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Synchronization of coaxial co-
rotating tri-exciter with two
torsional springs in far-resonance
system

Duyu Hou®*, Zheng Liang®%2*, Yongjun Hou'?, Pan Fang'? & Mingjun Du%?2

To propose a vibration system with coaxial elastic-coupled tri-exciters, which can achieve in-phase
(the phase difference angle is close to 0°) synchronization and operate stably. Solving the problem

of excitation force cancellation caused by the anti-phase synchronization (with a phase difference
angle around 180°) of the eccentric rotors (ERs) of multiple exciters rotating in the same direction.
Using the Lagrange equation, the system’s dynamic equation is established. The average method

is employed to derive the torque balance equations for the three ERs and the torque difference
balance equations between ER 1 and 2, and ER 2 and 3. Synchronization and stability conditions are
determined through the existence and stability of the zero solution of the torque difference balance
equation, and the synchronization and stability indexes are calculated by numerical methods. The
effects of parameters such as eccentric mass, eccentricity radius, screen mass and rotational speed of
the ERs on synchronization and stability are discussed. Theoretical predictions are validated through
simulations and experimental research. As the torsional stiffness of the coupling element changes,
the synchronization state of the system is divided into near self-synchronization, asynchronous and
coupled synchronization zones. With appropriate torsional stiffness, the system achieves nearly zero-
phase difference angle synchronization in the coupled synchronization zone, and increased torsional
stiffness enhances system stability. In the coupled synchronization state, even if only two of the three
exciters are powered, the synchronization phase difference angle remains similar to that with all three
exciters active. The coaxial elastic-coupled tri-exciter vibration system not only achieves in-phase
synchronization of the three exciters and ensure high performance of vibration machines, but also
achieves energy conservation simultaneously.

Keywords Far-resonance system, Coaxial tri-exciters, Elastic coupling, Synchronization, Stability

The first theoretical explanation and study of the self-synchronization effect in exciters was reported by
Blekhman L1. in 1953%2. In the following thirty years, the self-synchronization theory of two identical exciters in
a vibrating system has been rapidly developed and widely applied, a new class of vibro-machines, such as sizing
screens, conveyors, feeders, shakers and so on, had been developed in various industries®. Later Wen expanded
on Blekhman’s work and developed an integral average method to address self-synchronization problems in
vibrating machine®. According to wen’s theory, the synchronization problem of two vibrators in a vibration
system was transformed into an analysis of the existence and stability of the zero-solution considering small
parameters by Zhao*.

Zhangetal. used the average method to study the vibratory synchronization transmission (VST) of a cylindrical
roller in a vibrating mechanical system excited by two exciters, and achieved the criterion of implementing
synchronization of two exciters and that of ensuring VST of a roller®. They also studied the synchronization of
two exciters in a nonlinear vibrating system using the average method, in which, the spring has a non-linear
restoring force with segmented linear characteristics®.

Although the vibration system with two exciters is widely used, sometimes in order to obtain greater
exciting force or achieve new vibration machine functions, three or more exciters are required. Yan studied the
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synchronization and stability of self-synchronization vibration system with three parallel exciters by Hamiltons
Principle, and verified its electromechanical coupling mechanism by Simulink, it was found that the phase
difference angle of the two homodromy exciters in this vibration system is always around 180°7. When studying
the synchronization and dynamic characteristics of multipe eccentric rotors in a vibration system by theoretical
analysis and experiments, Zhang and Chen et al. also obtained the similar results®-!°. The exciting forces of two
homodromy exciters are almost opposite, and the two forces almost counteract each other. Multiple exciters not
only do not increase the vibration amplitude of the system, but also make the amplitude smaller than that of the
two exciters.

Controlled synchronization proposed by Blekhman LL'' can effectively solve this problem. Blekhman
LLet al. provided the definition of controlled synchronization and an example of two vibroactuators based
on a speed-gradient method!%. Wen systematically elaborated the controlled synchronization of multi-motor
vibration systems based on the traditional control methods and the intelligent methods®. To implement the
in-phase controlled synchronization between the two co-rotating eccentric rotors, Fang et al. systematically
designed the controllers based on master-slave control structure and sliding mode control algorithm!?. Jia et
al. investigated controlled synchronization of three co-rotating exciters based on a circular distribution in a
vibratory system, and found that the stability of the vibrating system depends on the controlling method and
suitable controlling strategy in the controlled synchronization motion'®. Kong et al. investigated controlled
synchronizations of three co-rotating eccentric rotors in line driven by induction motors in a vibrating system,
the controllers by an adaptive sliding mode control algorithm based on a modified master-slave control strategy
were designed, and the stability of the controllers was verified by using Lyapunov theorem!®. Kong used the same
control algorithm and strategy to study the phase and speed synchronization control of four eccentric rotors
driven by induction motors in a linear vibratory feeder, the designed controller achieves four eccentric rotors
operating synchronously with zero phase difference!®. The composite synchronization, which is a combination
of self-synchronization and controlled synchronization, of four eccentric rotors driven by induction motors in
a vibration system with a mass-spring rigid base was researched by Kong and Wen 17, the results showed that
the composite synchronization method provides a possible energy-saving way to address the synchronization
problem.

Through literature research, it was found that the existing dual-exciter vibration system of the vibration
device generates relatively small excitation forces in the working conditions, and cannot adequately meet the
large excitation force requirements in most engineering operations. The existing multi-stimulator vibration
systems mostly adopt electronic control synchronization. Although the above controlled synchronization
methods are effective, they have significant limitations in practical applications. The controlled synchronization
requires configuring corresponding hardware, software, and appropriate control algorithms and strategies, which
leads to complex systems and high costs, especially in the vibration system of multi exciters, this limitation is
extremely prominent. The monitoring sensors for the working state parameters of the exciters operate under
severe vibration conditions, which results in low system reliability. All exciters must be powered on during
operation, which is disadvantageous from an energy-saving perspective.

Elastic coupling mechanical synchronization of two or three co-rotating rotors in a plane vibration system
was studied by Hou and Du, which can achieve zero phase difference synchronization between two homodromy
exciters, and maximize the combined excitation force of two or three co-rotating exciters. The elastic coupling
mechanical synchronization does not have the aforementioned limitations of controlled synchronization, but
can also avoid the rigid starting impact between multiple exciters in mechanical forced synchronization. They
established synchronization and stability conditions for this vibration system, and conducted simulation and
experimental research on the system. The research results are of great significance for reducing the energy
consumption of vibration machines'®-2>. Hou D Y. proposed the elastic coupling mechanical synchronization
of two coaxial co-rotating exciters coupling with a torsion spring in far-resonance system, established the
synchronization and stability conditions, and explored the influence of torsional stiffness of coupling components
on the phase difference angle?*. The composite synchronization of three exciters, which is a combination of the
elastic coupling mechanical synchronization of two coaxial co-rotating exciters and the self-synchronization
between these two-exciter and another, was studied by Hou D Y. et al., and a double-layer elliptical shale shaker
with this composite synchronization of three exciters was developed?.

In this paper, the elastic coupling mechanical synchronization of three coaxial co-rotating exciters coupling
with two torsional springs in a far-resonance system is introduced, and the synchronization characteristics of
the system is comprehensively investigated through theoretical analysis, numerical calculations, simulations,
and testing. The research results provide a contribution to the development of more energy-saving vibration
machines.

Material and methods
Mechanical model
The dynamic model of the coaxial co-rotating tri-exciter far-resonance system is shown as Fig. 1. In this system,
the three coaxial exciting motors are coupled by two torsional springs with torsional stiffness ky1,k92 and
damping fy1,fs2. The rigid frame is symmetrically supported by springs with stiffness k; and damping f; in j
-direction (j = z, v, 2,9, 6, 0).The mass of the rigid frame is expressed as mg, which consists of the mass of the
vibrating box and the mass of three exciting motors. The masses of the three ERs mounted on the exciting motor
shaft are represented by m; (¢ = 1,2, 3), respectively. The distances from the rotation centers of the three ERs
to their own mass.

centersare represented by . The distance from the rotating center of the ERs to YOZ planeis x . The coordinates
of eccentric rotos in the Z direction are [ z;. The vertical distance from the rotating centers of the three ERs to
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Fig. 1. Dynamical model of the vibration system.

plane XOZ is . The centroid of the vibrating body is coincided with the origin of coordinate system oz y z

when the vibrating system in static equilibrium. The transforming law of the reference coordinates is shown in

Fig. 1. And the conversion sequence of the reference coordinates is followed by 0"’ ="'y 2" — o'z'y'z" — ozyz.

The rigid frame is translated in z- , y-and z- axes, and rotated in - ,6- and 6 -axes. The phase angles of the ERs
are represented by o1, 2 and 3 respectively.

In coordinate o” 2" y" 2", the centroid coordinates I”1,I"’2 and I” 3 of the three ERs can be expressed as:

Ix + rcosp;
1", = | ly + rsing; (1=1,2,3) (1)
lzi
The centroid of the rigid frameisIo = [ =z, ¥y, 0 }T in fixed coordinate oxy z, the centroid coordinate of the
ERs regarding coordinate oxyz can be converted through rotation matrix A, ie.,

1 -6 9
L=I+AI";, ITo=[z y 0]°, A=]| 0 (1$ =0 |,(i=1,2,3) ()

—1 1

Due to the lack of force in the z-direction, the movement in this direction is very small, so the movement and its
influence are ignored. In the synchronous state, the kinetic energy of the whole system should be calculated as:

3 3
1 2 | .2 1, 52 1.0 1.5 1 a1 2
T=gmo (i% +9°) + 5 Judh® + 5Js0° + 5Tl + 5 E_l mil{" T + 5 E._l Joi s 3)

where, the symbols of (-) and (--) are represented d/dt and d* /dt? respectively, and the rotational inertia of the
rigid framework around -, y- and z-axis are defined as Jy,Js and Jy, respectively. In addition, the moment of
inertia of the i-th eccentric rotor related to the motor axis can be expressed as Jo; (i = 1,2, 3).

The total potential energy of the vibrating system can be expressed by:
1 1 1 1 1 1 1
V= —kex? + 7kyy2 + 7&/;1/)2 + ~ks6° 4+ Zke0® + ko (p1 — 802)2 + —ko2 (2 — <,03)2 (4)
2 2 2 2 2 2 2
Meanwhile, the dissipated energy of this system can be calculated as:
1 1 1, . 1, . 1, 1 1 1 1 1
D= gfmiz + 5fy?]2 + §fw7l’2 + §f652 + 5f092 + iflsbf + §f2¢§ + 5f:3¢§ + 5 for(fr = ¢2)” + 5 fo2(@2 — ¢3)* (5)

The Lagrange’s equation can be written as:
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49T _9(T-V) oD _

Qi (6)

where, ¢; is an element of generalized coordinate matrix q of the system, which can be expressed as

g=1[=z y, ¥, 6 0, @1, 2, @3, | Meanwhile, Q ; is an element of generalized force
matrix Q, which should be expressed as:

Q = [ 0, 0, O7 O, 07 Mel - Rel, Mc2 - R527 MeS - Re37 ] (7)

where, M.; is electromagnetic torque in the motors, and Re; is the damping torque in the motors
(i =1,2,3). Substituting Egs. (3), (4), (5), and (7) into Eq. (6), meanwhile, the parameters with following

relationships m; < mo (i = 1,2,3),9% < 1,6 < 1,0 < 1 are satisfied when the vibrating system operated in
synchronous state. Therefore, the dynamic equations of this system are written as:

3
(mo +m1 +ma +m3) i+ fod + kox = Z mir (i sin g; + @i cos ;)
=1
3
(mo +ma +ma +ms)§+ fuy + kyy = me(ﬂbi cos i + @7 sin ;)
i=1
3
Js56 + f55 + ksd = Zlm‘mir(@ Cos p; — gb? sin ;)
i=1
3
Tot + foth + koo = ) Lmar(@isingi + 3 cos i) ®)
i=1
3 3
JoO + fo0 + kel = — Z marly (@i sin p; + @7 cos ;) + Z mirly (—@i cos p; + @7 sin ;)
i=1 =1

Jo1p1 + fror = Ter — kor(p1 — p2) + mar(E — 1,0 + 119) sin 1 — mar(§ + 1.0 — 1.16) cos 1
Jo2@z + fapz = Tez + ko1 (91 — 2) — ko2(p2 — @3) + mar (i — 1,0 + L.21)) sin po
—mer(§ + 1.6 — lzzg) COS @2
Jos@s + faps = Tes + ko2 (p2 — p3) + mar(i — lyé + 1231]}) sin @3 — mgar cos w3 (4 + 1.6 — 1238)
The phase difference between ER 1 and 2 is defined by a1, and the phase difference between the ER 2 and 3 is
assumed as 2. That is

Y1 — p2 = Q1

9
Y2 — P3 = Q2 ©)

Let the phase angle of ER 2 2 = ¢, according to Eq. (9), the phase angles of the three ERs can be expressed as:

p1=p+ao
P2 = (10)
P3 =@ — Q2

The motion of the vibration system in the synchronous process is periodic, and the motion of the rotors also is
periodic. Therefore, the average value of the rotational velocity of the ERs should be constant. The minimum
positive period of rotation of the rotors is defined as Tp min, the average angular velocity of the ERs during
TP min is a constant.

t+Tp min

1
TP min

Wmo = pdt = constant (11)

t

where,wmo is average value of rotational velocity of the eccentric rotor in a single period. In this case, when
the middle ER is on the XOY plane, and the distance from the other two ERs to the XOY plane is equal and
represented by Lz, the approximate steady state responses of the system in x-,y-,0-,4)-and 6- direction can be
expressed as:
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x = Ez[micos (¢ + a1 — Yz) + macos (¢ — vz) + macos (¢ — a2 — Ya)]

y = By [masin (p+a1 — ) + masin (¢ — vy) + masin (¢ — a2 — )]

0 = Es [masin (p+a1 — v5) — masin (¢ — az — v5)] (12)
Y = Ey [micos (p+a1 — vy) — mscos (¢ — az — 7y

0 = Eg [masin (¢ + o1 + yxv — 7o) + masin (¢ + yxy — 7o) + masin (¢ — a2 + vxv — 79)]

where,
Fa = 508, By = 2 B = M By = T, By = Sty = R T E,
M= (mo+m1—|—m2—|—m3),’7xy = arctan( ) i = \/(kﬁ - wm0)2 + (f,:meo)Q’
~; = arctan (ﬁifﬁ%ﬂ),(z =z,y,1,9,0).

Synchronization analysis and stability analysis

Synchronization analysis

According to the modified averaging small parameter method, when the average angular velocity of the three
rotors is satisfied by the condition of ¢ & wmo, and the transient coefficients o, (1 and {2(Co, (1 and (2 are
small parameters changed with time) are introduced to describe ¢, &1,¢v2. @, é1,0e2 are written as

@ = (14 Co) wmo
&1 = C1wmo (13)
&2 = (2Wmo

The first derivation of Eq. (10) with respect to time t can be calculated. Then combining the results of
differentiation with the Eq. (13), the formulas can be defined as:

$1 = ¢+ d1 = (1+ (o) Wmo + C1wmo
P2 =¢ = (1+Co)wmo
3 = ¢ — da = (1+ (o) wmo — C2wmo
P11 = (QLO + Cl) Wmo (14)
@2 = Cowmo
55 = (Co— &) wmo
Substitute Eqgs. (12) and (14) into the last three equations of formula (8), and integrating the equations over single
period T, averaged in the interval (0, 27),the corresponding moment equilibrium equation can be obtained.
Jo1 (éO + Cl) wmo + f1 ((1 + Co) wmo + C1wmo) + ks1a1+fo11wmo
mirw2y |(Wi + Ws)mi + Wamg sin an + Wima cos ax
2 [ + (We — Wa) masin(on + a2) + (W1 — W3) ma cos(ar + 042):|
Jo2bowmo + f2 (14 Co) wmo — korai + kezaz — f91(1wWmo + fo2(2wmo

= elfRelf

. R morwo (Wims — Wamasina + Wimg cos o (15)
e e2 2 +Wsomssinas + Wims cos as

Jos (Co = &2) wmo + f3 (1 + Co — C2) wmo — kw202 — fo28awmo

. R m3rwm0 (W1 + Wg) ma — Wamasinag + Wima cos az

- e s 2 + (Wy — Wa) masin (a1 + az2) + (Wi — W3) mq cos (a1 + a2)

where,

Wi = —Egsinvy, + Eysiny,+lxy Egsinys
Wa = —Ezcosv, + Eycosyy + Lxy Egcosyg
W3 = lewSin’yw + le(sSin’y(s

Wy = lzEycosyy + lzEscosys

(16)

As (o,C1,C2 are small parameters, and so (; = 0,(; ~ 0, (i~ 0,1,3)are considered in the calculated
process. The rotational damping coeflicients of three rotors are identical as the same type of motor is selected,
ie,fi = fa = f3 = f. Subtracting formula 2 from formula 1 and formula 3 from formula 2 in Eq. (15), then it
can be obtained:
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+2k9101 — kgooa = Te12

+7wfn0 [Wlmg — (Wh + W3) mf — 2Womimasina: + Wamaemssinas + Wimams cos 042:|

2 — (Wa — Wa) mimssin(ar + az) — (W1 — Ws3) mims cos(ar + az)

17
—ko1o1 + 2kgoae = Teos )

2 2 . .
+7"W3n0 [(Wl + Ws3)m3 — Wimj + Wamimasinas — Wimims cos g — 2W2m2m381na2}

2 =+ (W4 — Wg) mlmgsin (OL1 + 012) + (Wl — W3) mims COS (011 + CMQ)

Where;T512 == (Mel - Me ) - (Rel - ReQ); Te23 = (Me2 - Me ) - (Re2 - Re3)~
Let £1 = sinay,&1 = cosa,T2 = sinas,T2 = cosans,then there is, a1 = arcsin x1, as = arcsin x». Then
Eq. (17) can be converted to:

Pi(x1,22) = Te12 — 2kg1 arcsin x1 + kyo arcsin zo

+

TWao {Wlmg — (W1 4+ Ws)m? — 2Wamamazi + Wamamazs + Wimamais } —0
2 — (Wa — Wa)mims (z1d2 + £122) — (W1 — W3) mims (£182 — z122)

18
Ps(z1,22) = Te2s + ko1 arcsinz1 — 2kygo arcsin zo (18)

Twrzno |:(W1 + W3) mg - Wlm% + W2m1m2$1 — W1m1m2i1 — 2W2m2m31:2 :l —0
2 + (Wa — Wo) mimg (x1&2 + $122) + (W1 — W3) mims (£142 — z122)

As can be seen from the above formula, there are —1 < 21 < 1 and —1 < 22 < 1.Under normal conditions,
exciters 1 and 3 will select the same type, that is m1 = m3 = m. The two coupled torsional springs are selected
with the same stiffness, that is kg1 = kg = ky.

IfP (—1,—1) — Py (1,1) > Oand Py (—1,—1) — P, (1,1) > 0, then,

Wy 2> ———r (19)

mO0

When the formula (19) is satisfied, if the following equation come into existence, then Eq. (9) must have a
solution.

2
Py(~1,-1) = Tois + gkﬂ + ’““’2;"0 (N + Wamms) > 0
2
Pg(fl, 71) = Tea3 + gkg =+ W%LO [*N + Wzmmz} >0
wano

Pi(1,1) = Ter2 — Ekﬁ +

- <
3 5 [N — Wamms] <0

2
Pr(1,1) = Teaz — zkﬁ + %m0

—-N — <
B 2 [ N ngzm] < 0

where, N = Wim3 — 2W3m? Based on the above analysis, it can be obtained,

2T k 2T. k
_ 512-21- 9T — Wammas < N < e23;- 97T + Wamms
Tw2,o w2, (20)
2T o3 — k 212 — k
M — Wamme < N < _M + Wommsa
w2, W2,

Besides, exciter 1, 3 select the same type of motors. The torque difference of motor 1 and 2 is equal to that
of motor 2 and 3. And the direction of them is opposite, that is T,,5 = —T,o3. Plugging this result into the
previous two equations, it can be obtained.

2T o3 2— kym — Wamms < N < 2T o3 —2|— kom

mO0

+ Wamme (21)

rWw rw

mO0

_ kg™
In the same way, when We S — oy  the equation can be obtained.

mO0 >
2Te23 + k 2To3 — k
M 1+ Wamma < N < 23721971— — Wammeo 22)
TWmo TWno

According to the above derivation, Egs. (21) and (22) constitute the synchronization conditions of the coaxial
co-rotating elastic coupling tri-exciter vibration system. It can be arranged as,
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2Te2s — k 2Te k k
Meas —RoT _yyr oy < v < P thom <W2 > W2>
TWao TWio mmarws,
or (23)
2Te2s + k 2Teas — k k
Weas £ RoT |y < o< 2o —kom <W2 < _M>
Wi, TWa mmarws,
The absolute value form of the above equation can be arranged as,
2T o3 + kg
[N] < # + Wamme
mO0
or (24)
2Te2s — k
IN| < 237279” — Wommea
'm0

Equation (24) can also be rewritten as,

2T o3+ kg™
=23 BT+ Wommi

Ym0

Csl = 2 1
|N| (25)
2Tea3—kym ngmg
rw?
Cs2 = L >1
2 |N‘ =

Cs1 and Cs2 can be defined as synchronization index, and 1 is defined as the limiting synchronization index.
The larger the value of the synchronization index Cs1,Cs2, the easier the inequality of Eq. (28) is to satisfy, and
the better the synchronization performance of the system is.

When the moment difference between the two motors is zero, that is Teas = 0 and Cs1 = Csa = Cs, the
synchronization condition of the system can be rewritten as,
koT 4 Wamma
Cs — ™m0 2 1 (26)

Stability analysis

In order to simplify the analysis, in the study of system stability, the same and symmetrical arrangement of
excitation motors 1 and 3 is also considered, that is m;=ms3=m.Add and subtract the two formulas of the
Eq. (18) respectively,

Te12 + Teas — kg1 arcsinzy — kg arcsin xa
TWimo
2
Te12 — Teos — 3ky1 arcsin x1 + 3kygs arcsin xo (27)

7'(*)72710 2W1m§ —2 (Wl + W3) m2 — 3Wommeox1 + 3Wammeoxs
2 +Wimmoz1 + WimmeaZo — 2 (Wl — W;) m2 (i‘1i2 — 3’,‘11‘2)

+ [—WQ’I’)’L’H’ZQ.T1 — Wommaxs — Wimmax1 + Wimmadae + 2 (W4 — WQ) m? (1‘15'62 + ill‘Q)] =0

=0

When 21 =0, z2 = 0, if Eq. (27) could hold, it indicates that the equation has zero solutions, the stability

of the system can be directly judged by the stability of the zero solution of equation. Otherwise a coordinate

transformation of Eq. (27) is required, the non-zero solutions of 1 and z2 in Eq. (27) are transformed into zero

solutions in new coordinates, and then the stability of the system can be analyzed in the new coordinate system.
Let the solution of formula (27) be 241, a2, and,

Y1 = X1 — Tail

28
Y2 = X2 — Ta2 ( )
If the solution of Eq. (27) (i.e. synchronous phase difference Angle) is av10, av20.Then in Eq. (28),
Ta1l = Sina
1 In a0 (29)
T2 = SIN (20
Equation (28) to find the first derivative with respect to the time variable, then.
"
= (30)
Y2 = X2
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Substituting the Eq. (28) ~ (30)into Eq. (27), the Eq. (27) can be transformed into,

Te12 + Te2s — ko1 arcsin (y1 + Ta1) — ko2 arcsin (y2 + Ta2)

rw2, [—W2mm2 (Y1 + Za1) — Wamma (y2 + 2a2) — Wimmatn + Wlmmzyg]

2 [+2(Wa — Wa)m? ((y1 + Ta1) Y2 + 91 (2 + Ta2)) (31)
Te12 — Te2s — 3kg1 arcsin (y1 + 2a1) + ko2 arcsin (Y2 + Ta2)
rw2,g [2W1m§ —2(Wh + Ws) m® — 3Wamma (Y1 + Ta1) + 3Wamma (y2 + Ta2) :| -0
2 +Wimmays + Wimmeags — 2 (W1 — Ws) m? (9192 — (y1 + Ta1) (Y2 + Ta2))
The standard matrix form of the above equation can be rewritten as,
y=F(y) (32)

F(y) has a continuous second partial derivative in the neighborhood of y = 0. From the multivariate Taylor
formula, F(y) can be expanded to,

F(y) = Dsyo +g(y) (33)

Dy is the Jacobian matrix of the function F(y),

01 O
8:1/1 8:1/2
D, =
f 0y2 0y (34)

E)y1 ayg y=0

The nonlinear term in Eq. (33) is satisfied,

lim sl
lyll=o ||yl

=0 (35)

Then the first-order approximation system of formula (32) can be written as,
y=Dyy (36)

Equation (31) takes the partial derivative of y1 and y2 respectively. At zero solution y1 =0, y2=0, let,

0y 0y
ail = 872,11 ;o a2 = Tyl
e y1=y2=0 b2 y1=y2=0
0y 0y (37)
a21 = TZ/? ;o a2 = aiyz
h y1=y2=0 b2 y1=y2=0
Yro = y1|y1:y2:0 P Y20 = y2|y1:y2:0
By substituting y1 =0, y2=0 and into Eq. (37), the following conclusion can be can be sorted out:
Arair + Biaz1 +C1 =0
Aza11 + B2az1 + C2 =0 38)

Aszaiz2 + Bzaz2 + C3 =0
Agaiz + Baaze +Cy =0

where,

A1 =2 (W4 — WQ) mzxag — Wlmmg; B1 =2 (W4 — W2) m2117a1 + W1mm2

2k .
C=- L — Wammea + 2 (Wa — Wa) m>0

rw2, v/ 1 — (96111)2
A2 = Wlmmg -2 (Wl — Wg) m2y20, Bz = Wlmmg -2 (Wl — Wg) ng)lo

Cy = — Gko1 — 3Wammes + 2 (W1 — Wg) m2$a2

w2 o/ 1= (Ta1)?
A3 =2 (W4 - WQ) m2xa2 - Wlmmg, Bz = Wimma + 2 (W4 - WQ) m2xa1

2k ,
C3=— 92 — Wammesg + 2 (W4 — Wz) m2y10

w2, v/ 1 — ($a2)2
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A4 = W1mm2 -2 (W1 — W3) m2y20, B4 = W1mm2 -2 (W1 — W3) ng)m

6k
Cy = 02 > + 3Wommes + 2 (Wl — Wg) m2Ia1

TW%LO V 1- (il'a2)

Solve the Eq. (38),

_ B1C>—=B>Cy — A1Ca—ACy
011 = A By—A.By 21 T AB1-A1By 39
— B3C4—=B4Cs — A3C4—A4C3 (39)
a2 = Az3B4s—A4B3? 22 = Ay4B3z—A3By
The Jacobian matrix of the first-order approximation system of Eq. (33) can be written as,
ain a2
Dy = 40
! {am CLQJ (40)
The characteristic equation of the first-order approximate system can be written as,
ain — A a2
Dy — M| = =0
Dy | az a2 — A
That is,
2
A° — (@11 + a22) A+ a11a22 — az1a12 =0 (41)
The necessary and sufficient conditions for the root of Eq. (23) to have negative real parts are,
—(a11 +az2) >0
(a11 22) (42)
a11az2 — azaiz >0
Assuming that,
Cwi1 = — (a11 + a22) (43)
Cwa = ai1a22 — a21012
Then the synchronous stability condition of the system can be determined as,
Cwi1 >0
(44)
CWQ >0

Cw1 and Cywg are referred to as the synchronous stability index of the system. When the value of synchronous
stability index is positive, the greater the value, the better the stability of the system.

Discussion and results

Numerical analysis

The data used in numerical analysis

In order to further verify the validity and accuracy of the above synchronization theoretical analysis and
numerical calculation results of the self-synchronous vibration system of the coaxial triple-excited motor in
the same direction rotation, and thus to find out the synchronization behavior and electromechanical coupling
dynamic characteristics of the eccentric rotor and screen box of the coaxial triple-excited motor in the case
of self-synchronization, this section is based on the multi-degree of freedom motion differential equation of
the system. The electromechanical coupling model of the system is established by using Simulink module of
MATLAB. The parameters used in numerical analysis are shown in Table 1.

m, (kg) m, (kg) m (kg) Mg | Mke) Ty (cgm?) | J, (kgrm?) | J, (kgem?)

2 2 2 100 106 10 10 10

r (m) k. (N/m) Ky (N/m) ky, (N-m/rad) | Ky (N-m/rad) | K, (N-m/rad) | f_ (N-s/m) fy (N-s/m)
0.04 10,037 10,037 1500 1500 1500 50 50

fy (N-m-s/rad) | fy (N-m-s/rad) | f, (N-m-s/rad) | w_ (rad/s) L, (m) Ly (m) L, (m) k.9 (N-m/rad)
15 15 15 157 0.1 0.1 0.1 4

Table 1. Parameters of the vibration system of a coaxial tri-exciter elastic coupling shaker.
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Computational analysis of synchronization

Assuming that the performance of the motors of the three exciters is identical, that is Te12 = Te23 = 0. At this
point, the synchronization index Cs1 = Csz. Figure 2 shows the variation curve of synchronization index C's
with torsional stiffness k¢ that calculated according to parameters in Table 1. When torsional stiffness ky is zero,
Synchronicity index C'so = 554.82. At this point, the value of the synchronization index is much greater than 1,
indicating that the vibration system with the parameters in Table 1 has good self-synchronization performance.

The synchronization index C's decreased linearly with the increase of torsional stifftness ky,and Cso=0
until £y =1.0532N-m/rad. Then, the synchronization index C'so increases linearly with the increase of torsional
stiffness ky. When the torsional stiffness of the coupling torsion spring reaches the condition ky <1.0513N-m/
rad(region I in Fig. 2), the synchronization index is still> 1 and the system is still in the synchronization state
with the increase of torsional stiffness. Under this condition, the synchronization index value is getting lower
and lower, indicating that the synchronization performance of the system is getting worse and worse. When the
torsional stiffness of the coupling torsion spring reaches the condition ky > 1.055N-m/rad(region III in Fig. 2), the
synchronization index C's > 1. Under this condition, with the increase of torsional stiffness, the synchronization
index increases linearly, and the synchronization performance of the system becomes better. However, when the
torsional stiffness of the coupling torsion spring reaches the condition 1.0513 < ky < 1.055N-m/rad(region I in
Fig. 2), the synchronization index C's < 1, the system cannot be synchronized.

The above numerical law shows that, the synchronous performance of the coaxial tri-exciter vibration system
with elastic coupling elements is lower than that of its’ self-synchronous system when the torsional stiffness
of the coupling elements is small. When the torsional stiffness is greater than a certain value, the system will
have better synchronization performance than its self-synchronization system. Therefore, the synchronization
performance of the system is closer to the self-synchronization state in region I, which is called the near-self-
synchronization region. In region III, the synchronization performance of the system mainly depends on the
stiffness of the coupling element, which is called the coupling synchronization region. The system in zone II is
out of synchronization, which is called the asynchronous zone. The torsional stiffness range of the corresponding
coupling element in the asynchronous region is very small.

When conducting the analysis of the influence of the parameters involved in Fig. 3, except for the parameters
being discussed, all other parameters were set according to the values in Table 1 and remained constant. Figure 3a
shows the relationship between the synchronization index Cgand torsional stiffness ky of the system when other
parameters remain unchanged and the mass of the eccentric rotor changes. It can be seen that, the change trend
of the synchronization index and torsional stiffness is first linear decline, and then linear increase while the mass
of the eccentric rotor increases. The greater the mass of the eccentric rotor, the greater the torsional stiffness ky
of the coupling element corresponding to the non-synchronous state of the system. In other words, the range of
the near-self-synchronous region of the system increases, the near self-synchronization capability of the system
is increased. In the coupling synchronization region, when the torsion stiffness of the coupling element is the
same, the larger the mass of the eccentric rotor, the smaller the synchronization index C, that is, the coupling
synchronization ability of the system decreases. For asynchronous region II of the system, the larger the mass of
the eccentric rotor, the gentler the synchrony index curve, and the wider the asynchronous region.

Figure 3b shows the relationship between the synchronization index and torsional stiffness Cj of the system
when other parameters remain unchanged and the eccentricity radius changes. As can be seen from Fig. 4, the
change between synchronization index Cg and torsional stiffness k_ is similar to that of the eccentricity mass
while the eccentricity radius increases. That is, The greater the eccentricity radius, the greater the near-self-
synchronization region. In the coupling synchronization region, the larger the mass of the eccentric rotor, the
smaller the synchronization index Cq and the lower the coupling synchronization ability of the system when the
torsional stiffness of the coupling element is the same. Therefore, the larger the eccentricity radius, the gentler
the synchrony index curve, and the wider the asynchronous region II of the system.

Figure 3¢ shows the relationship between the synchronization index Cgand torsional stiffness k_ of the system
when other parameters remain unchanged and the rotate speed changes. It can be seen that, the relationship
between the synchronization index Cg and torsional stiffness kg is similar to that of the eccentric mass and
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Fig. 2. Change curve of synchrony index with torsional stiffness.
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Fig. 3. The curve of synchronization index changes with torsional stiffness when 4 important parameters
change separately. (a) Change curve of synchrony index with torsional stiffness for different eccentric masses.
(b) Change curve of synchrony index with torsional stiffness for different eccentricity radius. (c) Change
curve of synchronization index with torsional stiffness at different rotate speed. (d) Change curve of the
synchronization index with torsional stiffness for different screen mass.

eccentric radius while the rotate speed of the eccentric rotor increases. The greater the rotational speed of the
eccentric rotor, the larger the near-self-synchronization region. In the coupling synchronization region, the
higher the rotational speed of the eccentric rotor, the smaller the synchronization index, and the lower the
coupling synchronization ability of the system. Thus, the higher the speed of the eccentric rotor, the gentler the
synchrony index curve, and the wider the non-synchronous region II of the system.

Figure 3d shows the relationship between the synchronization index C; and torsional stiffness k, of the
system while other parameters remain unchanged and the mass of the screen frame changes. It can be seen that
in the state of self-synchronization, the bigger the quality of the screen frame, the larger synchronization index of
the system. That is, the self-synchronization performance of the system is better. In the near self-synchronization
region, the greater the mass of the screen frame, the faster the linear decline of the synchronization index
and torsional stiffness, and the smaller the near self-synchronization region of the system. In the coupling
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Fig. 4. The relationship between stability index and torsional stiffness in synchronous state
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synchronization region, the larger the mass of the screen frame, the faster the synchronization index increases,
and the better the coupling synchronization performance of the system. The larger the mass of the screen frame,
the gentler the synchrony index curve, and the wider the non-synchronous region II of the system. In other
words, this is mainly due to the increase of the system vibration mass when the screen frame mass increases.
Thus, the vibration acceleration is reduced, the vibration torque acting on the eccentric rotor is reduced, and the
torsional stiffness required by the coupling element is also reduced.

Computational analysis of stability
The analysis of the influence of system parameters on stability is carried out under the synchronous state of
system stability in Table 1.

According to the parameters in Table 1 and considering T,,,=T.,,=0, the stability coefficient of the system is
calculated by Eq. (44). It can be considered as a self-synchronous vibration system of the triple-excited motor
when the vibration system meets the condition k_ =O0N-m/rad. Through synchronization analysis, it can be known
that the system has four synchronization states, those are, 1 = 0,a2 = m;01 = 0,02 = O;01 = m,a02 = 0 and
a1 = 7, ap = 7. The system is stable only when a1 = 0,a2 = 7, and this kind of synchronization state is the
true motion state of the system.

Figure 4a shows the relationship curve between stability index and torsional stiffness in synchronous state
a1 = 0,a2 = . It can be seen that the stability index C,,,, and C,,, are linearly decreased with the increase of
torsional stiffness k, of the coupled elements. The stability index C,,,, and C,,,, both are greater than zero when
the torsional stiffnéss ky < 0.585N-m/rad. In this stiffness interval, the synchronization state of the system is
stable, but the stability becomes worse and worse. The stability index C,,,,<0 when torsional stiffness k, >0.585
N-m/rad. In this stiffness interval, the corresponding synchronization state is unstable, and the system cannot
work stably in this synchronization state.

Figure 4b shows the relationship curve between stability index and torsional stiffness in synchronous state
a1 = 0,2 = 0. It can be concluded that the stability index Ciy and Ciys of the system in this synchronous state
both increase linearly with the increase of the torsional stiffness of the coupled elements, and the stability of
the system gradually becomes better. The values of stability index are both greater than zero when the torsional
stiffness k, N-m/rad. Therefore, the synchronization state of the system is stable when cv; = 0,a2 = 0.

Figure 4c and d show the relationship curve between stability index and torsional stiffness in synchronous
states a1 = m,a2 = 0 and o1 = m,a2 = 7. Comparing these two figures, it can be seen that these two
synchronization states are unstable in this system. These two synchronous states are not true motion states in a
self-synchronous system. Similarly, it is not the true motion state in a triaxial motor system coupled by a torsion
spring.

By comparing Fig. 4a and b, it can be seen that the elastic coupling elements are coupled between the coaxial
triple excitation motors, even if the coupling elements adopt a small torsional stiffness, the real synchronization
state o1 = 0,ai2 = 7 of the synchronous system will lose stability. In order to change the unstable synchronization
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Parameters Motor1 | Motor2 | Motor 3 | Parameters Motor 1 Motor 2 Motor 3
Rated power 0.7 kW 0.7 kW 0.7 kW Rotor Resistance 0.06Q 0.06Q 0.06Q)
Nominal voltage | 220 V 220V 220V Stator Inductance 0.0009) 0.0009Q 0.0009Q
Rated frequency | 50 Hz 50 Hz 50 Hz Rotor Inductance 0.0009Q) 0.0009Q2 0.0009Q
Rated speed 157 rad/s | 157 rad/s | 157 rad/s
Mutual inductance 0.03H 0.03H 0.03H
Number of poles | 4 4 4
Stator resistance | 0.1Q 0.1Q 0.1 Damping coeflicient of motor shaft | 0.02N-m/(rad/s) | 0.02N-m/(rad/s) | 0.02N-m/(rad/s)

Table 2. The parameter values of motors.
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Fig. 5. Simulink flowchart of MATLAB of the vibration system.

state into the real stable synchronization state, the torsional stiffness of the coupling element must be large
enough.

Simulations

In order to verify the validity and accuracy of the numerical analysis results above, it is necessary to simulate
the electromechanical dynamics based on the electromechanical coupling model of the system. Therefore,
after the numerical analysis yields the results, some of these values are randomly selected to be used in the
mechanical-electrical coupling simulation analysis. If the results of the mechanical-electrical coupling
simulation analysis are consistent with those of the numerical analysis, it can indicate the correctness of
the numerical analysis. As a result, the arrangement of the research process can achieve a logical flow. The
electromechanical coupling model of this vibration system is established by the Simulink of MATLAB. In the
practical engineering, three identical types of asynchronous induction motor are applied to actuate exciters.
The electromagnetic parameters of the induction motors are shown in Table 2. The schematic diagram of the
vibration system model in this paper, presented in the Simulink flowchart of MATLAB, is shown in Fig. 5. In the
simulation model, the parameters of the system are M = 100 kgm1 = ma =m3 =2kg, fi = fo=fz3 =0
N-m-s/rad, Jy = Js = Jg = 10 kg-mz, fz = fy =125 N-s/m,fy = f5 = fo = 15 N-m-s/rad, wmo = 157
rad/s, ky = ky = 10037 N/m, ky = ks = k¢ = 1500 N-m/rad , Ix = 0.1 m,ly =0.25 m and [z = 0.1 m,
respectively.

Figure 6 shows the synchronization of the ERs as ky = 4 N-m/rad,lz = 0.1 m, when the three asynchronous
exciters started at the same time, the angle acceleration of the two coaxial exciters is different in the initial
stage. In the steady phase, the two rotors are synchronously rotated with average speed of 157 rad/s, the phase
difference a1 between rotor 1 and 2 is approached to 1.756 rad, and the phase difference a2 between rotor 2
and non-coaxial rotor 3 is stable around 1.748 rad. As can be seen from Fig. 6¢, the synchronous torque of the
three rotors is stable around 0 N.m. when the rotors are steadily and synchronously rotated. From Fig. 6d-h,
in this synchronous state, the rigid frame is vibrated with amplitudes 1.8 x 10 m and 1.8 x10~* m in x- and

y- directions, respectively. Meanwhile, the amplitudes of twisting vibration of rigid frame in the 1-,0- and 6

- directions are 5.5x 10~ rad ,6.3 x 10~ rad and 2.1 x 107! rad, respectively. By comparing the simulation results
with the numerical analysis, it can be seen that the simulation results are consistent with the theoretical values.
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Fig. 6. Synchronization for ky = 4.67N-m/rad,lz = 0.1 m. (a) Velocities. (b) Phase difference. (c)
Electromagnetic torque. (d) Displacement in x- direction. (e) Displacement in y- direction. (f) Pitching
vibration in - direction. (g) Pitching vibration in - direction. (h) Pitching vibration in #- direction.

Experiment

Utilizing the findings from the aforementioned study, a elastic coupling mechanical synchronization laboratory
experimental device illustrated in Fig. 7 is devised. This device consists of three coaxial exciters, interconnected
by two torsional springs of equal stiffness with rated value of k.

In order to compare with the self-synchronization system, the torsion spring between the coaxial three exciters
was removed, and the self-synchronization state of the system was also tested. To analyze the effect of torsional
stiffness ky on the synchronization state of the system, the experiments were conducted on coaxial tri-motors
with several pairs of identical torsional springs of the different stiffness. HX-6E high-speed imaging system was
employed to achieve visual measurements of the phase angles of the exciters. The structural parameters involved
in this experiment are as follows:lz = 0.1 m,lx = 0.1 m,/ly = 0.25 m.

In the experiments of self-synchronization and elastic coupling mechanical synchronization, the phase
difference angle between three exciters was tested in two situations. One of them is that all three exciters are
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powered, and the other is that exciters 1 and 3 are powered, while exciter 2 is powered off. The rated power of
each exciter is 0.12kw.

The previous part conducted a comparative experiment on the full-power startup of the motor and the
interruption of the intermediate motor power supply during operation. This comparative experiment to some
extent validates that the coupled synchronous system studied in this paper has a more energy-efficient working
mode. In order to further verify that the indoor experimental model of the tri-exciter-coupled vibration system
studied in this paper has the advantage of energy saving, an additional experimental section was specially added
to measure the working current of each working motor.

In the test of the working current of the excitation motor, a BM803A + digital DC/AC type clamp meter was
selected. To achieve more accurate measurement, the selected range is 10A and the measurement accuracy is
10 mA. Under the condition where all three excitation motors are powered on, the working currents of motor
1, motor 2 and motor 3 are 0.39A, 0.33A and 0.34A respectively. Furthermore, in the operating condition where
all three excites are powered on first and then the middle exciter is turned off, the working currents of motors 1,
2 and 3 are 0.39A, 0A and 0.34A respectively. Based on the working current of each motor under two working
conditions, the corresponding actual power of each motor can be obtained. Under the two working conditions,
the actual power of motors 1 and 3 is basically the same. Motor 2 has no current flowing through when it is
disconnected from power. That is, when the coaxial three-exciter vibration synchronization system is operating,
if the power supply of one of the working motors is suddenly cut off, the other two working motors can still
operate at the same actual power as when all three motors were powered on simultaneously. Therefore, it can be
concluded that the coaxial tri-exciter synchronous system has a running mode that can achieve higher energy
efficiency during operation.

Based on the vibration test platform shown in Fig. 7, the dynamic response of the vibration system under the
state of self-synchronization and mechanical synchronization coupled by torsional spring are shown in Fig. 8.

It can be seen from Fig. 8a and b that the system can operate stably under two self-synchronous states of
three motors in a fully energized state and the intermediate motor in a state of power off, respectively. The
acceleration amplitudes in the x and y directions of the system are stable at about 8.1, 6.8 and 7.9, 4.6 m/s?,
respectively. In the same way, it can be seen from Fig. 8c and d that the system can operate stably under two
coupling synchronization states of three motors in a fully energized state and the intermediate motor in a state
of power off, respectively. The acceleration amplitudes in the x and y directions of the system are stable at about
23,22 and 15, 11 m/s?, respectively.

It is worth noting that, despite the inevitable errors, the stable values of the dynamic response of the system
in degrees of freedom x-, y- and z- are consistent with the values obtained from the theoretical analysis and
numerical calculation above.

The experimental results of synchronous phase difference obtained by vibration test with indoor prototype
are shown in the Figs. 9, 10 and the Table 3.

The self-synchronization experimental results show that, the synchronous phase difference a1 between rotor
1 and rotor 2 is -164°, rotors 1 and 2 are in anti-phase synchronization state; the synchronous phase difference
v realize between rotor 2 and rotor 3 is -49°, which is far greater than zero. The coaxial rotors 1, 2and 3 of the
system cannot zero-phase synchronization in the self-synchronization state.

The torsion springs used in the experimental scheme have been measured and their torsional stiffness are
k9 =4.67,8.33,16.67 N-m/rad. The experiment results of elastic coupling mechanical synchronization show that,
when the torsional stiffness ky =4.67, 8.33, 16.67 N-m/rad, the synchronous phase difference a; = 4°,3°,2° and
ap = —1°,—2°, —3° under three motors energized, the synchronous phase difference a1 = —4°,4°, —1° and
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Fig. 8. Dynamic response under self-synchronization and coupling synchronization state. (a) Dynamic
response of the self-synchronization system when all motors are in. (b) Dynamic response of the self-
synchronization system when the intermediate motor is power off. (¢) 15 Dynamic response of the
synchronization system coupled by torsion spring when all motors are in operation. (d) Dynamic response of
the synchronization system coupled by torsion spring when the intermediate motor is power off.

Op=0,=9,%

Fig. 9. Experimental results of self-synchronization. (a) Experimental results for three motors are all
energized. (b) Experimental results for motor 2 is powered off.

ap = —3°,—6°,2° under motor 1 and 3 energized. The experimental results have verified that elastic coupled
mechanical synchronization can effectively achieve in-phase synchronization of coaxial three exciters, and the
phase difference angle is close to 0°. When only two of the three motors are powered on, there is no significant
change in the synchronization phase difference angle between the three exciters, the power consumption of the
experimental device has been reduced by one-third.

Conclusions

Through researching the synchronous mechanism of the coaxial co-rotating tri-exciter with two torsional
springs, several key conclusions can be highlighted.
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Fig. 10. Experimental results for coupling synchronization with torsion spring when ks = 4.67,8.33,16.67
N-m/rad. (a) Experimental results for three motors are all energized. (b) Experimental results for motor 2 are
powered off. (¢) Experimental results for three motors are all energized. (d) Experimental results for motor 2
are powered off. (e) Experimental results for three motors are all energized. (f) Experimental results for motor
2 are powered off.

ko (N-m/rad) | Motor powered on | 01 () | 2(°) | @s(?) | @1=P1=%2() | az=¢p2—30)
0 1-2-3 85 249 298 -164 —-49
1-2-3 27 31 32 -4 -1
4.67
1-3 26 30 33 -4 -3
1-2-3 111 108 110 3 -2
8.33
1-3 110 106 112 4 -6
1-2-3 23 21 24 2 -3
16.67
1-3 22 23 25 -1 -2

Table 3. The phase difference angle of experimental results.
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It is mentioned that the theoretical analysis, simulation analysis, and experimental results of the system’s
synchronization characteristics are in good agreement. This suggests that the findings obtained from these
three different approaches closely match and support each other.

By selecting the right torsion spring stiffness and ensuring the system meets the synchronization and stabil-
ity criteria, the three elastic coupling coaxial exciters can operate in a nearly zero-phase synchronized and
stable manner.

The research results show that, when the torsional stiffness of the coupling element changes, the synchro-
nization state of the system is divided into near self-synchronization zone, asynchronous zone, and cou-
pled synchronization zone. In the near self- synchronization zone, the synchronization performance of the
system decreases with the increase of torsional stiffness, while in the coupled synchronization zone, the
synchronization performance increases with the increase of torsional stiffness. The larger the mass, eccen-
tricity radius, and rotational speed of an eccentric rotor, the greater the torsional stiffness corresponding to
the asynchronous zone, and the wider the variation range of torsional stiffness of the asynchronous zone.
As the mass participating in vibration increases, the torsional stiffness and variation range corresponding
to the asynchronous zone become smaller.

When the system is in self-synchronization, the theoretical synchronization state a; = 0, a2 = 7 is stable.
Due to differences in electromagnetic parameters and mechanical structural errors of the actual motor, the
self-synchronization stable state is oy = —49°,a2 = —164°. Although there is a certain difference from
the theoretical synchronization state, it also reflects that exciters 1 and 2 are in-phase synchronization, and
exciters 2 and 3 are in anti-synchronization. In the near self-synchronization zone, as the torsional stiffness
increases, the stability of the system’s anti-phase synchronization decreases; In the coupled synchronization
zone, as the torsional stiffness increases, the stability of the system in-phase synchronization increases.
When only two of the three motors are powered on, the synchronization phase difference angles are almost
the same as when all three motors are powered on. This means that, for a multi-exciter vibration system
with elastic coupling mechanical synchronization, energy saving can be achieved by reducing the number
of energized motors during stable operation, and the energy-saving effect is significant.
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Data is provided within the manuscript file.
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