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This paper proposes a delay-aware adaptive control framework for individualized chemotherapy 
dosing based on online critic learning. The approach explicitly compensates for pharmacokinetic and 
pharmacodynamic delays while adapting to patient-specific uncertainties. An online critic network 
estimates the value function to guide real-time dose adjustments. Simulation results on diverse patient 
profiles demonstrate effective tumor suppression and toxicity control, highlighting the robustness of 
the proposed scheme to variations in delay and patient dynamics.

Cancer remains one of the leading causes of mortality worldwide. Global research indicates that air pollution 
is directly linked to lung and bladder cancers and contributes to an increase in breast and pancreatic cancers1,2. 
Treatment approaches for cancer vary depending on the specific type of malignancy and the patient’s individual 
condition3.

Cancer treatment involves a range of approaches, including radiation, chemotherapy, and immunotherapy. 
Among these, chemotherapy continues to play a central role in managing the disease by targeting and destroying 
cancerous cells. It works through two main mechanisms: cytotoxic effects, which directly kill cancer cells by 
triggering apoptosis or necrosis, and cytostatic effects, where drugs like cytarabine slow down tumor growth 
by inhibiting DNA replication4. The effectiveness of these treatments depends on various factors such as the 
type of drug used, dosage, and specific characteristics of the cancer. This highlights the importance of accurate 
dosing strategies–like those explored in this study–to enhance treatment benefits while reducing harmful side 
effects. One of the major challenges with chemotherapy, however, is its impact on healthy cells, often leading to 
significant side effects5. These adverse effects limit how much of the drug can be safely given, making it crucial 
to strike a careful balance between patient safety and effective tumor reduction6.

Assessing the effectiveness and feasibility of chemotherapy plans is critical for optimizing patient outcomes. 
While clinical trials provide robust evaluations, they are hindered by prolonged durations, high costs, 
and implementation challenges, leading to increased expenses7,8. Consequently, developing cost-effective 
chemotherapy strategies is a priority. Understanding the fundamental dynamics of tumor growth is essential 
before applying control methods to manage cancer. Significant research has advanced this field9. In this study, 
we adopt the model detailed in10,11, selected for its ability to incorporate memory effects in tumor response and 
facilitate analysis of a stable equilibrium point, which supports the goal of reducing tumor cell populations.

The model introduced in10 provides a foundational framework for developing control strategies to suppress 
tumor cell proliferation. Optimal control theory is instrumental in designing efficient drug administration 
protocols by accommodating various constraints and assumptions. Several studies12,13 have built upon the 
framework in10 to develop optimal control-based solutions. Notably, the study in14 proposes a nominal-plus-
neighboring optimal control method for cancer treatment through adoptive cellular immunotherapy, aiming 
to reduce tumor cell density and treatment costs while enhancing immune responses. Additionally, the work 
in13 explores an integral reinforcement learning-based control strategy, which, while applied to drug infusion in 
other contexts, offers insights applicable to optimizing chemotherapy dosing.

Related works
This subsection reviews works most closely related to the proposed method.

In15, an optimal control strategy is proposed for managing tumor growth. The authors linearize the nonlinear 
dynamics of tumor growth using time-varying approximations and apply a linear quadratic regulator to control 
tumor proliferation. Building on16 and15, the study in11 develops drug regimens for cancer patients by integrating 
a state-dependent Riccati equation approach with an extended Kalman filter. Other control methods, including 
fuzzy control and model predictive control, have been explored to address chemotherapy challenges17. For 
instance,18 introduces a model predictive control method for scheduling cancer therapy, effective even with 
incomplete measurements. This approach highlights the importance of estimating states and parameters to 
account for patient-specific variations in tumor growth and drug response, which may deviate significantly from 
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the model. Recent studies have also explored the performance of data-driven MPC schemes under imperfect 
or uncertain inputs. For instance, Liu et al.19 analyzed the regret bounds of MPC in such scenarios, providing 
theoretical insights into input uncertainty effects. Our work complements this direction by addressing the case 
of delayed and uncertain inputs within a critic-learning-based adaptive dosing framework.

Learning-based control methods offer distinct advantages, particularly in adaptability and handling 
nonlinearities. These methods adjust to evolving conditions and environments, making them ideal for complex, 
dynamic systems. Their ability to manage nonlinearities and uncertainties enhances both accuracy and 
reliability20,21.

In recent reinforcement learning applications, an innovative method has been introduced that integrates 
Bayesian data assimilation with reinforcement learning to optimize chemotherapy dosing for cancer patients. 
This approach has shown promising results, notably lowering the incidence of neutropenia when compared to 
conventional treatment strategies22. Furthermore, a model-based optimal control strategy has been designed 
specifically for consolidation therapy in acute myeloid leukemia. By incorporating pharmacokinetic and 
pharmacodynamic modeling, this method aims to improve white blood cell recovery (nadir levels) while 
minimizing the required dosage of cytarabine23.

In24, a reinforcement learning-based control approach is developed for chemotherapy, utilizing a Q-learning 
algorithm tested on a nonlinear model of chemotherapy drug dynamics. In25, a reinforcement learning-based 
optimal control strategy for chemotherapy is proposed, using drug input and tumor cell output without 
requiring a full-state observer. This strategy employs an actor-critic architecture with fuzzy-rule networks and 
a discontinuous reward function, validated through numerical simulations. Similarly,26 presents a model-free 
adaptive controller combining fuzzy-rule networks and reinforcement learning for optimal chemotherapy drug 
administration, also validated numerically. Additionally,27 introduces a model-free control approach using 
normalized advantage function reinforcement learning for cancer treatment, enhancing immune responses 
against tumor cell proliferation. This method integrates chemotherapy and anti-angiogenic drugs, demonstrating 
efficacy in reducing tumor cell populations with minimal drug doses, without relying on complex mathematical 
models.

The aforementioned studies assume real-time availability of measured data. However, time delays are 
inherent in chemotherapy processes. Typically, a delay of 1 to 14 days occurs between tumor measurement (e.g., 
via imaging or laboratory tests) and therapy adjustment, due to multidisciplinary team reviews, scheduling, 
and result processing28. These delays significantly affect system stability and performance, hindering timely 
dosing adjustments critical for effective treatment. Traditional control approaches often overlook these delays, 
an assumption impractical for chemotherapy. Incorporating delays into controller design is vital for achieving 
robust, adaptive control that reflects real-world treatment dynamics. However, managing time-delay systems 
in learning-based approaches poses unique challenges, as these systems are infinite-dimensional and complex, 
particularly within adaptive dynamic programming frameworks. Moreover, modeling delays–often represented 
by integral terms–complicates stability proofs and implementation. In traditional control methods, handling 
delays involves finding an upper bound for integral delay terms, whereas learning-based approaches require 
bounding the integral terms of the delays themselves, not their derivatives. To our knowledge, no prior studies 
have investigated optimal drug dosing with time delays using critic-only structure learning.

This study addresses this gap by developing an online critic learning method tailored for time-delay systems, 
optimizing drug administration while accounting for delays and customizing treatment to individual patient 
conditions, thereby advancing cancer chemotherapy control.

The primary contributions of this paper are outlined below:

•	 A novel value function is proposed for an online critic learning method to optimize drug dosing in cancer 
chemotherapy. This value function explicitly incorporates time delays in the treatment process and adapts 
dosing strategies to each patient’s unique conditions through appropriate weighting factors.

•	 Unlike ?24–26, this approach accounts for time delays between tumor cell measurements and drug administra-
tion, improving treatment responsiveness and accuracy.

•	 A bilinear matrix inequality is formulated to evaluate the impact of time delays on achieving equilibrium, 
providing a framework to analyze the stability of the proposed optimal chemotherapy approach under con-
stant delays.

The manuscript is organized as follows: Sect. 2 establishes the mathematical framework of the problem under 
study and elaborates on the core objectives guiding the proposed control strategy. Additionally, it covers the 
equilibrium analysis of the cancer model and the development of a performance index. Section 3 demonstrates 
the effectiveness of the proposed methodology through simulation results. Finally, Sect. 4 provides the concluding 
remarks.

Mathematical formulation
In this paper, we analyze a nonlinear mathematical model of cancer proposed by de Pillis and Radunskaya10. 
The model describes the dynamics of three cell populations: normal (healthy) cells (N ), tumor cells (T ), and 
immune cells (I ), using ordinary differential equations to capture their growth and interaction. The model 
employs parameters that are representative of typical biological values, as defined in10, to describe the system 
dynamics (e.g., growth rates and carrying capacities). These parameters, referred to as normalized in the sense of 
being standardized for the model, facilitate analysis of cancer dynamics across different patients. The normal cell 
population refers specifically to healthy host cells in the tissue near the tumor site, not a statistically normalized 
quantity10. 
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	 ˙N (t) = r2N (t)(1 − b2N (t)) − c4N (t)T (t), � (1a)

	 Ṫ (t) = r1T (t)(1 − b1T (t)) − c2I (t)T (t) − c3T (t)N (t), � (1b)

	
˙I (t) = s + ρI (t)T (t)

α + T (t) − c1I (t)T (t) − d1I (t). � (1c)

 In this model, all variables and parameters are positive due to physiological reasons. The differential equation 
for normal cells shows logistic growth as N (t)(1 − b2N (t)) with growth rate r2, where b−1

2  is the carrying 
capacity, and −c4T (t)N (t) represents normal cell decline due to competition with tumor cells. In (1b), 
T (t)(1 − b1T (t)) shows logistic growth with rate r1 and carrying capacity b−1

1 . Terms −c2I (t)T (t) and 
−c3T (t)N (t) describe tumor cell death from immune and normal cell interactions. In (1c), tumor cells 
stimulate immune cell growth, modeled by ρI (t)T (t)/(α + T (t)), while immune cells die at rate d1 in the 
absence of tumor cells. −c1I (t)T (t) represents immune cell inactivation by tumor cells. This model does not 
represent any specific cancer type and does not account for chemotherapy effects10.

Analysis of equilibrium points in a drug-free model
The model presented in (1) has three distinct types of equilibrium points, which will be discussed below.

•	 Case 1: Tumor-Free State The tumor-free equilibrium is characterized by the absence of tumor cells and is 
given by: 

	
T ∗ =

( 1
b2

, 0,
s

d1

)
.

 This equilibrium is asymptotically stable if the following condition is satisfied: 

	
r1 < c3 + c2s

d1
.

•	 Case 2: Dead State The dead state, where normal cells are absent, has two equilibrium points: 

	
D∗

1 =
(

0, 0,
s

d1

)
,

	 D∗
2 = (0, z, f(z)) ,

 where z is a non-negative solution of the equation 

	
z +

(
c2

r1b1

)
f(z) − 1

b1
= 0,� (2)

 and f(z) is defined as 

	
f(z) = s(z + a)

c1z(z + a) + d1(z + a) − ρz
.� (3)

•	 D∗
1  is always unstable. D∗

2  may be stable or unstable depending on the system parameters.
•	 Case 3: Coexisting State The coexisting equilibrium, where all cell types are present, is given by: 

	 C∗ = (g(x), x, f(x)) ,

 where x is a non-negative solution of the equation 

	
x +

(
c2

r1b1

)
f(x) +

(
c3

r1b1

)
g(x) − 1

b1
= 0,

 and g(x) is defined as 

	
g(x) = 1

b2
−

(
c4

r2

)
x.

In this paper, we utilize the parameter sets and variation ranges suggested in10, as shown in Table 1. These 
parameters are not specific to any particular type of cancer and can vary between different cancer types and 
individual patients. For example, these parameter values could approximate the dynamics of a generic solid 
tumor with moderate growth and immune response, as seen in some clinical cases29, though they remain 
theoretical and adaptable to various cancers per10,11. The parameter set in Table 1 includes several equilibrium 
points. For instance, a coexisting stable equilibrium point at (0.435, 0.565, 0.435) is depicted in Fig. 1.
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The influence of chemotherapy on tumor progression can be analyzed from multiple perspectives. It is 
presumed that chemotherapy impacts all components at varying rates, specifically affecting normal cells (N ), 
tumor cells (T ), and immune cells (I ) through the drug concentration M (t), with the kill rates defined by 
parameters a3 = 0.1 mg−1Lday−1, a2 = 0.3 mg−1Lday−1, and a1 = 0.2 mg−1Lday−1, respectively, as 
listed in Table 1. In the model, the influence of chemotherapy is represented by an extra state M (t), which signifies 
the concentration of the drug in the bloodstream (mg/L). The pharmacokinetics (PK) of the chemotherapy 
drug follows a one-compartment model, described by ˙M (t) = −d2M (t) + u(t), where d2 = 1 day−1 is the 
drug decay rate (Table 1). The pharmacodynamics (PD) is modeled with a linear formulation, where the drug 
effect on each component–normal cells (−a3N M ), tumor cells (−a2T M ), and immune cells (−a1I M )–is 
proportional to the drug concentration M (t), consistent with standard PK/PD modeling approaches in drug 
development30. The dynamics of each component under chemotherapy treatment are described by:
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Fig. 1.  Assessment of cell populations without chemotherapy.

 

Parameter Description Value Unit

a1 Immune cell kill rate 0.2 mg−1  L day−1

a2 Tumor cell kill rate 0.3 mg−1  L day−1

a3 Normal cell kill rate 0.1 mg−1  L day−1

b1 Reciprocal carrying capacity of tumor cells 1 cell−1

b2 Reciprocal carrying capacity of normal cells 1 cell−1

c1 Immune cell competition term 1 cell−1day−1

c2 Tumor cell competition term 0.5 cell−1day−1

c3 Tumor-normal cell competition term 1 cell−1day−1

c4 Normal-tumor cell competition term 1 cell−1day−1

d1 Immune cell death rate 0.2 day−1

d2 Decay rate of injected drug 1 day−1

r1 Tumor cell growth rate 1.5 day−1

r2 Normal cell growth rate 1 day−1

s Immune cell influx rate 0.33 cell day−1

α Immune threshold rate 0.3 cell

ρ Immune response rate 0.01 day−1

Table 1.  The parameters used in this paper come from10,11.
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˙N (t) = r2N (t)(1 − b2N (t)) − c4N (t)T (t) − a3N (t)M (t),
Ṫ (t) = r1T (t)(1 − b1T (t)) − c2I (t)T (t) − c3T (t)N (t)

− a2T (t)M (t),

˙I (t) = s + ρI (t)T (t)
α + T (t) − c1I (t)T (t) − d1I (t) − a1I (t)M (t),

˙M (t) = −d2M (t) + u(t),

� (4)

where d2 represents the rate at which the chemotherapy drug degrades in the bloodstream, and u(t) ∈ Rm 
denotes the control input, or the externally administered drug dosage (mg/L/day), at time t. Delays are critical 
in many real-world systems, such as chemical reactions, where they impact efficiency, safety, and predictability 
by influencing reaction rates and enabling optimization of conditions like temperature and catalysts.

Modeling time delay in administering chemotherapy
The pharmacokinetic model is formulated as a one-compartment linear system to provide a tractable basis for 
developing and analyzing the proposed delay-aware control strategy. Although real chemotherapeutic drugs 
may exhibit multi-compartment kinetics and nonlinear pharmacodynamics (e.g., Hill-type effects), the adopted 
linear representation offers a locally valid approximation around the therapeutic operating point and is consistent 
with many control-oriented studies in the literature. Future extensions of this framework will consider nonlinear 
and drug-specific PK/PD models to further enhance physiological fidelity. It is important to account for the 
unavoidable delays between measuring tumor size and administering chemotherapy. Real-time measurement 
of tumor size and instant adjustment of drug dosage are impractical. Therefore, this time-delay should be 
incorporated into the model described in (4). Consequently, the model in (4) can be rewritten as follows:

	

˙N (t) = r2N (t)(1 − b2N (t)) − c4N (t)T (t − d) − a3N (t)M (t),
Ṫ (t) = r1T (t − d)(1 − b1T (t − d)) − c2I (t)T (t − d) − c3T (t − d)N (t) − a2T (t − d)M (t),

˙I (t) = s + ρI (t)T (t − d)
α + T (t − d) − c1I (t)T (t − d) − d1I (t) − a1I (t)M (t),

˙M (t) = −d2M (t) + u(t),

� (5)

Here, d represents the time-delay between measuring the tumor size and administering chemotherapy. The 
model in (4) incorporates these delays into the cancer treatment process. In the revised cancer treatment model 
(5), we assume that the number of normal cells is updated based on the tumor cell count at time t − d. For 
instance, if d = 2, it means that at the current time t, we only have information on the tumor cell count from 
two days ago (t − 2). This consideration is particularly important when updating the numbers of normal cells 
N  and immune cells I .

Remark 1  In model (5), we considered only the delays between measuring tumor size and administering chemo-
therapy. However, it is important to note that these delays can be extended to include normal cells N  and im-
mune cells I , depending on the user’s preference. In this study, we focus on the fact that real-time measurement 
of tumor size and immediate adjustment of drug dosage are impractical in clinical practice. Tumor assessments 
(e.g., via imaging or lab tests) occur periodically rather than continuously, with inherent delays of two weeks for 
processing and adjustment. Therefore, we have chosen to model delays primarily in tumor size to reflect these 
realistic, non-continuous monitoring constraints.

By defining a new variable as follows:

	 η(t) = [N (t), T (t), I (t), M (t)] ,

the model (5) can be rewritten as follows:

	

η̇(t) = f(η(t)) + fd(η(t − d)) + Bu(t),
η(t) = h(t), t ∈ [−d, 0],

� (6)

where B = [0, 0, 0, 1]T . The term h(t) represents the history of the number of tumor cells. The functions 
f(η(t)) : Rn → Rn and f(η(t − d)) : Rn → Rn are known to be locally Lipschitz. It should be mentioned 
that the history of the number of normal and immune cells can be considered in f(η(t − d)). Considering the 
delay in other cell populations depends on the user or the injector of the drug. However, in this paper, we aim to 
consider only the effects of the history of tumor cells.

Control objective
The objective of chemotherapy is to guide the system into a region where either the tumor-free equilibrium 
is achieved or an equilibrium with minimal tumor presence is maintained. This study targets the tumor-free 
equilibrium, developing a closed-loop controller aimed at completely eliminating the tumor. Our approach 
centers on designing a controller using the adaptive dynamic programming algorithm for system (6), ensuring 
stability even with time delays in tumor cell population measurements. Also, the control protocols are tailored 
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to account for time delays, optimizing drug dosage for cancer treatment. In essence, the designed control law 
will integrate the time delay history of tumor cell numbers. We present a novel value function that incorporates 
these time delays, utilizing policy iteration to solve the Hamilton-Jacobi-Bellman (HJB) equation31 with 
adaptive dynamic programming32, approximated by a critic neural network33. Following the proposed control 
formulation, the definitions of the parameters provided in Table 2 help improve the overall understanding.

The goal is to derive an optimal feedback control strategy, u(t), that effectively minimizes the infinite-horizon 
performance index linked to system (6). This cost function is formulated as:

	
V (η(t)) =

ˆ ∞

t

(
E(η(τ), u(τ)) +

ˆ τ

τ−d

ηT (q)Qdη(q)dq
)

dτ, � (7)

here, the utility function E(η(τ), u(τ)) is given by E(η(τ), u(τ)) = ηT (τ)Qη(τ) + uT (τ)Ru(τ).
Consider U(η(τ), u(τ)), defined as:

	
U(η(τ), u(τ)) = E(η(τ), u(τ)) +

ˆ τ

τ−d

ηT (q)Qdη(q)dq.

This function satisfies U(0, 0) = 0 and is non-negative for all η(t) and u(t). Here, Q, Qd ∈ Rn×n are positive 
semi-definite weighting matrices, and R ∈ Rm×m is a positive definite weighting matrix on the control input 
that penalizes the control effort (drug infusion rate) in the cost function. The expression (7) incorporates time 
delays. In the proposed control formulation, the weighting matrices Q, Qd, and R can be viewed as clinical 
preference indicators. The matrices Q and Qd penalize tumor growth and deviation from the desired therapeutic 
trajectory, while R penalizes excessive drug dosing. Thus, increasing R represents a stronger emphasis on toxicity 
management, whereas increasing Q or Qd prioritizes tumor suppression. These parameters can be adjusted based 
on patient-specific characteristics–such as disease aggressiveness, drug tolerance, or comorbidities–allowing 
oncologists to align the control design with individualized treatment goals and established clinical protocols.

In what follows, we will show that employing the newly defined value function (7) for controller design 
ensures the stabilization of the closed-loop system, ultimately resulting in the complete elimination of tumors. 
Denote V ∗(η(t)) as the optimal value function associated with V (η(t)), which is formally expressed as:

	
V ∗(η(t)) = min

u(t)∈φ
V (η(t)).� (8)

The gradient associated with the optimal value function V ∗(η(t)) is available thorough the Bellman optimality 
concept. This gradient, represented as ∇V ∗(η(t)) = tialV ∗(η(t))

tialη , is governed by the following equation:

	
min

u(t)∈φ
H(η(t), ∇V ∗(η(t))) = 0,� (9)

where H(η(t), ∇V ∗(η(t))) is known as the Hamiltonian function.
For ease of presentation, the variable t is excluded from the following equations.
The Hamiltonian function related to the cost function (7) is expressed as34:

	

H(η, ∇V ∗(η), u) = U(η, u) + (∇V ∗(η))T
η̇ = U(η, u) + (∇V ∗(η))T (f(η) + fd(η))

+ (∇V ∗(η))T Bu = E(η, u) +
ˆ τ

τ−d

ηT (q)Qdη(q)dq + (∇V ∗(η))T (f(η) + fd(η)) + (∇V ∗(η))T Bu.
� (10)

Our aim is to achieve minimization of the expression defined in Eq. (10) by incorporating Eqs. (10) and (9) 
to formulate the optimal control strategy, denoted as u∗. The optimal control input is derived by solving the 
condition tialH(η,∇V ∗(η),u)

tialu
= 0, as demonstrated below:

	
u∗ = −1

2R−1BT ∇V ∗(η).� (11)

Applying a straightforward transformation to Eq. (11) results in:

Symbol Description Remarks / selection criteria

Lr Learning rate matrix Determines the adaptation speed of the critic/actor parameters. Typically chosen as a small positive-definite diagonal matrix.

R Control weighting matrix Penalizes the control effort in the cost function. A higher value reduces control aggressiveness.

Q State weighting matrix Balances state tracking performance versus control effort; usually positive-definite.

Qc
d Delay compensation matrix Compensates for the effect of input/state delay; tuned to ensure BMI feasibility.

Ŵc
Estimated critic weights Updated online using the adaptive law to approximate the value function.

Table 2.  Design parameters used in the proposed control scheme.
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	 (∇V ∗(η))T
B = −2u∗T

R.� (12)

Equation (12) will be needed later. By inserting Eq. (11) into Eq. (10), the HJB equation can be reformulated as:

	
ηT Qη − 1

4(∇V ∗(η))T
BR−1BT ∇V ∗(η) +

ˆ τ

τ−d

ηT (q)Qdη(q)dq + (∇V ∗(η))T (f(η) + fd(η)) = 0. � (13)

It is important to demonstrate that the control protocol achieved from Eq. (11) can effectively stabilize the 
system expressed in Eq. (6). This assertion is confirmed by the following theorem.

Remark 2  In this study, the drug infusion rate is treated as a continuous control input for analysis and simulation 
purposes, representing an idealized continuous-infusion scenario. In clinical practice, however, chemotherapy is 
typically administered at discrete intervals (e.g., daily or per treatment cycle). The proposed control strategy can 
be readily implemented in a sampled form, where the computed control input is applied as a piecewise-constant 
dose between consecutive dosing instants. Since the underlying tumor dynamics evolve on a slower timescale, 
such discretization is not expected to significantly alter the system performance.

Theorem 1  Consider the system described by Eq. (6) and the control protocol governed by Eq. (11). The control 
strategy in Eq. (11) ensures that the closed-loop nonlinear time-delay system (5) achieves uniform ultimate bound-
edness, given that there exist positive definite matrices Q and Qd, as well as free-weighting matrices M̄  and N̄ , 
which satisfy the following bilinear matrix inequality condition:

	

Ῡ =




R 0 0 0
∗ Q − M̄d −M̄N̄d −M̄
∗ ∗ −N̄d −N̄
∗ ∗ ∗ 0


 ≥ 0,� (14)

in which

	

M̄d = dM̄Q−1
d M̄T ,

M̄N̄d = dM̄Q−1
d N̄T ,

N̄d = dN̄Q−1
d N̄T .

Proof  We consider the following Lyapunov function:

	 L(η) = V ∗(η).� (15)

Based on the definition of V ∗(η), it follows that V ∗(η) > 0 for z ̸= 0 and V ∗(η) = 0 when η = 0. This 
confirms that V ∗(η) is a positive definite function, which further implies that L(η) also possesses positive 
definiteness. Additionally, by evaluating the time derivative of the Lyapunov function (15) along the system 
trajectory η̇ = f(η) + fd(η) + Bu, we obtain the following expression:

	 L̇(η) =(∇V ∗(η))T
η̇ = (∇V ∗(η))T (f(η) + fd(η) + Bu). � (16)

Using (10), we obtain:

	
(∇V ∗(η))T (f(η) + fd(η)) = −E(η, u) −

ˆ t

t−d

ηT (q)Qdη(q)dq − (∇V ∗(η))T
Bu. � (17)

By substituting (17) and (11) into (16), Eq. (16) can be reformulated as follows:

	
L̇(η) = −ηT Qη − u∗T

Ru∗ −
ˆ t

t−d

ηT (q)Qdη(q)dq.� (18)

Inspired by35, we used the free-weighting matrices technique. This method allows us to bound the integral and 
convert it into a form where Lyapunov or stability conditions can be applied. Additionally, as mentioned in 
Proposition 3.11 of36, we used Jensen’s inequality, which plays a crucial role in handling the constant delay d 
in the stability analysis of the delay system. To bound the effects of the delay, free-weighting matrices35 are 
incorporated. Then, by defining the free-weighting matrices M̄  and N̄ , the term −

´ t

t−d
ηT (q)Qdη(q) dq in 

(18) can be expressed as follows:
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−
ˆ t

t−d

ηT (q)Qdη(q)dq ≤ 2ηT M̄

ˆ t

t−d

ηT (q)dq + 2ηT (t − d)N̄
ˆ t

t−d

ηT (q)dq −
ˆ t

t−d

(
ηT (q)M̄

+ ηT (t − d)N̄ + ηT (q)Qd

)
Q−1

d

(
ηT (q)M̄ + ηT (t − d)N̄ + ηT (q)Qd

)T

dq +
ˆ t

t−d

(
ηT (q)M̄ + ηT (t − d)N̄

)

Q−1
d

(
ηT (q)M̄ + ηT (t − d)N̄

)T

dq ≤ ηT Υη,

� (19)

in which

	

ηT =
[

ηT , ηT (t − d),
ˆ t

t−d

ηT (q)dq

]
,

Υ =

[
M̄d M̄N̄d M̄
∗ N̄d N̄
∗ ∗ 0

]
.

Referring to (18) and applying (19), we get:

	
L̇(η) = −ηT Qη − u∗T

Ru∗ −
ˆ t

t−d

ηT (q)Qdη(q)dq ≤ −ηT Qη − u∗T

Ru∗ + ηT Υη ≤ −(η̄T Ῡη̄), � (20)

where

	

η̄T =
[

uT , ηT , ηT (t − d),
ˆ t

t−d

ηT (q)dq

]
,

Ῡ =




R 0 0 0
∗ Q − M̄d −M̄N̄d −M̄
∗ ∗ −N̄d −N̄
∗ ∗ ∗ 0


 .

According to (20), if Ῡ ≥ 0, then −(η̄T Ῡη̄) < 0 holds, leading to L̇(η) < 0. Thus, it completes the proof. □
As we discussed above, delays between measuring and applying chemotherapy are inevitable. We proposed an 
approach to account for these delays in treatment and drug dosing. To achieve this, we use the Lyapunov-Krasovskii 
function, 

´ t

t−d
ηT (q)Qdη(q) dq, to analyze the stability of the optimal chemotherapy in cancer treatment with 

time-delay and incorporate these delays into the value function (7). The integration of this temporal element into 
our cost function enables us to model the effects of delayed responses inherent in cancer treatment protocols. 
This time-aware approach enhances our capacity to dynamically refine the control mechanism. Our analysis, as 
detailed in Theorem 1, demonstrates that incorporating a time-delay-sensitive Lyapunov-Krasovskii functional 
within the cost function contributes significantly to the stability and robustness of our proposed methodology. 
Leveraging the principles established in Theorem 1, we navigate the intricacies of the HJB equations to derive 
an effective control protocol. This process culminates in the development of a sophisticated drug administration 
system that not only accounts for but also adapts to these inherent temporal lags in treatment response.

It should be noted that in the presence of time delays, full state observability is lost, violating the Markov 
property and complicating reward assignment in reinforcement learning. To address this, we integrate a 
Lyapunov-Krasovskii functional into the value function, enabling delayed-state awareness. A critic-only neural 
network approximates the HJB equation, while stability is ensured via a bilinear matrix inequality (BMI) 
condition. Online weight updates preserve learnability, making the method suitable for real-time, delay-affected 
cancer treatment control.

Remark 3  Our proposed method addresses the challenges of time delays in a cancer treatment model, which dis-
rupt the Markov property assumed in reinforcement learning (RL), where future states depend only on current 
states and actions. The delays in tumor size measurements (5) introduce historical state dependencies, making 
the system non-Markovian. We tackle this using a Lyapunov-Krasovskii functional in the value function (7) and 
a critic-only neural network to approximate the HJB equation, with a BMI (14) ensuring stability.

Remark 4  Our approach develops a cancer treatment model using a nonlinear cancer dynamics framework and 
a critic-only neural network to solve the HJB equation for optimal chemotherapy dosing, considering delays in 
tumor size measurements. It employs a BMI to ensure system stability under constant delays. In contrast, the 
method in37 offers a general online actor-critic algorithm for nonlinear systems with state delays, using both 
actor and critic networks to approximate the HJB equation and control policy, relying on Lyapunov techniques 
for stability without using a BMI. However, our method is cancer-specific with a simpler critic-only design and 
BMI-based stability, while37 provides a broader dual-network approach.

To implement the optimal control strategy, we employ computational methods to approximate solutions to 
the HJB equation for our time-delayed system. The high-dimensional and nonlinear dynamics, compounded 
by time delays, pose significant computational challenges. We address these by developing a streamlined neural 
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network architecture, which efficiently approximates the HJB solution for chemotherapy dosing optimization, 
building on established dynamic programming techniques38.

Neural network implementation
It is well known that neural networks excel at approximating complex functions. Since the performance index 
function is generally complex and does not possess a straightforward analytical expression, we leverage a neural 
network to approximate its structure. In this work, a simple single-layer neural network is adopted as an effective 
means of capturing and estimating the underlying functional relationship. The function V (η) is represented as:

	 V (η) = W T
c S(η) + ε(η),� (21)

here, we interpret S(η) as the neural activation map, with Rc representing the c-dimensional Euclidean space. 
Wc corresponds to the optimized parameter set, while c quantifies the neural units in the intermediate stratum. 
ε(η) denotes the neural network’s approximation discrepancy. The spatial derivative of Eq. (21) with respect to 
z can be articulated as:

	 ∇V (η) = (∇S(η))T Wc + ∇ε(η),� (22)

where ∇S(η) = tialS(η)
tialη

∈ Rc×n represents the gradient of the activation map, and ∇ε(η) denotes the gradient 
of the approximation error. Incorporating Eq. (22) into (9) results in:

	
min

u(t)∈φ
U(η, u) + ((∇S(η))T Wc + ∇ε(η))η̇ = 0.� (23)

Consequently, we can formulate the Hamiltonian as:

	 H(η, u, Wc) = U(η, u) + (W T
c ∇S(η))η̇ = −∇ε(η)η̇ ≜ erH . � (24)

In this framework, erH  encapsulates the residual discrepancy emanating from the neural approximation. Given 
that the ideal parameter set Wc remains undetermined, we utilize a critic neural architecture to estimate V (η) 
as follows:

	 V̂ (η) = W T
c S(η).� (25)

Consequently, the gradient of the approximated value function V̂ (η) can be expressed as:

	 ∇V̂ (η) = (∇S(η))T Ŵc,� (26)

Thus, the approximate Hamiltonian can be formulated as:

	 H(η, u, Ŵc) = U(η, u) + (W T
c ∇S(η))η̇ ≜ er. � (27)

The weight approximation error is defined as W̃c = Wc − Ŵc. By incorporating Eqs. (27) and (24), we derive:

	 er = erH − W̃ T
c ∇S(η)η̇.� (28)

The weight approximation error can be reformulated as:

	
˙̃W c = − ˙̂

W c = Lr

(
erH − W̃ T

c ∇S(η)η̇
)

∇S(η)η̇.� (29)

To optimize the parameter set Ŵc of the critic neural architecture, we minimize the cost function Ec = 1
2 eT

r er  
using a normalized gradient descent technique. The iterative refinement of Ŵc is governed by the following 
update rule:

	
˙̂

Wc = −Lrer∇S(η)η̇,� (30)

where Lr > 0 is the learning rate, controlling the speed of weight adjustments. This update occurs online, 
making the weights Ŵc time-dependent as they adapt to the system’s dynamics and time delays during treatment. 
Consequently, by taking into account Eqs. (11) and (21), the optimal control policy can be formulated as:

	
u(η) = −1

2R−1BT
(

(∇S(η))T Wc + ∇ε(η)
)

,� (31)

and it can be estimated as:

	
û(η) = −1

2R−1BT (∇S(η))T Ŵc.� (32)
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The approximate control policy in Eq. (32) depends entirely on the critic neural network. By adjusting the 
weight vector of the critic neural network using Eq. (30), the necessity of training the action neural network is 
eliminated. This simplifies the overall process, making the method both practical and computationally efficient 
for implementation.

Theorem 2  When the critic neural network weights are updated as per Eq. (29) for the chemotherapy treatment 
dynamics, as redefined in system (6), the approximation error in the weights remains uniformly ultimately bounded.

Proof  At the first step, we considered the following Lyapunov function:

	
Γ2 = 1

2Lr
W̃ T

c W̃c.� (33)

The time derivative of (33) is

	 Γ̇2 = 1
2Lr

W̃ T
c

˙̃W c = W̃ T
c (erH − W̃ T

c ∇S(η)η̇)∇S(η)η̇ = W̃ T
c erH∇S(η)η̇ −

∥∥W̃ T
c ∇S(η)η̇

∥∥2 ≤ 1
2e2

rH − 1
2

∥∥W̃ T
c ∇S(η)η̇

∥∥2
. � (34)

Consequently, the condition Γ̇2 < 0 is satisfied when W̃c falls within the compact domain characterized by 
∥W̃c∥ ≤ ∥ erH

θ1
∥, given the assumption ∥∇S(η)η̇∥ ≤ θ1, where θ1 represents a positive scalar. Applying the 

principles of Lyapunov stability theory, we can deduce that the parameter estimation error exhibits uniform 
ultimate boundedness, thereby concluding the proof. □

Remark 5  The critic-only structure simplifies the computational framework by focusing solely on updating the 
critic weights to approximate the optimal value function, avoiding the dual complexity of simultaneously up-
dating both the critic and the actor (policy) components. This reduction in computational burden is critical for 
real-time clinical applications, where rapid processing of delayed tumor size data is essential, and resources may 
be constrained. The critic-only method requires fewer parameters to tune and fewer iterative updates, leading to 
lower memory usage and faster convergence compared to the actor-critic approach.

The adaptive dynamic programming algorithm for online critic learning, which is designed to optimize drug 
administration in cancer therapy and is related to the method provided in this paper, is outlined in Algorithm 1.

Algorithm 1.   Adaptive dynamic programming algorithm for optimizing drug administration in cancer 
therapy.

Simulation numerical examples
In this section, we will conduct several simulations and analyze their results. All parameters used in the 
simulations are listed in Table 1.

Interested readers can access the computational scripts utilized in our simulations via this digital repository.
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As previously stated, we assume the system’s equilibrium point is located at the origin of the state space Rn. 
By shifting the tumor-free equilibrium point T ∗ to the origin, we can rewrite Eq. (5) accordingly. we define the 
following new variables:

	

x1(t) = N(t) − 1
b2

, x2(t) = T (t),

x3(t) = I(t) − s

d1
, x4(t) = M(t).

� (35)

Using these definitions, we can transform Eq. (5) into Eq. (36) as follows:

	

ẋ1(t) = −r2x1(t)(1 + b2x1(t)) −
(

c4

b2
x2(t − d) − a3

b2

)
x2(t − d) − c4x1(t)x2(t − d) − a3x1(t)x4(t),

ẋ2(t) = r1x2(t − d)(1 − b1x2(t − d)) −
(

sc2

d1
+ c3

b2

)
x2(t − d) − c3x1(t)x2(t − d) − c2x2(t − d)

× x3(t) − a2x2(t − d)x4(t),

ẋ3(t) = − c1s

d1
x2(t − d) − d1x3(t) −

(
a1s

d1
x4(t) + ρs

d1(α + x2(t − d))x2(t − d)
)

+ ρ

α + x2(t − d)
× x2(t − d)x3(t) − c1x2(t)x3(t) − a1x3(t)x4(t),

ẋ4(t) = −d2x4(t) + u(t).

� (36)

It is assumed that there is a d = 1 week delay between measuring the tumor population and administering the 
drug. We incorporated 1–2 week delays in our simulations to reflect robustness across short biomarker-based 
and long imaging-based monitoring, informed by discussions with oncology specialists at Emam Reza Hospital 
in Tabriz and their anonymized clinical records. Clinical studies, such as those on nadir neutrophil counts in 
breast cancer, AML consolidation therapy, and ctDNA-guided switching with weeks turnarounds39, justify these 
delays. Our delay-aware online RL approach enhances dosing decisions in clinical settings with common two-
week delays, outperforming offline or less frequently updated strategies. To verify the BMI condition presented 
in Theorem 1 for systems with delay, we check the feasibility of the proposed BMI (14). If the BMI is feasible, 
it indicates that convergence is guaranteed and the system can tolerate the corresponding delay. For one of the 
considered delay cases (1 week delay), the BMI parameters have been obtained as follows:

	

Q =




2.3 0.1 0.4 0.0
0.1 1.8 0.2 0.0
0.4 0.2 2.1 0.0
0.0 0.0 0.0 1.5


 , Qd = diag(0.8, 0.9, 0.7, 1.2), R = 0.4.

Then, the obtained BMI is feasible. Following Algorithm 1, model (36), (30) and control policy (32), the simulation 
results are obtained. The initial conditions for the simulations are as follows: x1(0) = −0.5, x2(0) = 0.5, 
x3(0) = −1.15, x4(0) = 0, Q = diag([qN = 1, qT = 12, qI = 1, qM = 0.02]) , Qd = 8Q , Lr = 0.02 . 
The number of neurons is chosen as c = 10. The activation function and initial weights of critic learning :

	

S(η) =[N 2; T 2; I 2; M 2; N T ; N I ; N M ; T I ; T M ; I M ]
Wc(0) =[3; 0.2; 2.2; 2.8; 5.4; 1; 3.4; 4.7; 4.5; 1.3].

� (37)

The simulation results for this case are shown in Figs. 2 and 3. Figure 2 provides information about the 
cell populations in a patient. This figure indicates that the number of tumor cells converged to zero after 

Fig. 2.  Assessment of cell populations with control policy (32).
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approximately three weeks days. Additionally, the number of immune and normal cells reached the equilibrium 
point, signifying that the patient’s treatment was successful under the control policy (32).

Figure 3 illustrates an intense initial drug regimen, with the concentration (M ) peaking at approximately 
0.20 within the first two weeks to aggressively target the tumor burden (T (0) = 0.5). This high initial dose is 
driven by the optimal control policy (Eq. (32)), which leverages the delayed tumor measurement (x2(t − 1)) 
and the initial critic weights (Wc(0)). A rapid decline follows the peak, reflecting the optimization’s adjustment 
due to the 1-week delay in tumor measurement, as the online critic learning updates the weights to adapt to the 
decreasing tumor population (Fig. 2 shows T  nearing zero by three weeks). The delay compensation ensures the 
dose is reduced to prevent overdosing as the tumor diminishes. By around five weeks, the critic weights converge 
(Fig. 4), and the drug dosage decreases to zero, indicating that the patient has regained health, with normal and 
immune cell populations stabilizing at their equilibrium points.

Remark 6  The values of Q = diag([qN , qT , qI , qM ]) have different implications in cancer chemotherapy 
depending on the patient. Younger patients typically have a higher growth capacity for normal and immune 
cells compared to older patients. Therefore, for younger patients, it is more important to reduce the number of 
cancerous cells than to preserve normal or immune cells. Consequently, an oncologist might assign a high value 
to qT  and lower values to the other parameters. For pregnant patients, the oncologist might select higher values 
for qN , qI , and R until childbirth.

The simulation results for the case 2 where Q = diag([qN = 14, qT = 0, qI = 12, qM = 10]) and 
R = 20 are displayed in Figs. 5, 6 and 7. Compared to Case 1 (Q = [1, 10, 1, 0.01], R = 0.4), which prioritizes 
tumor reduction (qT = 10) for a typical patient, Case 2 focuses on preserving normal and immune cells 
(qN , qI = 10) and minimizing drug concentration (qM = 10) with a high control penalty (R = 20), without 
directly penalizing tumor cells (qT = 0). This setup reflects a conservative treatment scenario, such as for a 
pregnant patient (Remark 6), where minimizing drug exposure and protecting healthy cells are critical. These 
settings were chosen to demonstrate the proposed method’s adaptability to diverse clinical needs, validating the 
effectiveness across both aggressive and conservative treatment strategies.

Fig. 4.  The weights of critic learning structure.

 

Fig. 3.  The drug concentration.
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In the next step, we demonstrate that our proposed method–by incorporating an integral term into the 
Hamiltonian error–effectively compensates for time delays, leading to similar cell population trajectories and 
treatment outcomes for both 1-week and 2-week delays. This compensation significantly reduces the impact of 
delays, as illustrated in Figs. 8 and 9.

Fig. 7.  The drug concentration for the case 2.

 

Fig. 6.  The weights of critic learning structure for the case 2.

 

Fig. 5.  Assessment of cell populations with control policy (32) for the case 2.
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It is worth noting that with longer delays, drug dosage profiles may exhibit oscillations, as shown in the 
zoomed area of Fig. 8, indicating the influence of delay. Nonetheless, Figs. 8 and 9 confirm that acceptable 
treatment performance is maintained, validating the method’s robustness against time delays in the therapy 
process.

In the next scenario, we illustrate the benefits of incorporating delay compensation into the control law. We 
use the same parameters as in Case 1 (Q = [1, 10, 1, 0.01], R = 0.4) as a baseline. Figures 10 and 11 compare 

Fig. 10.  Assessment of Immune cell population with control policy (32).

 

Fig. 9.  The weights of critic learning structure for different delays.

 

Fig. 8.  Assessment of cell populations with control policy (32) for different delays.
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the control policy from Eq. (32) with and without delay compensation–shown by solid (red and blue) and dotted 
(red and blue) curves, respectively. In Fig. 10, the dotted blue curve, which represents the case without delay 
compensation, exhibits slower convergence of the immune cell population compared to the corresponding 
solid blue curve. Additionally, the figure demonstrates that larger delays lead to slower convergence, as seen by 
comparing the red curve (two-weeks delay) with the blue curve (one-week delay). Figure 11 further illustrates 
that delay compensation contributes to a shorter drug administration period. The solid red and blue curves show 
the dose converging to zero more quickly, indicating improved dosing efficiency. These results underscore the 
advantage of accounting for delays in control design to enhance both treatment effectiveness and safety.

It should be noted that Case 3 represents the same control objective as Case 1 but with an added delay-
compensation mechanism. As shown in Fig. 11, the delivered drug amount is considerably smaller than in Fig. 
3 because the delay-compensated controller anticipates the system’s response and avoids excessive actuation. 
This results in smoother drug administration and reduced overshoot, demonstrating the effectiveness of the 
proposed compensation scheme.

Table 3 summarizes the system behavior under different delay durations. As for the other part of your 
comment, we have considered it as follows:

From Table 3, it can be observed that as the delay increases, the system performance gradually degrades, and 
excessive delays may lead to marginal or unsafe behavior.

Remark 7  The days delay assumed in our simulations is a theoretical approximation to model the time between 
tumor measurement and chemotherapy administration, reflecting the technical challenges of real-time moni-
toring. Current clinical practices regarding chemotherapy scheduling and the necessity of online adjustment are 
not yet integrated into this study, as it focuses on establishing a proof-of-concept framework. We are currently 
establishing collaborations with hospitals to gather real-world data and assess the practical relevance of our 
method, including its applicability to aggressive and non-aggressive cancers, in future work.

Remark 8  The critic-only learning approach reduces computational complexity by focusing solely on updating 
the critic weights Wc to optimize the value function V (η), eliminating the need for simultaneous actor updates 
as required in dual actor-critic methods, thus avoiding the overhead of concurrent policy adjustments. However, 
a significant challenge arises in selecting appropriate initial conditions for the critic weights. Unsuitable initial-
ization can lead to slow convergence or instability, particularly when delays are present, making it critical to 
carefully determine suitable starting values to ensure effective learning.

Comparative results In this section, a comparison Table 4 is presented to summarize the control methods for 
delayed systems in reinforcement learning and related approaches. Furthermore, the proposed method in the 
simulation results is compared with the approach in25 and a model predictive control (MPC) scheme.

To further demonstrate practical relevance, we added a comparison between RL and MPC , showing 
improved adaptability of the proposed RL method in short-delay scenarios.

Delay Duration Drug Safety Convergence

d = 1 week Safe ✓ Stable

d = 2 weeks Safe ✓ Stable

d = 5 weeks Borderline ✓ Marginal

d = 6 weeks Unreal ◦ unstable

Table 3.  Extended delay simulations.

 

Fig. 11.  The drug concentration.
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From Fig. 12, it can be clearly observed that the proposed method exhibits a smooth and stable response 
without any noticeable oscillations or overshoots. This behavior indicates that the proposed control strategy 
effectively mitigates fluctuations and ensures a more consistent system performance. In contrast, the method 
presented in25 shows significant oscillations and slower convergence, which demonstrates the superior transient 
and steady-state characteristics of our approach.

The MPC implemented here uses a prediction horizon of 5 steps (Hp = 5) to forecast future states and optimize 
drug dosing over a control horizon of 2 steps (Hu = 2), minimizing the quadratic cost function involving state 
deviations and control effort while respecting bounds on the input (u between 0 and 10). This setup provides a 
baseline for comparison with the critic-only learning method, demonstrating how MPC handles the nonlinear 
tumor dynamics without explicit delay compensation in its prediction, leading to potentially higher drug peaks.

From Fig. 13, it can be seen that the proposed method demonstrates superior performance in chemotherapy 
dosing by achieving complete convergence of drug concentration to zero after effectively eradicating the tumor, 

Fig. 13.  Comparison of the performance of the proposed method and MPC approach.

 

Fig. 12.  Comparison of the performance of the proposed method and the method in [L1]25.

 

Method System type Architecture Delay handling Stability analysis Application

The work40 Continuous nonlinear Model-based RL Particle filtering Not provided Autonomous 
driving

The work41 Continuous/Discrete Actor-critic Hindsight resampling Lyapunov (nominal) MuJoCo control

The work25 Continuous nonlinear Fuzzy RL Discontinuous reward Empirical Cancer therapy

The work24 Continuous nonlinear Model-free RL 
(Lyapunov-integrated) Fixed delay compensation Lyapunov Cancer 

chemotherapy

Our work Continuous nonlinear Critic-only
Delay-explicit value function 
(integral term, no state 
augmentation)

BMI-based delay-dependent Cancer therapy

Table 4.  Comparison of control methods for delayed systems in reinforcement learning and related 
approaches.
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ensuring minimal long-term toxicity for the patient. In contrast, the MPC approach, while maintaining stable 
cell populations, fails to fully taper off the drug dosage, resulting in persistent low-level administration that may 
increase cumulative toxicity risks over time.

For the noisy case, small fluctuations appear in the drug therapy input due to noise, but the signal remains 
bounded and at a low magnitude. The noise was modeled as

	 η̃(t) = η(t) + ν(t), ν(t) ∼ N (0, σ2),� (38)

with σ = 0.01, representing moderate sensor noise levels relative to the scale of the state variables. The noisy 
case was simulated for 30 weeks of therapy.

Figure 14 confirms that the algorithm is resilient to practical sensor noise conditions and validates its 
robustness in real-world applications. However, we need to prove this mathematically, which can be a great 
motivation for extending our proposed method. Software The numerical results discussed here were derived using 
MATLAB R2023a as the main computational tool, taking advantage of its built-in functions for optimization and 
solving differential equations. The simulations were implemented in MATLAB, with ODE solvers used to model 
the time-delay system defined by Eq. (36), and the YALMIP toolbox employed to express the stability criteria 
outlined in the Theorems. The code was written to carry out the online critic learning algorithm (Algorithm 1), 
iteratively solving HJB equation based on the initial conditions and parameters provided in Table 1. For the sake 
of transparency and reproducibility, the full source code and related documentation can be accessed via the 
Zenodo repository at [this link](https://doi.org/10.5281/zenodo.15088181).

Conclusion
This paper introduced an online critic learning method for controlling cancer chemotherapy drug dosing using 
an adaptive dynamic programming algorithm. We designed a novel value function that included state time 
delays, creating an effective control approach for handling delays between measuring tumor size and applying 
chemotherapy. We used a critic neural network structure to derive control laws and optimize drug dosing. We 
discussed the effects of time delay to ensure the stability of the proposed optimal controller, and simulation 
results showed these effects. We employed a straightforward mathematical approach to analyze the issues, 
demonstrating that the derived control laws stabilize the closed-loop system and compensate for time delays.

Several areas remain open regarding finding an optimal chemotherapy approach in cancer treatment. 
Exploring connections to other drug dosing optimization problems, such as anesthesia, could further extend 
the applicability of our approach. For instance, adaptive asymptotic tracking for uncertain switched positive 
compartmental models, as explored in42, offers a promising direction.

Data availability
The repository includes MATLAB scripts for model definition, delay-aware control implementation, and visuali-
zation of simulation results. The simulation codes generated during the current study are available in the Zenodo 
repository, https://doi.org/10.5281/zenodo.15088181.
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