regression equation (Eq. 7) showed high predictive performance during the training phase, 
with an R2 of 0.77, RMSE of 0.04%, and MSE of 0.01. The corresponding RPIQ of 2.43 indicates that the model 
is good in terms of predictive capability during training (Table 3 and Fig.  5a). When applied to the testing 
dataset (55 samples), the R2 decreased to 0.34, indicating lower explanatory power. Nevertheless, RMSE and 
MSE remained low at 0.02% and 0.001%, respectively, suggesting limited numerical error. The RPIQ for testing 
was 1.25, reflecting weak predictive performance, which indicates that while the model maintains reasonable 
accuracy, its generalization ability is somewhat limited (Table 3 and Fig. 5c).

For AK, the regression model (Eq. 8) also performed satisfactorily. During training, R2 reached 0.72, with 
RMSE = 166.49 (ppm) and MSE = 0.27, and an RPIQ of 2.21, indicating good predictive performance (Table 
3 and Fig.  5b). In the testing phase, numerical accuracy improved, with RMSE decreasing to 110.37 (ppm) 
and MSE to 0.12, although R2 decreased to 0.46 (Table 3 and Fig. 5d). The RPIQ of 1.66 suggests acceptable 
predictive performance, demonstrating that the AK model retains relatively stable predictive ability across both 
datasets despite a slight decline in explanatory power. Also, regression analysis for AP did not show a statistically 
significant relationship with SSRI, and thus no predictive model was developed for this nutrient.

	 TN = −1.73E − 02 + 0.65 × SSRI (0 − 1)� (7)

	 AK = 194.75 + 1090.86 × SSRI (0 − 1)� (8)

Spatial analysis of soil macronutrient levels across the study area
Figure 6a illustrates the spatial distribution of TN in the soils of the study area, which varies between 0.01 and 
0.80%. It is evident that nitrogen concentrations are predominantly in a medium to high range in most parts of 
the region, especially in the western and central zones where the colors change from yellow to pink, indicating 
elevated levels. This pattern can be attributed to agricultural activities, the use of nitrogen-based fertilizers, and 

Dataset (n = 181) Train (n = 126) Test (n = 55)

RMSE–TN (%) 0.04 0.02

RMSE–AK (ppm) 166.49 110.37

MSE–TN (%) 0.01 0.001

MSE–AK (ppm) 0.27 0.12

RPIQ–TN (%) 2.43 1.25

RPIQ–AK (ppm) 2.21 1.66

Table 3.  Model validation results for soil macronutrient prediction.

 

Fig. 4.  Correlation between spectral SSRI and soil macronutrient concentrations.
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favorable climatic conditions that enhance nitrogen retention in the soil. Conversely, Fig. 6b shows the spatial 
distribution of AK throughout the area, with values ranging from 52 to 1321 ppm. The color gradients show that 
large parts of the study region—especially the southern, southeastern, and central areas—marked by yellow to 
orange hues, corresponding to low to moderate potassium availability. Only limited sections in the northern 
and eastern parts show higher potassium concentrations, represented by purple and pink shades. This uneven 
distribution indicates a widespread potassium deficiency throughout the study area. Given the important role 
of AK in regulating osmotic pressure, enzymatic activities, and nutrient transport in plants, such deficiency can 
significantly affect crop yields and soil health28. Therefore, it is crucial to include potassium supplementation as 
a priority in soil management and fertilization strategies in these affected zones. Overall, these results highlight 
the need for site-specific nutrient management to optimize the distribution and application of essential elements 
across the region.

Discussion
The results of the present study show that the SSRI models the spatial variability of certain macronutrients in 
soil with satisfactory accuracy. The descriptive statistical analysis (Table 1) revealed that AP had the highest 
spatial variability within the study area, with a CV of 164.94%. In contrast, TN and AK showed moderate to 
high variability, with CV values of 75.23% and 49.27%, respectively. The pronounced heterogeneity observed, 
particularly for AP, may be attributed to the improper and untested application of phosphate fertilizers, the 
low stability of phosphorus in soil, and the formation of insoluble compounds29–31. Conversely, the relatively 
lower variability of AK could be related to the mineralogical origin of the soil, cropping patterns, and irrigation 
practices32–34.

Correlation analysis between the Sentinel-2 spectral bands and the soil nutrient elements (Table 2) showed 
that TN had the strongest significant correlations in all bands, especially with the green band (Band 3, r = 0.878) 
and the red band (Band 4, r = 0.876). These results are in good agreement with the direct involvement of nitrogen 
in chlorophyll synthesis and its influence on the spectral reflectance properties of vegetation35. In contrast, AP 
showed weak correlations with the spectral bands (r ≈ 0.22–0.24), none of which reached statistical significance. 
This probably reflects the limited mobility of phosphorus in the soil and its indirect effects on plant cover. AK 

Fig. 5.  Measured versus predicted values of soil macronutrient concentrations for: (a) TN (%) training data, 
(b) TN (%) test data, (c) AK (ppm) training data, and (d) AK (ppm) test data.
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showed moderate correlations, especially with the SWIR1 band (Band 11, r = 0.591), which may be attributed to 
role of potassium in regulating water balance, stomatal function, and stabilizing cell structure21.

PCA revealed that PC1 accounted for more than 96.31% of the total variance in the spectral data (Fig. 3). This 
substantial proportion indicates that the most important and dominant information contained in the selected 
bands is encapsulated in this component. After standardization of PC1 using the Z-score method, the SSRI was 
derived and subsequently used as a composite spectral reflectance index in further analyzes. The relationship 
between the SSRI and the macronutrient elements (Fig.  4) showed significant positive correlations with TN 
(r = 0.875) and AK (r = 0.560), while AP continued to show a weak and statistically insignificant correlation 
(r = 0.230). This pattern confirms the superior ability of SSRI in modeling nitrogen content compared to other 
nutrients, especially considering that nitrogen is more strongly associated with plant growth and spectral 
reflectance Faramarzi et al.15, Cheng36.

The regression analysis between the SSRI and the macronutrient elements (Fig. 5 and Table 3) confirmed the 
previous results. The TN model showed high accuracy in the training phase with a R2 of 0.77, RMSE of 0.04%, MSE 
of 0.01, and RPIQ = 2.43 (good predictive performance); however, its performance decreased in the test phase 
(R2 = 0.34, RMSE = 0.02%, MSE = 0.001, RPIQ = 1.25 (weak predictive performance)). The pronounced decrease 
in R2 during validation, particularly for TN, is likely attributable to the high mobility and dynamic behavior 
of nitrogen in soils. Nitrogen is among the most labile soil nutrients, subject to continuous transformations 
through mineralization, immobilization, leaching, denitrification, and rapid plant uptake. These pronounced 
spatiotemporal variations result in considerable heterogeneity in nitrogen distribution, thereby constraining the 
predictive capacity of the model during validation. Consequently, the observed decline in model performance 
for TN reflects the inherent variability and complexity of the soil nitrogen cycle rather than limitations of the 
modeling approach. Notably, despite this decline, the low RMSE during testing indicates that the model retains 
strong practical applicability and reliability for field-scale predictions28,37.

The AK model exhibited a similar trend, with R2 values of 0.72 and 0.46, RMSE values of 166.49  ppm 
and 110.37 ppm, MSE values of 0.27 and 0.12, and RPIQ values of 2.21 (good predictive performance) and 
1.66 (acceptable predictive performance) in the training and testing phases, respectively (Fig. 5 and Table 3). 
Compared with the TN model, the AK model showed relatively greater stability during the testing phase. This 
behavior can be explained by the chemical characteristics of potassium in soils. AK is predominantly present 
in ionic form (K+) in the soil solution and, unlike phosphorus, it is not readily immobilized through fixation 

Fig. 6.  Spatial patterns of TN (a) and AK (b) across the study area.
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reactions. Consequently, it is more mobile within the soil profile and less likely to be bound in insoluble forms 
such as calcium precipitates or iron and aluminum oxides. This higher mobility and availability in the soil 
solution means that variations in AK are more strongly reflected in plant nutritional status and, indirectly, in 
canopy spectral reflectance, thereby allowing more accurate estimation from remote sensing data38–41.

In contrast, the results showed no significant relationship between AP and the SSRI index, and thus no 
predictive model for AP could be developed. This limitation is closely tied to the inherent characteristics of 
phosphorus in soils. Phosphorus is a nutrient with extremely low mobility; it is often concentrated in subsurface 
soil layers and is rapidly fixed through reactions with Ca2+ in alkaline soils or Fe3+ and Al3+ in acidic soils, 
resulting in the formation of insoluble compounds. As a result, the fraction of phosphorus that remains available 
in the soil solution is minimal and its direct influence on plant reflectance signals is weak21,42,43.

From a remote sensing perspective, spectral indices primarily capture signals from the soil surface and 
vegetation canopy. Consequently, nutrients with low solubility and limited translocation, such as phosphorus, 
exert little to no direct effect on spectral reflectance. This suggests that the lack of predictability for AP is not 
only a limitation of the SSRI approach but also reflects the broader constraints of spectral indices for estimating 
low-mobility nutrients. In other words, while SSRI proved effective for more mobile nutrients such as TN and 
AK, the prediction of phosphorus content remains challenging due to its low mobility, subsurface distribution, 
and weak spectral activity44–46.

The spatial analysis (Fig. 6a and b) further supports the statistical findings. TN concentrations predominantly 
range from moderate to high across most parts of the study area, especially in the western and central regions, 
probably due to repeated applications of nitrogenous fertilizers as well as more favorable climatic conditions for 
nitrogen retention. Conversely, the spatial distribution of AK shows a widespread deficiency in the southern, 
southeastern, and central parts of the region. This heterogeneous pattern emphasizes the need for site-specific 
nutrient management, especially for potassium, to increase crop productivity. In addition, the use of high-
resolution maps generated through this approach can play a crucial role in optimizing the use of nutrients47,48. 
In summary, the results of this study show that the SSRI-based approach in combination with simple statistical 
models offers significant potential for predicting the spatial variability of nitrogen and potassium in soil. However, 
elements with lower mobility, such as AP, still require direct measurement methods or more sophisticated 
modeling approaches that integrate remote sensing data, soil properties, and land management history.

Conclusion
The results of this study demonstrated that the Sentinel-2 satellite data and the spectral indices derived from 
them—in particular the novel SSRI based on principal component analysis—have considerable capabilities in 
the spatial modeling of certain soil macronutrients, especially TN and AP. The observed significant correlations 
between the spectral indices and TN content reflect the indirect but reliable influence of vegetation cover 
on spectral reflectance, allowing inference of plant nutritional status from remote sensing data. The model 
performance for AK was also acceptable, although with lower accuracy compared to nitrogen. Conversely, AP 
modeling faced limitations mainly due to its limited mobility, subsurface concealment in the soil layers, and 
lack of direct impact on the spectral indices. These results suggest that the integration of soil science knowledge 
with remote sensing technologies can provide an effective, non-destructive, rapid, and cost-efficient approach 
for monitoring soil nutrient status at agricultural and regional scales. Based on these results, it is recommended 
that future research aiming to improve the modeling accuracy of low-mobility or spectrally inactive elements 
include a combination of remote sensing data with ground-truth information, soil physicochemical properties, 
and topographic parameters. In addition, the use of multi-temporal Sentinel-2 imagery throughout the growing 
season and the derivation of spectral reflectance indices from these time-series images can better capture 
nutrient dynamics, enabling dynamic monitoring and timely management recommendations. The expansion 
of such integrated approaches in the context of precision agriculture has the potential to optimize fertilizer 
use, increase productivity, and reduce environmental impacts in agricultural systems. Moreover, the SSRI index 
could serve as a valuable environmental variable for integration into nonlinear and machine learning models, 
potentially enhancing predictive accuracy and providing deeper insights in future studies.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request. The data of satellite images and digital elevation model are available in the Google 
Earth Engine platform.
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