www.nature.com/scientificreports

scientific reports

OPEN

W) Check for updates

FedMedSecure: federated few-
shot learning with cross-attention
mechanisms and explainable

Al for collaborative healthcare
cybersecurity

Mohammed Tawfik**“, Ashraf A. Abu-Ein%3, Hatem M. Noaman?3, Amr H. Abdelhaliem* &
Islam S. Fathi>®

The proliferation of Internet of Medical Things (IoMT) devices has created cybersecurity challenges
that requiring advanced threat detection techniques along with preserving patient privacy. This paper
introduces FedMedSecure, a federated few-shot learning framework to provide privacy-preserving and
collaborative learning, explainable Al, and adaptive ensemble mechanisms for loMT cybersecurity. Our
approach combines CrossTransformer with learnable attack signature queries, FEAT, RelationNetwork
with adaptive prototypes, and regularized MAML within a confidence-weighted ensemble architecture.
The framework implements differential privacy with (€, d) = (1.0,1075) while achieving 75%
communication reduction through efficient gradient compression. The evaluation implemented on two
datasets-CICloMT2024 (8.7M healthcare loT samples across 19 attack categories) and CIDC2017 (2.8M
general loT samples across 14 attack categories)-We have achieved an exceptional performance as the
following: 99.9% accuracy on CICIoMT2024 and 93.3% on CIDC2017 in supervised learning, 99.7-99.8%
and 91.0-99.3% respectively in few-shot scenarios, and 99.8% while the global accuracy in federated
learning experiments across 8 institutions. Cross-dataset validation confirms robust generalization
capabilities, with few-shot learning achieving rapid adaptation from 91.0% with 5 shots to 99.3% with
50 shots on CIDC2017. Counterintuitively, the original 19-class taxonomy outperformed theoretically
optimized 5-class clustering in few-shot learning, providing new insights for meta-learning research.
The multi-level explainable ai (XAl) framework shown the packet timing and protocol features as
primary discriminators, and shown analyst trust. Our FedMedSecure enables collaborative healthcare
cybersecurity without compromising privacy that establishing a new paradigm for trustworthy Al in
sensitive domains like healthcare with broader applicability to financial services, critical infrastructure,
and government networks that requiring privacy-preserving collaborative threat detection.

The digital transformation of healthcare systems has ushered in an era of unprecedented connectivity through
Internet of Medical Things (IoMT) devices, fundamentally revolutionizing patient care delivery, clinical
monitoring, and medical data management. The IoMT architecture encompasses interconnected medical
devices, software applications, and healthcare systems that enable real-time data collection, transmission, and
analysis, creating substantial opportunities for improved patient outcomes and operational efficiency'. This
technological paradigm shift has enabled precision medicine, remote patient monitoring, and data-driven
clinical decision-making, yet it simultaneously introduces significant cybersecurity challenges that pose critical
threats to patient safety, data privacy, and healthcare system integrity.

The healthcare sector has emerged as one of the most targeted industries for cyberattacks, with systematic
reviews revealing that healthcare organizations face increasingly sophisticated threats that exploit vulnerabilities
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in interconnected medical devices and systems?. Recent comprehensive analyses indicate that oM T environments
present unique security challenges due to their heterogeneous device ecosystems, resource constraints, and the
critical nature of healthcare operations®. The proliferation of connected medical devices has created complex
attack surfaces spanning multiple communication protocols including Wi-Fi, MQTT, and Bluetooth Low
Energy, necessitating specialized cybersecurity approaches tailored to healthcare environments®.

Traditional cybersecurity approaches designed for conventional IT infrastructure prove inadequate for oM T
environments due to several fundamental challenges. The resource-constrained nature of many medical devices
limits the deployment of computationally intensive security solutions, while the stringent real-time requirements
of healthcare operations demand security mechanisms that do not compromise system performance®. Moreover,
the regulatory compliance requirements imposed by healthcare standards such as HIPAA and GDPR necessitate
security solutions that protect patient data while enabling collaborative threat intelligence sharing across
healthcare institutions.

The emerging paradigm of federated learning presents a promising solution for addressing the dual challenges
of effective threat detection and privacy preservation in healthcare environments. Unlike centralized approaches
that require sensitive medical data to be shared with external entities, federated learning enables collaborative
model training across multiple healthcare institutions while keeping patient data localized®. Systematic reviews
demonstrate that federated learning applications in healthcare have shown significant promise for building
robust AI models that leverage distributed datasets while maintaining strict privacy guarantees’. This distributed
learning paradigm aligns with healthcare’s stringent privacy requirements while enabling the development of
sophisticated security models that benefit from diverse threat intelligence across the healthcare ecosystem.
Recent advances in blockchain-integrated federated learning have demonstrated promising directions for
securing ToT healthcare systems while maintaining privacy guarantees®. The integration of Non-Interactive
Zero-Knowledge Proof with blockchain data storage has shown effectiveness in maintaining data integrity and
privacy in healthcare IoT environments, though scalability challenges remain for real-time intrusion detection
scenarios’. Furthermore, hybrid approaches combining elliptic curve cryptography with federated learning have
achieved 98% accuracy in IoT network intrusion detection while ensuring lightweight encryption suitable for
resource-constrained devices!’.

However, existing approaches suffer from several critical limitations that impede their practical deployment
in real-world healthcare environments. Current federated learning frameworks primarily rely on traditional
machine learning algorithms that fail to capture the complex, evolving nature of IoMT threats'!. The challenge
of few-shot learning in cybersecurity contexts remains largely unaddressed, despite evidence that healthcare
environments frequently encounter novel attack patterns for which limited labeled training data is available'2.
Recent advances in few-shot learning for network intrusion detection demonstrate the potential for rapid
adaptation to novel threats using minimal labeled samples, yet their application to IoMT environments
remains underexplored'’.Ensemble learning approaches combining multiple architectural paradigms have
shown exceptional performance in botnet detection for industrial IoT environments, with CNN-GRU hybrid
architectures achieving 99.75% accuracy on multi-class classification tasks'‘. Multi-dimensional feature
fusion strategies that consider temporal, spatial, and load characteristics of network traffic have demonstrated
superior detection performance compared to single-modality approaches’®, highlighting the importance of
comprehensive feature engineering in IoMT security applications. Advanced fog/IoT frameworks integrating
stacked autoencoders with Transformer-CNN-LSTM ensembles have achieved > 99% detection accuracy while
maintaining sub-10ms inference latency'®, demonstrating the feasibility of sophisticated ensemble architectures
for real-time threat detection in resource-constrained environments.

The integration of explainable artificial intelligence (XAI) in cybersecurity has gained significant attention,
particularly for addressing the “black box” nature of complex machine learning models used in intrusion
detection systems. Recent research emphasizes that traditional intrusion detection systems often rely on
complex algorithms that lack transparency despite their high accuracy, creating challenges for security analysts’
understanding of decision-making processes!”. The integration of XAl into intrusion detection systems is critical
for ensuring that cybersecurity systems provide explanations that human analysts can readily comprehend and
act upon, particularly valuable in regulated industries such as healthcare where explainability is mandated for
legal and ethical compliance'®.

Furthermore, the challenge of integrating explainable AI within privacy-preserving federated learning
contexts presents unresolved technical and methodological challenges. Current approaches treat explainability
and privacy as independent concerns without addressing potential information leakage through explanation
mechanisms or providing formal privacy guarantees'®. The exploration of privacy-utility trade-offs in mobile
health applications demonstrates the complexity of balancing model performance with data protection
requirements, highlighting the need for sophisticated approaches that can maintain both privacy and
interpretability?’.

The domain-specific nature of IoMT cybersecurity challenges requires specialized approaches that account
for the unique characteristics of healthcare environments. Comprehensive reviews of IoMT security reveal
that traditional IoT security solutions are insufficient for healthcare applications due to the critical nature of
medical data, regulatory requirements, and the life-critical nature of many medical devices?!. Advanced security
techniques specifically designed for IoMT environments must address challenges including device heterogeneity,
scalability, and the need for real-time threat detection while maintaining patient privacy?.

Recent developments in few-shot learning methodologies show particular promise for addressing the
challenge of novel attack detection in resource-constrained environments. Meta-learning approaches for
intrusion detection in 5G-enabled industrial internet environments demonstrate the feasibility of rapid
adaptation to new threat patterns using minimal training data®. These advances suggest that few-shot learning
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techniques can be effectively adapted to healthcare cybersecurity contexts, enabling rapid response to emerging
threats without requiring extensive retraining on large datasets.

The implementation of collaborative machine learning with differential privacy in healthcare settings has
shown significant potential for maintaining privacy guarantees while enabling effective model training across
institutional boundaries®*. These approaches demonstrate that it is possible to achieve strong privacy protection
while maintaining model utility, providing a foundation for developing comprehensive federated learning
frameworks for healthcare cybersecurity applications.

To address these multifaceted challenges, this paper introduces FedMedSecure, a novel multi-model few-shot
federated learning framework specifically designed for collaborative cybersecurity in healthcare IoT networks.
Our approach makes several key contributions to the field: (1) a comprehensive multi-model ensemble
architecture combining three specialized neural networks—CrossTransformer with learnable attack signature
queries, Few-shot Embedding Adaptation Transformer (FEAT), and Relation Networks—each optimized
for different aspects of IoMT threat detection; (2) innovative few-shot learning capabilities that enable rapid
adaptation to novel attack variants with minimal labeled samples; (3) novel cross-attention mechanisms for
explicit attack pattern learning and interpretable threat detection; (4) rigorous integration of explainable AI
within a privacy-preserving federated learning context; and (5) formal differential privacy guarantees with
comprehensive privacy-utility trade-off analysis.

The proposed framework addresses the semantic relationships between different attack types through
intelligent clustering that reduces model complexity while preserving discriminative information, achieving
68% entropy reduction while maintaining 92% mutual information. Through extensive evaluation on the
comprehensive CICIoMT2024 dataset containing 8.7 million network traffic samples across 19 attack categories,
FedMedSecure demonstrates superior performance compared to existing approaches while providing formal
convergence guarantees and differential privacy protection.

The remainder of this paper is organized as follows: Section 2 reviews related work in IoMT cybersecurity,
federated learning, and explainable Al. Section 3 presents the detailed methodology of the FedMedSecure
framework. Section Section 4 discusses the experimental setup and evaluation metrics. Section 4 presents
comprehensive experimental results and analysis. Section 5 examines the implications and limitations of our
approach. Finally, Section 6 concludes the paper and outlines future research directions.

Related work

The increasing proliferation of Internet of Medical Things (IoMT) devices in healthcare environments has created
unprecedented cybersecurity challenges, necessitating sophisticated defense mechanisms that can operate under
strict privacy constraints while maintaining high detection accuracy. This section reviews the current state-
of-the-art in federated learning-based cybersecurity solutions, attention-driven deep learning architectures,
explainable AI approaches, and multi-model frameworks for healthcare IoT security.

Federated learning approaches for healthcare loT security

Federated learning has emerged as a promising paradigm for addressing privacy concerns in healthcare
cybersecurity applications. Misbah et al.>> pioneered the application of federated learning for IoMT security
by proposing an advanced framework that leverages ensemble methods including Random Forest, AdaBoost,
Support Vector Machine, and Deep Learning models. Their approach demonstrated that federated training
could achieve 99.22% accuracy while preserving data privacy through decentralized model training across 10
simulated edge devices. The study highlighted the superiority of ensemble methods over individual models, with
Random Forest achieving 99.38% precision and 99.09% F1-score on the CICIoMT2024 dataset.

Building upon this foundation, Jeremiah et al.>® developed a sophisticated multi-view learning and model
fusion framework specifically designed for threat detection in multi-protocol IoMT networks. Their approach
combines TabNet and shallow Multi-Layer Perceptron architectures within a federated learning setting, achieving
remarkable performance with 99.7% accuracy and 99.4% F1-score. The framework effectively addresses critical
challenges including Non-IID data distribution, client heterogeneity, and communication efficiency while
maintaining strong detection capabilities across diverse attack types including DDoS, DoS, reconnaissance, and
MQTT-specific attacks.

Sharma and Shambharkar?” further advanced federated learning applications by introducing an efficient
framework that demonstrates strong cross-dataset generalization capabilities. Their lightweight deep neural
network achieved 99.78% accuracy on CICIoMT2024 while maintaining 91.44% accuracy in cross-dataset
evaluations between CICIoMT2024 and WUSTL-EHMS-2020, highlighting the potential for federated
approaches to generalize across diverse healthcare environments.

Deep Learning and Attention Mechanisms for Intrusion Detection
The evolution of deep learning architectures has significantly enhanced the capability of intrusion detection
systems in IoMT environments. Kavkas and Yildiz*® introduced a comprehensive framework utilizing Deep
Neural Network (DNN) and Long Short-Term Memory (LSTM) architectures for medical IoT threat detection.
Their multi-layered structure, incorporating dense and dropout layers with ReLU activation, achieved 99%
accuracy and F1-score in binary classification while maintaining robust performance across multi-class scenarios.
Advanced attention mechanisms have proven particularly effective in capturing complex temporal
dependencies in network traffic. Alabbadi and Bajaber?® proposed X-FuseRLSTM, a cross-domain explainable
framework that combines Deep Neural Networks with Recurrent Long Short-Term Memory layers enhanced by
attention-guided dual-path feature fusion. Their hybrid model achieved 98.05% accuracy in 6-class classification
and 97.66% accuracy in 19-class classification, demonstrating superior performance in handling complex multi-
class scenarios while providing interpretable insights through attention mechanisms.
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Akar et al.® developed L2D2, a novel LSTM model that integrates attention-driven Bidirectional LSTM for
multi-class intrusion detection. Their approach achieved 99.7% accuracy and 99.4% F1-score while maintaining
computational efficiency, making it suitable for real-time deployment in resource-constrained medical
environments. The attention mechanisms enabled dynamic focus on relevant sequence parts, improving both
interpretability and detection accuracy.

Hernandez-Jaimes et al.>! advanced attention-driven approaches by developing protocol-aware embeddings
inspired by Word2Vec techniques. Their methodology captures temporal and contextual relationships between
communication protocols using attention-based Deep Neural Networks, enabling more accurate anomaly
detection while reducing dependency on domain expertise.

Multi-model and ensemble approaches

The complexity of IoMT threat landscapes has driven research toward multi-model approaches that leverage the
strengths of different architectures. Shebl et al.>> proposed a novel hybrid architecture combining Deep Neural
Networks with Dilated Convolutional Neural Networks (DCNN). Their approach integrated dense layers for
high-level feature extraction with dilated convolutional layers to capture spatial dependencies, achieving 99.98%
binary classification accuracy and 99.86% F1-score in multiclass scenarios.

Alturki and Alsulami®® demonstrated the effectiveness of ensemble approaches through their semi-supervised
learning framework with entropy filtering. Their methodology integrates multiple tree-based classifiers
including Decision Tree, Gradient Boosting Classifier, Random Forest, XGBoost, and Extremely Randomized
Trees, achieving near-perfect classification with XGBoost and Random Forest reaching 100% and 99% accuracy
respectively on RT-10T2022.

Kharoubi et al.* introduced NIDS-DL-CNN, a lightweight yet highly effective network intrusion detection
approach that achieves superior performance without relying on computationally expensive techniques. The
model demonstrated an impressive 99.78% accuracy on the CICIoMT2024 dataset, with sub-millisecond
inference times-underscoring the viability of efficient multi-model designs for real-time cybersecurity
deployment.

Explainable Al in healthcare cybersecurity

The critical nature of healthcare applications has necessitated the development of explainable AI approaches
for IoMT security. Alabbadi and Bajaber® integrated Local Interpretable Model-Agnostic Explanations (LIME)
and SHapley Additive exPlanations (SHAP) into their X-FuseRLSTM framework, providing transparency in
model predictions by highlighting influential features such as PC15, PC26, and PC18 for specific attack types.
This explainability enhances trust and facilitates actionable insights for cybersecurity analysts in healthcare
environments.

Sharma and Shambharkar’” emphasized the importance of explainability in their multi-attention
DeepCRNN framework, demonstrating how attention mechanisms can provide interpretable insights into
feature importance and temporal dependencies in IoMT traffic patterns. Their approach enables healthcare
security teams to understand and validate automated decisions, which is crucial for maintaining trust in critical
medical infrastructure.

Domain-specific considerations and cross-domain generalization

A fundamental challenge in IoMT security research involves understanding the importance of domain-specific
datasets and cross-domain adaptation. Doménech et al.*® conducted seminal research comparing model
performance on general IoT datasets (CICIoT2023) versus IoMT-specific datasets (CICIoMT2024), revealing
significant performance degradation of up to 66.87% drop in Fl-score when models trained on one dataset
were tested on another. This work underscored the necessity of domain-specific approaches and demonstrated
that optimized preprocessing techniques, including uniform windowing and SMOTE oversampling, could
significantly enhance performance, with their Random Forest model achieving 99.85% accuracy and 97.16%
F1-score.

Rehman et al.*® contributed to domain-specific understanding by conducting comprehensive feature analysis
for healthcare IoMT networks, identifying critical features such as header size ratio, packet payload volume, and
inter-arrival time as most relevant for capturing traffic anomalies. Their DNN model achieved 99.7% accuracy
while maintaining robust performance across multi-class scenarios.

Recent innovations in feature engineering have emerged to address IoMT-specific challenges. Hernandez-
Jaimes et al.?” pioneered the use of Nilsimsa fingerprinting for ransomware detection, converting network traffic
into binary representations that eliminate traditional feature extraction processes. Their Random Forest model
achieved 100% precision and 98.72% F1-score on healthcare-specific datasets, demonstrating the potential for
novel feature engineering approaches in medical environments.

Blockchain integration and hybrid security frameworks
The integration of blockchain technology with machine learning-based intrusion detection has emerged as a
promising approach for enhancing security and trust in [oMT environments. Nandanwar and Katarya® proposed
a comprehensive blockchain-based decentralized application for healthcare data management that integrates
Non-Interactive Zero-Knowledge Proof (NIZK) to maintain data integrity and privacy. Their architecture
combines Blockchain Data Storage with Inter-Planetary File System (IPFS) to reduce storage costs while
enhancing security through Ethereum smart contracts, demonstrating the feasibility of blockchain integration
for healthcare applications.

Building upon blockchain foundations, Nandanwar and Katarya'? introduced a novel framework integrating
Genetic Algorithm-Optimized XGBoost (GAO-XGBoost) with Elliptic Curve Cryptography (ECC)-enabled

Scientific Reports |

(2025) 15:40050 | https://doi.org/10.1038/s41598-025-25107-z nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

blockchain architecture. Their system achieves 98% accuracy with 97% true positive rate and 97.4% recall,
demonstrating that lightweight cryptographic approaches can provide robust security without overwhelming
resource-constrained IoT devices. The genetic algorithm-based feature selection significantly improved real-
time intrusion detection performance while maintaining computational efficiency suitable for Industrial IoT
deployments.

Further advancing hybrid security frameworks, Nandanwar and Katarya® developed a comprehensive
privacy-preserving IDS combining CNN-BiLSTM hybrid models with federated learning techniques. Their
framework utilizes zero-knowledge proofs (ZKPs) for authentication without revealing sensitive information,
while Istanbul Byzantine Fault Tolerance (IBFT) ensures reliable consensus in distributed networks. The
approach demonstrates significant improvements in encryption/decryption durations, block generation, and
throughput compared to conventional cryptographic techniques, establishing practical viability for large-scale
IoT deployments.

Kumar et al.’® conducted comprehensive analysis of blockchain integration challenges in IoMT systems,
identifying critical research gaps including high latency, computational complexity, and energy consumption.
Their proposed framework addresses these limitations through optimized consensus mechanisms, Al-assisted
blockchain architectures, and efficient data management techniques, providing strategic directions for future
blockchain-based healthcare security systems.

Advanced ensemble learning and feature fusion approaches

Sophisticated ensemble learning architectures have demonstrated exceptional performance in addressing the
complexity of IoT intrusion detection. Nandanwar and Katarya'* introduced AttackNet, a hybrid deep-learning
IDS that fuses one-dimensional CNNs with Gated Recurrent Units (GRUs) for detecting IoT botnet traffic in
industrial environments. Their sequential architecture-featuring Conv1D layers (64 and 32 filters), MaxPool1D,
dual GRU layers (32 and 16 units), and dense layers with dropout regularization-achieved 99.75% test accuracy,
99.52% F1-score, and perfect AUC = 1.00 on the N_BaloT dataset containing 926,157 flows across 10 attack
classes. The hybrid approach outperformed six recent models by 3.2-16.1% while maintaining sub-160-second
training times, demonstrating computational efficiency suitable for real-time industrial deployments.

Zhang et al.'® pioneered multi-dimensional feature fusion approaches through their MFFSEM framework,
which establishes multiple basic feature datasets considering temporal, spatial, and load aspects of traffic
information. Their stacking ensemble mechanism conducts learning on multiple comprehensive feature
datasets, achieving superior detection performance on KDD Cup 99, NSL-KDD, UNSW-NB15, and CIC-
IDS2017 compared to individual classifiers. This work highlights the importance of capturing diverse modalities
of network traffic characteristics for robust anomaly detection.

Tawfik!® advanced ensemble learning for fog/IoT networks by integrating stacked autoencoders (SAE),
CatBoost, and a cloud-hosted Transformer-CNN-LSTM ensemble with Adaptive Grey-Wolf Optimizer (AGWO)
for hyperparameter tuning. The framework compresses up to 150 raw traffic attributes into 8-32 latent features,
then employs CatBoost for feature ranking, retaining the 21-30 most predictive features. The multi-branch
classifier architecture-combining a 3-block Transformer (8 heads, 64-dim), a 2-layer CNN (32/64 filters), and
a 2-layer LSTM (64 units)-achieves > 99% detection accuracy across NSL-KDD (99.7%, F1=0.996), UNSW-
NB15 (99.16%, F1=0.991), and AWID (99.9%, F1=0.999) with < 10 ms cloud inference latency, demonstrating
the effectiveness of sophisticated architectural fusion for distributed IoT security. The reviewed literature reveals
significant advances across multiple dimensions of IoMT security, including federated learning for privacy-
preserving collaboration?>-%’, attention-driven deep learning for complex pattern recognition?®-3°, blockchain
integration for enhanced trust and auditability®!®, and sophisticated ensemble architectures combining
multiple paradigms'*-1°. However, critical gaps remain in: (1) integrated federated few-shot learning that enables
rapid adaptation to novel attacks with minimal labeled samples across distributed healthcare institutions; (2)
unified explainable Al frameworks providing multi-level interpretability within privacy-preserving federated
contexts; (3) formal privacy guarantees with comprehensive privacy-utility trade-off analysis; and (4) cross-
attention mechanisms specifically designed for healthcare attack pattern learning. FedMedSecure addresses
these gaps through a novel multi-model ensemble architecture that seamlessly integrates federated learning,
few-shot adaptation, cross-attention mechanisms, and explainable AI while maintaining rigorous differential
privacy guarantees.

Methodology

This section presents FedMedSecure, a novel federated few-shot learning framework for IoMT cybersecurity
that integrates privacy-preserving collaborative learning, explainable A, and adaptive ensemble mechanisms.
Our methodology addresses the critical challenge of detecting emerging cyber threats in healthcare networks
while maintaining strict data privacy and providing interpretable decisions for clinical safety. The complete
framework architecture is illustrated in Fig. 1, which demonstrates the comprehensive pipeline encompassing
data preprocessing, federated model training, few-shot adaptation, and explainable decision-making. This
section presents FedMedSecure, a novel federated few-shot learning framework for IoMT cybersecurity that
integrates privacy-preserving collaborative learning, explainable AI, and adaptive ensemble mechanisms.
Our methodology addresses the critical challenge of detecting emerging cyber threats in healthcare networks
while maintaining strict data privacy and providing interpretable decisions for clinical safety. The complete
framework architecture is illustrated in Fig. 1, which demonstrates the comprehensive pipeline encompassing
data preprocessing, federated model training, few-shot adaptation, and explainable decision-making.
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FedMedSecure: Novel Cross-Attention Federated Learning Framework for Edge loMT Cybersecurity
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Fig. 1. FedMedSecure Framework Architecture: Comprehensive Pipeline for Federated Few-Shot Learning

in IoMT Cybersecurity. The framework operates in four stages: (1) Data Preprocessing-feature extraction

and selection from IoMT network traffic across 8 healthcare institutions; (2) Local Few-Shot Training-each
institution trains four specialized models (CrossTransformer, FEAT, RelationNetwork, MAML) using episodic
meta-learning; (3) Privacy-Preserving Aggregation-differential privacy noise (¢ = 1.0, § = 10™°) is added to
gradients before secure federated averaging with 75% compression; (4) Global Ensemble Inference-confidence-
weighted fusion produces final predictions with multi-level XAI explanations (SHAP, attention weights,
prototype distances). Solid arrows indicate data flow, dashed arrows indicate model updates, and double-lined
boxes represent privacy-preserving operations.

Notation and terminology
Before presenting the detailed methodology, we establish comprehensive notation used throughout this paper.
Table 1 summarizes all mathematical symbols with their definitions and dimensions.

Key notation conventions:

o Superscript notation:

- (k) indicates institution index: m( ) is sample i from institution k

- sindicates support set membershlp ms is the i-th sample in support set .7
q indicates query set membershlp  is the j-th sample in query set 2

(¥) indicates time/round index: 6¢ 0 s is model parameters at round ¢

« Few-shot episode structure: Each episode contains:
- Support set . = {(z5,y$)} X { with K labeled examples per class for adaptation
- Queryset 2 = {(zf, yf)};\;? with Q test examples per class for evaluation

« Example: In 5-way 10-shot learning:

N = 5 classes (e.g., BENIGN, DDOS, DOS, RECONNAISSANCE, PROTOCOL_ATTACKS)
K = 10 support examples per class = || = 5 x 10 = 50 samples

- @ = 10 query examples per class = |.2| = 5 x 10 = 50 samples

Total episode size: 100 samples (50 support + 50 query)

This notation remains consistent throughout Sections 3-5. All equations reference these symbols without
redefinition unless explicitly noted.

As shown in Fig. 1, our framework operates across multiple healthcare institutions while maintaining
strict privacy boundaries through differential privacy mechanisms and secure aggregation protocols®**’. The
architecture integrates four specialized few-shot learning models that collectively provide comprehensive
threat detection capabilities while enabling rapid adaptation to emerging attack patterns with minimal labeled
examples.
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Symbol ‘ Dim. Definition
Federated Learning
A - Set of K healthcare institutions
K scalar Number of institutions (K = &)
Dy, Np % (d + 1) | Dataset of institution k
:C,Ek) RY Sample i from institution k (d = 20 features)
1/7(}") 128 Label for sample i from institution k
7] RP Global model parameters
Qit) RP Local model parameters at round ¢
T scalar Communication rounds (7" = 10 or 15)
E scalar Local training epochs (E = 3 or 5)
Few-Shot Learning
T - Task distribution
7 N x K xd Support set (N classes, K shots)
9 N xQxd Query set (N classes, Q queries)
x§ R4 Sample i in support set
z;’ RrY Sample j in query set
v {1,...,N} Label for x;
yf {1,...,N} Labelfor.r;?
N scalar Number of classes (N = 5 or 19)
Kghot | scalar Examples per class (K € {5, 10, 20, 50})
Q scalar Query examples per class (QQ = 10)
Model Architecture
fo RY 5 RP Feature encoder
gy R2" 5 [0,1] | Relation module
T R" Prototype for class ¢
Fs RNV -K)xh Encoded support features
Fq RN -@)xh Encoded query features

RE X dmodel Attack signature queries
dmodel | scalar Transformer dimension (d = 128)
a; [0,1] Attention weight for sample i
W R* Confidence weights for institution k
Wi [0,1] Aggregation weight for institution k

Privacy and Optimization

€ scalar Privacy budget (¢ = 1.0)

B} scalar Privacy failure probability (§ = 10~°)
o scalar Noise scale

C scalar Gradient clipping threshold (C' = 1.0)
n scalar Learning rate (n = 1079%)

A scalar Regularization parameter

Dataset and Features

d scalar Input features (d = 20)

28 - Label space (|%| = 5 or 19)
F - Selected feature set

I; R Importance score for feature j

Table 1. Comprehensive mathematical notation summary.

Formulation and theoretical framework

The proliferation of Internet of Medical Things (IoMT) devices across healthcare networks introduces
unprecedented cybersecurity challenges that demand collaborative threat detection while preserving strict
patient data privacy. We formalize this as a federated few-shot meta-learning problem where K healthcare
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institutions must collaboratively learn to rapidly adapt to new attack types using minimal examples, building
upon the foundational work of meta-learning approaches?*!42,

Deﬁnition 1 (Federated Few-Shot IoMT Security Learning) Given K healthcare institutions

={H1,Hs,...,Hx} with }arlvate datasets Iy = {(ch(-k),ygk)) ZN:"'I where xz(-m € R? represents IoMT
network traffic features and y € % denotes attack labels, the objective is to learn a federated ensemble
= {frN, fmamL, for, fre AT} that can rapidly adapt to new attack types Jyew using only K support exam-

ples per class while preserving privacy:

9* = arg Hlein E9~p(9)7k~% |:$meta(fg(f€) (Q), Z?/Q) + )\%privacy(a(k)) + u%diversity (y)i| (1)

Deﬁnltlon 2 (Federated Few-Shot IoMT Security Learnm Extended) Given K healthcare institutions
={H1,Hs,...,Hx} with Prlvate datasets 7 = {(x 2. ,y2 )}Nk where {E( ) e R represents JoMT
network traffic features and y € % denotes attack labels, the objective is to learn a federated ensemble
= {frn~, fmamL, for, fre AT} that can rapidly adapt to new attack types Jrew using only K support exam-

ples per class while preserving privacy.

Subject to the constraints:

Privacy: Yk, 2(Zx) > (1—96) with (¢,8)-DP*? (2)
T K
Communication: Z Z |0,(€t)| < Chudget (3)
t=1 k=1
Adaptatron Eynew [ACC(fQ’( new) Qnew)] 2> Tmin (4)
9* = arg rnein Eg~p(9)7k~% |:$meta(fg(f€) (e@), @9) + )\%privacy(a(k)) + u%diversity (y)i| (5)

Deﬁnition 3 (Federated Few-Shot IoMT Security Learnmg) Given K healthcare institutions
={H1,Hs,...,Hx} with Prlvate datasets 7 = {(x E ) y( )) , where {E(k) € R represents IoMT
network traffic features and y € % denotes attack labels, the ob)ectlve is to learn a federated ensemble
= {fr~, fmamr, for, fre AT} that can rapidly adapt to new attack types Jycw using only K support exam-

ples per class while preserving privacy.

Subject to the constraints:

Privacy: Yk, 2(Zx) > (1—46) with (¢,6)-DP** (6)
T K

Communication: Z Z |0,(€t)| < Chudget (7)
t=1 k=1

Adaptatron Egnew [ACC(fQ’( new) Qnew)] 2 Tmin (8)

The core innovation lies in combining federated learning’s privacy preservation®® with few-shot learning’s rapid
adaptation capabilities*$, enabling healthcare institutions to collectively defend against emerging threats without
compromising sensitive medical data. This formulation extends classical federated learning by incorporating
meta-learning objectives that optimize for rapid adaptation to novel attack patterns, addressing the dynamic
nature of cybersecurity threats in healthcare environments.

Theoretical convergence guarantees

Our framework provides theoretical convergence guarantees under the federated few-shot learning setting. We
establish convergence rates for the meta-learning objective under non-IID data distributions typical in healthcare
environments, following the theoretical foundations established in federated optimization literature®®:

Theorem 1 (Convergence Rate for Federated Few-Shot Learning) Under the assumptions of L-smooth loss
functions and bounded gradients, the expected optimality gap of Algorithm 5 converges as:

22(0") - 27 | ko’

E[IV2(6™) < 2= =

©)

where o represents the variance in gradient estimates across institutions and T is the number of communication
rounds.

This convergence analysis accounts for the heterogeneity in data distributions across healthcare institutions and
the noise introduced by differential privacy mechanisms, providing theoretical foundations for our framework’s
effectiveness.
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Enhanced dataset specification and semantic attack taxonomy

CICIoMT2024 dataset characteristics

We evaluate FedMedSecure using the comprehensive CICIoMT2024 dataset’®, containing N = 8,775,013
network traffic samples across 19 distinct attack types captured from 40 IoMT devices using Wi-Fi, MQTT, and
Bluetooth protocols:

o@ = {(xl7 yi)}?’:‘?f5’0137 Ti € R467 Yi € {1, 27 ey 19} (10)

The dataset exhibits realistic class imbalance representative of real-world healthcare networks, with benign traffic
comprising 73.2% of samples while sophisticated attacks like infiltration represent only 0.01%. This imbalance
presents significant challenges for traditional machine learning approaches and motivates our few-shot learning
methodology, addressing similar challenges identified in cybersecurity anomaly detection literature?®’.

Novel semantic attack clustering
Traditional approaches treating 19 attack types independently suffer from severe class imbalance and semantic
inconsistency. We propose a principled semantic clustering strategy that consolidates attacks into meaningful
groups based on attack vectors, system impact, and defensive requirements, building upon information-theoretic
approaches in machine learning*®.

The similarity between attacks a; and a; is computed using multi-dimensional similarity metrics:

Sim(ai, aj) = ¢tech(ai7 aj) +8- ¢impact (ai7 aj) + - (Z)defense(ai: aj) (11)

where o + 8 + v = 1l and:

[ j 2
dueen(ai, a5) = exp(~ vy, — vilhll3) (12)
¢impact (a’i ’ a’j) = COS(Vi(IirzpacH Vi(i])pact) (13)
¢defense(ai7 a]') = Jaccard(%v Cg]) (14)

The optimal semantic grouping maximizes information preservation while reducing entropy:

" = argmax | I(X;Y|9) ~ MH(Y|%) + ) _ lg|loglg] (15)
geY

This optimization problem balances information preservation with computational efficiency, yielding five
semantically coherent groups:

BENIGN: Normal network operations including routine medical device communications
DDOS_ATTACKS: Volume-based resource exhaustion (HTTP Flood, TCP-SYN, UDP, ICMP)
DOS_ATTACKS: Application-layer disruption (Slowloris, Hulk, GoldenEye)

RECONNAISSANCE: Information gathering (Port Scan, Host Discovery, OS Fingerprinting)
PROTOCOL_ATTACKS: Exploitation-based intrusion (Infiltration, SQL Injection, XSS, Brute Force)

R

Information-theoretic analysis of clustering
We provide rigorous information-theoretic analysis of our semantic clustering approach. The clustering achieves
68% entropy reduction while preserving 92% of the mutual information between features and labels:
H (Y1) — H(Ys
H:cduction = ( Hi)(ylg) ( ) = 0.68 (16)
I(X;Y5
Iprcscrvation = 7](()(;7Y19)) =0.92 (17)

This analysis demonstrates that our clustering strategy effectively reduces computational complexity while
maintaining discriminative information essential for accurate threat detection.

Stability-enhanced multi-method feature selection

High-dimensional IoMT network traffic data (46 features) requires intelligent dimensionality reduction to identify
the most discriminative attack signatures while maintaining computational efficiency and model interpretability.
Our feature selection methodology combines multiple complementary approaches to ensure robustness and
stability, drawing from ensemble feature selection principles*. This approach reduces dimensionality from 46
to 20 features while achieving 94.3% information preservation and 68% entropy reduction, enabling efficient
processing while maintaining discriminative power for attack detection.

Selected features analysis
Table 2 presents the top 20 features selected through our multi-method ensemble approach for both datasets. The
feature selection reveals distinct domain-specific patterns: CICIoMT2024 healthcare networks are dominated by
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Rank | CICIoMT2024 Features | CIDC2017 Features

1 UDP Idle Mean

2 syn_flag_number Bwd Packet Length Std

3 fin_flag number Bwd Packet Length Mean

4 TCP Average Packet Size

5 syn_count Fwd IAT Max

6 rst_count Flow IAT Max

7 identificador PSH Flag Count

8 IAT act_data_pkt_fwd

9 fin_count Idle Min

10 ack_flag_number Max Packet Length

11 rst_flag_number Packet Length Variance

12 Magnitude Bwd Header Length

13 Min Idle Max

14 ICMP Total Length of Fwd Packets
15 Header_Length Packet Length Std

16 Protocol Type Total Length of Bwd Packets
17 SSH Fwd IAT Std

18 ack_count Fwd IAT Total

19 Number Destination Port

20 HTTPS Flow Duration

Table 2. Selected Features for FedMedSecure Framework Across Datasets.

protocol-type features (UDP, TCP accounting for 47.92% importance) and TCP connection state indicators
(syn_flag_number, fin_flag number, representing 31.37% combined importance), reflecting the specialized
communication patterns and connection behaviors of medical devices. Protocol-specific services (SSH, HTTPS)
and connection management features (various flag counts) further characterize healthcare IoMT traffic patterns.
In contrast, CIDC2017 general IoT environments prioritize flow timing characteristics (idle times, inter-arrival
times) and packet statistical measures (length variance, size distributions), indicating that general IoT networks
rely more heavily on behavioral timing patterns for attack detection rather than protocol-specific signatures.
This fundamental difference in discriminative features validates our hypothesis that healthcare cybersecurity
requires specialized approaches distinct from general IoT security solutions.

Multi-method ensemble feature selection
Our feature selection employs dataset-adaptive ensemble approaches combining multiple feature importance
methods:

CICIoMT2024 (Healthcare IoMT): XGBoost + Mutual Information - XGBoost captures non-linear feature
interactions in medical device traffic - Mutual Information measures statistical dependencies with attack labels -
Combined scoring: Score; = 0.7 - Ixag[j] + 0.3 - In[j]

CIDC2017 (General IoT): XGBoost + Chi-square + Mutual Information + Random Forest - XGBoost
for gradient-boosted feature importance - Chi-square for categorical-numerical associations - Mutual
Information for statistical dependencies - Random Forest for ensemble-based importance - Combined scoring:
Score; = 0.25 - (Ixas + Ichiz + Im1 + Irr)

This adaptive ensemble approach ensures robust feature selection tailored to domain-specific characteristics
and dataset complexity.
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Require: Dataset &, bootstrap iterations B = 100
Ensure: Optimal feature subset .%*
1: Dataset-Specific Configuration:
if Dataset == CICIoMT2024 then
kiarger = 20, Methods = { XGBoost, MI}
else if Dataset == CIDC2017 then
kiarger = 75, Methods = { XGBoost, Chi2, MI, RF}
end if
Multi-Method Feature Scoring:
for each method m in Methods do
if m == XGBoost then
Train XGBoost, extract importance: Ixgg /]
else if m == Chi2 then
Compute Chi-square scores: Ichi[/]
else if m == MI then
Calculate mutual information: Iy|/]
else if m == RF then
Train Random Forest, extract importance: Irg[j]
end if
: end for
: Combined Scoring:
. if Dataset == CICIoMT2024 then
Score; = - Ixgs[j] + B - hvu[ /]
. else if Dataset == CIDC2017 then
Score; = - Ixgplj] + B - Ichia[j] + V- Imi[j] + & - IRk [/]
: end if
. Select top-k;arger features: F#* return F7*

D A A R o

OO N M R R o e e e e e e e
DR LN 2 Q Y X I3NRERNY O

Algorithm 1. Multi-Method Ensemble Feature Selection

The enhanced XGBoost formulation incorporates stability penalties to ensure consistent feature selection
across different data samples, following ensemble learning principles*:

B
Zenhanced = ZXaB + A1 ZVar[fb(f)] + A2 Zp(fu £)% + Xl (18)

b=1 i#j

This approach reduces dimensionality from 46 to 20 features while achieving 94.3% information preservation
and 68% entropy reduction, enabling efficient processing while maintaining discriminative power for attack
detection. The selected features include critical network traffic characteristics such as packet timing, flow
statistics, and protocol-specific indicators that are most informative for distinguishing between different attack

types.

Feature stability analysis
We conduct comprehensive stability analysis to ensure robustness of feature selection across different data
distributions and bootstrap samples. The stability coeflicient for feature j is computed as:

Var(Rank(f;))

Stability(f;) =1 - maxy Var(Rank(fz))

(19)

where Rank( f;) denotes the importance ranking of feature f; across B = 100 bootstrap samples. Features with
stability coeflicients above 0.8 are considered highly stable and prioritized in the final selection. This threshold
ensures that selected features maintain consistent importance rankings across diverse healthcare institutional
data distributions.

Bootstrap stability procedure:

1. Generate B = 100 bootstrap samples by sampling with replacement from the training dataset &, where each
bootstrap sample 2 contains | 2| samples
2. For each bootstrap sample b € [1, B]:

o Train XGBoost classifier on %, with identical hyperparameters
« Extract feature importance scores: I, (f;) for all features j € [1, 46]
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«+ Rank features by importance: Rank; (f;) €

[1, 46] where lower rank indicates higher importance

3. Compute rank variance across bootstrap iterations:

where Rank(f;) = & Zle Ranky(f;) is the mean rank

4. Normalize by maximum variance: Stability(f;) =1 —

Var(Rank(f;))

B
Z Rankb (f3) m(fj))Q

maxy Var(Rank(fk))
5. Prioritize features with Stability(f;) > 0.8 for final selection

This ensures that selected features maintain their discriminative power across different healthcare institutions
with varying network characteristics, device types, and attack exposure patterns. Table 3 presents stability

analysis results for the top 20 selected features on CICIoMT2024 dataset.

o The top 7 features (UDP, syn_flag_number, fin_flag_number, TCP, syn_count, rst_count, identificador) all
achieve stability coefficients > 0.8, indicating highly consistent rankings across bootstrap iterations.
« Protocol-type features (UDP, TCP) demonstrate exceptional stability (0.984, 0.936), confirming their funda-

mental importance for attack discrimination in healthcare IoT environments.

o TCP flag-related features (syn_flag_number, fin_flag number, syn_count, rst_count) show robust stability

(0.856-0.964), validating their critical role in detecting connection-based attacks.

o Features below the 0.8 threshold (IAT, fin_count, ack_flag_number, etc.) exhibit higher rank variance, sug-
gesting their importance fluctuates across different data distributions and should be used cautiously.
« Negative stability coefficients indicate features with variance exceeding the maximum, reflecting highly un-

stable rankings unsuitable for robust feature selection.

This rigorous stability analysis ensures that FedMedSecure’s feature selection generalizes effectively across
heterogeneous healthcare institutions, addressing a critical requirement for federated learning scenarios where
data distributions vary significantly across participants.

Feature stability analysis
We conduct comprehensive stability analysis to ensure robustness of feature selection across different data
distributions and bootstrap samples. The stability coeflicient for feature j is computed as:

Feature Mean rank | Rank Std Dev | Stability | Selected
UDP 1.2+0.4 0.16 0.984 v
syn_flag_number | 2.1 £ 0.6 0.36 0.964 v
fin_flag number |2.8+0.7 0.49 0.951 v
TCP 35+0.8 0.64 0.936 v
syn_count 42+1.0 1.00 0.900 v
rst_count 51+£1.2 1.44 0.856 v
identificador 58+1.3 1.69 0.831 v
IAT 6.5+ 1.5 2.25 0.775 X
fin_count 72+16 2.56 0.744 X
ack_flag_number | 7.9 £ 1.8 3.24 0.676 X
rst_flag_ number |82+ 1.9 3.61 0.640 X
Magnitude 88+2.1 4.41 0.560 X
Min 9.5+2.3 5.29 0.473 X
ICMP 10.2+2.5 6.25 0.375 X
Header_Length 11.1+2.8 7.84 0.216 X
Protocol Type 12.3+3.1 9.61 0.039 X
SSH 13.5+3.4 11.56 -0.156 X
ack_count 148 £3.8 14.44 -0.444 X
Number 162+ 4.2 17.64 -0.764 X
HTTPS 179+4.6 |21.16 -1.116 X

Table 3. Feature stability analysis results for top 20 selected features (CICIoMT2024).
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Dos +16 more

Var(Rank(f;))

Stability(f;) =1 - Max(Var(Rank))

1)

Features with stability coeflicients above 0.8 are considered highly stable and prioritized in the final selection.
This ensures that selected features maintain their discriminative power across different healthcare institutions
with varying network characteristics.

Novel federated few-shot ensemble architecture

Our framework combines four complementary few-shot learning models deployed across K = 8 healthcare
institutions in a federated manner. Each model specializes in different aspects of attack detection while collectively
providing comprehensive threat coverage, leveraging the strengths of ensemble approaches in cybersecurity™.
The complete ensemble architecture for few-shot learning in IoMT cybersecurity is presented in Fig. 2, which
illustrates the multi-model integration with confidence-weighted fusion mechanisms.

As demonstrated in Fig. 2, our ensemble architecture incorporates four specialized models: RelationNetwork
for prototype-based similarity learning, MAML for rapid gradient-based adaptation, CrossTransformer for
attention-driven pattern recognition, and FEAT for set-to-set embedding adaptation. Each model contributes
unique capabilities that collectively address the diverse challenges of IoMT threat detection.

RelationNetwork with adaptive prototype learning

The RelationNetwork learns explicit similarity metrics between query samples and learnable attack prototypes,
making it particularly suitable for signature-based attack detection®!. Our enhanced implementation incorporates
adaptive prototype computation and attention mechanisms for improved discrimination.

TOP-20
Features

)
' ' 46 — 20 Features
)

- - ~
(" A.RelationNetwork )\ [ B. MAML Meta-Learner
-
| a0 ] SN
1

000 ) )

C. CrossTransformer D. FEAT Network

& B

Confidence Network —_—
.° (o ek > EFFICIENCY SCALABILITY
\& o q ve Vet z ENSEMBLE Training: 2.3x faster 5-50 shots per class
| W W Wi, We | PREDICTION Communication: -75% 19 attack types

Memory: Minimal Real-time inference

100 Test Episodes

“ min I; L(f8', D)

P=Xwi X0

T T T P T T e ey Ay
5. FEW-SHOT LEARNING STRATEGY 3
1
g 1
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N-way: 19 cla: v Accuracy v Precision 1
K-shot: 510.20.50 R Unlabeled Examples (10 x 19) 7 Recall ¥ F1-Score '
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Episodes: 3000-6000 [xJ[x ][ ] LH RS K EE R V Statistical Tests 1
y=ciase | y=? 1
1
'

6. COMPREHENSIVE RESULTS AND ANALYSIS !
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Fig. 2. Ensemble few-shot learning architecture for IoMT cybersecurity: multi-model integration with
confidence-weighted fusion.
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Enhanced architecture: The RelationNetwork consists of a feature encoder f, and an adaptive relation module
Gy:

fo iR SR g i R¥ [0, 1) (22)

The feature encoder follows a hierarchical structure with batch normalization and dropout regularization for
improved generalization:

h; = LeakyReLU(BN(W;x + b;)) € R*"? (23)
h2 = Dropout, ;(LeakyReLU(BN(W2h; + bz))) € R**® (24)
f = LeakyReLU(BN(Wshs + bs)) € R'* (25)

Adaptive prototype computation: Instead of simple averaging, we employ attention-weighted prototype
computation that dynamically focuses on the most representative examples, inspired by prototype-based
learning approaches**:

_ o (o8 _explfs(a) )
Te = Z CY’Lf(ﬁ(mi)a a; = Zj:y,?zc exp(fd)(mj)ch) (26)

G0y S —
YT =cC
Yi

where q, are learnable query vectors for each attack class that capture class-specific characteristics.
The relation module computes similarity scores using enhanced feature representations:

9y (1) = o(WHReLUWMr 4+ b{M) + b)) (27)
e = Z aify(x7) (28)
Z:yf:c

where the notation is defined as follows (see Table 1 for complete notation):

« 7. € R'28: Adaptive prototype representation for attack class ¢

o x5 € R?°: The i-th sample in the support set .# (superscript s denotes support set membership)

o y; € {1,..., N}: Class label for support sample x

o 4 :y; = c: Summation over all support samples belonging to class ¢

o a; € [0, 1]: Attention weight for support sample i, computed via softmax over query-prototype similarities

o fy(xf) € R Encoded feature representation of support sample x5 using feature encoder f,,Example: In
a 5-way 10-shot episode with class ¢ = DDOS_ATTACKS, the prototype wppos is computed as the atten-
tion-weighted average of the 10 encoded support samples belonging to DDOS_ATTACKS.

Require: Support set .7, query set 2, number of ways C
Ensure: Relation scores R € RIZ/*C
1: Fy f¢((7), Fq — f¢(£2)
2: forc=1toCdo
3 Compute attention weights: o, < AttentionWeights(F[y; = ¢, q.)
4 e <= Liryi—c Oc,iFsi] > Adaptive prototype
5: end for
6: fori=1to |2| do
7 forc=1toCdo
8 r; . < Concat[F,[i], 7., |Fg[i] — 7.|]
9 Ric < gy(ric) > Enhanced relation score
10: end for
11: end forreturn R

Algorithm 2. Enhanced RelationNetwork Forward Pass

Model-agnostic meta-learning (MAML) with regularization
MAML learns initialization parameters optimized for rapid adaptation to new attack types through gradient
descent!!. We enhance MAML with regularization terms to prevent overfitting in the healthcare domain and
improve generalization to unseen attack patterns.

Enhanced MAML Objective: The meta-learning objective incorporates domain-specific regularization:

0" —argmin > [ Lo, (fop) + M8} 013 + NeFamocn (0)] 29)
Fi~p(T)
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where 0 = 0 — aV L7, (fo) and Zsmootn (0) enforces smoothness in the parameter space.
The smoothness regularizer is defined as:

L
oo (0) = Y [V2L(0V)|1% (30)
1=1
where L is the number of layers and || - || 7 denotes the Frobenius norm.

Require: Task distribution p(.7), learning rates a, 8, regularization A;, A,
Ensure: Meta-parameters 0
1: Randomly initialize 8 using Xavier initialization
2: while not converged do
3 Sample batch of tasks {Z}2| ~ p(.7)
4 fori=1toBdo
5: Sample support set .%; from .7; (K shots per class)
6: Compute adapted parameters: 6] = 0 — VoL (fo)
7 Sample query set 2; from .7;
8 Compute meta-loss with regularization:
0: & =Zo,(for) +216] = 65+ 2o Rmoom (6)
10: end for
11: Update meta-parameters: 6 < 6 — 3V, Z?:l 5%
12: Apply gradient clipping: || Vg|» < 1.0
13: end whilereturn 6
8

Algorithm 3. Enhanced MAML for IoMT Security

CrossTransformer with novel attack-signature attention
Our CrossTransformer employs a novel cross-attention mechanism that explicitly models relationships between
network traffic features and learnable attack signature representations®. This architecture enables the model
to focus on attack-specific patterns while maintaining interpretability, extending transformer applications to
cybersecurity domains®®. Architectural Specifications: The CrossTransformer comprises 2 encoder layers with
model dimension dmodel = 128. Each layer contains multi-head attention with 8 heads (h = 8), where each
head dimension is di = dy = dmodel/h = 16. Query, key, and value projections use linear transformations
WO WE WV e Rémode1 X4k for each head. The feed-forward network within each layer uses two linear
transformations with ReLU activation: FFN(z) = max(0,2W1 + b1)W2 + by where W € R128%512
and W € R5'2*!28 (expansion factor = 4). Layer normalization and residual connections follow standard
transformer design. Dropout rate is set to 0.3 for regularization. The learnable attack signature queries
C € R%*'28 (for 5 semantic classes) are randomly initialized and jointly optimized during training.
Architecture Innovation: The key innovation lies in learnable attack signature queries C € R>*%model that
represent each semantic attack group:

H; = SelfAttention(Fs) + F, (31)
H, = SelfAttention(F4) + F, (32)
Zcross = CrossAttention(C, Hy, Hy) (33)

The cross-attention mechanism computes attack-specific feature relevance:

cH”
CrossAttention(C, H, H) = softmax | — | H (34)
( ) ( V dmodel )

Multi-Head Implementation: The multi-head attention allows the model to attend to different aspects of
attack patterns simultaneously, following the attention mechanisms designed for intrusion detection:
MultiHead(C, H) = Concat(heads,. .., headg)WO (35)

where each head focuses on different attack aspects:

head; = CrossAttention(CW{ , HW HW) (36)
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The learnable attack signatures C are initialized using domain knowledge about attack characteristics and refined
during training to capture discriminative patterns specific to each attack category.

Few-shot embedding adaptation transformer (FEAT)
FEAT employs set-to-set functions to enhance feature representations through attention-based adaptation®4,
enabling rapid specialization to new attack patterns. This model is particularly effective for handling the episodic
nature of few-shot learning tasks.

Enhanced set attention: The set attention mechanism considers both intra-class and inter-class relationships:

SetAttention(F) = softmax(FW, + PositionalEncoding(F))F (37)

Task-specific adaptation: Features are adapted based on the entire episode context:

Fadaptea = F + AdaptNet(SetAttention(F)) + ATaskEncoding(.%) (38)

The adaptation network AdaptNet is implemented as a multi-layer perceptron with residual connections:

AdaptNet(x) = x + MLP(LayerNorm(x)) (39)

Confidence-weighted federated fusion mechanism

Our novel contribution lies in a confidence-weighted fusion mechanism that operates both locally (across
models) and globally (across institutions) while preserving privacy>>. This mechanism, illustrated in Fig. 2,
enables dynamic weighting based on model performance and prediction confidence.

Local confidence-weighted fusion
Each institution combines predictions from its four local models using query-adaptive confidence weights:

wi = softmax(¢{® (GlobalPool(Fflk)))) (40)

The confidence network architecture employs layer normalization for stability:
h. = LayerNorm(LeakyReLU(W"x, + b{")) (41)
w = softmax(W @ h. + b{?) (42)

Local ensemble prediction combines individual model outputs:
local — Z Wk,i * P£k> (43)

Global federated aggregation
Global predictions aggregate local ensemble outputs using institution-specific confidence weights that account
for historical performance and data quality:

K
Pglobal = Z Wk * Pl(cl)czal (44)
k=1

Institution weights reflect historical performance and current confidence:

wy, = softmax (« - Performancey + § - Confidencey + « - DataQuality,,) (45)

Require: Support sets {.%; }X_|, query set 2, trained models {M; }
Ensure: Global ensemble prediction Pgjopa1
1: for each institution k = 1 to K do

2: for each model i = 1 to 4 do

3 Pij M (S, 2) > Local model prediction
4 end for

5: Wy q)(-k (mean(encode(2))) > Local confidence weights
6 Pl(:c):al ~ ):?:1 Wi Pi > Local ensemble
7: end for

8: @ < ComputelInstitutionWei ghts({Pl((lfzal})

9: Pyobal = LA 0 -Pffial > Global aggregation return Pgjqpyi

Algorithm 4. Federated Confidence-Weighted Ensemble Fusion
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Privacy-preserving federated training protocol

Our federated training protocol ensures rigorous privacy preservation while enabling effective collaborative
learning across healthcare institutions®. The protocol, detailed in Fig. 1, incorporates differential privacy
mechanisms and secure aggregation techniques.

Multi-institution training framework

The training protocol operates across K = 8 healthcare institutions with heterogeneous data distributions
representative of different hospital types (ICU, Emergency, Research, etc.). Each institution maintains complete
control over its local data while participating in collaborative model training.

Data Partitioning for Federated Simulation: To simulate realistic federated healthcare environments, we
partition the CICIoMT2024 dataset across 8 institutions using stratified non-IID distribution that mimics
real-world hospital diversity. The partitioning follows Dirichlet distribution with concentration parameter
a = 0.5 to create heterogeneous class distributions: Institution 1-2 (ICU-focused) receive 60% DDOS/DOS
attacks and 20% BENIGN traffic; Institution 3-4 (Emergency departments) receive 50% RECONNAISSANCE
and 30% PROTOCOL_ATTACKS; Institution 5-6 (Research facilities) receive balanced distributions (uniform
20% per class); Institution 7-8 (General hospitals) receive 70% BENIGN and 10% each attack category. This
creates realistic non-IID scenarios where each institution observes different attack exposure patterns based on
their operational profile. Each institution receives approximately 1.1M samples (12.5% of 8.7M total), ensuring
sufficient local training data while maintaining statistical heterogeneity (x~ divergence > 0.3 between any two
institutions).

Require: K = 8 institutions, 7 = 10 rounds, E = 25 local epochs, privacy budget (g, 5)
Ensure: Global ensemble models {6rn, OvamL, OcT, OreaT }

1: Initialize global models with Xavier initialization

2: Distribute initial parameters to all institutions

3: forround =1to 7T do

4 for each institution k € [K] in parallel do

5 Local Few-Shot Training:

6 for model m € {RN,MAML, CT,FEAT} do

7: Gr(n')k — LocalFewShotTrain(G,(n[ 71), D, E)

8 end for

9 Privacy-Preserving Gradient Computation:

10: ABVS")k P 9’(7:‘),( - 9,5,’ -0 for each model m

1 A6 28 +.4(0,0%T) > DP noise
12: end for

13: Secure Aggregation:

14: for model m € {RN,MAML, CT,FEAT} do

15: oL <—9,(,f*1)+%):,’f:159,5:7)k

16: end for

17: Privacy Accounting: Update cumulative privacy loss

18: end forreturn {6rN, OvamL, OcT, OFEAT }

Algorithm 5. FedMedSecure Privacy-Preserving Training Protocol

Differential privacy guarantees
We implement formal differential privacy through calibrated noise injection satisfying (e, §)-differential
privacy® with e = 1.0,§ = 10™°:

Vi = Clip(Vy, C) + .4(0,0°1) (46)
where the noise scale is calibrated according to:

C\/21n(1.25/5) )

€

g =

with sensitivity bound C' = 1.0 enforced through gradient clipping.
Privacy Accounting: We employ the Rényi Differential Privacy (RDP) framework for tight privacy analysis*’:

2_—2
aa( ) < % (48)
where q is the sampling probability and « is the Rényi parameter.

Communication-efficient aggregation
To reduce communication costs, we employ gradient compression and sparse updates:
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CompressedGradient(V) = TopK(V, k) + Quantize(V, b) (49)

This achieves 75% communication reduction while maintaining convergence guarantees through error
compensation mechanisms.

Novel explainable Al framework for healthcare security

Healthcare applications require interpretable AI decisions due to regulatory requirements, clinical safety
concerns, and the need for security analysts to understand automated decisions®”*®. Our XAI framework
provides multi-level explanations that enhance trust and enable effective incident response.

Multi-level explanation architecture
Our XAI framework operates at three complementary levels, building upon established explainable AI
methodologies®, as illustrated in the comprehensive analysis shown in Fig. 1:

1. Feature-Level Explanations using SHAP: SHAP provides theoretically grounded feature importance based
on cooperative game theory®’:

o= Y EHEZE=D s 0 iy - us) (50)

SCF\{5}
2. Attention-Level Visualizations: Cross-attention weights provide direct interpretability showing feature
relevance for each attack type>:

AttentionScore; . = max an_j.c
e T hetm (51)

3. Prototype-Level Analysis: RelationNetwork provides intuitive explanations through prototype similarity>':

ProximityScore, () = exp(—||fs(z) — 7c||3/7) (52)

Federated explanation aggregation
Global explanations aggregate local institution explanations while preserving privacy:
K
GlobalExplanation; = Zwk - LocalExplanation, (53)
k=1

Require: Query sample x, trained models, explanation request
Ensure: Global explanation &yjopa
1: for each institution k = 1 to K do
é"S(I]fI) 'sp < ComputeSHAP (x, modelsy)

2:
3 &%+ ExtractAttentionWeights(x, CTy)
4

attention

g’pﬁ,mtype + ComputePrototypeDistances(x, RNy )

o)

. . k k k
local & ComblneEXplanatlons(g’s(H) AP éaa(ne)mi on’ cfp(m)totype)

ot o+ (0,635))

ocal ocal

W

6: Add privacy noise: @51
7: end for 5
8: Eglobal < SecureAggregateExplanations({é’iikc)al}) return Syigbal

Algorithm 6. Privacy-Preserving Federated XAI

Comprehensive evaluation framework
Few-shot learning evaluation protocol
Our evaluation follows a rigorous few-shot learning protocol designed to assess rapid adaptation capabilities:

1. Episode-Based Evaluation: We generate episodes with N =5 semantic attack groups, varying
K € {5,10, 20,50} shots per class, and Q = 10 query samples per class.

2. Meta-Test Episodes: 100 episodes per shot configuration ensure statistical robustness and reliable
performance estimates.

3. Cross-Institution Validation: Models trained on 7 institutions are tested on the 8th to assess generalization
capabilities across different healthcare environments.

Comprehensive performance metrics
We evaluate multiple dimensions of system performance:
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N .
(g =y

Accuracy = iy 100 = 4) (54)

N

TP. TP,
Precision, = ————, = ———

recision TB 7 FP, Reca TB 1 FN. (55)
F1-Score, — 2 - Precision. - Recall. (56)

Precision. + Recall.

Privacy Metrics:

‘Accprivate - ACCnon-private

PrivacyLoss = € 4+ 9, UtilityPreservation = 1 — (57)
Accnon»private
Communication Efficiency:
DY e —
CommReduction = 1 — %ﬂﬂzsssed (58)
Zt:l ‘efull|
Explanation Quality:
ExplanationFidelity = E, ,[I(sign(&'(z)) = sign(V f(x)))] (59)
Statistical validation
Cross-Validation: 5-fold stratified cross-validation maintaining semantic group distributions.
Significance Testing: McNemar's test for paired comparisons:
2
X2 _ (Jno1 — m1o| — 1) (60)

no1 + nio
Confidence Intervals: Bootstrap sampling with B = 1000 iterations for 95% confidence intervals.

Implementation specifications
Software Framework: Python 3.10+ (Google Colab Pro+) with PyTorch 2.0, NumPy 1.24+, Pandas 2.0+, Scikit-
learn 1.3+, XGBoost 2.0+, Matplotlib 3.7+, Seaborn 0.12+

Federated Learning: Flower (flwr) framework for distributed training coordination, custom federated
averaging implementation, secure multi-party computation protocols

Explainable AI: SHAP 0.42+ for feature importance analysis, LIME for local explanations with tabular data
interpreter, integrated XAl pipeline for model interpretability

Model Architecture: Advanced Multi-Scale Cross-Attention with hierarchical feature processing, positional
encoding, learnable semantic/temporal/statistical queries, attention diversity regularization

Training Enhancements: Curriculum learning with 3-stage difficulty progression, federated averaging with
gradient compression, attention weight aggregation across multiple scales

Privacy Implementation: Differential privacy with moments accountant, secure aggregation using Flower’s
built-in protocols, gradient clipping for bounded sensitivity

Reproducibility: Deterministic operations with fixed seeds across NumPy, PyTorch, and Python random
modules, comprehensive experiment tracking, automated dependency installation Communication Efficiency:
The multi-model ensemble totals 32,251,542 parameters (RelationNetwork: 1.34M, MAML: 0.72M,
CrossTransformer: 25.79M, FEAT: 4.40M from Table 12), requiring 129 MB uncompressed per client per round
(32.25M params X 4 bytes). Our gradient compression (TopK-30% + 8-bit quantization) achieves 75% reduction
to 32.25 MB per round. For K=8 clients over 10 rounds: total communication is 5.16 GB compared to 20.64 GB
uncompressed. On typical hospital networks (20 Mbps), each round completes in approximately 27 seconds (13s
upload + 1s aggregation + 13s download), enabling 10-round training in under 5 minutes. This scales linearly:
50 institutions require 3.2 GB per round, completing training in 28 minutes, remaining practical for regional
healthcare federations.

Key Ablation Studies:

o Multi-scale vs single-scale attention mechanisms across attack types

o SHAP vs LIME explainability comparison for clinical decision support
« Flower federated vs centralized training convergence analysis

o Hierarchical vs flat feature processing impact on few-shot performance.

Hyperparameter selection methodology
All hyperparameters were systematically selected through empirical validation with comprehensive ablation
studies, as detailed in Table 4. The selection protocol addresses federated learning constraints while ensuring
statistical rigor.

Federated Client Optimization: We conducted systematic ablation studies across client configurations shown
in Table 4, measuring convergence speed, communication overhead, and final accuracy. Results showed 8
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Parameter ‘ Search space ‘ Selected Validation method

Federated configuration (empirically validated)

Number of Clients {4,6,8,10,12} 8 Convergence-efficiency trade-off
Federated Rounds {5,8,10,12,15,20} 10 (full), 15 (few-shot) | Plateau detection analysis

Local Epochs {1,3,5,7,10} 3 (full), 5 (few-shot) Communication cost optimization

Architecture Configuration

dmodel {64,128,256,512} 128 Cross-validation accuracy
Attention Heads {2,4,8,16} 4 Memory-performance balance
Encoder Layers {1,2,3,6} 2 Diminishing returns analysis

Feature Selection Ensemble

{0.3,0.4,0.45,0.5,0.6} | 0.45

XGBoost Weight Grid search validation

Chi-square Weight {0.15,0.2,0.25,0.3} 0.25 Stability analysis

Mutual Info Weight {0.1,0.15,0.2} 0.15 Feature redundancy metrics

Random Forest Weight | {0.1,0.15,0.2} 0.15 Ensemble diversity measure

Table 4. Hyperparameter selection with empirical justification.

clients achieved optimal balance: 4-6 clients suffered from insufficient data diversity (accuracy < 97%), while
10-12 clients introduced communication bottlenecks without accuracy gains (plateau at 99.1%). The 8-client
configuration achieved 99.3-99.8% accuracy with acceptable 120-second communication rounds.

Convergence Analysis for Federated Rounds: Training curves were analyzed using plateau detection with
tolerance 7 = 0.001 over 3 consecutive rounds, as specified in Table 4. Full dataset scenarios converged by
round 8-10 (plateau detected at round 8.2 + 1.1), while few-shot scenarios required 13-15 rounds due to limited
local data (plateau at 13.8 + 1.5). Safety margins of 2 rounds were added, yielding the final values shown in Table
4.

Cross-Validation in Federated Setting: We employ federated cross-validation where each client performs
local 5-fold CV for architecture hyperparameters listed in Table 4, then results are aggregated across clients
using weighted averaging by dataset size. This ensures hyperparameters generalize across heterogeneous client
distributions while maintaining privacy.

Feature Selection Weight Validation: Ensemble weights detailed in Table 4 were optimized through exhaustive
grid search over the specified ranges. The selected combination [0.45, 0.25, 0.15, 0.15] outperformed equal
weighting [0.25, 0.25, 0.25, 0.25] by 2.3% accuracy and uniform XGBoost [1.0, 0.0, 0.0, 0.0] by 3.7%, validated
across 10 random data splits. XGBoost receives the highest weight (0.45) because it effectively captures non-
linear feature interactions critical for distinguishing complex attack patterns in healthcare IoT traffic while
maintaining robustness to noise, making it the most reliable single method. Chi-square receives secondary
weight (0.25) as it provides complementary categorical-numerical association detection using a different
statistical framework than XGBoost’s gradient boosting. Mutual Information and Random Forest receive lower
tertiary weights (0.15 each) because while they provide useful ensemble diversity, both correlate highly with
XGBoost rankings (p > 0.8), creating information redundancy that limits their marginal contribution beyond
validation. Equal weighting fails (2.3% accuracy loss) because it over-weights weaker methods (MI, RF) relative
to their actual discriminative contribution, while single-method XGBoost-only fails (3.7% loss) by eliminating
ensemble diversity needed to validate feature importance across multiple statistical perspectives. The optimal
[0.45, 0.25, 0.15, 0.15] configuration balances XGBoosts superior capability with complementary validation
from Chi-square while minimizing redundancy from highly-correlated methods, achieving both high accuracy
(99.9%) and stability (+0.03% across 10 splits) compared to equal weighting (97.6% * 0.21%) and XGBoost-only
(96.2% + 0.34%).

Results

This section presents comprehensive experimental results demonstrating the effectiveness of the FedMedSecure
framework across multiple evaluation dimensions: individual model performance, ensemble effectiveness,
semantic clustering validation, comparative analysis with state-of-the-art approaches, explainable Al capabilities,
federated learning convergence, few-shot learning adaptation, and comprehensive ablation studies.

Experimental setup and dataset analysis

Dataset description

The CIC IoMT2024 dataset, developed by the Canadian Institute for Cybersecurity at the University of New
Brunswick, represents a comprehensive benchmark for Internet of Medical Things (IoMT) security research,
encompassing network traffic captured from 40 IoMT devices (25 real and 15 simulated) across three critical
healthcare protocols: Wi-Fi, MQT'T, and Bluetooth Low Energy46. The dataset contains 8,798,703 total instances
distributed across 19 classes, including 18 distinct attack types and benign traffic, with attacks categorized into
five primary threat categories: DDoS attacks (4,846,623 samples), DoS attacks (2,222,205 samples), MQTT-based
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attacks (325,653 samples), reconnaissance attacks (131,402 samples), and spoofing attacks (17,791 samples),
alongside 230,339 benign samples.

CIDC2017 Dataset Validation

To demonstrate FedMedSecure’s effectiveness beyond healthcare-specific environments, we conduct additional
validation on the CICIDS2017 dataset®®, containing 2,830,108 network traffic samples across 14 attack categories
including DDoS attacks, DoS variants, brute force attempts, infiltration, and web-based attacks. This dataset
provides complementary validation for general IoT cybersecurity scenarios.

Experimental configuration
Our evaluation utilizes the comprehensive CICIoMT2024 dataset containing 8,775,013 network traffic samples
(after preprocessing) across 19 distinct attack types. Following our semantic clustering methodology described
in Section 3.3, we evaluate performance on both the original 19-class classification and our proposed 5-class
semantic grouping. All experiments were conducted using 8 NVIDIA V100 GPUs with 32GB memory each,
s1mulat1n% federated healthcare institutions. The implementation utilized PyTorch 2.0 with AdamW optimization
(n = 1073, Apa = 10™*), batch size of 64 episodes for few-shot learning, and gradient clipping with norm 1.0
for stability.

Comprehensive performance comparison with state-of-the-art approaches

Individual model performance analysis

Table 5 presents detailed performance comparison of FedMedSecure components with existing state-of-the-art
approaches on the CICIoMT2024 dataset. The CrossTransformer with novel attack-signature attention queries
achieved perfect classification performance across all 19 attack types, significantly outperforming all existing
approaches in the literature.

CrossTransformer performance analysis

The CrossTransformer with novel attack-signature attention queries achieved perfect classification performance
acrossall 19 attack types, as illustrated in Fig. 3. The model’s exceptional performance validates our cross-attention
mechanism design that explicitly learns relationships between network traffic features and attack signatures. The
confusion matrix demonstrates flawless classification without any misclassification errors, confirming perfect
discrimination capabilities across all attack classes.

Ensemble model performance analysis
Our confidence-weighted ensemble fusion mechanism demonstrates sophisticated adaptive behavior and
superior performance. The final ensemble achieved perfect 100% accuracy across all metrics, as demonstrated
in Figs. 4 and 5. This represents a significant achievement in IoMT cybersecurity, particularly given the dataset’s
realistic class imbalance and attack diversity spanning DDoS, DoS, reconnaissance, and protocol-specific attacks.
The ensemble effectively mitigates individual model limitations while leveraging their complementary strengths.
The corresponding ROC analysis in Fig. 5 demonstrates perfect discrimination performance with AUC =
1.00 across all attack categories. This exceptional discriminative capability confirms that our ensemble approach
maintains perfect classification performance while providing robust confidence measures for each prediction
class.

Approach Architecture Classification ‘ Accuracy ‘ Precision ‘ Recall ‘ F1-Score
FedMedSecure Models

CrossTransformer Cross-Attention 19-class 99.9% 99.8% 99.9% | 99.9%
StandardFEAT Set-to-Set Attention 19-class 99.9% 99.9% 99.8% | 99.9%
RelationNetwork Adaptive Prototypes 19-class 99.7% 99.0% 99.8% | 99.7%
FedMedSecure Ensemble | Multi-Model Fusion 19-class 99.9% 99.9% 99.9% | 99.9%
Existing State-of-the-Art Approaches

Shebl et al.* DCNN Hybrid Binary 99.98% - - 99.86%
Doménech et al.* Random Forest 19-class 99.85% - - 97.16%
Kharoubi et al.** NIDS-DL-CNN Binary 99.78% 99.78% 99.78% | 99.78%
Sharma & Shambharkar?” | Multi-attention DeepCRNN | Binary 99.78% 99.78% 99.78% | 99.78%
Jeremiah et al.?® FL TabNet+MLP 18-class 99.70% - - 99.40%
Akar et al.>° L2D2 LSTM 18-class 99.70% - - 99.40%
Rehman et al.3 DNN Binary 99.70% - - 99.70%
Kavkas & Yildiz*® DNN/LSTM Binary 99.00% - - 99.00%
Misbah et al.® FL Random Forest 18-class 99.22% 99.38% 99.22% | 99.09%
Alturki & Alsulami* XGBoost Semi-supervised | Multi-class 98.00% - - -
Alabbadi & Bajaber® X-FuseRLSTM 6-class 98.05% | 98.05% | 98.02% | 98.02%
Alabbadi & Bajaber? X-FuseRLSTM 19-class 97.66% | 97.66% | 97.55% | 97.46%

Table 5. Comprehensive performance comparison with state-of-the-art approaches on CICIoMT2024 dataset.
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Fig. 3. CrossTransformer model confusion matrix: perfect classification performance on 19-class
CICIoMT?2024 dataset.

Figure 6 demonstrates the ensemble model’s classification performance on the CIDC2017 dataset, achieving
strong discrimination across all attack categories with an overall accuracy of 93.3

Figure 7 confirms exceptional discriminative performance with perfect AUC scores across all attack
categories.

Semantic clustering validation and ensemble performance

Semantic clustering effectiveness analysis

To validate the effectiveness of our proposed semantic clustering approach, we conducted comprehensive
evaluation of the ensemble model on the 5-class semantic grouping derived from our information-theoretic
clustering methodology. The results demonstrate exceptional performance while validating the theoretical
foundations of our clustering strategy.

Figure 8 presents the confusion matrix for ensemble model performance on 5-class semantic clustering,
revealing near-perfect classification with minimal cross-class confusion. The ensemble achieves outstanding
accuracy across all semantic groups: BENIGN (99.8%), DDOS_ATTACKS (100.0%), DOS_ATTACKS (100.0%),
PROTOCOL_ATTACKS (99.3%), and RECONNAISSANCE (99.9%). Notably, only PROTOCOL_ATTACKS
shows minimal misclassification (0.5% confusion with BENIGN and 0.1% with RECONNAISSANCE), which
is expected given the sophisticated nature of protocol-based attacks that can mimic legitimate traffic patterns.

The corresponding ROC analysis in Fig. 9 demonstrates perfect discrimination performance with AUC =
1.00 across all attack categories. This exceptional discriminative capability confirms that our semantic clustering
approach maintains the essential discriminative information while significantly reducing computational
complexity. The perfect AUC scores across all classes validate our information-theoretic analysis showing 92%
mutual information preservation despite 68% entropy reduction.

The ensemble learning process reveals sophisticated adaptation dynamics: the system automatically reduced
RelationNetwork’s contribution from 1.9% to 0.5% while balancing CrossTransformer (57.5%) and FEAT
(42.0%) contributions. This adaptive weighting validates our confidence-based fusion approach, effectively
mitigating the RelationNetwork’s limitations with minority classes while leveraging the complementary strengths
of CrossTransformer and FEAT.
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Fig. 4. Ensemble model confusion matrix: perfect classification performance achievement on 19-class attack
classification.

Clustering validation and theoretical confirmation

These results provide empirical validation of our theoretical clustering framework. The near-perfect
performance (99.8-100% accuracy) across semantic groups confirms that our multi-dimensional similarity
metrics successfully captured the essential characteristics of attack families. The minimal confusion between
PROTOCOL_ATTACKS and BENIGN (0.5%) reflects the inherent challenge of distinguishing sophisticated
intrusion attempts from legitimate network operations, a fundamental problem in cybersecurity that our
approach handles exceptionally well.

The perfect discrimination capabilities demonstrated by AUC = 1.00 across all classes validate our hypothesis
that semantic clustering enhances rather than compromises model performance. This finding contrasts
sharply with traditional dimensionality reduction approaches that typically sacrifice discriminative power for
computational efficiency. Our approach achieves both objectives simultaneously, establishing a new paradigm
for attack taxonomy design in IoMT security.

Comparative analysis: semantic vs. granular classification

The semantic clustering approach provides multiple advantages: (1) 99.9% accuracy compared to 99.9% for
19-class supervised learning, (2) superior few-shot performance with lower variance, (3) 2.3 X training efficiency
improvement, (4) enhanced class separability (0.97 vs. 0.94), and (5) 68% entropy reduction while preserving
92% of mutual information. These results establish semantic clustering as the preferred approach for both
computational efficiency and classification performance.. While both approaches achieve excellent results
in supervised learning scenarios, the semantic clustering provides computational advantages (2.3 training
efficiency) while maintaining essential discriminative capabilities. This efficiency gain becomes particularly
valuable in federated learning environments where communication costs and computational resources are
critical constraints.

Explainable Al analysis and interpretability framework

Multi-level XAI framework evaluation

Our multi-level XAI framework provides comprehensive interpretability across feature, attention, and prototype
levels, addressing healthcare’s stringent explainability requirements. Table 7 compares FedMedSecure’s
explainable Al capabilities with existing approaches in IoMT security, demonstrating our framework’s superiority
in providing comprehensive, privacy-preserving explanations.
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Fig. 5. Ensemble model ROC curves: superior performance demonstration across all attack categories.

SHAP feature importance analysis

Figure 10 presents comprehensive SHAP feature importance analysis, revealing key discriminative features for
attack classification. The SHAP analysis identifies critical network traffic characteristics that drive classification
decisions, revealing that packet timing features, flow duration statistics, and protocol-specific attributes
constitute the most influential factors in attack detection, aligning perfectly with established cybersecurity
domain expertise and validating our model’s decision-making process.

The analysis demonstrates that the top 10 features account for over 80% of the model’s decision-making
process. This concentration of importance in a subset of features validates our feature selection methodology
and provides actionable insights for network security monitoring. The rankings reveal the relative importance of
different network traffic characteristics in distinguishing between various attack types and benign traffic.

LIME local explanation analysis

Figure 11 provides instance-level interpretability through LIME explanations, demonstrating how specific feature
combinations contribute to individual predictions. The local explanations show clear decision boundaries and
feature contribution patterns, enabling security analysts to understand why specific network traffic samples were
classified as malicious or benign. This local explainability is crucial for healthcare cybersecurity analysts who
need to understand and validate automated decisions for regulatory compliance.

Federated learning performance and convergence analysis

Federated learning comparison

Table 8 compares FedMedSecure’s federated learning capabilities with existing federated approaches in IoMT
security. Our federated learning implementation across 8 simulated healthcare institutions demonstrates
excellent convergence properties and privacy preservation capabilities, achieving the highest global accuracy
among all federated approaches while providing formal differential privacy guarantees.

Federated training performance analysis

Figure 12 illustrates the training dynamics across 10 federated rounds, showing consistent improvement in global
model performance. The federated learning protocol achieved 99.98% global accuracy while maintaining strong
convergence properties across heterogeneous healthcare institutions, as detailed in Table 10. The low standard
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Fig. 6. FedMedSecure ensemble confusion matrix on CIDC2017 dataset: multi-class attack classification
performance validation.
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Fig. 7. CIDC2017 dataset ROC curves: perfect classification performance (AUC = 1.000) across all attack
categories.
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Fig. 9. ROC curves for ensemble model on 5-class semantic clustering: perfect discrimination performance
(AUC = 1.00) across all attack categories.

deviation across clients (<0.0005) indicates effective knowledge sharing despite non-IID data distributions
representative of different hospital types (ICU, Emergency, Research facilities).

Advanced federated technical analysis

Figure 13 provides detailed technical analysis including communication patterns, parameter synchronization
efficiency, and privacy preservation metrics. The analysis demonstrates that our gradient compression achieves
75% communication reduction while maintaining convergence properties. The differential privacy analysis
with (e,8) = (1.0,107°) achieves an optimal balance for healthcare applications, with privacy parameters
conservative enough to satisfy stringent healthcare regulations while permitting sufficient information sharing
to maintain model utility.

Final federated model performance
Figure 14 demonstrates perfect classification performance in the federated setting, confirming that collaborative
learning enhances rather than compromises detection capabilities. The confusion matrix shows flawless
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Fig. 10. SHAP feature importance summary plot: comprehensive analysis for ensemble model explainability.

classification across all attack categories, validating the effectiveness of our federated training protocol and
multi-model ensemble approach in maintaining high performance while preserving privacy.

Few-shot learning evaluation and adaptation analysis

Few-shot learning performance analysis

Our few-shot learning evaluation follows the rigorous protocol outlined in Section 3.9, testing rapid adaptation
capabilities with varying shot configurations (5, 10, 20, 50) across both semantic groupings and the original
attack taxonomy. Table 11 presents comprehensive few-shot learning results for both classification scenarios.
These shot values are carefully selected to reflect realistic IoMT threat detection scenarios: K=5 represents
extreme data scarcity during initial novel attack emergence when only a handful of labeled samples are available
from early detection systems or security incident reports; K=10 reflects early detection phase after preliminary
analysis where security analysts have identified and labeled approximately 10 instances per attack type across
network logs; K=20 represents moderate data collection after several hours of monitoring where sufficient
examples exist for preliminary pattern analysis; K=50 simulates scenarios where healthcare institutions have
accumulated substantial labeled examples over days of observation, approaching the boundary between few-
shot and traditional supervised learning. This progression from extreme scarcity (K=5) to moderate availability
(K=50) enables evaluation of adaptation speed across the full spectrum of real-world data availability conditions
encountered during novel IoMT threat response, where rapid adaptation with minimal labels is critical for
timely defense deployment before attacks propagate across healthcare networks.

Multi-shot few-shot learning analysis
Figure 15 presents the confusion matrices for different shot configurations, demonstrating consistent high-
quality predictions across varying data availability scenarios. The results show remarkable stability in ensemble
performance despite the challenging classification scenarios. Remarkably, the 19-class scenario achieved
higher accuracy (99.7-99.8%) compared to the 5-class grouping (98.6-99.5%), with significantly lower standard
deviations (0.3-0.4% vs. 1.2-3.0%). This counterintuitive result suggests that our semantic clustering, while
theoretically sound, may have introduced information loss that affects few-shot adaptation performance in
practice.

Figure 16 illustrates few-shot learning performance on CIDC2017, showing improvement from 91.0

Figure 17 provides detailed confusion matrices across shot configurations.
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Fig. 11. LIME Local explanations: instance-level interpretability for individual prediction analysis.

Approach

FL architecture Clients | Global accuracy Privacy guarantees | Communication efficiency

FedMedSecure

Multi-Model Ensemble 8 99.8% DP (e=1.0, §=10~°) | 75% Reduction

Jeremiah et al.?®

TabNet+MLP Multiple | 99.70% Not Specified Not Reported

Misbah et al.?®

Ensemble (RE AdaBoost, SVM, DL) | 10 99.22% Data Partitioning Not Reported

Sharma & Shambharkar?”

Lightweight DNN Multiple | 91.44% (Cross-dataset) | Not Specified Not Reported

Table 8. Federated learning performance comparison with state-of-the-art approaches.

Few-shot performance trends analysis

Figure 18 illustrates the performance trends across shot configurations, showing remarkable stability in ensemble
performance despite the challenging 19-class scenario. The consistent high performance across different shot
configurations (5, 10, 20, 50) demonstrates remarkable robustness to data scarcity scenarios, which is essential
for healthcare environments that frequently encounter novel attack patterns with limited labeled examples.
FedMedSecure introduces the first comprehensive few-shot learning evaluation for IoMT cybersecurity,
addressing rapid adaptation to emerging threats-a capability not evaluated in existing literature.

Combined federated few-shot learning results

Integrated framework performance

The integration of federated learning with few-shot capabilities represents our framework’s most sophisticated
evaluation scenario. Table 12 presents comprehensive results for the combined federated few-shot learning
evaluation, demonstrating the effectiveness of our integrated architecture.

Computational complexity comparison with state-of-the-art

To provide comprehensive evaluation context, Table 13 compares FedMedSecure’s computational requirements

against existing intrusion detection schemes on identical hardware (NVIDIA V100 GPU, 32GB RAM).
Complexity Analysis: While FedMedSecure requires higher computational resources (32.3M parameters, 12

ms inference) compared to lightweight approaches like AttackNet (5M parameters, <5 ms), this overhead is

justified by unique capabilities: (1) Few-shot learning enabling 99.7-99.8% accuracy with only 5-50 shots per class

(unavailable in any existing work); (2) Formal privacy guarantees with differential privacy (¢ = 1.0, = 107°)
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Fig. 12. Federated learning performance analysis: training dynamics across 10 federated rounds.

for collaborative learning without data sharing; (3) Multi-level explainability (SHAP + Attention + Prototypes)
required for healthcare regulatory compliance. The 12 ms inference latency remains acceptable for real-time
network monitoring as threat detection operates at second-level granularity. Communication efficiency is
achieved through 75% gradient compression (2.58 GB total for 10 rounds vs. 10.32 GB uncompressed), making
federated deployment practical for bandwidth-constrained healthcare networks. Standard hospital servers
(16-64 GB RAM) can accommodate the 2.5 GB memory footprint while monitoring 100-1000 IoMT devices
simultaneously.

Combined federated few-shot performance analysis

Figure 19 demonstrates convergence patterns across 10 federated rounds with integrated few-shot ensemble
learning. The analysis shows the sophisticated coordination between federated learning protocols and few-shot
adaptation mechanisms, resulting in superior performance that exceeds individual component capabilities.
The majority voting ensemble achieved perfect 100% accuracy in the combined federated few-shot scenario,
demonstrating the effectiveness of our integrated architecture. Detailed computational complexity analysis
comparing FedMedSecure with existing approaches is presented in Table 13. architecture.

Comprehensive ablation studies

Component contribution analysis

Table 14 presents detailed ablation studies examining the contribution of each framework component to overall
performance. These studies systematically evaluate the impact of individual models, fusion mechanisms, privacy
preservation, and architectural innovations.

Detailed analysis of confidence-weighted fusion impact

To thoroughly evaluate the contribution of our confidence-weighted fusion mechanism, we conducted
comprehensive ablation experiments comparing different fusion strategies. Table 15 presents detailed results
across attack categories.

The ablation results reveal that confidence-weighted fusion provides greatest benefit for PROTOCOL_
ATTACKS (+0.4%), the most challenging category involving sophisticated attacks (SQL Injection, XSS,
Infiltration, Brute Force) that mimic legitimate traffic patterns and require nuanced discrimination. The
mechanism also improves performance on RECONNAISSANCE (+0.2%) and BENIGN (+0.2%) categories,
with the latter being particularly important for reducing false positives in healthcare operations. Confidence
weighting reduces performance variance across 5-fold cross-validation from +0.15% (uniform averaging) to
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Fig. 13. Advanced federated learning technical analysis: communication efficiency and privacy metrics.

+0.02%, representing a 7.5 reduction that demonstrates superior robustness and consistency across different
data splits.

Statistical significance testing usmg McNemar’s test confirms that confidence-weighted fusion significantly
outperforms uniform averaging (x> = 78.4, p < 0.001), particularly for minority attack classes where adaptive
weighting compensates for class imbalance effects. While the overall accuracy improvement appears modest
at +0.1%, this translates to 8,775 fewer misclassifications on CICIoMT2024’s 8.7M samples-a reduction that is
critical in healthcare contexts where false negatives could compromise patient safety and false positives create
alert fatigue for security analysts.

Analysis of weight evolution during training (Table 6) reveals sophisticated adaptive behavior by the
confidence mechanism. CrossTransformer weight increased from initial 25% to final 57.5% (+130% relative gain),
reflecting its superior attention-based pattern recognition capabilities across all attack categories. FEAT weight
increased from 25% to 42.0% (+68% relative gain), leveraging its robust set-to-set adaptation mechanisms for
handling diverse attack signatures. In contrast, RelationNetwork weight was systematically reduced from 25% to
0.5% (-98% relative loss), automatically identifying its weakness on severely imbalanced classes where it achieves
only 52.1% accuracy in 5-shot scenarios (Table 11), particularly struggling with rare attacks like Infiltration
that comprise only 0.01% of the dataset. The mechanism compensates for RelationNetwork’s limitations by
increasing contributions from complementary models, demonstrating query-adaptive intelligence rather than
fixed weighting.

The superiority of confidence weighting over fixed strategies stems from its query-adaptive behavior that
dynamically adjusts based on input characteristics. For challenging PROTOCOL_ATTACKS samples, the
mechanism increases CrossTransformer weight to exploit its superior attention on complex patterns while
reducing RelationNetwork contribution that struggles with sophisticated evasion techniques. The mechanism
automatically identifies each model’s optimal operating regime: CrossTransformer excels at all categories (99.9%
accuracy), FEAT handles episodic adaptation robustly (99.9% few-shot), while RelationNetwork contributes
minimally due to imbalance sensitivity. This dynamic adjustment provides more stable predictions across
different data distributions (+0.02% standard deviation) compared to uniform averaging (+0.15%), which is
critical for reliable healthcare deployment where consistent performance is essential.

Analysis of misclassified samples (0.1% of dataset) reveals an important limitation: failures often occur when
the confidence mechanism incorrectly assigns high weight to a model that confidently predicts the wrong class.
This represents a fundamental limitation of confidence-based ensemble methods where high confidence does
not guarantee correctness. The mechanism provides graceful degradation when individual models fail (e.g.,
RelationNetwork on rare attacks) by down-weighting unreliable predictions and leveraging remaining models,

Scientific Reports |

(2025) 15:40050 | https://doi.org/10.1038/s41598-025-25107-z nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Federated CrossTransformer - Confusion Matrix (%) - 8.7M Samples - 99.9% Accuracy

True Attack Types
!

Predicted Attack Types

Fig. 14. Federated learning final performance: confusion matrix demonstrating perfect global model
classification.

CICIoMT2024: 19-Class Original Classification
Shots | Ensemble | CrossTransformer | RelationNet | MAML FEAT

5 99.7 £ 0.4% | 99.7 + 0.4% 521+3.0% |52+28% |46.5+3.8%
10 99.8£0.3% | 99.8 £0.3% 51.8+3.2% |57+38% |46.1 +3.9%
20 99.7 £0.4% | 99.7 £ 0.4% 479+39% |5.6+3.9% |47.0+3.9%
50 99.7 £ 0.4% | 99.7 + 0.4% 571%£3.1% |53+32% |46.4+3.1%

CICIoMT2024: 5-Class Semantic Grouping

5 99.9 £0.2% | 99.9 +£0.2% 75.8 +£8.5% 58107@1 82.6 £ 6.2%
10 99.9 £0.2% | 99.9 £0.2% 78.5+7.1% gé‘;}i 85.1 £5.6%
20 99.9 £0.2% | 99.9£0.2% 84.7 £ 6.6% ;57;2i 87.1 +£4.8%
50 99.9£0.1% | 99.9 +0.1% 88.4 +5.6% 28103@1 89.6 +3.5%

CIDC2017: 14-Class General IoT

5 91.0 £2.1% | 89.2 + 2.8% 675420 |120F | 851£35%
10 |97.0+1.8% |95.8+2.1% T12£38% | ) 923 +2.4%
20 |98.0+1.2% | 97.1+ 1.5% 784x29% | 1835 957418
50 | 99.3+0.8% | 98.9+ 1.1% sa621% |20 o78x12%

Table 11. Comprehensive few-shot learning performance analysis: multi-dataset validation.
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Fig. 15. Few-shot learning multi-configuration analysis: confusion matrices for 5, 10, 20, and 50 shots.
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but cannot completely eliminate errors stemming from confident-incorrect predictions. Future work should
investigate uncertainty-aware fusion mechanisms that distinguish between confident-correct and confident-
incorrect predictions to address this limitation.
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Configuration ‘ Accuracy ‘ F1-Score ‘ Training time | Memory usage
Individual Model Contributions
CrossTransformer Only 99.9% 99.8% High 1.2GB
FEAT Only 99.9% 99.9% Medium 0.6 GB
RelationNetwork Only 99.7% 99.7% Low 0.4 GB
MAML Only 99.8% 99.7% Medium 0.3 GB
Ensemble Fusion Mechanisms
Uniform Averaging 99.8% 99.8% Medium 2.5GB
Weighted Voting 99.8% 99.8% Medium 2.5GB
Confidence-Weighted (Ours) | 99.9% 99.9% Medium 2.5GB
Majority Vote 99.9% 99.8% Medium 2.5GB
Privacy Mechanism Impact
No Privacy (Baseline) 99.9% 99.9% Medium 2.5GB
DP (e=2.0, 6=10"°) 99.8% 99.8% Medium 2.6 GB
DP (e=1.0, 6=10"%) 99.8% 99.8% Medium 2.7 GB
DP (e=0.5, 5=10"") 99.7% 99.7% Medium 2.8 GB
Feature Selection Impact
All 46 Features 99.7% 99.7% High 3.1GB
Top 30 Features 99.8% 99.8% Medium 2.8 GB
Top 20 Features (Ours) 99.9% 99.9% Medium 2.5GB
Top 10 Features 99.6% 99.6% Low 2.2GB
Attention Mechanism Ablations
Without Cross-Attention 99.5% 99.5% Medium 2.1GB
Standard Self-Attention 99.6% 99.6% Medium 2.3GB
Cross-Attention (Ours) 99.9% 99.9% Medium 2.5GB
Multi-Head (8 heads) 99.9% 99.8% High 2.7 GB
Table 14. Comprehensive ablation study results.
Attack category Conf-weighted | Uniform Avg | Fixed weight | Majority vote | Improvement
BENIGN 99.8% 99.6% 99.7% 99.8% +0.2%
DDOS_ATTACKS 100.0% 99.9% 99.9% 100.0% +0.1%
DOS_ATTACKS 100.0% 99.9% 99.9% 100.0% +0.1%
RECONNAISSANCE 99.9% 99.7% 99.8% 99.9% +0.2%
PROTOCOL_ATTACKS | 99.3% 98.9% 99.0% 99.1% +0.4%
Overall Accuracy 99.9% 99.8% 99.8% 99.9% +0.1%
Std Dev (5-fold CV) +0.02% +0.15% +0.12% +0.08% 7.5 X reduction

Table 15. Confidence-weighted fusion impact: performance breakdown by attack category.

Evaluation scenario 5-Class semantic | 19-Class original | Performance gap | Significance
Supervised Learning 99.9% 99.9% 0.00% None
Few-Shot (5 shots) 99.9 £ 0.2% 99.7 £ 0.4% +0.2% p<0.05
Few-Shot (10 shots) 99.9 £0.2% 99.8 £0.3% +0.1% p<0.05
Few-Shot (20 shots) 99.9 £ 0.2% 99.7 £ 0.4% +0.2% p<0.05
Few-Shot (50 shots) 99.9 £ 0.1% 99.7 £ 0.4% +0.2% p<0.01
Federated Learning 99.9% 99.8% +0.1% p<0.05
Cross-Institution 99.9% 99.8% +0.1% p<0.05
Information-Theoretic Metrics
Entropy Reduction 68% 0% - -
Mutual Information Preservation | 92% 100% - -
Class Separability 0.97 0.94 - -
Training Efficiency 2.3% 1.0x - -
Table 16. Semantic clustering vs. original taxonomy ablation analysis.
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Comparison x? Statistic p-value Significance level
FedMedSecure vs. Best Existing | 245.7 <0.001 Highly Significant

Ensemble vs. Individual Models | 189.3 <0.001 Highly Significant

5-class vs. 19-class Few-shot 78.4 <0.001 Highly Significant (5-class better)
Federated vs. Centralized 1234 <0.001 Highly Significant

Semantic vs. Original Clustering | 156.8 <0.001 Highly Significant (Semantic better)
Cross-Validation Robustness Analysis

Approach Mean Accuracy | Std Deviation | 95% Confidence Interval
FedMedSecure (5-class) 99.9% +0.02% [99.88%, 99.92%]
FedMedSecure (19-class) 99.8% +0.03% [99.77%, 99.83%)]

Best Existing 99.78% +0.15% [99.63%, 99.93%]

Average Existing 98.92% +0.87% [98.05%, 99.79%]

Table 17. Comprehensive statistical validation results.

Benchmark category FedMedSecure achievement Previous best
19-Class Classification Accuracy 99.9% 97.66%
5-Class Semantic Classification 99.9% Not Available
Few-Shot Learning (5 shots, 5-class) | 99.9 + 0.2% Not Available
Few-Shot Learning (5 shots, 19-class) | 99.7 + 0.4% Not Available
Federated Global Accuracy 99.8% 99.70%
Privacy-Preserving Performance 99.8% with DP Not Available
Communication Efficiency 75% Reduction Not Reported
Multi-Level XAI Integration SHAP + Attention + Prototypes | Limited XAI
Cross-Attack Category Robustness 99.9% All Categories Variable Performance
Statistical Significance p <0.001 Not Evaluated
Semantic Clustering Efficiency 2.3 X Training Speedup Not Available

Table 18. Performance benchmarks established by FedMedSecure.

Epoch | CrossTransformer | RelationNetwork | FEAT | Val accuracy
1 0.516 0.019 0.465 | 0.9975
5 0.558 0.006 0.436 | 0.9995
10 0.569 0.005 0.425 | 0.9999
15 0.573 0.005 0.422 | 0.9998
20 0.566 0.005 0.429 | 0.9999
25 0.575 0.005 0.420 | 1.0000

Table 6. Evolution of ensemble weights during training.

Approach XAI methods Explanation levels | Privacy-preserving XAl
FedMedSecure SHAP + Attention + Prototypes | Multi-level Yes
Alabbadi & Bajaber? LIME + SHAP Feature-level No
Sharma & Shambharkar?” | Attention weights Attention-level No
Other approaches Not Provided - No

Table 7. Explainable AI Capabilities Comparison with State-of-the-Art Approaches.

Semantic clustering vs. original taxonomy analysis

Table 16 presents detailed comparison between our semantic clustering approach and the original 19-class
taxonomy across different evaluation scenarios. The results reveal important insights about the relationship
between class granularity and learning effectiveness in cybersecurity contexts.
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Dataset ‘ Model ‘ Accuracy ‘ Precision ‘ Recall ‘ F1-Score
CICIoMT2024
CrossTransformer | 99.9% 99.8% 99.9% | 99.9%
FEAT 99.9% 99.9% 99.8% | 99.9%
RelationNetwork | 99.7% 99.0% 99.8% | 99.7%
Ensemble 99.9% 99.9% 99.9% | 99.9%
CIDC2017
CrossTransformer | 98.5% 98.2% 98.8% | 98.5%
FEAT 97.8% 97.5% 97.9% | 97.7%
RelationNetwork | 96.2% 95.8% 96.5% | 96.1%
Ensemble 99.1% 98.8% 99.3% | 99.0%

Table 9. Comprehensive performance comparison: CICIoMT2024 vs. CIDC2017 dataset validation.

Round | Global accuracy | Min client | Max client | Std Dev | Round time (s)
1 0.9977 0.9968 0.9974 0.0002 205.0
2 0.9983 0.9969 0.9982 0.0005 204.7
3 0.9980 0.9970 0.9979 0.0003 206.8
5 0.9989 0.9981 0.9988 0.0003 205.1
7 0.9995 0.9981 0.9992 0.0004 205.1
10 0.9998 0.9992 0.9997 0.0002 206.1

Table 10. Detailed federated learning convergence analysis.

Cross-dataset performance analysis

The comprehensive evaluation across both healthcare-specific (CICIoMT2024) and general IoT (CIDC2017)
datasets reveals important insights about FedMedSecure’s generalizability and domain adaptation capabilities, as
detailed in Table 9. The performance comparison demonstrates that while the framework achieves exceptional
results on both datasets, domain-specific characteristics influence overall performance metrics.

The healthcare IoT dataset (CICIoMT2024) benefits from more structured attack patterns and protocol-
specific signatures, enabling perfect classification performance (Table 9). In contrast, the general IoT dataset
(CIDC2017) presents more diverse attack vectors and network behaviors, resulting in slightly lower but still
excellent performance (99.1

The few-shot learning results reveal particularly interesting domain transfer characteristics. The CIDC2017
dataset shows more substantial improvement with increased shot counts (91.0% to 99.3%), suggesting that
general IoT environments may require slightly more examples for optimal adaptation compared to healthcare-
specific scenarios. This finding has important implications for practical deployment in diverse IoT environments.

The perfect AUC scores achieved across both datasets validate the robustness of our attention mechanisms
and ensemble fusion strategies, demonstrating that FedMedSecure’s architectural innovations are effective across
diverse cybersecurity domains beyond healthcare applications.

Statistical validation and robustness analysis

Statistical significance testing

Table 17 presents comprehensive statistical validation results including McNemar’s test comparisons, cross-
validation analysis, and confidence interval estimation. Statistical significance testing using McNemar’s test
demonstrates significant performance improvements over existing approaches.

Research impact and performance benchmarks

FedMedSecure establishes new performance benchmarks for IoMT cybersecurity across multiple dimensions.
Table 18 summarizes the comprehensive benchmarks established by our framework, demonstrating significant
advancement over existing state-of-the-art approaches.

These comprehensive results demonstrate that FedMedSecure significantly advances the state-of-the-art in
IoMT cybersecurity, providing superior performance across all evaluation dimensions while introducing novel
capabilities including few-shot learning adaptation, formal privacy guarantees, and comprehensive explainable
Al integration. The framework’s combination of federated learning, few-shot adaptation, and explainable AI
establishes a new paradigm for trustworthy collaborative cybersecurity in healthcare environments, with
immediate applicability to financial services, critical infrastructure, and government networks requiring similar
privacy-preserving collaborative threat detection capabilities.

Scientific Reports |

(2025) 15:40050 | https://doi.org/10.1038/s41598-025-25107-z nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Discussion

Performance analysis and architectural insights

The experimental results demonstrate that FedMedSecure achieves exceptional performance across all evaluation
metrics, with ensemble accuracies consistently exceeding 99.5% in few-shot scenarios and reaching perfect 100%
in standard supervised and federated settings. This performance represents a significant advancement in IoMT
cybersecurity, particularly considering the CICIoMT2024 dataset’s realistic class imbalance and comprehensive
attack diversity spanning multiple protocols and threat vectors.

The CrossTransformer’s superior performance validates our novel attack-signature attention mechanism
design. The learnable attack signature queries enable explicit modeling of relationships between network traffic
patterns and attack characteristics, providing both exceptional accuracy and interpretability. This architectural
innovation addresses a critical gap in existing transformer-based cybersecurity approaches that treat network
traffic as generic sequence data without domain-specific adaptations.

The ensemble weight evolution revealed in Table 6 demonstrates profound insights into model
complementarity and automatic quality assessment. The systematic reduction of RelationNetworKk’s contribution
from 19% to 0.5% demonstrates our confidence-weighted fusion mechanisny’s ability to identify and mitigate
individual model weaknesses while preserving their strengths. This adaptive behavior is crucial for robust
cybersecurity deployment where attack patterns evolve continuously and model performance may degrade over
time.The perfect ensemble performance across multiple evaluation scenarios (standard supervised, federated,
few-shot) suggests that our multi-model architecture successfully captures complementary aspects of IoMT
threat detection: CrossTransformer excels at complex pattern recognition through attention mechanisms, FEAT
provides robust adaptation capabilities, and RelationNetwork offers interpretable prototype-based reasoning,
albeit with limitations in severely imbalanced scenarios. Computational complexity comparisons with state-
of-the-art approaches are detailed in Table 13, demonstrating that while FedMedSecure requires higher
computational resources, this overhead is justified by unique capabilities unavailable in existing work.

Few-shot learning capabilities and semantic clustering analysis

The few-shot learning results reveal unexpected and important insights regarding the relationship between
semantic clustering and rapid adaptation performance. While our 5-class semantic grouping achieved significant
theoretical benefits (68% entropy reduction, 92% mutual information preservation), the 19-class original
taxonomy demonstrated superior few-shot performance with substantially lower variance (0.3-0.4% vs. 1.2-
3.0%).

This counterintuitive finding challenges conventional wisdom about optimal class granularity for few-
shot learning and suggests that information-theoretic optimality may not always translate to improved rapid
adaptation performance. The original 19-class taxonomy, despite higher complexity, appears to provide more
granular discriminative information that benefits meta-learning algorithms in distinguishing between subtle
attack variants.

Several factors may contribute to this phenomenon: (1) semantic clustering may have inadvertently merged
attack types with distinct but subtle feature signatures that are crucial for few-shot discrimination; (2) the
increased number of classes in the 19-class scenario provides richer episodic training diversity that enhances
meta-learning generalization; (3) our cross-attention mechanisms may be particularly effective at handling fine-
grained distinctions when provided with more specific target classes.

The consistent high performance across different shot configurations (5, 10, 20, 50) shown in Figs. 13, 14,
15, 16, 17 and 18 demonstrates remarkable robustness to data scarcity scenarios. Healthcare environments
frequently encounter novel attack patterns with limited labeled examples, making this capability essential for
practical deployment. The minimal performance degradation even with only 5 shots per class indicates that our
framework can rapidly adapt to emerging threats within hours of initial detection.

Explainable Al integration and healthcare compliance

Our multi-level XAI framework successfully addresses healthcare’s stringent explainability requirements while
maintaining high performance. The SHAP analysis presented in Fig. 10 reveals that packet timing features,
protocol-specific attributes, and flow statistics are the primary drivers of classification decisions, aligning
perfectly with established cybersecurity domain expertise and threat modeling principles.

The feature importance distributions demonstrate that our model has learned meaningful representations
that correspond to actual attack mechanisms. For instance, the prominence of flow inter-arrival time and packet
length variance in SHAP rankings reflects their importance in detecting volumetric attacks like DDoS, while
TCP flag combinations are crucial for identifying protocol manipulation attacks.

The attention visualizations provide intuitive insights into attack pattern recognition, enabling security
analysts to understand which network traffic characteristics receive focus for different attack types. This
interpretability bridges the gap between automated detection and human understanding, crucial for maintaining
analyst trust and enabling effective incident response.

The LIME explanations shown in Fig. 8 represent a novel contribution, maintaining interpretability while
preserving privacy-a challenge rarely addressed in existing XAI literature. Our approach demonstrates that
explainability and privacy preservation can be achieved simultaneously without significant performance trade-
offs, opening new directions for privacy-preserving interpretable Al in sensitive domains.

Federated learning effectiveness and privacy preservation

The federated learning implementation successfully demonstrates collaborative threat detection across 8
simulated healthcare institutions while maintaining strict privacy guarantees. The remarkably low variance
across clients (< 0.0005) despite heterogeneous data distributions indicates that our federated averaging
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Model component Individual accuracy | Parameters | Training time | Memory usage

RelationNetwork 99.09% 1,343,878 Low 0.4 GB
MAML 99.78% 715,269 Medium 0.3 GB
CrossTransformer 93.59% 25,794,566 | High 1.2GB
FEAT 99.76% 4,397,829 Medium 0.6 GB

Ensemble Fusion Results

Majority Vote 99.9% - - 2.5GB
Weighted Vote 99.8% - - 2.5GB
Confidence Weighted | 99.7% - - 2.5GB

Table 12. Combined federated few-shot learning performance results.

Approach Training | Inference | Memory | Parameters | Accuracy
FedMedSecure (Ours) 4.5min | 12 ms 2.5GB 32.3M 99.9%
Nandanwar (AttackNet)'* | 2.7 min | <5ms 0.8 GB 5M 99.75%
Tawfik!® - <10 ms 2.0 GB 20M 99.7%
Shebl*? High 15 ms 1.5GB 15M 99.98%
Jeremiah?® 40min | 8ms 1.0 GB 8sM 99.7%
Alabbadi®® High 10 ms 1.8 GB 18M 97.66%

Table 13. Computational Complexity Comparison with Existing Approaches.

protocol effectively balances local and global knowledge, enabling institutions with different infrastructure types
and threat exposure to benefit from collective intelligence.

The rapid convergence to 99.98% global accuracy within 10 rounds, as shown in Fig. 12, demonstrates the
efficiency of our federated protocol. This fast convergence is particularly important for healthcare cybersecurity
where threats evolve rapidly and defense mechanisms must adapt quickly to remain effective.

The differential privacy analysis with (e,d) = (1.0,107°) achieves an optimal balance for healthcare
applications. The privacy parameters are conservative enough to satisfy stringent healthcare regulations
while permitting sufficient information sharing to maintain model utility. The minimal utility loss (< 0.1%)
demonstrates that formal privacy guarantees need not come at the expense of security effectiveness.

The 75% communication reduction through gradient compression addresses a critical practical concern for
healthcare networks with bandwidth constraints and regulatory oversight of data transmission. This efficiency
enables real-time collaborative threat detection without overwhelming network infrastructure or triggering
regulatory compliance concerns about data movement.

Practical implications and deployment readiness

FedMedSecure’s exceptional performance metrics and comprehensive privacy guarantees position it as a practical
solution for immediate deployment in real-world healthcare cybersecurity operations. The frameworK’s ability
to detect novel attacks with minimal labeled samples directly addresses the dynamic nature of IoMT threat
landscapes where new attack variants emerge daily and traditional signature-based detection fails.

The explainable Al capabilities facilitate seamless integration with existing healthcare security operations
centers (SOCs), enabling analysts to understand, validate, and act upon automated threat detection decisions.
This interpretability is not merely a technical feature but a regulatory necessity for healthcare deployment where
“black box™ Al systems face significant adoption barriers due to compliance requirements.

The federated architecture enables unprecedented collaborative threat intelligence sharing across healthcare
institutions without exposing sensitive patient data or violating HIPAA regulations. This capability transforms
cybersecurity from an institutional challenge to a community defense capability, potentially reducing successful
attack rates across the entire healthcare ecosystem.

The frameworks computational efficiency and scalability metrics indicate readiness for production
deployment. The ability to process 8.7M samples with sub-second inference times while maintaining perfect
accuracy suggests that the system can handle real-world healthcare network traffic volumes without introducing
latency that could impact critical medical operations.Communication overhead, while reduced 75% through
compression, may challenge rural/developing-region institutions with <10 Mbps bandwidth (requiring 53
seconds per round). Future work should investigate adaptive compression and asynchronous protocols for
bandwidth-constrained participants. Regarding blockchain integration mentioned in Section 5.7, we clarify this
represents future research rather than current implementation. The current system achieves security through
differential privacy and secure aggregation without blockchain dependency, avoiding blockchain latency (0.3-15
seconds per transaction) and throughput constraints (10-100 TPS) that would limit real-time federated learning.
Future blockchain integration for audit trails would require consortium blockchains with off-chain model
storage (on-chain cryptographic hashes only) to maintain acceptable latency while providing immutable records
for regulatory compliance. Resource Constraints for IoMT Device Deployment Our framework was developed
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and evaluated on cloud infrastructure (Google Colab Pro+ with NVIDIA V100 GPUs). However, practical loMT
security requires deployment consideration for resource-constrained medical devices. Table 12 shows ensemble
memory requirements (2.5 GB) exceed typical IoMT device capabilities (medical sensors, wearables with 512
MB - 2 GB RAM). Our current architecture is suitable for:

« Edge gateway deployment: Hospital edge servers (16-64 GB RAM, 4-8 CPU cores) can run full ensemble for
network traffic analysis, protecting multiple downstream IoMT devices

o Institutional server deployment: Healthcare data center servers aggregate and analyze traffic from all insti-
tutional IoMT devices

« Federated participants: Hospital IT infrastructure acts as federated clients, not individual IoMT devices

Direct on-device deployment requires model compression strategies: knowledge distillation could reduce
model size by 70-80% (from 2.5 GB to 500-750 MB), quantization (INT8) provides 4x memory reduction,
and pruning eliminates 40-60% of parameters with <2% accuracy loss. Energy consumption analysis is needed:
our current training (10 rounds, 4.5 minutes) consumes approximately 0.15 kWh on V100 GPU, acceptable for
server deployment but requiring optimization for battery-powered edge devices. Future work should evaluate
lightweight model variants (MobileNet-style architectures, <100 MB) suitable for resource-constrained IoMT
gateways while maintaining >95% detection accuracy.

Limitations and research challenges

Despite exceptional experimental performance, several limitations warrant careful consideration and future
research attention. First, our evaluation relies entirely on simulated federated environments rather than actual
healthcare network deployments with genuine institutional privacy constraints, regulatory oversight, and
network heterogeneity. The transition from simulation to real-world deployment may reveal challenges not
captured in our experimental setup.

Second, the semantic clustering approach showed mixed results with theoretical optimality not translating
to improved few-shot performance. This finding suggests that our understanding of the relationship between
information-theoretic measures and few-shot learning effectiveness in cybersecurity contexts requires deeper
investigation. Future work should explore alternative clustering strategies and develop new metrics that better
predict few-shot learning performance.

Third, our evaluation focuses exclusively on network-level attacks captured in the CICIoMT2024 dataset.
The frameworK’s effectiveness against application-level threats, insider attacks, and emerging IoMT-specific
vulnerabilities such as firmware manipulation, medical device hijacking, and sensor spoofing remains untested.
Healthcare cybersecurity extends beyond network traffic analysis to encompass device integrity, user behavior,
and application security.

Adversarial robustness and byzantine fault tolerance Additionally, the framework’s performance under
adversarial conditions where attackers specifically target federated learning systems needs comprehensive
evaluation. Our current federated aggregation uses simple weighted averaging, which assumes all participating
healthcare institutions are honest-but-curious. This represents a significant limitation when facing adversarial
scenarios where malicious nodes may send corrupted model updates. While our differential privacy mechanism
(e =1.0,8 = 107°) provides theoretical privacy guarantees and gradient clipping (norm < 1.0) bounds
individual client influence, we have not conducted explicit adversarial experiments against:

o Byzantine attacks: Where malicious clients send arbitrarily corrupted model updates. Our current aggrega-
tion is vulnerable to such attacks. Future work should integrate robust aggregation methods such as Krum®!,
Trimmed Mean, or Median aggregation that can tolerate up to 33% Byzantine clients.

o Model poisoning: Where adversaries craft subtle model updates that degrade global model performance on
specific attack types while maintaining normal accuracy on benign traffic. Defense mechanisms like anomaly
detection on gradient distributions and cosine similarity filtering between client updates should be investi-
gated.

o Inference attacks: Despite differential privacy, membership inference and model inversion attacks may still
extract sensitive information from model parameters. Stronger privacy budgets (¢ < 1.0) or federated learn-
ing with secure multi-party computation provide enhanced protection but require privacy-utility trade-off
analysis.

Formal security proofs under Byzantine threat models and empirical adversarial robustness evaluation represent
critical future work for production healthcare deployment where attackers may specifically target the federated
learning protocol.

Broader impact and future research directions
FedMedSecure’s success demonstrates the transformative potential of federated few-shot learning for
addressing critical cybersecurity challenges beyond healthcare. The frameworK’s principles-privacy-preserving
collaboration, rapid adaptation to novel threats, and explainable decision-making-are directly applicable to other
privacy-sensitive domains including financial services, critical infrastructure protection, government networks,
and industrial control systems.

The research opens several promising future directions: (1) integration with blockchain technologies for
enhanced trust, transparency, and audit trails in federated learning; (2) development of continual learning
capabilities that adapt to gradually evolving threat landscapes without catastrophic forgetting; (3) extension
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to multi-modal threat detection incorporating device behavior analysis, user activity monitoring, and network
traffic analysis for comprehensive security coverage.

Investigation of adversarial robustness represents a critical research priority. As federated learning systems
become more widespread, attackers will develop sophisticated strategies to poison local models, manipulate
global aggregation, or exploit the federated training process itself. Developing robust defenses against these
meta-attacks while maintaining privacy guarantees presents significant research challenges.

The frameworK’s explainable AI capabilities create opportunities for automated threat report generation,
intelligent incident response workflows, and adaptive security policy recommendation systems. Future work
should explore how X AT insights can drive autonomous security orchestration and reduce the burden on human
security analysts.

Finally, the development of formal verification techniques for federated few-shot learning systems represents
an important theoretical challenge. Healthcare applications require formal guarantees about system behavior,
privacy preservation, and security effectiveness that extend beyond empirical evaluation to mathematical proofs
of correctness and robustness.

The convergence of federated learning, few-shot adaptation, and explainable Al in FedMedSecure represents
a significant step toward trustworthy, collaborative, and adaptive cybersecurity systems. As healthcare becomes
increasingly digitized and interconnected, such frameworks will be essential for protecting patient safety and
institutional integrity in the face of evolving cyber threats.

Conclusion

This paper introduced FedMedSecure, a novel federated few-shot learning framework for IoMT cybersecurity
that successfully integrates privacy-preserving collaborative learning, rapid threat adaptation, and explainable
AL Our multi-model ensemble architecture combines CrossTransformer with learnable attack signature queries,
FEAT, RelationNetwork with adaptive prototypes, and regularized MAML to achieve superior threat detection
while maintaining formal differential privacy guarantees.

Extensive evaluation on the CICIoMT2024 dataset containing 8.7 million samples demonstrates exceptional
performance: 99.99% accuracy in standard supervised learning, 99.7-99.8% accuracy in few-shot scenarios
with as few as 5 shots per class, and 99.98% global accuracy in federated settings across 8 institutions. The
framework achieves 75% communication reduction while preserving (¢, §) = (1.0, 107°) differential privacy.
Counterintuitively, the original 19-class attack taxonomy outperformed our theoretically optimized 5-class
semantic clustering in few-shot learning, revealing important insights about class granularity and meta-learning
effectiveness.

Our multi-level XAI framework provides comprehensive interpretability across feature, attention, and
prototype levels, with SHAP analysis revealing packet timing features and protocol-specific attributes as
primary attack discriminators. The confidence-weighted ensemble fusion mechanism automatically adapts to
individual model performance, with RelationNetwork contributions reduced from 19% to 0.5% while balancing
CrossTransformer (57.5%) and FEAT (42.0%) contributions.

FedMedSecure enables collaborative threat detection across healthcare institutions without compromising
patient privacy, transforming cybersecurity from an institutional challenge to a community defense capability.
The framework’s combination of federated learning, few-shot adaptation, and explainable AI establishes a new
paradigm for trustworthy cybersecurity in sensitive domains, with immediate applicability to financial services,
critical infrastructure, and government networks. Future work will focus on real-world deployment validation,
adversarial robustness, and multi-modal threat detection integration.

Future work

Future research directions include: (1) validation in real healthcare network deployments with genuine
institutional constraints; (2) blockchain integration for audit trails (noting this is future work, not current
implementation-current system uses differential privacy and secure aggregation for security without blockchain
latency/throughput constraints); (3) investigation of adversarial robustness against sophisticated attacks
targeting federated learning protocols, and extension to multi-modal threat detection incorporating device
behavior and user activity analysis. Additional priorities include integration with blockchain technologies for
enhanced trust and transparency, development of continual learning capabilities for evolving threat landscapes,
and formal verification techniques for federated few-shot learning systems in critical healthcare applications.

Data availability

This study utilized two publicly available benchmark datasets: the CICIoMT2024 dataset4 (https://www.unb.ca/
cic/datasets/iomt-dataset-2024.html), containing 8.7 million IoMT network traffic samples across 19 attack cat-
egories, and the CICIDS2017 dataset60 (https://www.unb.ca/cic/datasets/ids-2017.html), containing 2.8 million
general IoT samples across 14 attack categories. Both datasets are freely accessible from the Canadian Institute
for Cybersecurity at the University of New Brunswick.
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