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To propose a vibration system with coaxial elastic-coupled tri-exciters, which can achieve in-phase 
(the phase difference angle is close to 0°) synchronization and operate stably. Solving the problem 
of excitation force cancellation caused by the anti-phase synchronization (with a phase difference 
angle around 180°) of the eccentric rotors (ERs) of multiple exciters rotating in the same direction. 
Using the Lagrange equation, the system’s dynamic equation is established. The average method 
is employed to derive the torque balance equations for the three ERs and the torque difference 
balance equations between ER 1 and 2, and ER 2 and 3. Synchronization and stability conditions are 
determined through the existence and stability of the zero solution of the torque difference balance 
equation, and the synchronization and stability indexes are calculated by numerical methods. The 
effects of parameters such as eccentric mass, eccentricity radius, screen mass and rotational speed of 
the ERs on synchronization and stability are discussed. Theoretical predictions are validated through 
simulations and experimental research. As the torsional stiffness of the coupling element changes, 
the synchronization state of the system is divided into near self-synchronization, asynchronous and 
coupled synchronization zones. With appropriate torsional stiffness, the system achieves nearly zero-
phase difference angle synchronization in the coupled synchronization zone, and increased torsional 
stiffness enhances system stability. In the coupled synchronization state, even if only two of the three 
exciters are powered, the synchronization phase difference angle remains similar to that with all three 
exciters active. The coaxial elastic-coupled tri-exciter vibration system not only achieves in-phase 
synchronization of the three exciters and ensure high performance of vibration machines, but also 
achieves energy conservation simultaneously.
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The first theoretical explanation and study of the self-synchronization effect in exciters was reported by 
Blekhman I.I. in 19531,2. In the following thirty years, the self-synchronization theory of two identical exciters in 
a vibrating system has been rapidly developed and widely applied, a new class of vibro-machines, such as sizing 
screens, conveyors, feeders, shakers and so on, had been developed in various industries2. Later Wen expanded 
on Blekhman’s work and developed an integral average method to address self-synchronization problems in 
vibrating machine3. According to wen’s theory, the synchronization problem of two vibrators in a vibration 
system was transformed into an analysis of the existence and stability of the zero-solution considering small 
parameters by Zhao4.

Zhang et al. used the average method to study the vibratory synchronization transmission (VST) of a cylindrical 
roller in a vibrating mechanical system excited by two exciters, and achieved the criterion of implementing 
synchronization of two exciters and that of ensuring VST of a roller5.They also studied the synchronization of 
two exciters in a nonlinear vibrating system using the average method, in which, the spring has a non-linear 
restoring force with segmented linear characteristics6.

Although the vibration system with two exciters is widely used, sometimes in order to obtain greater 
exciting force or achieve new vibration machine functions, three or more exciters are required. Yan studied the 
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synchronization and stability of self-synchronization vibration system with three parallel exciters by Hamiltons 
Principle, and verified its electromechanical coupling mechanism by Simulink, it was found that the phase 
difference angle of the two homodromy exciters in this vibration system is always around 180°7. When studying 
the synchronization and dynamic characteristics of multipe eccentric rotors in a vibration system by theoretical 
analysis and experiments, Zhang and Chen et al. also obtained the similar results8–10.The exciting forces of two 
homodromy exciters are almost opposite, and the two forces almost counteract each other. Multiple exciters not 
only do not increase the vibration amplitude of the system, but also make the amplitude smaller than that of the 
two exciters.

Controlled synchronization proposed by Blekhman I.I.11 can effectively solve this problem. Blekhman 
I.I.et al. provided the definition of controlled synchronization and an example of two vibroactuators based 
on a speed-gradient method12. Wen systematically elaborated the controlled synchronization of multi-motor 
vibration systems based on the traditional control methods and the intelligent methods3. To implement the 
in-phase controlled synchronization between the two co‑rotating eccentric rotors, Fang et al. systematically 
designed the controllers based on master–slave control structure and sliding mode control algorithm13. Jia et 
al. investigated controlled synchronization of three co-rotating exciters based on a circular distribution in a 
vibratory system, and found that the stability of the vibrating system depends on the controlling method and 
suitable controlling strategy in the controlled synchronization motion14. Kong et al. investigated controlled 
synchronizations of three co-rotating eccentric rotors in line driven by induction motors in a vibrating system, 
the controllers by an adaptive sliding mode control algorithm based on a modified master–slave control strategy 
were designed, and the stability of the controllers was verified by using Lyapunov theorem15. Kong used the same 
control algorithm and strategy to study the phase and speed synchronization control of four eccentric rotors 
driven by induction motors in a linear vibratory feeder, the designed controller achieves four eccentric rotors 
operating synchronously with zero phase difference16. The composite synchronization, which is a combination 
of self-synchronization and controlled synchronization, of four eccentric rotors driven by induction motors in 
a vibration system with a mass-spring rigid base was researched by Kong and Wen 17, the results showed that 
the composite synchronization method provides a possible energy-saving way to address the synchronization 
problem.

Through literature research, it was found that the existing dual-exciter vibration system of the vibration 
device generates relatively small excitation forces in the working conditions, and cannot adequately meet the 
large excitation force requirements in most engineering operations. The existing multi-stimulator vibration 
systems mostly adopt electronic control synchronization. Although the above controlled synchronization 
methods are effective, they have significant limitations in practical applications. The controlled synchronization 
requires configuring corresponding hardware, software, and appropriate control algorithms and strategies, which 
leads to complex systems and high costs, especially in the vibration system of multi exciters, this limitation is 
extremely prominent. The monitoring sensors for the working state parameters of the exciters operate under 
severe vibration conditions, which results in low system reliability. All exciters must be powered on during 
operation, which is disadvantageous from an energy-saving perspective.

Elastic coupling mechanical synchronization of two or three co-rotating rotors in a plane vibration system 
was studied by Hou and Du, which can achieve zero phase difference synchronization between two homodromy 
exciters, and maximize the combined excitation force of two or three co-rotating exciters. The elastic coupling 
mechanical synchronization does not have the aforementioned limitations of controlled synchronization, but 
can also avoid the rigid starting impact between multiple exciters in mechanical forced synchronization. They 
established synchronization and stability conditions for this vibration system, and conducted simulation and 
experimental research on the system. The research results are of great significance for reducing the energy 
consumption of vibration machines18–23. Hou D Y. proposed the elastic coupling mechanical synchronization 
of two coaxial co-rotating exciters coupling with a torsion spring in far-resonance system, established the 
synchronization and stability conditions, and explored the influence of torsional stiffness of coupling components 
on the phase difference angle24. The composite synchronization of three exciters, which is a combination of the 
elastic coupling mechanical synchronization of two coaxial co-rotating exciters and the self-synchronization 
between these two-exciter and another, was studied by Hou D Y. et al., and a double-layer elliptical shale shaker 
with this composite synchronization of three exciters was developed25.

In this paper, the elastic coupling mechanical synchronization of three coaxial co-rotating exciters coupling 
with two torsional springs in a far-resonance system is introduced, and the synchronization characteristics of 
the system is comprehensively investigated through theoretical analysis, numerical calculations, simulations, 
and testing. The research results provide a contribution to the development of more energy-saving vibration 
machines.

Material and methods
Mechanical model
The dynamic model of the coaxial co‑rotating tri-exciter far-resonance system is shown as Fig. 1. In this system, 
the three coaxial exciting motors are coupled by two torsional springs with torsional stiffness kϑ1,kϑ2 and 
damping fϑ1,fϑ2. The rigid frame is symmetrically supported by springs with stiffness kj  and damping fj  in j
-direction (j = x, y, z, ψ, δ, θ).The mass of the rigid frame is expressed as m0, which consists of the mass of the 
vibrating box and the mass of three exciting motors. The masses of the three ERs mounted on the exciting motor 
shaft are represented by mi (i = 1, 2, 3), respectively. The distances from the rotation centers of the three ERs 
to their own mass.

centers are represented by r. The distance from the rotating center of the ERs to YOZ plane is lX .The coordinates 
of eccentric rotos in the Z direction are lZi. The vertical distance from the rotating centers of the three ERs to 
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plane XOZ is ly . The centroid of the vibrating body is coincided with the origin of coordinate system o x y z 
when the vibrating system in static equilibrium. The transforming law of the reference coordinates is shown in 
Fig. 1. And the conversion sequence of the reference coordinates is followed by o′′x′′y′′z′′ → o′x′y′z′ → oxyz. 
The rigid frame is translated in x- , y-and z- axes, and rotated in ψ- ,δ- and θ -axes. The phase angles of the ERs 
are represented by φ1, φ2 and φ3 respectively.

In coordinate o′′x′′y′′z′′, the centroid coordinates I′′
1,I′′

2 and I′′
3 of the three ERs can be expressed as:

	
I′′

i =

[
lX + rcosφi

lY + rsinφi

lZi

]
(i = 1, 2, 3)� (1)

The centroid of the rigid frame is I0 = [ x, y, 0 ]T  in fixed coordinate oxyz, the centroid coordinate of the 
ERs regarding coordinate oxyz can be converted through rotation matrix A, ie.,

	
Ii = I0 + AI′′

i , I0 = [ x, y, 0 ]T , A =

[
1 −θ ψ
θ 1 −δ

−ψ δ 1

]
, (i = 1, 2, 3)� (2)

Due to the lack of force in the z-direction, the movement in this direction is very small, so the movement and its 
influence are ignored. In the synchronous state, the kinetic energy of the whole system should be calculated as:

	
T = 1

2m0
(
ẋ2 + ẏ2)

+ 1
2Jψψ̇2 + 1

2Jδ δ̇2 + 1
2Jθ θ̇2 + 1

2

3∑
i=1

miİ
′T
i I ′

i + 1
2

3∑
i=1

J0iφ̇
2
i � (3)

where, the symbols of (·) and (··) are represented d/dt and d2/dt2 respectively, and the rotational inertia of the 
rigid framework around x-, y- and z-axis are defined as Jψ ,Jδ  and Jθ , respectively. In addition, the moment of 
inertia of the i-th eccentric rotor related to the motor axis can be expressed as J0i (i = 1, 2, 3).

The total potential energy of the vibrating system can be expressed by:

	
V = 1

2kxx2 + 1
2kyy2 + 1

2kψψ2 + 1
2kδδ2 + 1

2kθθ2 + 1
2kϑ1 (φ1 − φ2)2 + 1

2kϑ2 (φ2 − φ3)2� (4)

Meanwhile, the dissipated energy of this system can be calculated as:

	 D = 1
2fxẋ2 + 1

2fy ẏ2 + 1
2fψψ̇2 + 1

2fδ δ̇2 + 1
2fθ θ̇2 + 1

2f1φ̇2
1 + 1

2f2φ̇2
2 + 1

2f3φ̇2
3 + 1

2fϑ1(φ̇1 − φ̇2)2 + 1
2fϑ2(φ̇2 − φ̇3)2� (5)

The Lagrange’s equation can be written as:

Fig. 1.  Dynamical model of the vibration system.
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d

dt

∂T

∂q̇i
− ∂ (T − V )

∂qi
+ ∂D

∂q̇i
= Qi� (6)

where, qi is an element of generalized coordinate matrix q of the system, which can be expressed as 
q = [ x, y, ψ, δ, θ, φ1, φ2, φ3, ] Meanwhile, Q i is an element of generalized force 
matrix Q, which should be expressed as:

	 Q = [ 0, 0, 0, 0, 0, Me1 − Re1, Me2 − Re2, Me3 − Re3, ]� (7)

where, Mei is electromagnetic torque in the motors, and Rei is the damping torque in the motors 
(i = 1, 2, 3). Substituting Eqs. (3), (4), (5), and (7) into Eq.  (6), meanwhile, the parameters with following 
relationships mi ≪ m0 (i = 1, 2, 3), ψ ≪ 1, δ ≪ 1, θ ≪ 1 are satisfied when the vibrating system operated in 
synchronous state. Therefore, the dynamic equations of this system are written as:

	

(m0 + m1 + m2 + m3) ẍ + fxẋ + kxx =
3∑

i=1

mir(φ̈i sin φi + φ̇2
i cos φi)

(m0 + m1 + m2 + m3) ÿ + fy ẏ + kyy =
3∑

i=1

mir(−φ̈i cos φi + φ̇2
i sin φi)

Jδ δ̈ + fδ δ̇ + kδδ =
3∑

i=1

lzimir(φ̈i cos φi − φ̇2
i sin φi)

Jψψ̈ + fψψ̇ + kψψ =
3∑

i=1

lzimir(φ̈i sin φi + φ̇2
i cos φi)

Jθ θ̈ + fθ θ̇ + kθθ = −
3∑

i=1

mirly(φ̈i sin φi + φ̇2
i cos φi) +

3∑
i=1

mirlx(−φ̈i cos φi + φ̇2
i sin φi)

J01φ̈1 + f1φ̇1 = Te1 − kϑ1(φ1 − φ2) + m1r(ẍ − ly θ̈ + lz1ψ̈) sin φ1 − m1r(ÿ + lxθ̈ − lz1δ̈) cos φ1

J02φ̈2 + f2φ̇2 = Te2 + kϑ1(φ1 − φ2) − kϑ2(φ2 − φ3) + m2r(ẍ − ly θ̈ + lz2ψ̈) sin φ2

−m2r(ÿ + lxθ̈ − lz2δ̈) cos φ2

J03φ̈3 + f3φ̇3 = Te3 + kϑ2(φ2 − φ3) + m3r(ẍ − ly θ̈ + lz3ψ̈) sin φ3 − m3r cos φ3(ÿ + lxθ̈ − lz3δ̈)

� (8)

The phase difference between ER 1 and 2 is defined by α1, and the phase difference between the ER 2 and 3 is 
assumed as α2. That is

	

φ1 − φ2 = α1

φ2 − φ3 = α2
� (9)

Let the phase angle of ER 2 φ2 = φ, according to Eq. (9), the phase angles of the three ERs can be expressed as:

	

φ1 = φ + α1

φ2 = φ

φ3 = φ − α2

� (10)

The motion of the vibration system in the synchronous process is periodic, and the motion of the rotors also is 
periodic. Therefore, the average value of the rotational velocity of the ERs should be constant. The minimum 
positive period of rotation of the rotors is defined as TP min, the average angular velocity of the ERs during 
TP min is a constant.

	

ωm0 = 1
TP min

t+TP minˆ

t

φ̇dt = constant� (11)

where,ωm0 is average value of rotational velocity of the eccentric rotor in a single period. In this case, when 
the middle ER is on the XOY plane, and the distance from the other two ERs to the XOY plane is equal and 
represented by LZ , the approximate steady state responses of the system in x-,y-,δ-,ψ-and θ- direction can be 
expressed as:
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x = Ex [m1cos (φ + α1 − γx) + m2cos (φ − γx) + m3cos (φ − α2 − γx)]
y = Ey [m1sin (φ+α1 − γy) + m2sin (φ − γy) + m3sin (φ − α2 − γy)]
δ = Eδ [m1sin (φ+α1 − γδ) − m3sin (φ − α2 − γδ)]
ψ = Eψ [m1cos (φ+α1 − γψ) − m3cos (φ − α2 − γψ)]
θ = Eθ [m1sin (φ + α1 + γXY − γθ) + m2sin (φ + γXY − γθ) + m3sin (φ − α2 + γXY − γθ)]

� (12)

where,

Ex = rω2
m0

Mµx
, Ey = rω2

m0
µyM , Eδ = rlZ ω2

m0
Jδµδ

,Eψ = − rlZ ω2
m0

Jψµψ
, Eθ = rlXY ω2

m0
Jθµθ

lXY =
√

l2
X + l2

Y ,

M = (m0+m1+m2+m3),γXY = arctan
(

lY
lX

)
,µi =

√(
ki
M

− ω2
m0

)2 +
(

fiωm0
M

)2
,

γi = arctan
(

fiωm0
ki−Mω2

m0

)
,(i = x, y, ψ, δ, θ).

Synchronization analysis and stability analysis
Synchronization analysis
According to the modified averaging small parameter method, when the average angular velocity of the three 
rotors is satisfied by the condition of φ̇ ≈ ωm0, and the transient coefficients ζ 0, ζ 1 and ζ 2(ζ 0, ζ 1 and ζ 2  are 
small parameters changed with time) are introduced to describe φ̇, α̇1,α̇2. φ̇, α̇1,α̇2 are written as

	

φ̇ = (1 + ζ0) ωm0

α̇1 = ζ1ωm0

α̇2 = ζ2ωm0

� (13)

The first derivation of Eq.  (10) with respect to time t can be calculated. Then combining the results of 
differentiation with the Eq. (13), the formulas can be defined as:

	

φ̇1 = φ̇ + α̇1 = (1 + ζ0) ωm0 + ζ1ωm0

φ̇2 = φ̇ = (1 + ζ0) ωm0

φ̇3 = φ̇ − α̇2 = (1 + ζ0) ωm0 − ζ2ωm0

φ̈1 =
(
ζ̇0 + ζ̇1

)
ωm0

φ̈2 = ζ̇0ωm0

φ̈3 =
(
ζ̇0 − ζ̇2

)
ωm0

� (14)

Substitute Eqs. (12) and (14) into the last three equations of formula (8), and integrating the equations over single 
period T, averaged in the interval (0, 2π),the corresponding moment equilibrium equation can be obtained.

	

J01
(
ζ̇0 + ζ̇1

)
ωm0 + f1 ((1 + ζ0) ωm0 + ζ1ωm0) + kϑ1α1+fϑ1ζ1ωm0

= Me1 − Re1 − m1rω2
m0

2

[
(W1 + W3) m1 + W2m2 sin α1 + W1m2 cos α1

+ (W2 − W4) m3 sin(α1 + α2) + (W1 − W3) m3 cos(α1 + α2)

]

J02ζ̇0ωm0 + f2 (1 + ζ0) ωm0 − kϑ1α1 + kϑ2α2 − fϑ1ζ1ωm0 + fϑ2ζ2ωm0

= Me2 − Re2 − m2rω2
m0

2

(
W1m2 − W2m1sinα1 + W1m1 cos α1

+W2m3sinα2 + W1m3 cos α2

)

J03
(
ζ̇0 − ζ̇2

)
ωm0 + f3 (1 + ζ0 − ζ2) ωm0 − kϑ2α2 − fϑ2ζ2ωm0

= Me3 − Re3 − m3rω2
m0

2

[
(W1 + W3) m3 − W2m2sinα2 + W1m2 cos α2

+ (W4 − W2) m1sin (α1 + α2) + (W1 − W3) m1 cos (α1 + α2)

]

� (15)

where,

	

W1 = −Exsinγx + Eysinγy+lXY Eθsinγθ

W2 = −Excosγx + Eycosγy + lXY Eθcosγθ

W3 = lZEψsinγψ + lZEδsinγδ

W4 = lZEψcosγψ + lZEδcosγδ

� (16)

As ζ0, ζ1, ζ2 are small parameters, and so ζi ≈ 0,ζ̇i ≈ 0, (i ≈ 0, 1, 3)are considered in the calculated 
process. The rotational damping coefficients of three rotors are identical as the same type of motor is selected, 
i.e.,f1 = f2 = f3 = f . Subtracting formula 2 from formula 1 and formula 3 from formula 2 in Eq. (15), then it 
can be obtained:
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+2kϑ1α1 − kϑ2α2 = Te12

+rω2
m0

2

[
W1m2

2 − (W1 + W3) m2
1 − 2W2m1m2sinα1 + W2m2m3sinα2 + W1m2m3 cos α2

− (W2 − W4) m1m3 sin(α1 + α2) − (W1 − W3) m1m3 cos(α1 + α2)

]

−kϑ1α1 + 2kϑ2α2 = Te23

+rω2
m0

2

[
(W1 + W3) m2

3 − W1m2
2 + W2m1m2sinα1 − W1m1m2 cos α1 − 2W2m2m3sinα2

+ (W4 − W2) m1m3sin (α1 + α2) + (W1 − W3) m1m3 cos (α1 + α2)

]
� (17)

where,Te12 = (Me1 − Me2) − (Re1 − Re2) ; Te23 = (Me2 − Me3) − (Re2 − Re3).
Let x1 = sinα1,ẋ1 = cosα1,x2 = sinα2,ẋ2 = cosα2,then there is, α1 = arcsin x1, α2 = arcsin x2. Then 

Eq. (17) can be converted to:

	

P1(x1, x2) = Te12 − 2kϑ1 arcsin x1 + kϑ2 arcsin x2

+rω2
m0

2

[
W1m2

2 − (W1 + W3) m2
1 − 2W2m1m2x1 + W2m2m3x2 + W1m2m3ẋ2

− (W2 − W4) m1m3 (x1ẋ2 + ẋ1x2) − (W1 − W3) m1m3 (ẋ1ẋ2 − x1x2)

]
= 0

P2(x1, x2) = Te23 + kϑ1 arcsin x1 − 2kϑ2 arcsin x2

+rω2
m0

2

[
(W1 + W3) m2

3 − W1m2
2 + W2m1m2x1 − W1m1m2ẋ1 − 2W2m2m3x2

+ (W4 − W2) m1m3 (x1ẋ2 + ẋ1x2) + (W1 − W3) m1m3 (ẋ1ẋ2 − x1x2)

]
= 0

� (18)

As can be seen from the above formula, there are −1 ≤ x1 ≤ 1 and −1 ≤ x2 ≤ 1.Under normal conditions, 
exciters 1 and 3 will select the same type, that is m1 = m3 = m. The two coupled torsional springs are selected 
with the same stiffness, that is kϑ1 = kϑ2 = kϑ.

If P1 (−1, −1) − P1 (1, 1) ≥ 0 and P2 (−1, −1) − P2 (1, 1) ≥ 0, then,

	
W2 ≥ − πkϑ

mm2rω2
m0

� (19)

When the formula (19) is satisfied, if the following equation come into existence, then Eq.  (9) must have a 
solution.

	

P1(−1, −1) = Te12 + π

2 kϑ + rω2
m0

2 (N + W2mm2) ≥ 0

P2(−1, −1) = Te23 + π

2 kϑ + rω2
m0

2 [−N + W2mm2] ≥ 0

P1(1, 1) = Te12 − π

2 kϑ + rω2
m0

2 [N − W2mm2] ≤ 0

P2(1, 1) = Te23 − π

2 kϑ + rω2
m0

2 [−N − W2m2m] ≤ 0

where, N = W1m2
2 − 2W3m2.Based on the above analysis, it can be obtained,

	

−2Te12 + kϑπ

rω2
m0

− W2mm2 ≤ N ≤ 2Te23 + kϑπ

rω2
m0

+ W2mm2

2Te23 − kϑπ

rω2
m0

− W2mm2 ≤ N ≤ −2Te12 − kϑπ

rω2
m0

+ W2mm2

� (20)

Besides, exciter 1, 3 select the same type of motors. The torque difference of motor 1 and 2 is equal to that 
of motor 2 and 3. And the direction of them is opposite, that is Te12 = −Te23. Plugging this result into the 
previous two equations, it can be obtained.

	
2Te23 − kϑπ

rω2
m0

− W2mm2 ≤ N ≤ 2Te23 + kϑπ

rω2
m0

+ W2mm2� (21)

In the same way, when W2 ≤ − kϑπ

mm2rω2
m0 , the equation can be obtained.

	
2Te23 + kϑπ

rω2
m0

+ W2mm2 ≤ N ≤ 2Te23 − kϑπ

rω2
m0

− W2mm2� (22)

According to the above derivation, Eqs. (21) and (22) constitute the synchronization conditions of the coaxial 
co-rotating elastic coupling tri-exciter vibration system. It can be arranged as,
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2Te23 − kϑπ

rω2
m0

− W2mm2 ≤ N ≤ 2Te23 + kϑπ

rω2
m0

+ W2mm2

(
W2 ≥ − kϑπ

mm2rω2
m0

)

or

2Te23 + kϑπ

rω2
m0

+ W2mm2 ≤ N ≤ 2Te23 − kϑπ

rω2
m0

− W2mm2

(
W2 < − kϑπ

mm2rω2
m0

)� (23)

The absolute value form of the above equation can be arranged as,

	

|N | ≤
∣∣∣∣
2Te23 + kϑπ

rω2
m0

+ W2mm2

∣∣∣∣
or

|N | ≤
∣∣∣∣
2Te23 − kϑπ

rω2
m0

− W2mm2

∣∣∣∣

� (24)

Equation (24) can also be rewritten as,

	

Cs1 =

∣∣∣ 2Te23+kϑπ

rω2
m0

+ W2mm2

∣∣∣
|N | ≥ 1

Cs2 =

∣∣∣ 2Te23−kϑπ

rω2
m0

− W2mm2

∣∣∣
|N | ≥ 1

� (25)

Cs1 and Cs2 can be defined as synchronization index, and 1 is defined as the limiting synchronization index. 
The larger the value of the synchronization index Cs1,Cs2, the easier the inequality of Eq. (28) is to satisfy, and 
the better the synchronization performance of the system is.

When the moment difference between the two motors is zero, that is Te23 = 0 and Cs1 = Cs2 = Cs, the 
synchronization condition of the system can be rewritten as,

	
Cs =

∣∣∣ kϑπ

rω2
m0

+ W2mm2

∣∣∣
|N | ≥ 1� (26)

Stability analysis
In order to simplify the analysis, in the study of system stability, the same and symmetrical arrangement of 
excitation motors 1 and 3 is also considered, that is m1=m3=m.Add and subtract the two formulas of the 
Eq. (18) respectively,

	

Te12 + Te23 − kϑ1 arcsin x1 − kϑ2 arcsin x2

+rω2
m0

2
[
−W2mm2x1 − W2mm2x2 − W1mm2ẋ1 + W1mm2ẋ2 + 2 (W4 − W2) m2 (x1ẋ2 + ẋ1x2)

]
= 0

Te12 − Te23 − 3kϑ1 arcsin x1 + 3kϑ2 arcsin x2

+rω2
m0

2

[
2W1m2

2 − 2 (W1 + W3) m2 − 3W2mm2x1 + 3W2mm2x2

+W1mm2ẋ1 + W1mm2ẋ2 − 2 (W1 − W3) m2 (ẋ1ẋ2 − x1x2)

]
= 0

� (27)

When x1 = 0, x2 = 0, if Eq.  (27) could hold, it indicates that the equation has zero solutions, the stability 
of the system can be directly judged by the stability of the zero solution of equation. Otherwise a coordinate 
transformation of Eq. (27) is required, the non-zero solutions of x1 and x2 in Eq. (27) are transformed into zero 
solutions in new coordinates, and then the stability of the system can be analyzed in the new coordinate system.

Let the solution of formula (27) be xα1, xα2, and,

	

y1 = x1 − xα1

y2 = x2 − xα2
� (28)

If the solution of Eq. (27) (i.e. synchronous phase difference Angle) is α10, α20.Then in Eq. (28),

	

xα1 = sin α10

xα2 = sin α20
� (29)

Equation (28) to find the first derivative with respect to the time variable, then.

	

ẏ1 = ẋ1

ẏ2 = ẋ2
� (30)
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Substituting the Eq. (28) ~ (30)into Eq. (27), the Eq. (27) can be transformed into,

	

Te12 + Te23 − kϑ1 arcsin (y1 + xα1) − kϑ2 arcsin (y2 + xα2)

+rω2
m0

2

[
−W2mm2 (y1 + xα1) − W2mm2 (y2 + xα2) − W1mm2ẏ1 + W1mm2ẏ2

+2 (W4 − W2) m2 ((y1 + xα1) ẏ2 + ẏ1 (y2 + xα2))

]
= 0

Te12 − Te23 − 3kϑ1 arcsin (y1 + xα1) + 3kϑ2 arcsin (y2 + xα2)

+rω2
m0

2

[
2W1m2

2 − 2 (W1 + W3) m2 − 3W2mm2 (y1 + xα1) + 3W2mm2 (y2 + xα2)
+W1mm2ẏ1 + W1mm2ẏ2 − 2 (W1 − W3) m2 (ẏ1ẏ2 − (y1 + xα1) (y2 + xα2))

]
= 0

� (31)

The standard matrix form of the above equation can be rewritten as,

	 ẏ = F(y)� (32)

F(y) has a continuous second partial derivative in the neighborhood of y = 0. From the multivariate Taylor 
formula, F(y) can be expanded to,

	 F(y) = Df y0 + g(y)� (33)

Df  is the Jacobian matrix of the function F(y),

	

Df =




∂ẏ1

∂y1

∂ẏ1

∂y2

∂ẏ2

∂y1

∂ẏ2

∂y2




y=0

� (34)

The nonlinear term in Eq. (33) is satisfied,

	
lim

∥y∥→0

∥g(y)∥
∥y∥ = 0� (35)

Then the first-order approximation system of formula (32) can be written as,

	 ẏ=Df y� (36)

Equation (31) takes the partial derivative of y1 and y2 respectively. At zero solution y1=0, y2=0, let,

	

a11 = ∂ẏ1

∂y1

∣∣∣∣
y1=y2=0

; a12 = ∂ẏ1

∂y2

∣∣∣∣
y1=y2=0

a21 = ∂ẏ2

∂y1

∣∣∣∣
y1=y2=0

; a22 = ∂ẏ2

∂y2

∣∣∣∣
y1=y2=0

ẏ10 = ẏ1|y1=y2=0 ; ẏ20 = ẏ2|y1=y2=0

� (37)

By substituting y1=0, y2=0 and into Eq. (37), the following conclusion can be can be sorted out:

	

A1a11 + B1a21 + C1 = 0
A2a11 + B2a21 + C2 = 0
A3a12 + B3a22 + C3 = 0
A4a12 + B4a22 + C4 = 0

� (38)

where,

	

A1 = 2 (W4 − W2) m2xα2 − W1mm2; B1 = 2 (W4 − W2) m2xα1 + W1mm2

C1 = − 2kϑ1

rω2
m0

√
1 − (xα1)2

− W2mm2 + 2 (W4 − W2) m2ẏ20

A2 = W1mm2 − 2 (W1 − W3) m2ẏ20, B2 = W1mm2 − 2 (W1 − W3) m2ẏ10

C2 = − 6kϑ1

rω2
m0

√
1 − (xα1)2

− 3W2mm2 + 2 (W1 − W3) m2xα2

A3 = 2 (W4 − W2) m2xα2 − W1mm2, B3 = W1mm2 + 2 (W4 − W2) m2xα1

C3 = − 2kϑ2

rω2
m0

√
1 − (xα2)2

− W2mm2 + 2 (W4 − W2) m2ẏ10
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A4 = W1mm2 − 2 (W1 − W3) m2ẏ20, B4 = W1mm2 − 2 (W1 − W3) m2ẏ10

C4 = 6kϑ2

rω2
m0

√
1 − (xα2)2

+ 3W2mm2 + 2 (W1 − W3) m2xα1

Solve the Eq. (38),

	

a11 = B1C2−B2C1
A1B2−A2B1

, a21 = A1C2−A2C1
A2B1−A1B2

,

a12 = B3C4−B4C3
A3B4−A4B3

, a22 = A3C4−A4C3
A4B3−A3B4

,
� (39)

The Jacobian matrix of the first-order approximation system of Eq. (33) can be written as,

	
Df =

[
a11 a12

a21 a22

]
� (40)

The characteristic equation of the first-order approximate system can be written as,

	
|Df − λI| =

∣∣∣∣
a11 − λ a12

a21 a22 − λ

∣∣∣∣ = 0

That is,

	 λ2 − (a11 + a22) λ + a11a22 − a21a12 = 0� (41)

The necessary and sufficient conditions for the root of Eq. (23) to have negative real parts are,

	

− (a11 + a22) > 0
a11a22 − a21a12 > 0� (42)

Assuming that,

	

CW 1 = − (a11 + a22)
CW 2 = a11a22 − a21a12

� (43)

Then the synchronous stability condition of the system can be determined as,

	

CW 1 > 0
CW 2 > 0� (44)

CW 1 and CW 2 are referred to as the synchronous stability index of the system. When the value of synchronous 
stability index is positive, the greater the value, the better the stability of the system.

Discussion and results
Numerical analysis
The data used in numerical analysis
In order to further verify the validity and accuracy of the above synchronization theoretical analysis and 
numerical calculation results of the self-synchronous vibration system of the coaxial triple-excited motor in 
the same direction rotation, and thus to find out the synchronization behavior and electromechanical coupling 
dynamic characteristics of the eccentric rotor and screen box of the coaxial triple-excited motor in the case 
of self-synchronization, this section is based on the multi-degree of freedom motion differential equation of 
the system. The electromechanical coupling model of the system is established by using Simulink module of 
MATLAB. The parameters used in numerical analysis are shown in Table 1.

m1 (kg) m2 (kg) m3 (kg) M0 (kg) M (kg) JΨ (kg·m2) Jδ (kg·m2) Jθ (kg·m2)

2 2 2 100 106 10 10 10

r (m) kx (N/m) Ky (N/m) kΨ (N·m/rad) Kδ (N·m/rad) Kθ (N·m/rad) fx (N·s/m) fy (N·s/m)

0.04 10,037 10,037 1500 1500 1500 50 50

fΨ (N·m·s/rad) fδ (N·m·s/rad) fθ (N·m·s/rad) ωm0 (rad/s) Lx (m) Ly (m) Lz (m) kϑ(N·m/rad)

15 15 15 157 0.1 0.1 0.1 4

Table 1.  Parameters of the vibration system of a coaxial tri-exciter elastic coupling shaker.
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Computational analysis of synchronization
Assuming that the performance of the motors of the three exciters is identical, that is Te12 = Te23 = 0. At this 
point, the synchronization index CS1 = CS2. Figure 2 shows the variation curve of synchronization index CS  
with torsional stiffness kϑ that calculated according to parameters in Table 1. When torsional stiffness kϑ is zero, 
Synchronicity index CS0 = 554.82. At this point, the value of the synchronization index is much greater than 1, 
indicating that the vibration system with the parameters in Table 1 has good self-synchronization performance.

The synchronization index CS  decreased linearly with the increase of torsional stiffness kϑ,and CS0 = 0 
until kϑ = 1.0532N·m/rad. Then, the synchronization index CS0 increases linearly with the increase of torsional 
stiffness kϑ. When the torsional stiffness of the coupling torsion spring reaches the condition kϑ < 1.0513N·m/
rad(region I in Fig. 2), the synchronization index is still > 1 and the system is still in the synchronization state 
with the increase of torsional stiffness. Under this condition, the synchronization index value is getting lower 
and lower, indicating that the synchronization performance of the system is getting worse and worse. When the 
torsional stiffness of the coupling torsion spring reaches the condition kϑ > 1.055N·m/rad(region III in Fig. 2), the 
synchronization index CS  > 1. Under this condition, with the increase of torsional stiffness, the synchronization 
index increases linearly, and the synchronization performance of the system becomes better. However, when the 
torsional stiffness of the coupling torsion spring reaches the condition 1.0513 < kϑ < 1.055N·m/rad(region I in 
Fig. 2), the synchronization index CS < 1, the system cannot be synchronized.

The above numerical law shows that, the synchronous performance of the coaxial tri-exciter vibration system 
with elastic coupling elements is lower than that of its’ self-synchronous system when the torsional stiffness 
of the coupling elements is small. When the torsional stiffness is greater than a certain value, the system will 
have better synchronization performance than its self-synchronization system. Therefore, the synchronization 
performance of the system is closer to the self-synchronization state in region I, which is called the near-self-
synchronization region. In region III, the synchronization performance of the system mainly depends on the 
stiffness of the coupling element, which is called the coupling synchronization region. The system in zone II is 
out of synchronization, which is called the asynchronous zone. The torsional stiffness range of the corresponding 
coupling element in the asynchronous region is very small.

When conducting the analysis of the influence of the parameters involved in Fig. 3, except for the parameters 
being discussed, all other parameters were set according to the values in Table 1 and remained constant. Figure 3a 
shows the relationship between the synchronization index CS and torsional stiffness kϑ of the system when other 
parameters remain unchanged and the mass of the eccentric rotor changes. It can be seen that, the change trend 
of the synchronization index and torsional stiffness is first linear decline, and then linear increase while the mass 
of the eccentric rotor increases. The greater the mass of the eccentric rotor, the greater the torsional stiffness kϑ 
of the coupling element corresponding to the non-synchronous state of the system. In other words, the range of 
the near-self-synchronous region of the system increases, the near self-synchronization capability of the system 
is increased. In the coupling synchronization region, when the torsion stiffness of the coupling element is the 
same, the larger the mass of the eccentric rotor, the smaller the synchronization index CS, that is, the coupling 
synchronization ability of the system decreases. For asynchronous region II of the system, the larger the mass of 
the eccentric rotor, the gentler the synchrony index curve, and the wider the asynchronous region.

Figure 3b shows the relationship between the synchronization index and torsional stiffness CS of the system 
when other parameters remain unchanged and the eccentricity radius changes. As can be seen from Fig. 4, the 
change between synchronization index CS and torsional stiffness kg is similar to that of the eccentricity mass 
while the eccentricity radius increases. That is, The greater the eccentricity radius, the greater the near-self-
synchronization region. In the coupling synchronization region, the larger the mass of the eccentric rotor, the 
smaller the synchronization index CS and the lower the coupling synchronization ability of the system when the 
torsional stiffness of the coupling element is the same. Therefore, the larger the eccentricity radius, the gentler 
the synchrony index curve, and the wider the asynchronous region II of the system.

Figure 3c shows the relationship between the synchronization index CS and torsional stiffness kg of the system 
when other parameters remain unchanged and the rotate speed changes. It can be seen that, the relationship 
between the synchronization index CS and torsional stiffness kg is similar to that of the eccentric mass and 

Fig. 2.  Change curve of synchrony index with torsional stiffness.
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eccentric radius while the rotate speed of the eccentric rotor increases. The greater the rotational speed of the 
eccentric rotor, the larger the near-self-synchronization region. In the coupling synchronization region, the 
higher the rotational speed of the eccentric rotor, the smaller the synchronization index, and the lower the 
coupling synchronization ability of the system. Thus, the higher the speed of the eccentric rotor, the gentler the 
synchrony index curve, and the wider the non-synchronous region II of the system.

Figure  3d shows the relationship between the synchronization index CS and torsional stiffness kg of the 
system while other parameters remain unchanged and the mass of the screen frame changes. It can be seen that 
in the state of self-synchronization, the bigger the quality of the screen frame, the larger synchronization index of 
the system. That is, the self-synchronization performance of the system is better. In the near self-synchronization 
region, the greater the mass of the screen frame, the faster the linear decline of the synchronization index 
and torsional stiffness, and the smaller the near self-synchronization region of the system. In the coupling 

Fig. 3.  The curve of synchronization index changes with torsional stiffness when 4 important parameters 
change separately. (a) Change curve of synchrony index with torsional stiffness for different eccentric masses. 
(b) Change curve of synchrony index with torsional stiffness for different eccentricity radius. (c) Change 
curve of synchronization index with torsional stiffness at different rotate speed. (d) Change curve of the 
synchronization index with torsional stiffness for different screen mass.
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synchronization region, the larger the mass of the screen frame, the faster the synchronization index increases, 
and the better the coupling synchronization performance of the system. The larger the mass of the screen frame, 
the gentler the synchrony index curve, and the wider the non-synchronous region II of the system. In other 
words, this is mainly due to the increase of the system vibration mass when the screen frame mass increases. 
Thus, the vibration acceleration is reduced, the vibration torque acting on the eccentric rotor is reduced, and the 
torsional stiffness required by the coupling element is also reduced.

Computational analysis of stability
The analysis of the influence of system parameters on stability is carried out under the synchronous state of 
system stability in Table 1.

According to the parameters in Table 1 and considering Te12=Te23=0, the stability coefficient of the system is 
calculated by Eq. (44). It can be considered as a self-synchronous vibration system of the triple-excited motor 
when the vibration system meets the condition  kg = 0N·m/rad. Through synchronization analysis, it can be known 
that the system has four synchronization states, those are, α1 = 0,α2 = π;α1 = 0,α2 = 0;α1 = π,α2 = 0 and 
α1 = π, α2 = π. The system is stable only when α1 = 0,α2 = π, and this kind of synchronization state is the 
true motion state of the system.

Figure 4a shows the relationship curve between stability index and torsional stiffness in synchronous state 
α1 = 0,α2 = π. It can be seen that the stability index CW1 and CW2 are linearly decreased with the increase of 
torsional stiffness kg of the coupled elements. The stability index CW1 and CW2 both are greater than zero when 
the torsional stiffness kϑ ≤ 0.585N·m/rad. In this stiffness interval, the synchronization state of the system is 
stable, but the stability becomes worse and worse. The stability index CW2<0 when torsional stiffness kg >0.585 
N·m/rad. In this stiffness interval, the corresponding synchronization state is unstable, and the system cannot 
work stably in this synchronization state.

Figure 4b shows the relationship curve between stability index and torsional stiffness in synchronous state 
α1 = 0,α2 = 0. It can be concluded that the stability index CW1 and CW2 of the system in this synchronous state 
both increase linearly with the increase of the torsional stiffness of the coupled elements, and the stability of 
the system gradually becomes better. The values of stability index are both greater than zero when the torsional 
stiffness kg N·m/rad. Therefore, the synchronization state of the system is stable when α1 = 0,α2 = 0.

Figure 4c and d show the relationship curve between stability index and torsional stiffness in synchronous 
states α1 = π,α2 = 0 and α1 = π,α2 = π. Comparing these two figures, it can be seen that these two 
synchronization states are unstable in this system. These two synchronous states are not true motion states in a 
self-synchronous system. Similarly, it is not the true motion state in a triaxial motor system coupled by a torsion 
spring.

By comparing Fig. 4a and b, it can be seen that the elastic coupling elements are coupled between the coaxial 
triple excitation motors, even if the coupling elements adopt a small torsional stiffness, the real synchronization 
state α1 = 0,α2 = π of the synchronous system will lose stability. In order to change the unstable synchronization 

Fig. 4.  The relationship between stability index and torsional stiffness in synchronous state 
(a)α1 = 0,α2 = π(b)α1 = 0,α2 = 0(c)α1 = π,α2 = 0 (d)α1 = π,α2 = π.
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state into the real stable synchronization state, the torsional stiffness of the coupling element must be large 
enough.

Simulations
In order to verify the validity and accuracy of the numerical analysis results above, it is necessary to simulate 
the electromechanical dynamics based on the electromechanical coupling model of the system. Therefore, 
after the numerical analysis yields the results, some of these values are randomly selected to be used in the 
mechanical–electrical coupling simulation analysis. If the results of the mechanical–electrical coupling 
simulation analysis are consistent with those of the numerical analysis, it can indicate the correctness of 
the numerical analysis. As a result, the arrangement of the research process can achieve a logical flow. The 
electromechanical coupling model of this vibration system is established by the Simulink of MATLAB. In the 
practical engineering, three identical types of asynchronous induction motor are applied to actuate exciters. 
The electromagnetic parameters of the induction motors are shown in Table 2. The schematic diagram of the 
vibration system model in this paper, presented in the Simulink flowchart of MATLAB, is shown in Fig. 5. In the 
simulation model, the parameters of the system are M = 100 kg,m1 = m2 = m3 = 2 kg, f1 = f2 = f3 = 0 
N·m·s/rad, Jψ = Jδ = Jθ = 10  kg·m2, fx = fy = 125 N·s/m,fψ = fδ = fθ = 15 N·m·s/rad, ωm0 = 157 
rad/s, kx = ky = 10037 N/m, kψ = kδ = kθ = 1500 N·m/rad , lX = 0.1 m,lY = 0.25 m and lZ = 0.1 m, 
respectively.

Figure 6 shows the synchronization of the ERs as kϑ = 4 N·m/rad,lZ = 0.1 m, when the three asynchronous 
exciters started at the same time, the angle acceleration of the two coaxial exciters is different in the initial 
stage. In the steady phase, the two rotors are synchronously rotated with average speed of 157 rad/s, the phase 
difference α1 between rotor 1 and 2 is approached to 1.756 rad, and the phase difference α2 between rotor 2 
and non-coaxial rotor 3 is stable around 1.748 rad. As can be seen from Fig. 6c, the synchronous torque of the 
three rotors is stable around 0 N.m. when the rotors are steadily and synchronously rotated. From Fig. 6d–h, 
in this synchronous state, the rigid frame is vibrated with amplitudes 1.8 × 10-3 m and 1.8 × 10–3 m in x- and 
y- directions, respectively. Meanwhile, the amplitudes of twisting vibration of rigid frame in the ψ-,δ- and θ
- directions are 5.5 × 10–3 rad ,6.3 × 10–3 rad and 2.1 × 10–1 rad, respectively. By comparing the simulation results 
with the numerical analysis, it can be seen that the simulation results are consistent with the theoretical values.

Fig. 5.  Simulink flowchart of MATLAB of the vibration system.

 

Parameters Motor 1 Motor 2 Motor 3 Parameters Motor 1 Motor 2 Motor 3

Rated power 0.7 kW 0.7 kW 0.7 kW Rotor Resistance 0.06Ω 0.06Ω 0.06Ω

Nominal voltage 220 V 220 V 220 V Stator Inductance 0.0009Ω 0.0009Ω 0.0009Ω

Rated frequency 50 Hz 50 Hz 50 Hz Rotor Inductance 0.0009Ω 0.0009Ω 0.0009Ω

Rated speed 157 rad/s 157 rad/s 157 rad/s
Mutual inductance 0.03H 0.03H 0.03H

Number of poles 4 4 4

Stator resistance 0.1Ω 0.1Ω 0.1Ω Damping coefficient of motor shaft 0.02N·m/(rad/s) 0.02N·m/(rad/s) 0.02N·m/(rad/s)

Table 2.  The parameter values of motors.
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Experiment
Utilizing the findings from the aforementioned study, a elastic coupling mechanical synchronization laboratory 
experimental device illustrated in Fig. 7 is devised. This device consists of three coaxial exciters, interconnected 
by two torsional springs of equal stiffness with rated value of kϑ.

In order to compare with the self-synchronization system, the torsion spring between the coaxial three exciters 
was removed, and the self-synchronization state of the system was also tested. To analyze the effect of torsional 
stiffness kϑ on the synchronization state of the system, the experiments were conducted on coaxial tri-motors 
with several pairs of identical torsional springs of the different stiffness. HX-6E high-speed imaging system was 
employed to achieve visual measurements of the phase angles of the exciters. The structural parameters involved 
in this experiment are as follows:lZ = 0.1 m,lX = 0.1 m,lY = 0.25 m.

In the experiments of self-synchronization and elastic coupling mechanical synchronization, the phase 
difference angle between three exciters was tested in two situations. One of them is that all three exciters are 

Fig. 6.  Synchronization for kϑ = 4.67N·m/rad,lZ = 0.1 m. (a) Velocities. (b) Phase difference. (c) 
Electromagnetic torque. (d) Displacement in x- direction. (e) Displacement in y- direction. (f) Pitching 
vibration in ψ- direction. (g) Pitching vibration in δ- direction. (h) Pitching vibration in θ- direction.
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powered, and the other is that exciters 1 and 3 are powered, while exciter 2 is powered off. The rated power of 
each exciter is 0.12kw.

The previous part conducted a comparative experiment on the full-power startup of the motor and the 
interruption of the intermediate motor power supply during operation. This comparative experiment to some 
extent validates that the coupled synchronous system studied in this paper has a more energy-efficient working 
mode. In order to further verify that the indoor experimental model of the tri-exciter-coupled vibration system 
studied in this paper has the advantage of energy saving, an additional experimental section was specially added 
to measure the working current of each working motor.

In the test of the working current of the excitation motor, a BM803A + digital DC/AC type clamp meter was 
selected. To achieve more accurate measurement, the selected range is 10A and the measurement accuracy is 
10 mA. Under the condition where all three excitation motors are powered on, the working currents of motor 
1, motor 2 and motor 3 are 0.39A, 0.33A and 0.34A respectively. Furthermore, in the operating condition where 
all three excites are powered on first and then the middle exciter is turned off, the working currents of motors 1, 
2 and 3 are 0.39A, 0A and 0.34A respectively. Based on the working current of each motor under two working 
conditions, the corresponding actual power of each motor can be obtained. Under the two working conditions, 
the actual power of motors 1 and 3 is basically the same. Motor 2 has no current flowing through when it is 
disconnected from power. That is, when the coaxial three-exciter vibration synchronization system is operating, 
if the power supply of one of the working motors is suddenly cut off, the other two working motors can still 
operate at the same actual power as when all three motors were powered on simultaneously. Therefore, it can be 
concluded that the coaxial tri-exciter synchronous system has a running mode that can achieve higher energy 
efficiency during operation.

Based on the vibration test platform shown in Fig. 7, the dynamic response of the vibration system under the 
state of self-synchronization and mechanical synchronization coupled by torsional spring are shown in Fig. 8.

It can be seen from Fig. 8a and b that the system can operate stably under two self-synchronous states of 
three motors in a fully energized state and the intermediate motor in a state of power off, respectively. The 
acceleration amplitudes in the x and y directions of the system are stable at about 8.1, 6.8 and 7.9, 4.6 m/s2, 
respectively. In the same way, it can be seen from Fig. 8c and d that the system can operate stably under two 
coupling synchronization states of three motors in a fully energized state and the intermediate motor in a state 
of power off, respectively. The acceleration amplitudes in the x and y directions of the system are stable at about 
23, 22 and 15, 11 m/s2, respectively.

It is worth noting that, despite the inevitable errors, the stable values of the dynamic response of the system 
in degrees of freedom x-, y- and z- are consistent with the values obtained from the theoretical analysis and 
numerical calculation above.

The experimental results of synchronous phase difference obtained by vibration test with indoor prototype 
are shown in the Figs. 9, 10 and the Table 3.

The self-synchronization experimental results show that, the synchronous phase difference α1 between rotor 
1 and rotor 2 is -164°, rotors 1 and 2 are in anti-phase synchronization state; the synchronous phase difference 
α2 realize between rotor 2 and rotor 3 is -49°, which is far greater than zero. The coaxial rotors 1, 2and 3 of the 
system cannot zero-phase synchronization in the self-synchronization state.

The torsion springs used in the experimental scheme have been measured and their torsional stiffness are 
kϑ = 4.67, 8.33, 16.67 N·m/rad. The experiment results of elastic coupling mechanical synchronization show that, 
when the torsional stiffness kϑ = 4.67, 8.33, 16.67 N·m/rad, the synchronous phase difference α1 = 4◦, 3◦, 2◦ and 
α2 = −1◦, −2◦, −3◦ under three motors energized, the synchronous phase difference α1 = −4◦, 4◦, −1◦ and 

Fig. 7.  Schematic diagram of the device for vibration testing. (a) Complete vibration test system. (b) 
Experimental instrument.
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α2 = −3◦, −6◦, 2◦  under motor 1 and 3 energized. The experimental results have verified that elastic coupled 
mechanical synchronization can effectively achieve in-phase synchronization of coaxial three exciters, and the 
phase difference angle is close to 0°. When only two of the three motors are powered on, there is no significant 
change in the synchronization phase difference angle between the three exciters, the power consumption of the 
experimental device has been reduced by one-third.

Conclusions
Through researching the synchronous mechanism of the coaxial co–rotating tri-exciter with two torsional 
springs, several key conclusions can be highlighted.

Fig. 9.  Experimental results of self-synchronization. (a) Experimental results for three motors are all 
energized. (b) Experimental results for motor 2 is powered off.

 

Fig. 8.  Dynamic response under self-synchronization and coupling synchronization state. (a) Dynamic 
response of the self-synchronization system when all motors are in. (b) Dynamic response of the self-
synchronization system when the intermediate motor is power off. (c) 15 Dynamic response of the 
synchronization system coupled by torsion spring when all motors are in operation. (d) Dynamic response of 
the synchronization system coupled by torsion spring when the intermediate motor is power off.
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kϑ(N·m/rad) Motor powered on φ1(°) φ2(°) φ3(°) α1=φ1−φ2(°) α2=φ2−φ3(°)

0 1–2−3 85 249 298 −164 −49

4.67
1–2−3 27 31 32 −4 −1

1–3 26 30 33 −4 −3

8.33
1–2−3 111 108 110 3 −2

1–3 110 106 112 4 −6

16.67
1–2−3 23 21 24 2 −3

1–3 22 23 25 −1 −2

Table 3.  The phase difference angle of experimental results.

 

Fig. 10.  Experimental results for coupling synchronization with torsion spring when kϑ = 4.67, 8.33, 16.67 
N·m/rad. (a) Experimental results for three motors are all energized. (b) Experimental results for motor 2 are 
powered off. (c) Experimental results for three motors are all energized. (d) Experimental results for motor 2 
are powered off. (e) Experimental results for three motors are all energized. (f) Experimental results for motor 
2 are powered off.

 

Scientific Reports |        2025 15:41270 17| https://doi.org/10.1038/s41598-025-25039-8

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


	(a)	 It is mentioned that the theoretical analysis, simulation analysis, and experimental results of the system’s 
synchronization characteristics are in good agreement. This suggests that the findings obtained from these 
three different approaches closely match and support each other.

	(b)	 By selecting the right torsion spring stiffness and ensuring the system meets the synchronization and stabil-
ity criteria, the three elastic coupling coaxial exciters can operate in a nearly zero-phase synchronized and 
stable manner.

	(c)	 The research results show that, when the torsional stiffness of the coupling element changes, the synchro-
nization state of the system is divided into near self-synchronization zone, asynchronous zone, and cou-
pled synchronization zone. In the near self- synchronization zone, the synchronization performance of the 
system decreases with the increase of torsional stiffness, while in the coupled synchronization zone, the 
synchronization performance increases with the increase of torsional stiffness. The larger the mass, eccen-
tricity radius, and rotational speed of an eccentric rotor, the greater the torsional stiffness corresponding to 
the asynchronous zone, and the wider the variation range of torsional stiffness of the asynchronous zone. 
As the mass participating in vibration increases, the torsional stiffness and variation range corresponding 
to the asynchronous zone become smaller.

	(d)	 When the system is in self-synchronization, the theoretical synchronization state α1 = 0, α2 = π is stable. 
Due to differences in electromagnetic parameters and mechanical structural errors of the actual motor, the 
self-synchronization stable state is α1 = −49°,α2 = −164°. Although there is a certain difference from 
the theoretical synchronization state, it also reflects that exciters 1 and 2 are in-phase synchronization, and 
exciters 2 and 3 are in anti-synchronization. In the near self-synchronization zone, as the torsional stiffness 
increases, the stability of the system’s anti-phase synchronization decreases; In the coupled synchronization 
zone, as the torsional stiffness increases, the stability of the system in-phase synchronization increases.

	(e)	 When only two of the three motors are powered on, the synchronization phase difference angles are almost 
the same as when all three motors are powered on. This means that, for a multi-exciter vibration system 
with elastic coupling mechanical synchronization, energy saving can be achieved by reducing the number 
of energized motors during stable operation, and the energy-saving effect is significant.

Data availability
Data is provided within the manuscript file.
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