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Delay-aware chemotherapy dosing
via online critic learning

Farshad Rahimi3>! & Mahdieh Samadi%3

This paper proposes a delay-aware adaptive control framework for individualized chemotherapy
dosing based on online critic learning. The approach explicitly compensates for pharmacokinetic and
pharmacodynamic delays while adapting to patient-specific uncertainties. An online critic network
estimates the value function to guide real-time dose adjustments. Simulation results on diverse patient
profiles demonstrate effective tumor suppression and toxicity control, highlighting the robustness of
the proposed scheme to variations in delay and patient dynamics.

Cancer remains one of the leading causes of mortality worldwide. Global research indicates that air pollution
is directly linked to lung and bladder cancers and contributes to an increase in breast and pancreatic cancers'2.
Treatment approaches for cancer vary depending on the specific type of malignancy and the patient’s individual
condition®.

Cancer treatment involves a range of approaches, including radiation, chemotherapy, and immunotherapy.
Among these, chemotherapy continues to play a central role in managing the disease by targeting and destroying
cancerous cells. It works through two main mechanisms: cytotoxic effects, which directly kill cancer cells by
triggering apoptosis or necrosis, and cytostatic effects, where drugs like cytarabine slow down tumor growth
by inhibiting DNA replication®. The effectiveness of these treatments depends on various factors such as the
type of drug used, dosage, and specific characteristics of the cancer. This highlights the importance of accurate
dosing strategies-like those explored in this study-to enhance treatment benefits while reducing harmful side
effects. One of the major challenges with chemotherapy, however, is its impact on healthy cells, often leading to
significant side effects’. These adverse effects limit how much of the drug can be safely given, making it crucial
to strike a careful balance between patient safety and effective tumor reduction®.

Assessing the effectiveness and feasibility of chemotherapy plans is critical for optimizing patient outcomes.
While clinical trials provide robust evaluations, they are hindered by prolonged durations, high costs,
and implementation challenges, leading to increased expenses’®. Consequently, developing cost-effective
chemotherapy strategies is a priority. Understanding the fundamental dynamics of tumor growth is essential
before applying control methods to manage cancer. Significant research has advanced this field®. In this study,
we adopt the model detailed in'®!1, selected for its ability to incorporate memory effects in tumor response and
facilitate analysis of a stable equilibrium point, which supports the goal of reducing tumor cell populations.

The model introduced in!? provides a foundational framework for developing control strategies to suppress
tumor cell proliferation. Optimal control theory is instrumental in designing efficient drug administration
protocols by accommodating various constraints and assumptions. Several studies'>!* have built upon the
framework in!? to develop optimal control-based solutions. Notably, the study in'* proposes a nominal-plus-
neighboring optimal control method for cancer treatment through adoptive cellular immunotherapy, aiming
to reduce tumor cell density and treatment costs while enhancing immune responses. Additionally, the work
in!3 explores an integral reinforcement learning-based control strategy, which, while applied to drug infusion in
other contexts, offers insights applicable to optimizing chemotherapy dosing.

Related works
This subsection reviews works most closely related to the proposed method.

In'>, an optimal control strategy is proposed for managing tumor growth. The authors linearize the nonlinear
dynamics of tumor growth using time-varying approximations and apply a linear quadratic regulator to control
tumor proliferation. Building on'® and'®, the study in'! develops drug regimens for cancer patients by integrating
a state-dependent Riccati equation approach with an extended Kalman filter. Other control methods, including
fuzzy control and model predictive control, have been explored to address chemotherapy challenges'”. For
instance,'® introduces a model predictive control method for scheduling cancer therapy, effective even with
incomplete measurements. This approach highlights the importance of estimating states and parameters to
account for patient-specific variations in tumor growth and drug response, which may deviate significantly from
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the model. Recent studies have also explored the performance of data-driven MPC schemes under imperfect
or uncertain inputs. For instance, Liu ef al.!® analyzed the regret bounds of MPC in such scenarios, providing
theoretical insights into input uncertainty effects. Our work complements this direction by addressing the case
of delayed and uncertain inputs within a critic-learning-based adaptive dosing framework.

Learning-based control methods offer distinct advantages, particularly in adaptability and handling
nonlinearities. These methods adjust to evolving conditions and environments, making them ideal for complex,
dynamic systems. Their ability to manage nonlinearities and uncertainties enhances both accuracy and
reliability?**!.

In recent reinforcement learning applications, an innovative method has been introduced that integrates
Bayesian data assimilation with reinforcement learning to optimize chemotherapy dosing for cancer patients.
This approach has shown promising results, notably lowering the incidence of neutropenia when compared to
conventional treatment strategies??. Furthermore, a model-based optimal control strategy has been designed
specifically for consolidation therapy in acute myeloid leukemia. By incorporating pharmacokinetic and
pharmacodynamic modeling, this method aims to improve white blood cell recovery (nadir levels) while
minimizing the required dosage of cytarabine?’.

In?%, a reinforcement learning-based control approach is developed for chemotherapy, utilizing a Q-learning
algorithm tested on a nonlinear model of chemotherapy drug dynamics. In*, a reinforcement learning-based
optimal control strategy for chemotherapy is proposed, using drug input and tumor cell output without
requiring a full-state observer. This strategy employs an actor-critic architecture with fuzzy-rule networks and
a discontinuous reward function, validated through numerical simulations. Similarly,?® presents a model-free
adaptive controller combining fuzzy-rule networks and reinforcement learning for optimal chemotherapy drug
administration, also validated numerically. Additionally,”” introduces a model-free control approach using
normalized advantage function reinforcement learning for cancer treatment, enhancing immune responses
against tumor cell proliferation. This method integrates chemotherapy and anti-angiogenic drugs, demonstrating
efficacy in reducing tumor cell populations with minimal drug doses, without relying on complex mathematical
models.

The aforementioned studies assume real-time availability of measured data. However, time delays are
inherent in chemotherapy processes. Typically, a delay of 1 to 14 days occurs between tumor measurement (e.g.,
via imaging or laboratory tests) and therapy adjustment, due to multidisciplinary team reviews, scheduling,
and result processing?®. These delays significantly affect system stability and performance, hindering timely
dosing adjustments critical for effective treatment. Traditional control approaches often overlook these delays,
an assumption impractical for chemotherapy. Incorporating delays into controller design is vital for achieving
robust, adaptive control that reflects real-world treatment dynamics. However, managing time-delay systems
in learning-based approaches poses unique challenges, as these systems are infinite-dimensional and complex,
particularly within adaptive dynamic programming frameworks. Moreover, modeling delays-often represented
by integral terms-complicates stability proofs and implementation. In traditional control methods, handling
delays involves finding an upper bound for integral delay terms, whereas learning-based approaches require
bounding the integral terms of the delays themselves, not their derivatives. To our knowledge, no prior studies
have investigated optimal drug dosing with time delays using critic-only structure learning.

This study addresses this gap by developing an online critic learning method tailored for time-delay systems,
optimizing drug administration while accounting for delays and customizing treatment to individual patient
conditions, thereby advancing cancer chemotherapy control.

The primary contributions of this paper are outlined below:

« A novel value function is proposed for an online critic learning method to optimize drug dosing in cancer
chemotherapy. This value function explicitly incorporates time delays in the treatment process and adapts
dosing strategies to each patient’s unique conditions through appropriate weighting factors.

« Unlike 224726, this approach accounts for time delays between tumor cell measurements and drug administra-
tion, improving treatment responsiveness and accuracy.

« A bilinear matrix inequality is formulated to evaluate the impact of time delays on achieving equilibrium,
providing a framework to analyze the stability of the proposed optimal chemotherapy approach under con-
stant delays.

The manuscript is organized as follows: Sect. 2 establishes the mathematical framework of the problem under
study and elaborates on the core objectives guiding the proposed control strategy. Additionally, it covers the
equilibrium analysis of the cancer model and the development of a performance index. Section 3 demonstrates
the effectiveness of the proposed methodology through simulation results. Finally, Sect. 4 provides the concluding
remarks.

Mathematical formulation

In this paper, we analyze a nonlinear mathematical model of cancer proposed by de Pillis and Radunskaya'®.
The model describes the dynamics of three cell populations: normal (healthy) cells (.#"), tumor cells (.7), and
immune cells (), using ordinary differential equations to capture their growth and interaction. The model
employs parameters that are representative of typical biological values, as defined in'?, to describe the system
dynamics (e.g., growth rates and carrying capacities). These parameters, referred to as normalized in the sense of
being standardized for the model, facilitate analysis of cancer dynamics across different patients. The normal cell
population refers specifically to healthy host cells in the tissue near the tumor site, not a statistically normalized
quantity'®.
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In this model, all variables and parameters are positive due to physiological reasons. The differential equation

for normal cells shows logistic growth as .4 (t)(1 — ba.#/(t)) with growth rate 72, where by * is the carrying
capacity, and —c4.7 (t).#(t) represents normal cell decline due to competition with tumor cells. In (1b),
T ()(1 — b1.7(t)) shows logistic growth with rate r1 and carrying capacity by '. Terms —c2.# (t).7 (t) and
—c37 (t)A (t) describe tumor cell death from immune and normal cell interactions. In (1c), tumor cells
stimulate immune cell growth, modeled by p.# (t) 7 (t) /(o + 7 (t)), while immune cells die at rate d; in the
absence of tumor cells. —c1.# (t).7 () represents immune cell inactivation by tumor cells. This model does not
represent any specific cancer type and does not account for chemotherapy effects!’.

Analysis of equilibrium points in a drug-free model
The model presented in (1) has three distinct types of equilibrium points, which will be discussed below.

o Case 1: Tumor-Free State The tumor-free equilibrium is characterized by the absence of tumor cells and is
given by:

1 s
7 = (0.7
by’ ' dy
This equilibrium is asymptotically stable if the following condition is satisfied:
C2S8

rr <c —_.
1 3+d1

« Case 2: Dead State The dead state, where normal cells are absent, has two equilibrium points:

= (o)
D3 = (0,2, f(2)),

where z is a non-negative solution of the equation

C2 1 _
ot (72 f2) - 4 =0, @
and f(z) is defined as
1) = ) ()

caiz(z+a)+di(z+a)—pz’

o D7 is always unstable. D3 may be stable or unstable depending on the system parameters.
« Case 3: Coexisting State The coexisting equilibrium, where all cell types are present, is given by:

C* = (g9(z),z, f(z)),

where z is a non-negative solution of the equation

o ()0 ()~ =,

and g(z) is defined as

In this paper, we utilize the parameter sets and variation ranges suggested in'’, as shown in Table 1. These
parameters are not specific to any particular type of cancer and can vary between different cancer types and
individual patients. For example, these parameter values could approximate the dynamics of a generic solid
tumor with moderate growth and immune response, as seen in some clinical cases”, though they remain
theoretical and adaptable to various cancers per'®!l. The parameter set in Table 1 includes several equilibrium
points. For instance, a coexisting stable equilibrium point at (0.435, 0.565, 0.435) is depicted in Fig. 1.
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Parameter | Description Value | Unit

a1 Immune cell kill rate 0.2 mg~ ! Lday ™!
as Tumor cell kill rate 0.3 mg~! Lday !
as Normal cell kill rate 0.1 mg~ ! Lday~?!
by Reciprocal carrying capacity of tumor cells | 1 cell™ !

b Reciprocal carrying capacity of normal cells | 1 cell™?!

c1 Immune cell competition term 1 cell tday !
co Tumor cell competition term 0.5 cell tday !
c3 Tumor-normal cell competition term 1 cell"'day !
cy Normal-tumor cell competition term 1 cell"tday !
dy Immune cell death rate 0.2 day !

d2 Decay rate of injected drug 1 day ™!

r1 Tumor cell growth rate 1.5 day !

T Normal cell growth rate 1 day~*!

s Immune cell influx rate 0.33 | cellday !

a Immune threshold rate 0.3 cell

P Immune response rate 0.01 day™ b

Table 1. The parameters used in this paper come from!®!,
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Fig. 1. Assessment of cell populations without chemotherapy.

The influence of chemotherapy on tumor progression can be analyzed from multiple perspectives. It is
presumed that chemotherapy impacts all components at varying rates, specifically affecting normal cells (.4"),
tumor cells (), and immune cells (.#) through the drug concentration .# (t), with the kill rates defined by
parameters a3 = 0.1 mgflLdayfl, as = 0.3 mgflLdayfl, and a1 = 0.2 mgflLdayfl, respectively, as
listed in Table 1. In the model, the influence of chemotherapy is represented by an extra state .# (t ), which signifies
the concentration of the drug in the bloodstream (mg/L). The pharmacokinetics (PK) of the chemotherapy
drug follows a one-compartment model, described by . (t) = —da.# (t) + u(t), where d2 = 1day ™" is the
drug decay rate (Table 1). The pharmacodynamics (PD) is modeled with a linear formulation, where the drug
effect on each component-normal cells (—as3. A .4 ), tumor cells (—a2.7 . #), and immune cells (—a1 . 4 )-is
proportional to the drug concentration .# (t), consistent with standard PK/PD modeling approaches in drug
development®. The dynamics of each component under chemotherapy treatment are described by:
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N (t) = 1o (£)(1 = ba N (1)) — calV (t).T (t) — az N (t).A (t),
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)
M (t) = —da (t) + u(t),

where dy represents the rate at which the chemotherapy drug degrades in the bloodstream, and u(t) € R™
denotes the control input, or the externally administered drug dosage (mg/L/day), at time ¢. Delays are critical
in many real-world systems, such as chemical reactions, where they impact efficiency, safety, and predictability
by influencing reaction rates and enabling optimization of conditions like temperature and catalysts.

Modeling time delay in administering chemotherapy

The pharmacokinetic model is formulated as a one-compartment linear system to provide a tractable basis for
developing and analyzing the proposed delay-aware control strategy. Although real chemotherapeutic drugs
may exhibit multi-compartment kinetics and nonlinear pharmacodynamics (e.g., Hill-type effects), the adopted
linear representation offers a locally valid approximation around the therapeutic operating point and is consistent
with many control-oriented studies in the literature. Future extensions of this framework will consider nonlinear
and drug-specific PK/PD models to further enhance physiological fidelity. It is important to account for the
unavoidable delays between measuring tumor size and administering chemotherapy. Real-time measurement
of tumor size and instant adjustment of drug dosage are impractical. Therefore, this time-delay should be
incorporated into the model described in (4). Consequently, the model in (4) can be rewritten as follows:

N () = 1ol (£) (L — baH () — calV (1) T (t — d) — az N (£). A (¢),

F#)=mT{t—d)(1—b Tt —d) — 2 I (£)T(t —d) — esT(t — d)N () — a2 T (t — d)A(2),

pI(4) T (t — d) 5)
wrzi—a 0Tt d) I —as A1),

M) = —dodtt (t) + u(t),

F(t) =5+

Here, d represents the time-delay between measuring the tumor size and administering chemotherapy. The
model in (4) incorporates these delays into the cancer treatment process. In the revised cancer treatment model
(5), we assume that the number of normal cells is updated based on the tumor cell count at time ¢ — d. For
instance, if d = 2, it means that at the current time ¢, we only have information on the tumor cell count from
two days ago (¢t — 2). This consideration is particularly important when updating the numbers of normal cells
4" and immune cells .7.

Remark 1 In model (5), we considered only the delays between measuring tumor size and administering chemo-
therapy. However, it is important to note that these delays can be extended to include normal cells .4 and im-
mune cells ., depending on the user’s preference. In this study, we focus on the fact that real-time measurement
of tumor size and immediate adjustment of drug dosage are impractical in clinical practice. Tumor assessments
(e.g., via imaging or lab tests) occur periodically rather than continuously, with inherent delays of two weeks for
processing and adjustment. Therefore, we have chosen to model delays primarily in tumor size to reflect these
realistic, non-continuous monitoring constraints.

By defining a new variable as follows:

n(t) =), 7 (), 7 (), 4 [)],
the model (5) can be rewritten as follows:

0(t) = f(n(t) + fa(n(t — d)) + Bu(t), ©)

n(t) = h(t), te€[-d,0],
where B = [0,0,0,1]". The term h(t) represents the history of the number of tumor cells. The functions
f(n(t)) : R™ — R™ and f(n(t —d)) : R® — R™ are known to be locally Lipschitz. It should be mentioned
that the history of the number of normal and immune cells can be considered in f(n(t — d)). Considering the
delay in other cell populations depends on the user or the injector of the drug. However, in this paper, we aim to
consider only the effects of the history of tumor cells.

Control objective

The objective of chemotherapy is to guide the system into a region where either the tumor-free equilibrium
is achieved or an equilibrium with minimal tumor presence is maintained. This study targets the tumor-free
equilibrium, developing a closed-loop controller aimed at completely eliminating the tumor. Our approach
centers on designing a controller using the adaptive dynamic programming algorithm for system (6), ensuring
stability even with time delays in tumor cell population measurements. Also, the control protocols are tailored
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to account for time delays, optimizing drug dosage for cancer treatment. In essence, the designed control law
will integrate the time delay history of tumor cell numbers. We present a novel value function that incorporates
these time delays, utilizing policy iteration to solve the Hamilton-Jacobi-Bellman (HJB) equation®! with
adaptive dynamic programming??, approximated by a critic neural network??. Following the proposed control
formulation, the definitions of the parameters provided in Table 2 help improve the overall understanding.

The goal is to derive an optimal feedback control strategy, u(t), that effectively minimizes the infinite-horizon
performance index linked to system (6). This cost function is formulated as:

vaw) = [ (Baw.um)+ [ a"@Qun(ads)ar, G

d

here, the utility function E(n(7), u(7)) is given by E(n(7), u(1)) = 07 (1)Qn(7) + u” (1) Ru(r).
Consider U(n(7),u(7)), defined as:

Un(r). u(r)) = E(n(r), u(r)) + / n® (@)Qun(a)dq

This function satisfies U (0, 0) = 0 and is non-negative for all 7(¢) and u(¢). Here, Q, Q4 € R™*"™ are positive
semi-definite weighting matrices, and R € R™*™ is a positive definite weighting matrix on the control input
that penalizes the control effort (drug infusion rate) in the cost function. The expression (7) incorporates time
delays. In the proposed control formulation, the weighting matrices Q, X4, and R can be viewed as clinical
preference indicators. The matrices Q and Qg penalize tumor growth and deviation from the desired therapeutic
trajectory, while R penalizes excessive drug dosing. Thus, increasing R represents a stronger emphasis on toxicity
management, whereas increasing Q or (Q4 prioritizes tumor suppression. These parameters can be adjusted based
on patient-specific characteristics—such as disease aggressiveness, drug tolerance, or comorbidities—allowing
oncologists to align the control design with individualized treatment goals and established clinical protocols.

In what follows, we will show that employing the newly defined value function (7) for controller design
ensures the stabilization of the closed-loop system, ultimately resulting in the complete elimination of tumors.
Denote V*(7(t)) as the optimal value function associated with V' (7(t)), which is formally expressed as:

Vi (n(t) = Jnin_ V(n(t)). (8)

The gradient associated with the optimal value function V*(7(t)) is available thorough the Bellman optimality

concept. This gradient, represented as VV™*(n(t)) = tmlxal(n (1) i governed by the following equation:
H ,VV*(n(t))) =0,
Jin (n(t) (n(2))) ©)

where H(n(t), VV*(n(t))) is known as the Hamiltonian function.
For ease of presentation, the variable ¢ is excluded from the following equations.
The Hamiltonian function related to the cost function (7) is expressed as**:

H(n, VV* (1), u) = U(n,u) + (VV* ()" = U(n,u) + (VV* ()" (£ (n) + fa(m))

SOV Bu= B+ [ " @Qun@da + OV ) ) + san) + @V ) B 1

Our aim is to achieve minimization of the expression deﬁned in Eq. (10) by incorporating Egs. (10) and (9)
to formulate the optimal control strategy, denoted as u". The optimal control input is derived by solving the

condition W = 0, as demonstrated below:

ut = —%R‘IBTVV*(n). (11)

Applying a straightforward transformation to Eq. (11) results in:

Symbol | Description Remarks / selection criteria

L, Learning rate matrix Determines the adaptation speed of the critic/actor parameters. Typically chosen as a small positive-definite diagonal matrix.
R Control weighting matrix | Penalizes the control effort in the cost function. A higher value reduces control aggressiveness.

Q State weighting matrix Balances state tracking performance versus control effort; usually positive-definite.

Q5 Delay compensation matrix | Compensates for the effect of input/state delay; tuned to ensure BMI feasibility.

V/l\/c Estimated critic weights Updated online using the adaptive law to approximate the value function.

Table 2. Design parameters used in the proposed control scheme.
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(VV*(n) "B =—2u""R. (12)

Equation (12) will be needed later. By inserting Eq. (11) into Eq. (10), the HJB equation can be reformulated as:

T

0" Qn— (VY ) BR BTV () + / 0" (Q)Qan(@)da + (VV*(m)" (f(n) + fa(m) =0. (13)

T—d

It is important to demonstrate that the control protocol achieved from Eq. (11) can effectively stabilize the
system expressed in Eq. (6). This assertion is confirmed by the following theorem.

Remark 2 In this study, the drug infusion rate is treated as a continuous control input for analysis and simulation
purposes, representing an idealized continuous-infusion scenario. In clinical practice, however, chemotherapy is
typically administered at discrete intervals (e.g., daily or per treatment cycle). The proposed control strategy can
be readily implemented in a sampled form, where the computed control input is applied as a piecewise-constant
dose between consecutive dosing instants. Since the underlying tumor dynamics evolve on a slower timescale,
such discretization is not expected to significantly alter the system performance.

Theorem 1 Consider the system described by Eq. (6) and the control protocol governed by Eq. (11). The control
strategy in Eq. (11) ensures that the closed-loop nonlinear time-delay system (5) achieves uniform ultimate bound-
edness, given that there exist positive definite matrices QQ and Qq, as well as free-weighting matrices M and N,
which satisfy the following bilinear matrix inequality condition:

R 0 0 0
V * Q — Md —MNd -M
- E il D
T * * —Ng -N| — 0, (14)
* * * 0

in which

My =dMQ; ' M",
MNy =dMQ,;'N”,
Nu= dNQ;'NT.
Proof We consider the following Lyapunov function:
L(n) =V"(n). (15)

Based on the definition of V*(n), it follows that V*(n) > 0 for z # 0 and V*(n) = 0 when n = 0. This
confirms that V*(n) is a positive definite function, which further implies that L(n) also possesses positive
definiteness. Additionally, by evaluating the time derivative of the Lyapunov function (15) along the system
trajectory 1 = f(n) + fa(n) + Bu, we obtain the following expression:

L) =(VV ) = (VV ()" (f(n) + fa(n) + Bu). (16)

Using (10), we obtain:

t

(VVE ) (f(n) + fa(n)) = —E(n,u) — / 1" (9)Qan(q)dg — (VV*(n))" Bu. (17)

t—d

By substituting (17) and (11) into (16), Eq. (16) can be reformulated as follows:
; T T * ¢ T
L(n)=-n"Qn—u" Ru" — / 7" (¢)Qan(q)dg. (18)
t—d

Inspired by*, we used the free-weighting matrices technique. This method allows us to bound the integral and
convert it into a form where Lyapunov or stability conditions can be applied. Additionally, as mentioned in
Proposition 3.11 of*%, we used Jensen’s inequality, which plays a crucial role in handling the constant delay d
in the stability analysis of the delay system. To bound the effects of the delay, free-weighting matrices® are
incorporated. Then, by defining the free-weighting matrices M and N, the term — j:_ 4N (@9)Qan(q) dg in

(18) can be expressed as follows:
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- /LidnT(Q)an(q)dq < 277TM/,;d 0" (q)dg + 20" (¢ — d)]\'f/t;d " (q)dq — /L: (nT(q)M

_ _ _ T 't p _ _
0" (= DN +0"(0Qu) Q" (1" @ 40" (= )N +0" Q) da+ [ (w" (@3 +0" (L= )N) (19)
Qz* (" (@)t + 0" (¢ - d)N)qu <u" 0,
in which
= [nT, 0" (t = d), / nT(q)dq} :
t—d

M, MN, M

T = * Nd N

* * 0

Referring to (18) and applying (19), we get:

; _ T «T % o T T o % T T A~
L(n)=-n"Qn—u" Ru" — " (@)Qan(q)dg < —n" Qn —u”™ Ru”™+n Tn < —(7° T9),  (20)
t—d

R 0 0 0
v |* e-my —mN, -M

* * — Ny —N

* * * 0

According to (20), if T > 0, then — (777 T7) < 0 holds, leading to L(n) < 0. Thus, it completes the proof. [J

As we discussed above, delays between measuring and applying chemotherapy are inevitable. We proposed an
approach toaccount for these delaysin treatment and drug dosing. To achieve this, we use the Lyapunov-Krasovskii
function, [, tt_ 41" (9)Qan(q) dg, to analyze the stability of the optimal chemotherapy in cancer treatment with

time-delay and incorporate these delays into the value function (7). The integration of this temporal element into
our cost function enables us to model the effects of delayed responses inherent in cancer treatment protocols.
This time-aware approach enhances our capacity to dynamically refine the control mechanism. Our analysis, as
detailed in Theorem 1, demonstrates that incorporating a time-delay-sensitive Lyapunov-Krasovskii functional
within the cost function contributes significantly to the stability and robustness of our proposed methodology.
Leveraging the principles established in Theorem 1, we navigate the intricacies of the HJB equations to derive
an effective control protocol. This process culminates in the development of a sophisticated drug administration
system that not only accounts for but also adapts to these inherent temporal lags in treatment response.

It should be noted that in the presence of time delays, full state observability is lost, violating the Markov
property and complicating reward assignment in reinforcement learning. To address this, we integrate a
Lyapunov-Krasovskii functional into the value function, enabling delayed-state awareness. A critic-only neural
network approximates the HJB equation, while stability is ensured via a bilinear matrix inequality (BMI)
condition. Online weight updates preserve learnability, making the method suitable for real-time, delay-aftected
cancer treatment control.

Remark 3 Our proposed method addresses the challenges of time delays in a cancer treatment model, which dis-
rupt the Markov property assumed in reinforcement learning (RL), where future states depend only on current
states and actions. The delays in tumor size measurements (5) introduce historical state dependencies, making
the system non-Markovian. We tackle this using a Lyapunov-Krasovskii functional in the value function (7) and
a critic-only neural network to approximate the HJB equation, with a BMI (14) ensuring stability.

Remark 4 Our approach develops a cancer treatment model using a nonlinear cancer dynamics framework and
a critic-only neural network to solve the HJB equation for optimal chemotherapy dosing, considering delays in
tumor size measurements. It employs a BMI to ensure system stability under constant delays. In contrast, the
method in®” offers a general online actor-critic algorithm for nonlinear systems with state delays, using both
actor and critic networks to approximate the HJB equation and control policy, relying on Lyapunov techniques
for stability without using a BMI. However, our method is cancer-specific with a simpler critic-only design and
BMI-based stability, while’” provides a broader dual-network approach.

To implement the optimal control strategy, we employ computational methods to approximate solutions to
the HJB equation for our time-delayed system. The high-dimensional and nonlinear dynamics, compounded
by time delays, pose significant computational challenges. We address these by developing a streamlined neural
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network architecture, which efficiently approximates the HJB solution for chemotherapy dosing optimization,
building on established dynamic programming techniques’®.

Neural network implementation

It is well known that neural networks excel at approximating complex functions. Since the performance index
function is generally complex and does not possess a straightforward analytical expression, we leverage a neural
network to approximate its structure. In this work, a simple single-layer neural network is adopted as an effective
means of capturing and estimating the underlying functional relationship. The function V' (n) is represented as:

V(n) =WILS(n) +e(), (1)

here, we interpret S(7) as the neural activation map, with R representing the c-dimensional Euclidean space.
W corresponds to the optimized parameter set, while ¢ quantifies the neural units in the intermediate stratum.
(n) denotes the neural network’s approximation discrepancy. The spatial derivative of Eq. (21) with respect to
z can be articulated as:

VV(n) = (VS(n)) We + Ve(n), (22)

where VS(n) = tifilfl;") € R°*™ represents the gradient of the activation map, and Ve(n) denotes the gradient

of the approximation error. Incorporating Eq. (22) into (9) results in:

min U(n,u) + ((VS(n))" We + Ve(n))n = 0. (23)

u(t)Ep
Consequently, we can formulate the Hamiltonian as:
H(n,u,We) = U(n,u) + (WIVS(0))i = =Ve(n)i £ ern. (24)
In this framework, e,z encapsulates the residual discrepancy emanating from the neural approximation. Given
that the ideal parameter set W, remains undetermined, we utilize a critic neural architecture to estimate V' ()
as follows:
V() =Wl S@m). (25)
Consequently, the gradient of the approximated value function V(1) can be expressed as:
V(1) = (VS(m)" We, (26)
Thus, the approximate Hamiltonian can be formulated as:
H (1, u, We) = U(n,u) + (W VS()i £ er. 27)
The weight approximation error is defined as W. = W, — W.. By incorporating Egs. (27) and (24), we derive:
er = ermr — WV S(n)n. (28)
The weight approximation error can be reformulated as:

We=-W.=L, (eTH W VS(n)i]) vS(n)i. (29)

To optimize the parameter set W, of the critic neural architecture, we minimize the cost function E. = %eTTeT

using a normalized gradient descent technique. The iterative refinement of W is governed by the following
update rule:

W. = —Lre,VS(n)i, (30)
where L, > 0 is the learning rate, controlling the speed of weight adjustments. This update occurs online,

making the weights . time-dependent as they adapt to the system’s dynamics and time delays during treatment.
Consequently, by taking into account Egs. (11) and (21), the optimal control policy can be formulated as:

1 __
u(n) =~ 3R~ B ((VS(m) We + Ve(n)). G
and it can be estimated as:
N 1__ A
a(n) = -5 R 'BT(VS(n) W.. (32)
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The approximate control policy in Eq. (32) depends entirely on the critic neural network. By adjusting the
weight vector of the critic neural network using Eq. (30), the necessity of training the action neural network is
eliminated. This simplifies the overall process, making the method both practical and computationally efficient
for implementation.

Theorem 2 When the critic neural network weights are updated as per Eq. (29) for the chemotherapy treatment
dynamics, as redefined in system (6), the approximation error in the weights remains uniformly ultimately bounded.

Proof At the first step, we considered the following Lyapunov function:

1

T, =
7oL,

wIw.,. (33)

The time derivative of (33) is

11‘2:

G — 5 [WIVsm|. (34)

1 =i = p , , p . p N 1
WIWe = W] (ern = WIVSm)VS i = W eV Sy — WIS yal|” < 5

2L,

Consequently, the condition I's < 0 is satisfied when W, falls within the compact domain characterized by
[Well < |52 I, given the assumption [|V.S(n)n]| < 601, where 01 represents a positive scalar. Applying the

principles of Lyapunov stability theory, we can deduce that the parameter estimation error exhibits uniform
ultimate boundedness, thereby concluding the proof. [

Remark 5 The critic-only structure simplifies the computational framework by focusing solely on updating the
critic weights to approximate the optimal value function, avoiding the dual complexity of simultaneously up-
dating both the critic and the actor (policy) components. This reduction in computational burden is critical for
real-time clinical applications, where rapid processing of delayed tumor size data is essential, and resources may
be constrained. The critic-only method requires fewer parameters to tune and fewer iterative updates, leading to
lower memory usage and faster convergence compared to the actor-critic approach.

The adaptive dynamic programming algorithm for online critic learning, which is designed to optimize drug
administration in cancer therapy and is related to the method provided in this paper, is outlined in Algorithm 1.

Require: Design parameters L,, R, Q, Oy, ¢, and initial critic weights W..
1: Initialize the system state 17 (0) and control input u(0).
2: Set iteration index j = 0 and define a small convergence threshold € > 0.
3: while not converged do
4:  Policy Evaluation (Critic Update):
5. Using the current control policy u{/)(1), solve for the updated value function V1) (n) that satisfies the following
Hamilton-Jacobi-Bellman (HJB) equation:

0=Em00)+ [ 0" (@0 da
(W) (Fm + fuln —d) + B ()

6:  Estimate or update critic weights W((Hl) such that VU+)(n) =~ W(QH)T(I)(T]), where ¢ (1) is the chosen basis or feature

vector.
7. Policy Improvement (Actor Update):
8:  Derive an improved control policy based on the updated critic using:

Wt (n) = 7%R’IBTVVU“>(T])

This step ensures that the control policy is updated toward minimizing the cost-to-go estimated by the critic.
9:  Convergence Check:
0. If HVU“)(T]) - V(f)(n)H < eand Hu(/“)(n) - u(f)(n)H < &, stop and obtain the approximate optimal policy u*(n).
Otherwise, set j < j+ 1 and continue iterations.
11: end while
12: Output: Approximate optimal value function V*(n) and optimal policy u* (1), ensuring convergence under standard ADP
stability assumptions.

Algorithm 1. Adaptive dynamic programming algorithm for optimizing drug administration in cancer
therapy.

Simulation numerical examples
In this section, we will conduct several simulations and analyze their results. All parameters used in the
simulations are listed in Table 1.

Interested readers can access the computational scripts utilized in our simulations via this digital repository.
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As previously stated, we assume the system’s equilibrium point is located at the origin of the state space R™.
By shifting the tumor-free equilibrium point 7™ to the origin, we can rewrite Eq. (5) accordingly. we define the
following new variables:

n(t) = N(W) - 5o, w(t) = T(0),
b (35)
ralt) = 1) = =, wa(t) = M (1)
Using these definitions, we can transform Eq. (5) into Eq. (36) as follows:
#1(t) = —roa1 ()(1+ boa (1)) — (%m(t —d) - %2) wa(t — d) — caw1 ()za(t — d) — aszr (aa(l),
a(t) = rza(t — d)(1 — braa(t — d)) — (ZE + ?) 2a(t — d) — esar (Dwa(t — d) — coma(t — d)
1 2
x x3(t) — azz2(t — d)za(t), (36)
. __as ais ps p
23(t) = =5 aa(t = d) — diat) - (d—lm(t) e S d)) D

X T2 (t — d)l’g (t) — Clxg(t)mg(t) — ai1rs (t)$4(t),
24 (t) = —doza(t) + u(t).

It is assumed that there is a d = 1 week delay between measuring the tumor population and administering the
drug. We incorporated 1-2 week delays in our simulations to reflect robustness across short biomarker-based
and long imaging-based monitoring, informed by discussions with oncology specialists at Emam Reza Hospital
in Tabriz and their anonymized clinical records. Clinical studies, such as those on nadir neutrophil counts in
breast cancer, AML consolidation therapy, and ctDNA-guided switching with weeks turnarounds®, justify these
delays. Our delay-aware online RL approach enhances dosing decisions in clinical settings with common two-
week delays, outperforming offline or less frequently updated strategies. To verify the BMI condition presented
in Theorem 1 for systems with delay, we check the feasibility of the proposed BMI (14). If the BMI is feasible,
it indicates that convergence is guaranteed and the system can tolerate the corresponding delay. For one of the
considered delay cases (1 week delay), the BMI parameters have been obtained as follows:

23 01 04 00
Q= 8j}1 33 8:? 8j8 . Qa=diag(0.8,0.9,0.7,1.2), R=0.4.
00 00 00 1.5

Then, the obtained BMI is feasible. Following Algorithm 1, model (36), (30) and control policy (32), the simulation
results are obtained. The initial conditions for the simulations are as follows: z1(0) = —0.5, z2(0) = 0.5,
z3(0) = —1.15,24(0) = 0, Q = diag([¢qV = 1,97 =12,¢.% =1,q# =0.02]),Qq =8Q, L, = 0.02.
The number of neurons is chosen as ¢ = 10. The activation function and initial weights of critic learning :

S(n) =[N3 T3 I M N T NI NMT I T M I M

37
We(0) =[3;0.2;2.2;2.8;5.4; 1;3.4;4.7; 4.5; 1.3]. (37)

The simulation results for this case are shown in Figs. 2 and 3. Figure 2 provides information about the
cell populations in a patient. This figure indicates that the number of tumor cells converged to zero after

Cell Populations Over Time
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1.6

Immune cells
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0.2 K
0 L L L L )

0 5 10 15 20 25
Time (weeks)

Fig. 2. Assessment of cell populations with control policy (32).
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Fig. 4. The weights of critic learning structure.

approximately three weeks days. Additionally, the number of immune and normal cells reached the equilibrium
point, signifying that the patient’s treatment was successful under the control policy (32).

Figure 3 illustrates an intense initial drug regimen, with the concentration (.#') peaking at approximately
0.20 within the first two weeks to aggressively target the tumor burden (.7 (0) = 0.5). This high initial dose is
driven by the optimal control policy (Eq. (32)), which leverages the delayed tumor measurement (z2(¢t — 1))
and the initial critic weights (W.(0)). A rapid decline follows the peak, reflecting the optimization’s adjustment
due to the 1-week delay in tumor measurement, as the online critic learning updates the weights to adapt to the
decreasing tumor population (Fig. 2 shows .7 nearing zero by three weeks). The delay compensation ensures the
dose is reduced to prevent overdosing as the tumor diminishes. By around five weeks, the critic weights converge
(Fig. 4), and the drug dosage decreases to zero, indicating that the patient has regained health, with normal and
immune cell populations stabilizing at their equilibrium points.

Remark 6 The values of Q = diag([q-/4", ¢.7,q.%, q#]) have different implications in cancer chemotherapy
depending on the patient. Younger patients typically have a higher growth capacity for normal and immune
cells compared to older patients. Therefore, for younger patients, it is more important to reduce the number of
cancerous cells than to preserve normal or immune cells. Consequently, an oncologist might assign a high value
to ¢.7 and lower values to the other parameters. For pregnant patients, the oncologist might select higher values
for g/, q.#, and R until childbirth.

The simulation results for the case 2 where Q = diag([¢-# = 14,¢.7 = 0,q.¥ = 12,q.# = 10]) and
R = 20 are displayed in Figs. 5, 6 and 7. Compared to Case 1 (Q) = [1, 10, 1, 0.01], R = 0.4), which prioritizes
tumor reduction (¢.7 = 10) for a typical patient, Case 2 focuses on preserving normal and immune cells
(¢, q-# = 10) and minimizing drug concentration (¢.# = 10) with a high control penalty (R = 20), without
directly penalizing tumor cells (¢.7 = 0). This setup reflects a conservative treatment scenario, such as for a
pregnant patient (Remark 6), where minimizing drug exposure and protecting healthy cells are critical. These
settings were chosen to demonstrate the proposed method’s adaptability to diverse clinical needs, validating the
effectiveness across both aggressive and conservative treatment strategies.
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Fig. 5. Assessment of cell populations with control policy (32) for the case 2.
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Fig. 7. The drug concentration for the case 2.

In the next step, we demonstrate that our proposed method-by incorporating an integral term into the
Hamiltonian error-effectively compensates for time delays, leading to similar cell population trajectories and
treatment outcomes for both 1-week and 2-week delays. This compensation significantly reduces the impact of
delays, as illustrated in Figs. 8 and 9.
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Cell Populations Over Time for Different Time Delays

Normal cells, Time Delay = 1
Tumor cells, Time Delay = 1
Immune cells, Time Delay =1
Normal cells, Time Delay = 2
= Tumor cells, Time Delay =2
= Immune cells, Time Delay =2

Cell Population

I I L )
10 15 20 25
Time (weeks)

Drug Therapy Over Time for Different Time Delays

Drug Therapy, Time Delay = 1
————— Drug Therapy, Time Delay = 2

Drug Therapy
o
[N

0 I I I )
0 5 10 15 20 25

Time (weeks)

Fig. 8. Assessment of cell populations with control policy (32) for different delays.
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Fig. 9. The weights of critic learning structure for different delays.
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Fig. 10. Assessment of Immune cell population with control policy (32).

It is worth noting that with longer delays, drug dosage profiles may exhibit oscillations, as shown in the
zoomed area of Fig. 8, indicating the influence of delay. Nonetheless, Figs. 8 and 9 confirm that acceptable
treatment performance is maintained, validating the method’s robustness against time delays in the therapy
process.

In the next scenario, we illustrate the benefits of incorporating delay compensation into the control law. We
use the same parameters as in Case 1 (Q) = [1, 10, 1,0.01], R = 0.4) as a baseline. Figures 10 and 11 compare
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Fig. 11. The drug concentration.

Delay Duration | Drug Safety | Convergence
d = 1 week Safe v~ Stable

d = 2 weeks Safe v~ Stable

d = 5 weeks Borderline | v' Marginal

d = 6 weeks Unreal o unstable

Table 3. Extended delay simulations.

the control policy from Eq. (32) with and without delay compensation-shown by solid (red and blue) and dotted
(red and blue) curves, respectively. In Fig. 10, the dotted blue curve, which represents the case without delay
compensation, exhibits slower convergence of the immune cell population compared to the corresponding
solid blue curve. Additionally, the figure demonstrates that larger delays lead to slower convergence, as seen by
comparing the red curve (two-weeks delay) with the blue curve (one-week delay). Figure 11 further illustrates
that delay compensation contributes to a shorter drug administration period. The solid red and blue curves show
the dose converging to zero more quickly, indicating improved dosing efficiency. These results underscore the
advantage of accounting for delays in control design to enhance both treatment effectiveness and safety.

It should be noted that Case 3 represents the same control objective as Case 1 but with an added delay-
compensation mechanism. As shown in Fig. 11, the delivered drug amount is considerably smaller than in Fig.
3 because the delay-compensated controller anticipates the system’s response and avoids excessive actuation.
This results in smoother drug administration and reduced overshoot, demonstrating the effectiveness of the
proposed compensation scheme.

Table 3 summarizes the system behavior under different delay durations. As for the other part of your
comment, we have considered it as follows:

From Table 3, it can be observed that as the delay increases, the system performance gradually degrades, and
excessive delays may lead to marginal or unsafe behavior.

Remark 7 The days delay assumed in our simulations is a theoretical approximation to model the time between
tumor measurement and chemotherapy administration, reflecting the technical challenges of real-time moni-
toring. Current clinical practices regarding chemotherapy scheduling and the necessity of online adjustment are
not yet integrated into this study, as it focuses on establishing a proof-of-concept framework. We are currently
establishing collaborations with hospitals to gather real-world data and assess the practical relevance of our
method, including its applicability to aggressive and non-aggressive cancers, in future work.

Remark 8 The critic-only learning approach reduces computational complexity by focusing solely on updating
the critic weights W to optimize the value function V' (1), eliminating the need for simultaneous actor updates
as required in dual actor-critic methods, thus avoiding the overhead of concurrent policy adjustments. However,
a significant challenge arises in selecting appropriate initial conditions for the critic weights. Unsuitable initial-
ization can lead to slow convergence or instability, particularly when delays are present, making it critical to
carefully determine suitable starting values to ensure effective learning.

Comparative results In this section, a comparison Table 4 is presented to summarize the control methods for
delayed systems in reinforcement learning and related approaches. Furthermore, the proposed method in the
simulation results is compared with the approach in* and a model predictive control (MPC) scheme.

To further demonstrate practical relevance, we added a comparison between RL and MPC , showing
improved adaptability of the proposed RL method in short-delay scenarios.
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Method System type Architecture Delay handling Stability analysis Application

The work® | Continuous nonlinear | Model-based RL Particle filtering Not provided gﬁs?sgmous

The work*! | Continuous/Discrete | Actor-critic Hindsight resampling Lyapunov (nominal) MuJoCo control

The work?® | Continuous nonlinear | Fuzzy RL Discontinuous reward Empirical Cancer therapy

2 . . Model-free RL . . Cancer

The work Continuous nonlinear (Lyapunov-integrated) Fixed delay compensation Lyapunov chemotherapy
Delay-explicit value function

Our work | Continuous nonlinear | Critic-only (integral term, no state BMI-based delay-dependent | Cancer therapy
augmentation)

Table 4. Comparison of control methods for delayed systems in reinforcement learning and related
approaches.
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Fig. 12. Comparison of the performance of the proposed method and the method in [L1]%.
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Fig. 13. Comparison of the performance of the proposed method and MPC approach.

From Fig. 12, it can be clearly observed that the proposed method exhibits a smooth and stable response
without any noticeable oscillations or overshoots. This behavior indicates that the proposed control strategy
effectively mitigates fluctuations and ensures a more consistent system performance. In contrast, the method
presented in? shows significant oscillations and slower convergence, which demonstrates the superior transient
and steady-state characteristics of our approach.

The MPC implemented here uses a prediction horizon of 5 steps (Hp = 5) to forecast future states and optimize
drug dosing over a control horizon of 2 steps (Hu = 2), minimizing the quadratic cost function involving state
deviations and control effort while respecting bounds on the input (u between 0 and 10). This setup provides a
baseline for comparison with the critic-only learning method, demonstrating how MPC handles the nonlinear
tumor dynamics without explicit delay compensation in its prediction, leading to potentially higher drug peaks.

From Fig. 13, it can be seen that the proposed method demonstrates superior performance in chemotherapy
dosing by achieving complete convergence of drug concentration to zero after effectively eradicating the tumor,
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Fig. 14. Comparison of the performance of the proposed method and MPC approach.

ensuring minimal long-term toxicity for the patient. In contrast, the MPC approach, while maintaining stable
cell populations, fails to fully taper off the drug dosage, resulting in persistent low-level administration that may
increase cumulative toxicity risks over time.

For the noisy case, small fluctuations appear in the drug therapy input due to noise, but the signal remains
bounded and at a low magnitude. The noise was modeled as

i(t) = n(t) +v(t), v(t) ~AH(0,0°), (38)

with o = 0.01, representing moderate sensor noise levels relative to the scale of the state variables. The noisy
case was simulated for 30 weeks of therapy.

Figure 14 confirms that the algorithm is resilient to practical sensor noise conditions and validates its
robustness in real-world applications. However, we need to prove this mathematically, which can be a great
motivation for extending our proposed method. Software The numerical results discussed here were derived using
MATLAB R2023a as the main computational tool, taking advantage of its built-in functions for optimization and
solving differential equations. The simulations were implemented in MATLAB, with ODE solvers used to model
the time-delay system defined by Eq. (36), and the YALMIP toolbox employed to express the stability criteria
outlined in the Theorems. The code was written to carry out the online critic learning algorithm (Algorithm 1),
iteratively solving HJB equation based on the initial conditions and parameters provided in Table 1. For the sake
of transparency and reproducibility, the full source code and related documentation can be accessed via the
Zenodo repository at [this link] (https://doi.org/10.5281/zenodo.15088181).

Conclusion
This paper introduced an online critic learning method for controlling cancer chemotherapy drug dosing using
an adaptive dynamic programming algorithm. We designed a novel value function that included state time
delays, creating an effective control approach for handling delays between measuring tumor size and applying
chemotherapy. We used a critic neural network structure to derive control laws and optimize drug dosing. We
discussed the effects of time delay to ensure the stability of the proposed optimal controller, and simulation
results showed these effects. We employed a straightforward mathematical approach to analyze the issues,
demonstrating that the derived control laws stabilize the closed-loop system and compensate for time delays.
Several areas remain open regarding finding an optimal chemotherapy approach in cancer treatment.
Exploring connections to other drug dosing optimization problems, such as anesthesia, could further extend
the applicability of our approach. For instance, adaptive asymptotic tracking for uncertain switched positive
compartmental models, as explored in*2, offers a promising direction.

Data availability

The repository includes MATLAB scripts for model definition, delay-aware control implementation, and visuali-
zation of simulation results. The simulation codes generated during the current study are available in the Zenodo
repository, https://doi.org/10.5281/zenodo.15088181.
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