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The proliferation of Internet of Medical Things (IoMT) devices has created cybersecurity challenges 
that requiring advanced threat detection techniques along with preserving patient privacy. This paper 
introduces FedMedSecure, a federated few-shot learning framework to provide privacy-preserving and 
collaborative learning, explainable AI, and adaptive ensemble mechanisms for IoMT cybersecurity. Our 
approach combines CrossTransformer with learnable attack signature queries, FEAT, RelationNetwork 
with adaptive prototypes, and regularized MAML within a confidence-weighted ensemble architecture. 
The framework implements differential privacy with (ϵ, δ) = (1.0, 10−5) while achieving 75% 
communication reduction through efficient gradient compression. The evaluation implemented on two 
datasets-CICIoMT2024 (8.7M healthcare IoT samples across 19 attack categories) and CIDC2017 (2.8M 
general IoT samples across 14 attack categories)-We have achieved an exceptional performance as the 
following: 99.9% accuracy on CICIoMT2024 and 93.3% on CIDC2017 in supervised learning, 99.7-99.8% 
and 91.0-99.3% respectively in few-shot scenarios, and 99.8% while the global accuracy in federated 
learning experiments across 8 institutions. Cross-dataset validation confirms robust generalization 
capabilities, with few-shot learning achieving rapid adaptation from 91.0% with 5 shots to 99.3% with 
50 shots on CIDC2017. Counterintuitively, the original 19-class taxonomy outperformed theoretically 
optimized 5-class clustering in few-shot learning, providing new insights for meta-learning research. 
The multi-level explainable ai (XAI) framework shown the packet timing and protocol features as 
primary discriminators, and shown analyst trust. Our FedMedSecure enables collaborative healthcare 
cybersecurity without compromising privacy that establishing a new paradigm for trustworthy AI in 
sensitive domains like healthcare with broader applicability to financial services, critical infrastructure, 
and government networks that requiring privacy-preserving collaborative threat detection.

The digital transformation of healthcare systems has ushered in an era of unprecedented connectivity through 
Internet of Medical Things (IoMT) devices, fundamentally revolutionizing patient care delivery, clinical 
monitoring, and medical data management. The IoMT architecture encompasses interconnected medical 
devices, software applications, and healthcare systems that enable real-time data collection, transmission, and 
analysis, creating substantial opportunities for improved patient outcomes and operational efficiency1. This 
technological paradigm shift has enabled precision medicine, remote patient monitoring, and data-driven 
clinical decision-making, yet it simultaneously introduces significant cybersecurity challenges that pose critical 
threats to patient safety, data privacy, and healthcare system integrity.

The healthcare sector has emerged as one of the most targeted industries for cyberattacks, with systematic 
reviews revealing that healthcare organizations face increasingly sophisticated threats that exploit vulnerabilities 
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in interconnected medical devices and systems2. Recent comprehensive analyses indicate that IoMT environments 
present unique security challenges due to their heterogeneous device ecosystems, resource constraints, and the 
critical nature of healthcare operations3. The proliferation of connected medical devices has created complex 
attack surfaces spanning multiple communication protocols including Wi-Fi, MQTT, and Bluetooth Low 
Energy, necessitating specialized cybersecurity approaches tailored to healthcare environments4.

Traditional cybersecurity approaches designed for conventional IT infrastructure prove inadequate for IoMT 
environments due to several fundamental challenges. The resource-constrained nature of many medical devices 
limits the deployment of computationally intensive security solutions, while the stringent real-time requirements 
of healthcare operations demand security mechanisms that do not compromise system performance5. Moreover, 
the regulatory compliance requirements imposed by healthcare standards such as HIPAA and GDPR necessitate 
security solutions that protect patient data while enabling collaborative threat intelligence sharing across 
healthcare institutions.

The emerging paradigm of federated learning presents a promising solution for addressing the dual challenges 
of effective threat detection and privacy preservation in healthcare environments. Unlike centralized approaches 
that require sensitive medical data to be shared with external entities, federated learning enables collaborative 
model training across multiple healthcare institutions while keeping patient data localized6. Systematic reviews 
demonstrate that federated learning applications in healthcare have shown significant promise for building 
robust AI models that leverage distributed datasets while maintaining strict privacy guarantees7. This distributed 
learning paradigm aligns with healthcare’s stringent privacy requirements while enabling the development of 
sophisticated security models that benefit from diverse threat intelligence across the healthcare ecosystem.
Recent advances in blockchain-integrated federated learning have demonstrated promising directions for 
securing IoT healthcare systems while maintaining privacy guarantees8. The integration of Non-Interactive 
Zero-Knowledge Proof with blockchain data storage has shown effectiveness in maintaining data integrity and 
privacy in healthcare IoT environments, though scalability challenges remain for real-time intrusion detection 
scenarios9. Furthermore, hybrid approaches combining elliptic curve cryptography with federated learning have 
achieved 98% accuracy in IoT network intrusion detection while ensuring lightweight encryption suitable for 
resource-constrained devices10.

However, existing approaches suffer from several critical limitations that impede their practical deployment 
in real-world healthcare environments. Current federated learning frameworks primarily rely on traditional 
machine learning algorithms that fail to capture the complex, evolving nature of IoMT threats11. The challenge 
of few-shot learning in cybersecurity contexts remains largely unaddressed, despite evidence that healthcare 
environments frequently encounter novel attack patterns for which limited labeled training data is available12. 
Recent advances in few-shot learning for network intrusion detection demonstrate the potential for rapid 
adaptation to novel threats using minimal labeled samples, yet their application to IoMT environments 
remains underexplored13.Ensemble learning approaches combining multiple architectural paradigms have 
shown exceptional performance in botnet detection for industrial IoT environments, with CNN-GRU hybrid 
architectures achieving 99.75% accuracy on multi-class classification tasks14. Multi-dimensional feature 
fusion strategies that consider temporal, spatial, and load characteristics of network traffic have demonstrated 
superior detection performance compared to single-modality approaches15, highlighting the importance of 
comprehensive feature engineering in IoMT security applications. Advanced fog/IoT frameworks integrating 
stacked autoencoders with Transformer-CNN-LSTM ensembles have achieved ≥ 99% detection accuracy while 
maintaining sub-10ms inference latency16, demonstrating the feasibility of sophisticated ensemble architectures 
for real-time threat detection in resource-constrained environments.

The integration of explainable artificial intelligence (XAI) in cybersecurity has gained significant attention, 
particularly for addressing the “black box” nature of complex machine learning models used in intrusion 
detection systems. Recent research emphasizes that traditional intrusion detection systems often rely on 
complex algorithms that lack transparency despite their high accuracy, creating challenges for security analysts’ 
understanding of decision-making processes17. The integration of XAI into intrusion detection systems is critical 
for ensuring that cybersecurity systems provide explanations that human analysts can readily comprehend and 
act upon, particularly valuable in regulated industries such as healthcare where explainability is mandated for 
legal and ethical compliance18.

Furthermore, the challenge of integrating explainable AI within privacy-preserving federated learning 
contexts presents unresolved technical and methodological challenges. Current approaches treat explainability 
and privacy as independent concerns without addressing potential information leakage through explanation 
mechanisms or providing formal privacy guarantees19. The exploration of privacy-utility trade-offs in mobile 
health applications demonstrates the complexity of balancing model performance with data protection 
requirements, highlighting the need for sophisticated approaches that can maintain both privacy and 
interpretability20.

The domain-specific nature of IoMT cybersecurity challenges requires specialized approaches that account 
for the unique characteristics of healthcare environments. Comprehensive reviews of IoMT security reveal 
that traditional IoT security solutions are insufficient for healthcare applications due to the critical nature of 
medical data, regulatory requirements, and the life-critical nature of many medical devices21. Advanced security 
techniques specifically designed for IoMT environments must address challenges including device heterogeneity, 
scalability, and the need for real-time threat detection while maintaining patient privacy22.

Recent developments in few-shot learning methodologies show particular promise for addressing the 
challenge of novel attack detection in resource-constrained environments. Meta-learning approaches for 
intrusion detection in 5G-enabled industrial internet environments demonstrate the feasibility of rapid 
adaptation to new threat patterns using minimal training data23. These advances suggest that few-shot learning 
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techniques can be effectively adapted to healthcare cybersecurity contexts, enabling rapid response to emerging 
threats without requiring extensive retraining on large datasets.

The implementation of collaborative machine learning with differential privacy in healthcare settings has 
shown significant potential for maintaining privacy guarantees while enabling effective model training across 
institutional boundaries24. These approaches demonstrate that it is possible to achieve strong privacy protection 
while maintaining model utility, providing a foundation for developing comprehensive federated learning 
frameworks for healthcare cybersecurity applications.

To address these multifaceted challenges, this paper introduces FedMedSecure, a novel multi-model few-shot 
federated learning framework specifically designed for collaborative cybersecurity in healthcare IoT networks. 
Our approach makes several key contributions to the field: (1) a comprehensive multi-model ensemble 
architecture combining three specialized neural networks—CrossTransformer with learnable attack signature 
queries, Few-shot Embedding Adaptation Transformer (FEAT), and Relation Networks—each optimized 
for different aspects of IoMT threat detection; (2) innovative few-shot learning capabilities that enable rapid 
adaptation to novel attack variants with minimal labeled samples; (3) novel cross-attention mechanisms for 
explicit attack pattern learning and interpretable threat detection; (4) rigorous integration of explainable AI 
within a privacy-preserving federated learning context; and (5) formal differential privacy guarantees with 
comprehensive privacy-utility trade-off analysis.

The proposed framework addresses the semantic relationships between different attack types through 
intelligent clustering that reduces model complexity while preserving discriminative information, achieving 
68% entropy reduction while maintaining 92% mutual information. Through extensive evaluation on the 
comprehensive CICIoMT2024 dataset containing 8.7 million network traffic samples across 19 attack categories, 
FedMedSecure demonstrates superior performance compared to existing approaches while providing formal 
convergence guarantees and differential privacy protection.

The remainder of this paper is organized as follows: Section 2 reviews related work in IoMT cybersecurity, 
federated learning, and explainable AI. Section 3 presents the detailed methodology of the FedMedSecure 
framework. Section Section 4 discusses the experimental setup and evaluation metrics. Section 4 presents 
comprehensive experimental results and analysis. Section 5 examines the implications and limitations of our 
approach. Finally, Section 6 concludes the paper and outlines future research directions.

Related work
The increasing proliferation of Internet of Medical Things (IoMT) devices in healthcare environments has created 
unprecedented cybersecurity challenges, necessitating sophisticated defense mechanisms that can operate under 
strict privacy constraints while maintaining high detection accuracy. This section reviews the current state-
of-the-art in federated learning-based cybersecurity solutions, attention-driven deep learning architectures, 
explainable AI approaches, and multi-model frameworks for healthcare IoT security.

Federated learning approaches for healthcare IoT security
Federated learning has emerged as a promising paradigm for addressing privacy concerns in healthcare 
cybersecurity applications. Misbah et al.25 pioneered the application of federated learning for IoMT security 
by proposing an advanced framework that leverages ensemble methods including Random Forest, AdaBoost, 
Support Vector Machine, and Deep Learning models. Their approach demonstrated that federated training 
could achieve 99.22% accuracy while preserving data privacy through decentralized model training across 10 
simulated edge devices. The study highlighted the superiority of ensemble methods over individual models, with 
Random Forest achieving 99.38% precision and 99.09% F1-score on the CICIoMT2024 dataset.

Building upon this foundation, Jeremiah et al.26 developed a sophisticated multi-view learning and model 
fusion framework specifically designed for threat detection in multi-protocol IoMT networks. Their approach 
combines TabNet and shallow Multi-Layer Perceptron architectures within a federated learning setting, achieving 
remarkable performance with 99.7% accuracy and 99.4% F1-score. The framework effectively addresses critical 
challenges including Non-IID data distribution, client heterogeneity, and communication efficiency while 
maintaining strong detection capabilities across diverse attack types including DDoS, DoS, reconnaissance, and 
MQTT-specific attacks.

Sharma and Shambharkar27 further advanced federated learning applications by introducing an efficient 
framework that demonstrates strong cross-dataset generalization capabilities. Their lightweight deep neural 
network achieved 99.78% accuracy on CICIoMT2024 while maintaining 91.44% accuracy in cross-dataset 
evaluations between CICIoMT2024 and WUSTL-EHMS-2020, highlighting the potential for federated 
approaches to generalize across diverse healthcare environments.

Deep Learning and Attention Mechanisms for Intrusion Detection
The evolution of deep learning architectures has significantly enhanced the capability of intrusion detection 
systems in IoMT environments. Kavkas and Yildiz28 introduced a comprehensive framework utilizing Deep 
Neural Network (DNN) and Long Short-Term Memory (LSTM) architectures for medical IoT threat detection. 
Their multi-layered structure, incorporating dense and dropout layers with ReLU activation, achieved 99% 
accuracy and F1-score in binary classification while maintaining robust performance across multi-class scenarios.

Advanced attention mechanisms have proven particularly effective in capturing complex temporal 
dependencies in network traffic. Alabbadi and Bajaber29 proposed X-FuseRLSTM, a cross-domain explainable 
framework that combines Deep Neural Networks with Recurrent Long Short-Term Memory layers enhanced by 
attention-guided dual-path feature fusion. Their hybrid model achieved 98.05% accuracy in 6-class classification 
and 97.66% accuracy in 19-class classification, demonstrating superior performance in handling complex multi-
class scenarios while providing interpretable insights through attention mechanisms.
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Akar et al.30 developed L2D2, a novel LSTM model that integrates attention-driven Bidirectional LSTM for 
multi-class intrusion detection. Their approach achieved 99.7% accuracy and 99.4% F1-score while maintaining 
computational efficiency, making it suitable for real-time deployment in resource-constrained medical 
environments. The attention mechanisms enabled dynamic focus on relevant sequence parts, improving both 
interpretability and detection accuracy.

Hernandez-Jaimes et al.31 advanced attention-driven approaches by developing protocol-aware embeddings 
inspired by Word2Vec techniques. Their methodology captures temporal and contextual relationships between 
communication protocols using attention-based Deep Neural Networks, enabling more accurate anomaly 
detection while reducing dependency on domain expertise.

Multi-model and ensemble approaches
The complexity of IoMT threat landscapes has driven research toward multi-model approaches that leverage the 
strengths of different architectures. Shebl et al.32 proposed a novel hybrid architecture combining Deep Neural 
Networks with Dilated Convolutional Neural Networks (DCNN). Their approach integrated dense layers for 
high-level feature extraction with dilated convolutional layers to capture spatial dependencies, achieving 99.98% 
binary classification accuracy and 99.86% F1-score in multiclass scenarios.

Alturki and Alsulami33 demonstrated the effectiveness of ensemble approaches through their semi-supervised 
learning framework with entropy filtering. Their methodology integrates multiple tree-based classifiers 
including Decision Tree, Gradient Boosting Classifier, Random Forest, XGBoost, and Extremely Randomized 
Trees, achieving near-perfect classification with XGBoost and Random Forest reaching 100% and 99% accuracy 
respectively on RT-IoT2022.

Kharoubi et al.34 introduced NIDS-DL-CNN, a lightweight yet highly effective network intrusion detection 
approach that achieves superior performance without relying on computationally expensive techniques. The 
model demonstrated an impressive 99.78% accuracy on the CICIoMT2024 dataset, with sub-millisecond 
inference times-underscoring the viability of efficient multi-model designs for real-time cybersecurity 
deployment.

Explainable AI in healthcare cybersecurity
The critical nature of healthcare applications has necessitated the development of explainable AI approaches 
for IoMT security. Alabbadi and Bajaber29 integrated Local Interpretable Model-Agnostic Explanations (LIME) 
and SHapley Additive exPlanations (SHAP) into their X-FuseRLSTM framework, providing transparency in 
model predictions by highlighting influential features such as PC15, PC26, and PC18 for specific attack types. 
This explainability enhances trust and facilitates actionable insights for cybersecurity analysts in healthcare 
environments.

Sharma and Shambharkar27 emphasized the importance of explainability in their multi-attention 
DeepCRNN framework, demonstrating how attention mechanisms can provide interpretable insights into 
feature importance and temporal dependencies in IoMT traffic patterns. Their approach enables healthcare 
security teams to understand and validate automated decisions, which is crucial for maintaining trust in critical 
medical infrastructure.

Domain-specific considerations and cross-domain generalization
A fundamental challenge in IoMT security research involves understanding the importance of domain-specific 
datasets and cross-domain adaptation. Doménech et al.35 conducted seminal research comparing model 
performance on general IoT datasets (CICIoT2023) versus IoMT-specific datasets (CICIoMT2024), revealing 
significant performance degradation of up to 66.87% drop in F1-score when models trained on one dataset 
were tested on another. This work underscored the necessity of domain-specific approaches and demonstrated 
that optimized preprocessing techniques, including uniform windowing and SMOTE oversampling, could 
significantly enhance performance, with their Random Forest model achieving 99.85% accuracy and 97.16% 
F1-score.

Rehman et al.36 contributed to domain-specific understanding by conducting comprehensive feature analysis 
for healthcare IoMT networks, identifying critical features such as header size ratio, packet payload volume, and 
inter-arrival time as most relevant for capturing traffic anomalies. Their DNN model achieved 99.7% accuracy 
while maintaining robust performance across multi-class scenarios.

Recent innovations in feature engineering have emerged to address IoMT-specific challenges. Hernandez-
Jaimes et al.37 pioneered the use of Nilsimsa fingerprinting for ransomware detection, converting network traffic 
into binary representations that eliminate traditional feature extraction processes. Their Random Forest model 
achieved 100% precision and 98.72% F1-score on healthcare-specific datasets, demonstrating the potential for 
novel feature engineering approaches in medical environments.

Blockchain integration and hybrid security frameworks
The integration of blockchain technology with machine learning-based intrusion detection has emerged as a 
promising approach for enhancing security and trust in IoMT environments. Nandanwar and Katarya9 proposed 
a comprehensive blockchain-based decentralized application for healthcare data management that integrates 
Non-Interactive Zero-Knowledge Proof (NIZK) to maintain data integrity and privacy. Their architecture 
combines Blockchain Data Storage with Inter-Planetary File System (IPFS) to reduce storage costs while 
enhancing security through Ethereum smart contracts, demonstrating the feasibility of blockchain integration 
for healthcare applications.

Building upon blockchain foundations, Nandanwar and Katarya10 introduced a novel framework integrating 
Genetic Algorithm-Optimized XGBoost (GAO-XGBoost) with Elliptic Curve Cryptography (ECC)-enabled 
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blockchain architecture. Their system achieves 98% accuracy with 97% true positive rate and 97.4% recall, 
demonstrating that lightweight cryptographic approaches can provide robust security without overwhelming 
resource-constrained IoT devices. The genetic algorithm-based feature selection significantly improved real-
time intrusion detection performance while maintaining computational efficiency suitable for Industrial IoT 
deployments.

Further advancing hybrid security frameworks, Nandanwar and Katarya8 developed a comprehensive 
privacy-preserving IDS combining CNN-BiLSTM hybrid models with federated learning techniques. Their 
framework utilizes zero-knowledge proofs (ZKPs) for authentication without revealing sensitive information, 
while Istanbul Byzantine Fault Tolerance (IBFT) ensures reliable consensus in distributed networks. The 
approach demonstrates significant improvements in encryption/decryption durations, block generation, and 
throughput compared to conventional cryptographic techniques, establishing practical viability for large-scale 
IoT deployments.

Kumar et al.38 conducted comprehensive analysis of blockchain integration challenges in IoMT systems, 
identifying critical research gaps including high latency, computational complexity, and energy consumption. 
Their proposed framework addresses these limitations through optimized consensus mechanisms, AI-assisted 
blockchain architectures, and efficient data management techniques, providing strategic directions for future 
blockchain-based healthcare security systems.

Advanced ensemble learning and feature fusion approaches
Sophisticated ensemble learning architectures have demonstrated exceptional performance in addressing the 
complexity of IoT intrusion detection. Nandanwar and Katarya14 introduced AttackNet, a hybrid deep-learning 
IDS that fuses one-dimensional CNNs with Gated Recurrent Units (GRUs) for detecting IoT botnet traffic in 
industrial environments. Their sequential architecture-featuring Conv1D layers (64 and 32 filters), MaxPool1D, 
dual GRU layers (32 and 16 units), and dense layers with dropout regularization-achieved 99.75% test accuracy, 
99.52% F1-score, and perfect AUC = 1.00 on the N_BaIoT dataset containing 926,157 flows across 10 attack 
classes. The hybrid approach outperformed six recent models by 3.2–16.1% while maintaining sub-160-second 
training times, demonstrating computational efficiency suitable for real-time industrial deployments.

Zhang et al.15 pioneered multi-dimensional feature fusion approaches through their MFFSEM framework, 
which establishes multiple basic feature datasets considering temporal, spatial, and load aspects of traffic 
information. Their stacking ensemble mechanism conducts learning on multiple comprehensive feature 
datasets, achieving superior detection performance on KDD Cup 99, NSL-KDD, UNSW-NB15, and CIC-
IDS2017 compared to individual classifiers. This work highlights the importance of capturing diverse modalities 
of network traffic characteristics for robust anomaly detection.

Tawfik16 advanced ensemble learning for fog/IoT networks by integrating stacked autoencoders (SAE), 
CatBoost, and a cloud-hosted Transformer-CNN-LSTM ensemble with Adaptive Grey-Wolf Optimizer (AGWO) 
for hyperparameter tuning. The framework compresses up to 150 raw traffic attributes into 8–32 latent features, 
then employs CatBoost for feature ranking, retaining the 21–30 most predictive features. The multi-branch 
classifier architecture-combining a 3-block Transformer (8 heads, 64-dim), a 2-layer CNN (32/64 filters), and 
a 2-layer LSTM (64 units)-achieves ≥ 99% detection accuracy across NSL-KDD (99.7%, F1=0.996), UNSW-
NB15 (99.16%, F1=0.991), and AWID (99.9%, F1=0.999) with < 10 ms cloud inference latency, demonstrating 
the effectiveness of sophisticated architectural fusion for distributed IoT security. The reviewed literature reveals 
significant advances across multiple dimensions of IoMT security, including federated learning for privacy-
preserving collaboration25–27, attention-driven deep learning for complex pattern recognition28–30, blockchain 
integration for enhanced trust and auditability9,10,38, and sophisticated ensemble architectures combining 
multiple paradigms14–16. However, critical gaps remain in: (1) integrated federated few-shot learning that enables 
rapid adaptation to novel attacks with minimal labeled samples across distributed healthcare institutions; (2) 
unified explainable AI frameworks providing multi-level interpretability within privacy-preserving federated 
contexts; (3) formal privacy guarantees with comprehensive privacy-utility trade-off analysis; and (4) cross-
attention mechanisms specifically designed for healthcare attack pattern learning. FedMedSecure addresses 
these gaps through a novel multi-model ensemble architecture that seamlessly integrates federated learning, 
few-shot adaptation, cross-attention mechanisms, and explainable AI while maintaining rigorous differential 
privacy guarantees.

Methodology
This section presents FedMedSecure, a novel federated few-shot learning framework for IoMT cybersecurity 
that integrates privacy-preserving collaborative learning, explainable AI, and adaptive ensemble mechanisms. 
Our methodology addresses the critical challenge of detecting emerging cyber threats in healthcare networks 
while maintaining strict data privacy and providing interpretable decisions for clinical safety. The complete 
framework architecture is illustrated in Fig. 1, which demonstrates the comprehensive pipeline encompassing 
data preprocessing, federated model training, few-shot adaptation, and explainable decision-making. This 
section presents FedMedSecure, a novel federated few-shot learning framework for IoMT cybersecurity that 
integrates privacy-preserving collaborative learning, explainable AI, and adaptive ensemble mechanisms. 
Our methodology addresses the critical challenge of detecting emerging cyber threats in healthcare networks 
while maintaining strict data privacy and providing interpretable decisions for clinical safety. The complete 
framework architecture is illustrated in Fig. 1, which demonstrates the comprehensive pipeline encompassing 
data preprocessing, federated model training, few-shot adaptation, and explainable decision-making.
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Notation and terminology
Before presenting the detailed methodology, we establish comprehensive notation used throughout this paper. 
Table 1 summarizes all mathematical symbols with their definitions and dimensions.

Key notation conventions:

•	 Superscript notation:

	– (k) indicates institution index: x(k)
i  is sample i from institution k

	– s indicates support set membership: xs
i  is the i-th sample in support set S

	– q indicates query set membership: xq
j  is the j-th sample in query set Q

	– (t) indicates time/round index: θ(t) is model parameters at round t

•	 Few-shot episode structure: Each episode contains:

	– Support set S = {(xs
i , ys

i )}N·K
i=1  with K labeled examples per class for adaptation

	– Query set Q = {(xq
j , yq

j )}N·Q
j=1  with Q test examples per class for evaluation

•	 Example: In 5-way 10-shot learning:

	– N = 5 classes (e.g., BENIGN, DDOS, DOS, RECONNAISSANCE, PROTOCOL_ATTACKS)
	– K = 10 support examples per class ⇒ |S | = 5 × 10 = 50 samples
	– Q = 10 query examples per class ⇒ |Q| = 5 × 10 = 50 samples
	– Total episode size: 100 samples (50 support + 50 query)

This notation remains consistent throughout Sections 3–5. All equations reference these symbols without 
redefinition unless explicitly noted.

As shown in Fig. 1, our framework operates across multiple healthcare institutions while maintaining 
strict privacy boundaries through differential privacy mechanisms and secure aggregation protocols39,40. The 
architecture integrates four specialized few-shot learning models that collectively provide comprehensive 
threat detection capabilities while enabling rapid adaptation to emerging attack patterns with minimal labeled 
examples.

Fig. 1.  FedMedSecure Framework Architecture: Comprehensive Pipeline for Federated Few-Shot Learning 
in IoMT Cybersecurity. The framework operates in four stages: (1) Data Preprocessing-feature extraction 
and selection from IoMT network traffic across 8 healthcare institutions; (2) Local Few-Shot Training-each 
institution trains four specialized models (CrossTransformer, FEAT, RelationNetwork, MAML) using episodic 
meta-learning; (3) Privacy-Preserving Aggregation-differential privacy noise (ϵ = 1.0, δ = 10−5) is added to 
gradients before secure federated averaging with 75% compression; (4) Global Ensemble Inference-confidence-
weighted fusion produces final predictions with multi-level XAI explanations (SHAP, attention weights, 
prototype distances). Solid arrows indicate data flow, dashed arrows indicate model updates, and double-lined 
boxes represent privacy-preserving operations.
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 Formulation and theoretical framework
The proliferation of Internet of Medical Things (IoMT) devices across healthcare networks introduces 
unprecedented cybersecurity challenges that demand collaborative threat detection while preserving strict 
patient data privacy. We formalize this as a federated few-shot meta-learning problem where K healthcare 

Symbol Dim. Definition

Federated Learning

H − Set of K healthcare institutions

K scalar Number of institutions (K = 8)

Dk Nk × (d + 1) Dataset of institution k

x
(k)
i Rd Sample i from institution k (d = 20 features)

y
(k)
i Y Label for sample i from institution k

θ Rp Global model parameters

θ
(t)
k Rp Local model parameters at round t

T scalar Communication rounds (T = 10 or 15)

E scalar Local training epochs (E = 3 or 5)

Few-Shot Learning

T − Task distribution

S N × K × d Support set (N classes, K shots)

Q N × Q × d Query set (N classes, Q queries)

xs
i Rd Sample i in support set

xq
j Rd Sample j in query set

ys
i {1, . . . , N} Label for xs

i

yq
j {1, . . . , N} Label for xq

j

N scalar Number of classes (N = 5 or 19)

Kshot scalar Examples per class (K ∈ {5, 10, 20, 50})

Q scalar Query examples per class (Q = 10)

Model Architecture

fϕ Rd → Rh Feature encoder

gψ R2h → [0, 1] Relation module

πc Rh Prototype for class c

Fs R(N·K)×h Encoded support features

Fq R(N·Q)×h Encoded query features

C RC×dmodel Attack signature queries

dmodel scalar Transformer dimension (d = 128)

αi [0, 1] Attention weight for sample i

wk R4 Confidence weights for institution k

ωk [0, 1] Aggregation weight for institution k

Privacy and Optimization

ϵ scalar Privacy budget (ϵ = 1.0)

δ scalar Privacy failure probability (δ = 10−5)

σ scalar Noise scale

C scalar Gradient clipping threshold (C = 1.0)

η scalar Learning rate (η = 10−3)

λ scalar Regularization parameter

Dataset and Features

d scalar Input features (d = 20)

Y − Label space (|Y | = 5 or 19)

F − Selected feature set

Ij R Importance score for feature j

Table 1.  Comprehensive mathematical notation summary.
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institutions must collaboratively learn to rapidly adapt to new attack types using minimal examples, building 
upon the foundational work of meta-learning approaches41,42.

Definition 1  (Federated Few-Shot IoMT Security Learning) Given K healthcare institutions 
H = {H1, H2, . . . , HK} with private datasets Dk = {(x(k)

i , y
(k)
i )}Nk

i=1 where x(k)
i ∈ Rd represents IoMT 

network traffic features and y(k)
i ∈ Y  denotes attack labels, the objective is to learn a federated ensemble 

F = {fRN, fMAML, fCT, fFEAT} that can rapidly adapt to new attack types Tnew  using only K support exam-
ples per class while preserving privacy:

	
θ∗ = arg min

θ
ET ∼p(T ),k∼H

[
Lmeta(f (k)

θ′ (Q), YQ) + λRprivacy(θ(k)) + µRdiversity(F )
]

� (1)

Definition 2  (Federated Few-Shot IoMT Security Learning - Extended) Given K healthcare institutions 
H = {H1, H2, . . . , HK} with private datasets Dk = {(x(k)

i , y
(k)
i )}Nk

i=1, where x(k)
i ∈ Rd represents IoMT 

network traffic features and y(k)
i ∈ Y  denotes attack labels, the objective is to learn a federated ensemble 

F = {fRN, fMAML, fCT, fFEAT} that can rapidly adapt to new attack types Tnew  using only K support exam-
ples per class while preserving privacy.

Subject to the constraints:

	 Privacy: ∀k, P(Dk) ≥ (1 − δ) with (ϵ, δ)-DP43 � (2)

	
Communication:

T∑
t=1

K∑
k=1

|θ(t)
k | ≤ Cbudget � (3)

	 Adaptation: ETnew [Acc(fθ′ (Snew), Qnew)] ≥ τmin � (4)

	
θ∗ = arg min

θ
ET ∼p(T ),k∼H

[
Lmeta(f (k)

θ′ (Q), YQ) + λRprivacy(θ(k)) + µRdiversity(F )
]

� (5)

Definition 3  (Federated Few-Shot IoMT Security Learning) Given K healthcare institutions 
H = {H1, H2, . . . , HK} with private datasets Dk = {(x(k)

i , y
(k)
i )}Nk

i=1, where x(k)
i ∈ Rd represents IoMT 

network traffic features and y(k)
i ∈ Y  denotes attack labels, the objective is to learn a federated ensemble 

F = {fRN, fMAML, fCT, fFEAT} that can rapidly adapt to new attack types Tnew  using only K support exam-
ples per class while preserving privacy.

Subject to the constraints:

	 Privacy: ∀k, P(Dk) ≥ (1 − δ) with (ϵ, δ)-DP43 � (6)

	
Communication:

T∑
t=1

K∑
k=1

|θ(t)
k | ≤ Cbudget � (7)

	 Adaptation: ETnew [Acc(fθ′ (Snew), Qnew)] ≥ τmin � (8)

The core innovation lies in combining federated learning’s privacy preservation39 with few-shot learning’s rapid 
adaptation capabilities44, enabling healthcare institutions to collectively defend against emerging threats without 
compromising sensitive medical data. This formulation extends classical federated learning by incorporating 
meta-learning objectives that optimize for rapid adaptation to novel attack patterns, addressing the dynamic 
nature of cybersecurity threats in healthcare environments.

Theoretical convergence guarantees
Our framework provides theoretical convergence guarantees under the federated few-shot learning setting. We 
establish convergence rates for the meta-learning objective under non-IID data distributions typical in healthcare 
environments, following the theoretical foundations established in federated optimization literature45:

Theorem 1  (Convergence Rate for Federated Few-Shot Learning) Under the assumptions of L-smooth loss 
functions and bounded gradients, the expected optimality gap of Algorithm 5 converges as:

	
E[∥∇L (θ(T ))∥2] ≤ 2(L (θ(0)) − L ∗)

ηT
+ ηLσ2

K
� (9)

where σ2 represents the variance in gradient estimates across institutions and T is the number of communication 
rounds.
This convergence analysis accounts for the heterogeneity in data distributions across healthcare institutions and 
the noise introduced by differential privacy mechanisms, providing theoretical foundations for our framework’s 
effectiveness.
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Enhanced dataset specification and semantic attack taxonomy
CICIoMT2024 dataset characteristics
We evaluate FedMedSecure using the comprehensive CICIoMT2024 dataset46, containing N = 8, 775, 013 
network traffic samples across 19 distinct attack types captured from 40 IoMT devices using Wi-Fi, MQTT, and 
Bluetooth protocols:

	 D = {(xi, yi)}8,775,013
i=1 , xi ∈ R46, yi ∈ {1, 2, . . . , 19}� (10)

The dataset exhibits realistic class imbalance representative of real-world healthcare networks, with benign traffic 
comprising 73.2% of samples while sophisticated attacks like infiltration represent only 0.01%. This imbalance 
presents significant challenges for traditional machine learning approaches and motivates our few-shot learning 
methodology, addressing similar challenges identified in cybersecurity anomaly detection literature47.

Novel semantic attack clustering
Traditional approaches treating 19 attack types independently suffer from severe class imbalance and semantic 
inconsistency. We propose a principled semantic clustering strategy that consolidates attacks into meaningful 
groups based on attack vectors, system impact, and defensive requirements, building upon information-theoretic 
approaches in machine learning48.

The similarity between attacks ai and aj  is computed using multi-dimensional similarity metrics:

	 Sim(ai, aj) = α · ϕtech(ai, aj) + β · ϕimpact(ai, aj) + γ · ϕdefense(ai, aj)� (11)

where α + β + γ = 1 and:

	 ϕtech(ai, aj) = exp(−∥v(i)
tech − v(j)

tech∥2
2) � (12)

	 ϕimpact(ai, aj) = cos(v(i)
impact, v

(j)
impact) � (13)

	 ϕdefense(ai, aj) = Jaccard(Ci, Cj) � (14)

The optimal semantic grouping maximizes information preservation while reducing entropy:

	
G ∗ = arg max

G

[
I(X; Y |G ) − λH(Y |G ) + µ

∑
g∈G

|g| log |g|

]
� (15)

This optimization problem balances information preservation with computational efficiency, yielding five 
semantically coherent groups: 

	1.	 BENIGN: Normal network operations including routine medical device communications
	2.	 DDOS_ATTACKS: Volume-based resource exhaustion (HTTP Flood, TCP-SYN, UDP, ICMP)
	3.	 DOS_ATTACKS: Application-layer disruption (Slowloris, Hulk, GoldenEye)
	4.	 RECONNAISSANCE: Information gathering (Port Scan, Host Discovery, OS Fingerprinting)
	5.	 PROTOCOL_ATTACKS: Exploitation-based intrusion (Infiltration, SQL Injection, XSS, Brute Force)

Information-theoretic analysis of clustering
We provide rigorous information-theoretic analysis of our semantic clustering approach. The clustering achieves 
68% entropy reduction while preserving 92% of the mutual information between features and labels:

	
Hreduction = H(Y19) − H(Y5)

H(Y19) = 0.68 � (16)

	
Ipreservation = I(X; Y5)

I(X; Y19) = 0.92 � (17)

This analysis demonstrates that our clustering strategy effectively reduces computational complexity while 
maintaining discriminative information essential for accurate threat detection.

Stability-enhanced multi-method feature selection
High-dimensional IoMT network traffic data (46 features) requires intelligent dimensionality reduction to identify 
the most discriminative attack signatures while maintaining computational efficiency and model interpretability. 
Our feature selection methodology combines multiple complementary approaches to ensure robustness and 
stability, drawing from ensemble feature selection principles48. This approach reduces dimensionality from 46 
to 20 features while achieving 94.3% information preservation and 68% entropy reduction, enabling efficient 
processing while maintaining discriminative power for attack detection.

Selected features analysis
Table 2 presents the top 20 features selected through our multi-method ensemble approach for both datasets. The 
feature selection reveals distinct domain-specific patterns: CICIoMT2024 healthcare networks are dominated by 
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protocol-type features (UDP, TCP accounting for 47.92% importance) and TCP connection state indicators 
(syn_flag_number, fin_flag_number, representing 31.37% combined importance), reflecting the specialized 
communication patterns and connection behaviors of medical devices. Protocol-specific services (SSH, HTTPS) 
and connection management features (various flag counts) further characterize healthcare IoMT traffic patterns.
In contrast, CIDC2017 general IoT environments prioritize flow timing characteristics (idle times, inter-arrival 
times) and packet statistical measures (length variance, size distributions), indicating that general IoT networks 
rely more heavily on behavioral timing patterns for attack detection rather than protocol-specific signatures. 
This fundamental difference in discriminative features validates our hypothesis that healthcare cybersecurity 
requires specialized approaches distinct from general IoT security solutions.

Multi-method ensemble feature selection
Our feature selection employs dataset-adaptive ensemble approaches combining multiple feature importance 
methods:

CICIoMT2024 (Healthcare IoMT): XGBoost + Mutual Information - XGBoost captures non-linear feature 
interactions in medical device traffic - Mutual Information measures statistical dependencies with attack labels - 
Combined scoring: Scorej = 0.7 · IXGB[j] + 0.3 · IMI[j]

CIDC2017 (General IoT): XGBoost + Chi-square + Mutual Information + Random Forest - XGBoost 
for gradient-boosted feature importance - Chi-square for categorical-numerical associations - Mutual 
Information for statistical dependencies - Random Forest for ensemble-based importance - Combined scoring: 
Scorej = 0.25 · (IXGB + IChi2 + IMI + IRF)

This adaptive ensemble approach ensures robust feature selection tailored to domain-specific characteristics 
and dataset complexity.

Rank CICIoMT2024 Features CIDC2017 Features

1 UDP Idle Mean

2 syn_flag_number Bwd Packet Length Std

3 fin_flag_number Bwd Packet Length Mean

4 TCP Average Packet Size

5 syn_count Fwd IAT Max

6 rst_count Flow IAT Max

7 identificador PSH Flag Count

8 IAT act_data_pkt_fwd

9 fin_count Idle Min

10 ack_flag_number Max Packet Length

11 rst_flag_number Packet Length Variance

12 Magnitude Bwd Header Length

13 Min Idle Max

14 ICMP Total Length of Fwd Packets

15 Header_Length Packet Length Std

16 Protocol Type Total Length of Bwd Packets

17 SSH Fwd IAT Std

18 ack_count Fwd IAT Total

19 Number Destination Port

20 HTTPS Flow Duration

Table 2.  Selected Features for FedMedSecure Framework Across Datasets.
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Algorithm 1.  Multi-Method Ensemble Feature Selection

The enhanced XGBoost formulation incorporates stability penalties to ensure consistent feature selection 
across different data samples, following ensemble learning principles49:

	
Lenhanced = LXGB + λ1

B∑
b=1

Var[Ib(f)] + λ2

∑
i̸=j

ρ(fi, fj)2 + λ3∥I∥1� (18)

This approach reduces dimensionality from 46 to 20 features while achieving 94.3% information preservation 
and 68% entropy reduction, enabling efficient processing while maintaining discriminative power for attack 
detection. The selected features include critical network traffic characteristics such as packet timing, flow 
statistics, and protocol-specific indicators that are most informative for distinguishing between different attack 
types.

Feature stability analysis
We conduct comprehensive stability analysis to ensure robustness of feature selection across different data 
distributions and bootstrap samples. The stability coefficient for feature j is computed as:

	
Stability(fj) = 1 − Var(Rank(fj))

maxk Var(Rank(fk)) � (19)

where Rank(fj) denotes the importance ranking of feature fj  across B = 100 bootstrap samples. Features with 
stability coefficients above 0.8 are considered highly stable and prioritized in the final selection. This threshold 
ensures that selected features maintain consistent importance rankings across diverse healthcare institutional 
data distributions.

Bootstrap stability procedure:

	1.	 Generate B = 100 bootstrap samples by sampling with replacement from the training dataset D , where each 
bootstrap sample Db contains |D | samples

	2.	 For each bootstrap sample b ∈ [1, B]:

•	 Train XGBoost classifier on Db with identical hyperparameters
•	 Extract feature importance scores: Ib(fj) for all features j ∈ [1, 46]
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•	 Rank features by importance: Rankb(fj) ∈ [1, 46] where lower rank indicates higher importance

	3.	 Compute rank variance across bootstrap iterations: 

	
Var(Rank(fj)) = 1

B

B∑
b=1

(
Rankb(fj) − Rank(fj)

)2
� (20)

	 where Rank(fj) = 1
B

∑B

b=1 Rankb(fj) is the mean rank

	4.	 Normalize by maximum variance: Stability(fj) = 1 − Var(Rank(fj ))
maxk Var(Rank(fk))

	5.	 Prioritize features with Stability(fj) ≥ 0.8 for final selection

This ensures that selected features maintain their discriminative power across different healthcare institutions 
with varying network characteristics, device types, and attack exposure patterns. Table 3 presents stability 
analysis results for the top 20 selected features on CICIoMT2024 dataset.

•	 The top 7 features (UDP, syn_flag_number, fin_flag_number, TCP, syn_count, rst_count, identificador) all 
achieve stability coefficients ≥ 0.8, indicating highly consistent rankings across bootstrap iterations.

•	 Protocol-type features (UDP, TCP) demonstrate exceptional stability (0.984, 0.936), confirming their funda-
mental importance for attack discrimination in healthcare IoT environments.

•	 TCP flag-related features (syn_flag_number, fin_flag_number, syn_count, rst_count) show robust stability 
(0.856-0.964), validating their critical role in detecting connection-based attacks.

•	 Features below the 0.8 threshold (IAT, fin_count, ack_flag_number, etc.) exhibit higher rank variance, sug-
gesting their importance fluctuates across different data distributions and should be used cautiously.

•	 Negative stability coefficients indicate features with variance exceeding the maximum, reflecting highly un-
stable rankings unsuitable for robust feature selection.

This rigorous stability analysis ensures that FedMedSecure’s feature selection generalizes effectively across 
heterogeneous healthcare institutions, addressing a critical requirement for federated learning scenarios where 
data distributions vary significantly across participants.

Feature stability analysis
We conduct comprehensive stability analysis to ensure robustness of feature selection across different data 
distributions and bootstrap samples. The stability coefficient for feature j is computed as:

Feature Mean rank Rank Std Dev Stability Selected

UDP 1.2 ± 0.4 0.16 0.984 ✓
syn_flag_number 2.1 ± 0.6 0.36 0.964 ✓
fin_flag_number 2.8 ± 0.7 0.49 0.951 ✓
TCP 3.5 ± 0.8 0.64 0.936 ✓
syn_count 4.2 ± 1.0 1.00 0.900 ✓
rst_count 5.1 ± 1.2 1.44 0.856 ✓
identificador 5.8 ± 1.3 1.69 0.831 ✓
IAT 6.5 ± 1.5 2.25 0.775 ×
fin_count 7.2 ± 1.6 2.56 0.744 ×
ack_flag_number 7.9 ± 1.8 3.24 0.676 ×
rst_flag_number 8.2 ± 1.9 3.61 0.640 ×
Magnitude 8.8 ± 2.1 4.41 0.560 ×
Min 9.5 ± 2.3 5.29 0.473 ×
ICMP 10.2 ± 2.5 6.25 0.375 ×
Header_Length 11.1 ± 2.8 7.84 0.216 ×
Protocol Type 12.3 ± 3.1 9.61 0.039 ×
SSH 13.5 ± 3.4 11.56 -0.156 ×
ack_count 14.8 ± 3.8 14.44 -0.444 ×
Number 16.2 ± 4.2 17.64 -0.764 ×
HTTPS 17.9 ± 4.6 21.16 -1.116 ×

Table 3.  Feature stability analysis results for top 20 selected features (CICIoMT2024).
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Stability(fj) = 1 − Var(Rank(fj))

Max(Var(Rank)) � (21)

Features with stability coefficients above 0.8 are considered highly stable and prioritized in the final selection. 
This ensures that selected features maintain their discriminative power across different healthcare institutions 
with varying network characteristics.

Novel federated few-shot ensemble architecture
Our framework combines four complementary few-shot learning models deployed across K = 8 healthcare 
institutions in a federated manner. Each model specializes in different aspects of attack detection while collectively 
providing comprehensive threat coverage, leveraging the strengths of ensemble approaches in cybersecurity50. 
The complete ensemble architecture for few-shot learning in IoMT cybersecurity is presented in Fig. 2, which 
illustrates the multi-model integration with confidence-weighted fusion mechanisms.

As demonstrated in Fig. 2, our ensemble architecture incorporates four specialized models: RelationNetwork 
for prototype-based similarity learning, MAML for rapid gradient-based adaptation, CrossTransformer for 
attention-driven pattern recognition, and FEAT for set-to-set embedding adaptation. Each model contributes 
unique capabilities that collectively address the diverse challenges of IoMT threat detection.

RelationNetwork with adaptive prototype learning
The RelationNetwork learns explicit similarity metrics between query samples and learnable attack prototypes, 
making it particularly suitable for signature-based attack detection51. Our enhanced implementation incorporates 
adaptive prototype computation and attention mechanisms for improved discrimination.

Fig. 2.  Ensemble few-shot learning architecture for IoMT cybersecurity: multi-model integration with 
confidence-weighted fusion.
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Enhanced architecture: The RelationNetwork consists of a feature encoder fϕ and an adaptive relation module 
gψ :

	 fϕ : R20 → R128, gψ : R256 → [0, 1]� (22)

The feature encoder follows a hierarchical structure with batch normalization and dropout regularization for 
improved generalization:

	 h1 = LeakyReLU(BN(W1x + b1)) ∈ R512 � (23)

	 h2 = Dropout0.5(LeakyReLU(BN(W2h1 + b2))) ∈ R256 � (24)

	 f = LeakyReLU(BN(W3h2 + b3)) ∈ R128 � (25)

Adaptive prototype computation: Instead of simple averaging, we employ attention-weighted prototype 
computation that dynamically focuses on the most representative examples, inspired by prototype-based 
learning approaches42:

	

πc =
∑

i:ys
i

=c

αifϕ(xs
i ), αi = exp(fϕ(xs

i )T qc)∑
j:ys

j
=c

exp(fϕ(xs
j)T qc) � (26)

where qc are learnable query vectors for each attack class that capture class-specific characteristics.
The relation module computes similarity scores using enhanced feature representations:

	 gψ(r) = σ(W(2)
r ReLU(W(1)

r r + b(1)
r ) + b(2)

r )� (27)

	

πc =
∑

i:ys
i

=c

αifϕ(xs
i )� (28)

where the notation is defined as follows (see Table 1 for complete notation):

•	 πc ∈ R128: Adaptive prototype representation for attack class c
•	 xs

i ∈ R20: The i-th sample in the support set S  (superscript s denotes support set membership)
•	 ys

i ∈ {1, . . . , N}: Class label for support sample xs
i

•	 i : ys
i = c: Summation over all support samples belonging to class c

•	 αi ∈ [0, 1]: Attention weight for support sample i, computed via softmax over query-prototype similarities
•	 fϕ(xs

i ) ∈ R128: Encoded feature representation of support sample xs
i  using feature encoder fϕExample: In 

a 5-way 10-shot episode with class c = DDOS_ATTACKS, the prototype πDDOS is computed as the atten-
tion-weighted average of the 10 encoded support samples belonging to DDOS_ATTACKS.

Algorithm 2.  Enhanced RelationNetwork Forward Pass

Model-agnostic meta-learning (MAML) with regularization
MAML learns initialization parameters optimized for rapid adaptation to new attack types through gradient 
descent41. We enhance MAML with regularization terms to prevent overfitting in the healthcare domain and 
improve generalization to unseen attack patterns.

Enhanced MAML Objective: The meta-learning objective incorporates domain-specific regularization:

	
θ∗ = arg min

θ

∑
Ti∼p(T )

[
LTi (fθ′

i
) + λ1∥θ′

i − θ∥2
2 + λ2Rsmooth(θ)

]
� (29)
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where θ′
i = θ − α∇θLTi (fθ) and Rsmooth(θ) enforces smoothness in the parameter space.

The smoothness regularizer is defined as:

	
Rsmooth(θ) =

L∑
l=1

∥∇2L (θ(l))∥2
F � (30)

where L is the number of layers and ∥ · ∥F  denotes the Frobenius norm.

Algorithm 3.  Enhanced MAML for IoMT Security

CrossTransformer with novel attack-signature attention
Our CrossTransformer employs a novel cross-attention mechanism that explicitly models relationships between 
network traffic features and learnable attack signature representations52. This architecture enables the model 
to focus on attack-specific patterns while maintaining interpretability, extending transformer applications to 
cybersecurity domains53. Architectural Specifications: The CrossTransformer comprises 2 encoder layers with 
model dimension dmodel = 128. Each layer contains multi-head attention with 8 heads (h = 8), where each 
head dimension is dk = dv = dmodel/h = 16. Query, key, and value projections use linear transformations 
WQ, WK , WV ∈ Rdmodel×dk  for each head. The feed-forward network within each layer uses two linear 
transformations with ReLU activation: FFN(x) = max(0, xW1 + b1)W2 + b2 where W1 ∈ R128×512 
and W2 ∈ R512×128 (expansion factor = 4). Layer normalization and residual connections follow standard 
transformer design. Dropout rate is set to 0.3 for regularization. The learnable attack signature queries 
C ∈ R5×128 (for 5 semantic classes) are randomly initialized and jointly optimized during training.

Architecture Innovation: The key innovation lies in learnable attack signature queries C ∈ R5×dmodel  that 
represent each semantic attack group:

	 Hs = SelfAttention(Fs) + Fs � (31)

	 Hq = SelfAttention(Fq) + Fq � (32)

	 Zcross = CrossAttention(C, Hq, Hq) � (33)

The cross-attention mechanism computes attack-specific feature relevance:

	
CrossAttention(C, H, H) = softmax

(
CHT

√
dmodel

)
H� (34)

Multi-Head Implementation: The multi-head attention allows the model to attend to different aspects of 
attack patterns simultaneously, following the attention mechanisms designed for intrusion detection54:

	 MultiHead(C, H) = Concat(head1, . . . , head8)WO � (35)

where each head focuses on different attack aspects:

	 headi = CrossAttention(CWC
i , HWK

i , HWV
i )� (36)
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The learnable attack signatures C are initialized using domain knowledge about attack characteristics and refined 
during training to capture discriminative patterns specific to each attack category.

Few-shot embedding adaptation transformer (FEAT)
FEAT employs set-to-set functions to enhance feature representations through attention-based adaptation44, 
enabling rapid specialization to new attack patterns. This model is particularly effective for handling the episodic 
nature of few-shot learning tasks.

Enhanced set attention: The set attention mechanism considers both intra-class and inter-class relationships:

	 SetAttention(F) = softmax(FWa + PositionalEncoding(F))F� (37)

Task-specific adaptation: Features are adapted based on the entire episode context:

	 Fadapted = F + AdaptNet(SetAttention(F)) + λTaskEncoding(S )� (38)

The adaptation network AdaptNet is implemented as a multi-layer perceptron with residual connections:

	 AdaptNet(x) = x + MLP(LayerNorm(x))� (39)

Confidence-weighted federated fusion mechanism
Our novel contribution lies in a confidence-weighted fusion mechanism that operates both locally (across 
models) and globally (across institutions) while preserving privacy55. This mechanism, illustrated in Fig. 2, 
enables dynamic weighting based on model performance and prediction confidence.

Local confidence-weighted fusion
Each institution combines predictions from its four local models using query-adaptive confidence weights:

	 wk = softmax(ϕ(k)
c (GlobalPool(F(k)

q )))� (40)

The confidence network architecture employs layer normalization for stability:

	 hc = LayerNorm(LeakyReLU(W(1)
c xq + b(1)

c )) � (41)

	 w = softmax(W(2)
c hc + b(2)

c ) � (42)

Local ensemble prediction combines individual model outputs:

	
P(k)

local =
4∑

i=1

wk,i · P(k)
i � (43)

Global federated aggregation
Global predictions aggregate local ensemble outputs using institution-specific confidence weights that account 
for historical performance and data quality:

	
Pglobal =

K∑
k=1

ωk · P(k)
local� (44)

Institution weights reflect historical performance and current confidence:

	 ωk = softmax (α · Performancek + β · Confidencek + γ · DataQualityk)� (45)

Algorithm 4.  Federated Confidence-Weighted Ensemble Fusion
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Privacy-preserving federated training protocol
Our federated training protocol ensures rigorous privacy preservation while enabling effective collaborative 
learning across healthcare institutions56. The protocol, detailed in Fig. 1, incorporates differential privacy 
mechanisms and secure aggregation techniques.

Multi-institution training framework
The training protocol operates across K = 8 healthcare institutions with heterogeneous data distributions 
representative of different hospital types (ICU, Emergency, Research, etc.). Each institution maintains complete 
control over its local data while participating in collaborative model training.

Data Partitioning for Federated Simulation: To simulate realistic federated healthcare environments, we 
partition the CICIoMT2024 dataset across 8 institutions using stratified non-IID distribution that mimics 
real-world hospital diversity. The partitioning follows Dirichlet distribution with concentration parameter 
α = 0.5 to create heterogeneous class distributions: Institution 1-2 (ICU-focused) receive 60% DDOS/DOS 
attacks and 20% BENIGN traffic; Institution 3-4 (Emergency departments) receive 50% RECONNAISSANCE 
and 30% PROTOCOL_ATTACKS; Institution 5-6 (Research facilities) receive balanced distributions (uniform 
20% per class); Institution 7-8 (General hospitals) receive 70% BENIGN and 10% each attack category. This 
creates realistic non-IID scenarios where each institution observes different attack exposure patterns based on 
their operational profile. Each institution receives approximately 1.1M samples (12.5% of 8.7M total), ensuring 
sufficient local training data while maintaining statistical heterogeneity (χ2 divergence > 0.3 between any two 
institutions).

Algorithm 5.  FedMedSecure Privacy-Preserving Training Protocol

Differential privacy guarantees
We implement formal differential privacy through calibrated noise injection satisfying (ϵ, δ)-differential 
privacy43 with ϵ = 1.0, δ = 10−5:

	 ∇̃k = Clip(∇k, C) + N (0, σ2I)� (46)

where the noise scale is calibrated according to:

	
σ =

C
√

2 ln(1.25/δ)
ϵ

� (47)

with sensitivity bound C = 1.0 enforced through gradient clipping.
Privacy Accounting: We employ the Rényi Differential Privacy (RDP) framework for tight privacy analysis40:

	
αα(M ) ≤ αq2σ−2

2
� (48)

where q is the sampling probability and α is the Rényi parameter.

Communication-efficient aggregation
To reduce communication costs, we employ gradient compression and sparse updates:
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	 CompressedGradient(∇) = TopK(∇, k) + Quantize(∇, b)� (49)

This achieves 75% communication reduction while maintaining convergence guarantees through error 
compensation mechanisms.

Novel explainable AI framework for healthcare security
Healthcare applications require interpretable AI decisions due to regulatory requirements, clinical safety 
concerns, and the need for security analysts to understand automated decisions57,58. Our XAI framework 
provides multi-level explanations that enhance trust and enable effective incident response.

Multi-level explanation architecture
Our XAI framework operates at three complementary levels, building upon established explainable AI 
methodologies59, as illustrated in the comprehensive analysis shown in Fig. 1:

1. Feature-Level Explanations using SHAP: SHAP provides theoretically grounded feature importance based 
on cooperative game theory57:

	
ϕj(x) =

∑
S⊆F\{j}

|S|!(|F | − |S| − 1)!
|F |! [v(S ∪ {j}) − v(S)]� (50)

2. Attention-Level Visualizations: Cross-attention weights provide direct interpretability showing feature 
relevance for each attack type54:

	
AttentionScorej,c = max

h∈[H]
αh,j,c� (51)

3. Prototype-Level Analysis: RelationNetwork provides intuitive explanations through prototype similarity51:

	 ProximityScorec(x) = exp(−∥fϕ(x) − πc∥2
2/τ)� (52)

Federated explanation aggregation
Global explanations aggregate local institution explanations while preserving privacy:

	
GlobalExplanationj =

K∑
k=1

ωk · LocalExplanationj,k� (53)

Algorithm 6.  Privacy-Preserving Federated XAI

Comprehensive evaluation framework
Few-shot learning evaluation protocol
Our evaluation follows a rigorous few-shot learning protocol designed to assess rapid adaptation capabilities:

1. Episode-Based Evaluation: We generate episodes with N = 5 semantic attack groups, varying 
K ∈ {5, 10, 20, 50} shots per class, and Q = 10 query samples per class.

2. Meta-Test Episodes: 100 episodes per shot configuration ensure statistical robustness and reliable 
performance estimates.

3. Cross-Institution Validation: Models trained on 7 institutions are tested on the 8th to assess generalization 
capabilities across different healthcare environments.

Comprehensive performance metrics
We evaluate multiple dimensions of system performance:
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Accuracy =

∑N

i=1 I(ŷi = yi)
N

� (54)

	
Precisionc = T Pc

T Pc + F Pc
, Recallc = T Pc

T Pc + F Nc
� (55)

	
F1-Scorec = 2 · Precisionc · Recallc

Precisionc + Recallc
� (56)

Privacy Metrics:

	
PrivacyLoss = ϵ + δ, UtilityPreservation = 1 − |Accprivate − Accnon-private|

Accnon-private
� (57)

Communication Efficiency:

	
CommReduction = 1 −

∑T

t=1 |θ(t)
compressed|∑T

t=1 |θ(t)
full|

� (58)

Explanation Quality:

	 ExplanationFidelity = Ex,y[I(sign(E (x)) = sign(∇f(x)))]� (59)

Statistical validation
Cross-Validation: 5-fold stratified cross-validation maintaining semantic group distributions.

Significance Testing: McNemar’s test for paired comparisons:

	
χ2 = (|n01 − n10| − 1)2

n01 + n10
� (60)

Confidence Intervals: Bootstrap sampling with B = 1000 iterations for 95% confidence intervals.

Implementation specifications
Software Framework: Python 3.10+ (Google Colab Pro+) with PyTorch 2.0, NumPy 1.24+, Pandas 2.0+, Scikit-
learn 1.3+, XGBoost 2.0+, Matplotlib 3.7+, Seaborn 0.12+

Federated Learning: Flower (flwr) framework for distributed training coordination, custom federated 
averaging implementation, secure multi-party computation protocols

Explainable AI: SHAP 0.42+ for feature importance analysis, LIME for local explanations with tabular data 
interpreter, integrated XAI pipeline for model interpretability

Model Architecture: Advanced Multi-Scale Cross-Attention with hierarchical feature processing, positional 
encoding, learnable semantic/temporal/statistical queries, attention diversity regularization

Training Enhancements: Curriculum learning with 3-stage difficulty progression, federated averaging with 
gradient compression, attention weight aggregation across multiple scales

Privacy Implementation: Differential privacy with moments accountant, secure aggregation using Flower’s 
built-in protocols, gradient clipping for bounded sensitivity

Reproducibility: Deterministic operations with fixed seeds across NumPy, PyTorch, and Python random 
modules, comprehensive experiment tracking, automated dependency installation Communication Efficiency: 
The multi-model ensemble totals 32,251,542 parameters (RelationNetwork: 1.34M, MAML: 0.72M, 
CrossTransformer: 25.79M, FEAT: 4.40M from Table 12), requiring 129 MB uncompressed per client per round 
(32.25M params × 4 bytes). Our gradient compression (TopK-30% + 8-bit quantization) achieves 75% reduction 
to 32.25 MB per round. For K=8 clients over 10 rounds: total communication is 5.16 GB compared to 20.64 GB 
uncompressed. On typical hospital networks (20 Mbps), each round completes in approximately 27 seconds (13s 
upload + 1s aggregation + 13s download), enabling 10-round training in under 5 minutes. This scales linearly: 
50 institutions require 3.2 GB per round, completing training in 28 minutes, remaining practical for regional 
healthcare federations.

Key Ablation Studies:

•	 Multi-scale vs single-scale attention mechanisms across attack types
•	 SHAP vs LIME explainability comparison for clinical decision support
•	 Flower federated vs centralized training convergence analysis
•	 Hierarchical vs flat feature processing impact on few-shot performance.

Hyperparameter selection methodology
All hyperparameters were systematically selected through empirical validation with comprehensive ablation 
studies, as detailed in Table 4. The selection protocol addresses federated learning constraints while ensuring 
statistical rigor.

Federated Client Optimization: We conducted systematic ablation studies across client configurations shown 
in Table 4, measuring convergence speed, communication overhead, and final accuracy. Results showed 8 
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clients achieved optimal balance: 4-6 clients suffered from insufficient data diversity (accuracy < 97%), while 
10-12 clients introduced communication bottlenecks without accuracy gains (plateau at 99.1%). The 8-client 
configuration achieved 99.3-99.8% accuracy with acceptable 120-second communication rounds.

Convergence Analysis for Federated Rounds: Training curves were analyzed using plateau detection with 
tolerance τ = 0.001 over 3 consecutive rounds, as specified in Table 4. Full dataset scenarios converged by 
round 8-10 (plateau detected at round 8.2 ± 1.1), while few-shot scenarios required 13-15 rounds due to limited 
local data (plateau at 13.8 ± 1.5). Safety margins of 2 rounds were added, yielding the final values shown in Table 
4.

Cross-Validation in Federated Setting: We employ federated cross-validation where each client performs 
local 5-fold CV for architecture hyperparameters listed in Table 4, then results are aggregated across clients 
using weighted averaging by dataset size. This ensures hyperparameters generalize across heterogeneous client 
distributions while maintaining privacy.

Feature Selection Weight Validation: Ensemble weights detailed in Table 4 were optimized through exhaustive 
grid search over the specified ranges. The selected combination [0.45, 0.25, 0.15, 0.15] outperformed equal 
weighting [0.25, 0.25, 0.25, 0.25] by 2.3% accuracy and uniform XGBoost [1.0, 0.0, 0.0, 0.0] by 3.7%, validated 
across 10 random data splits. XGBoost receives the highest weight (0.45) because it effectively captures non-
linear feature interactions critical for distinguishing complex attack patterns in healthcare IoT traffic while 
maintaining robustness to noise, making it the most reliable single method. Chi-square receives secondary 
weight (0.25) as it provides complementary categorical-numerical association detection using a different 
statistical framework than XGBoost’s gradient boosting. Mutual Information and Random Forest receive lower 
tertiary weights (0.15 each) because while they provide useful ensemble diversity, both correlate highly with 
XGBoost rankings (ρ > 0.8), creating information redundancy that limits their marginal contribution beyond 
validation. Equal weighting fails (2.3% accuracy loss) because it over-weights weaker methods (MI, RF) relative 
to their actual discriminative contribution, while single-method XGBoost-only fails (3.7% loss) by eliminating 
ensemble diversity needed to validate feature importance across multiple statistical perspectives. The optimal 
[0.45, 0.25, 0.15, 0.15] configuration balances XGBoost’s superior capability with complementary validation 
from Chi-square while minimizing redundancy from highly-correlated methods, achieving both high accuracy 
(99.9%) and stability (±0.03% across 10 splits) compared to equal weighting (97.6% ± 0.21%) and XGBoost-only 
(96.2% ± 0.34%).

Results
This section presents comprehensive experimental results demonstrating the effectiveness of the FedMedSecure 
framework across multiple evaluation dimensions: individual model performance, ensemble effectiveness, 
semantic clustering validation, comparative analysis with state-of-the-art approaches, explainable AI capabilities, 
federated learning convergence, few-shot learning adaptation, and comprehensive ablation studies.

Experimental setup and dataset analysis
Dataset description
The CIC IoMT2024 dataset, developed by the Canadian Institute for Cybersecurity at the University of New 
Brunswick, represents a comprehensive benchmark for Internet of Medical Things (IoMT) security research, 
encompassing network traffic captured from 40 IoMT devices (25 real and 15 simulated) across three critical 
healthcare protocols: Wi-Fi, MQTT, and Bluetooth Low Energy46. The dataset contains 8,798,703 total instances 
distributed across 19 classes, including 18 distinct attack types and benign traffic, with attacks categorized into 
five primary threat categories: DDoS attacks (4,846,623 samples), DoS attacks (2,222,205 samples), MQTT-based 

Parameter Search space Selected Validation method

Federated configuration (empirically validated)

Number of Clients {4, 6, 8, 10, 12} 8 Convergence-efficiency trade-off

Federated Rounds {5, 8, 10, 12, 15, 20} 10 (full), 15 (few-shot) Plateau detection analysis

Local Epochs {1, 3, 5, 7, 10} 3 (full), 5 (few-shot) Communication cost optimization

Architecture Configuration

dmodel {64, 128, 256, 512} 128 Cross-validation accuracy

Attention Heads {2, 4, 8, 16} 4 Memory-performance balance

Encoder Layers {1, 2, 3, 6} 2 Diminishing returns analysis

Feature Selection Ensemble

XGBoost Weight {0.3, 0.4, 0.45, 0.5, 0.6} 0.45 Grid search validation

Chi-square Weight {0.15, 0.2, 0.25, 0.3} 0.25 Stability analysis

Mutual Info Weight {0.1, 0.15, 0.2} 0.15 Feature redundancy metrics

Random Forest Weight {0.1, 0.15, 0.2} 0.15 Ensemble diversity measure

Table 4.  Hyperparameter selection with empirical justification.
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attacks (325,653 samples), reconnaissance attacks (131,402 samples), and spoofing attacks (17,791 samples), 
alongside 230,339 benign samples.

CIDC2017 Dataset Validation
To demonstrate FedMedSecure’s effectiveness beyond healthcare-specific environments, we conduct additional 
validation on the CICIDS2017 dataset60, containing 2,830,108 network traffic samples across 14 attack categories 
including DDoS attacks, DoS variants, brute force attempts, infiltration, and web-based attacks. This dataset 
provides complementary validation for general IoT cybersecurity scenarios.

Experimental configuration
Our evaluation utilizes the comprehensive CICIoMT2024 dataset containing 8,775,013 network traffic samples 
(after preprocessing) across 19 distinct attack types. Following our semantic clustering methodology described 
in Section 3.3, we evaluate performance on both the original 19-class classification and our proposed 5-class 
semantic grouping. All experiments were conducted using 8 NVIDIA V100 GPUs with 32GB memory each, 
simulating federated healthcare institutions. The implementation utilized PyTorch 2.0 with AdamW optimization 
(η = 10−3, λwd = 10−4), batch size of 64 episodes for few-shot learning, and gradient clipping with norm 1.0 
for stability.

Comprehensive performance comparison with state-of-the-art approaches
Individual model performance analysis
Table 5 presents detailed performance comparison of FedMedSecure components with existing state-of-the-art 
approaches on the CICIoMT2024 dataset. The CrossTransformer with novel attack-signature attention queries 
achieved perfect classification performance across all 19 attack types, significantly outperforming all existing 
approaches in the literature.

CrossTransformer performance analysis
The CrossTransformer with novel attack-signature attention queries achieved perfect classification performance 
across all 19 attack types, as illustrated in Fig. 3. The model’s exceptional performance validates our cross-attention 
mechanism design that explicitly learns relationships between network traffic features and attack signatures. The 
confusion matrix demonstrates flawless classification without any misclassification errors, confirming perfect 
discrimination capabilities across all attack classes.

Ensemble model performance analysis
Our confidence-weighted ensemble fusion mechanism demonstrates sophisticated adaptive behavior and 
superior performance. The final ensemble achieved perfect 100% accuracy across all metrics, as demonstrated 
in Figs. 4 and 5. This represents a significant achievement in IoMT cybersecurity, particularly given the dataset’s 
realistic class imbalance and attack diversity spanning DDoS, DoS, reconnaissance, and protocol-specific attacks. 
The ensemble effectively mitigates individual model limitations while leveraging their complementary strengths.

The corresponding ROC analysis in Fig. 5 demonstrates perfect discrimination performance with AUC = 
1.00 across all attack categories. This exceptional discriminative capability confirms that our ensemble approach 
maintains perfect classification performance while providing robust confidence measures for each prediction 
class.

Approach Architecture Classification Accuracy Precision Recall F1-Score

FedMedSecure Models

CrossTransformer Cross-Attention 19-class 99.9% 99.8% 99.9% 99.9%

StandardFEAT Set-to-Set Attention 19-class 99.9% 99.9% 99.8% 99.9%

RelationNetwork Adaptive Prototypes 19-class 99.7% 99.0% 99.8% 99.7%

FedMedSecure Ensemble Multi-Model Fusion 19-class 99.9% 99.9% 99.9% 99.9%

Existing State-of-the-Art Approaches

Shebl et al.32 DCNN Hybrid Binary 99.98% − − 99.86%

Doménech et al.35 Random Forest 19-class 99.85% − − 97.16%

Kharoubi et al.34 NIDS-DL-CNN Binary 99.78% 99.78% 99.78% 99.78%

Sharma & Shambharkar27 Multi-attention DeepCRNN Binary 99.78% 99.78% 99.78% 99.78%

Jeremiah et al.26 FL TabNet+MLP 18-class 99.70% − − 99.40%

Akar et al.30 L2D2 LSTM 18-class 99.70% − − 99.40%

Rehman et al.36 DNN Binary 99.70% − − 99.70%

Kavkas & Yildiz28 DNN/LSTM Binary 99.00% − − 99.00%

Misbah et al.25 FL Random Forest 18-class 99.22% 99.38% 99.22% 99.09%

Alturki & Alsulami33 XGBoost Semi-supervised Multi-class 98.00% − − −

Alabbadi & Bajaber29 X-FuseRLSTM 6-class 98.05% 98.05% 98.02% 98.02%

Alabbadi & Bajaber29 X-FuseRLSTM 19-class 97.66% 97.66% 97.55% 97.46%

Table 5.  Comprehensive performance comparison with state-of-the-art approaches on CICIoMT2024 dataset.
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Figure 6 demonstrates the ensemble model’s classification performance on the CIDC2017 dataset, achieving 
strong discrimination across all attack categories with an overall accuracy of 93.3

Figure 7 confirms exceptional discriminative performance with perfect AUC scores across all attack 
categories.

Semantic clustering validation and ensemble performance
Semantic clustering effectiveness analysis
To validate the effectiveness of our proposed semantic clustering approach, we conducted comprehensive 
evaluation of the ensemble model on the 5-class semantic grouping derived from our information-theoretic 
clustering methodology. The results demonstrate exceptional performance while validating the theoretical 
foundations of our clustering strategy.

Figure 8 presents the confusion matrix for ensemble model performance on 5-class semantic clustering, 
revealing near-perfect classification with minimal cross-class confusion. The ensemble achieves outstanding 
accuracy across all semantic groups: BENIGN (99.8%), DDOS_ATTACKS (100.0%), DOS_ATTACKS (100.0%), 
PROTOCOL_ATTACKS (99.3%), and RECONNAISSANCE (99.9%). Notably, only PROTOCOL_ATTACKS 
shows minimal misclassification (0.5% confusion with BENIGN and 0.1% with RECONNAISSANCE), which 
is expected given the sophisticated nature of protocol-based attacks that can mimic legitimate traffic patterns.

The corresponding ROC analysis in Fig. 9 demonstrates perfect discrimination performance with AUC = 
1.00 across all attack categories. This exceptional discriminative capability confirms that our semantic clustering 
approach maintains the essential discriminative information while significantly reducing computational 
complexity. The perfect AUC scores across all classes validate our information-theoretic analysis showing 92% 
mutual information preservation despite 68% entropy reduction.

The ensemble learning process reveals sophisticated adaptation dynamics: the system automatically reduced 
RelationNetwork’s contribution from 1.9% to 0.5% while balancing CrossTransformer (57.5%) and FEAT 
(42.0%) contributions. This adaptive weighting validates our confidence-based fusion approach, effectively 
mitigating the RelationNetwork’s limitations with minority classes while leveraging the complementary strengths 
of CrossTransformer and FEAT.

Fig. 3.  CrossTransformer model confusion matrix: perfect classification performance on 19-class 
CICIoMT2024 dataset.
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Clustering validation and theoretical confirmation
These results provide empirical validation of our theoretical clustering framework. The near-perfect 
performance (99.8-100% accuracy) across semantic groups confirms that our multi-dimensional similarity 
metrics successfully captured the essential characteristics of attack families. The minimal confusion between 
PROTOCOL_ATTACKS and BENIGN (0.5%) reflects the inherent challenge of distinguishing sophisticated 
intrusion attempts from legitimate network operations, a fundamental problem in cybersecurity that our 
approach handles exceptionally well.

The perfect discrimination capabilities demonstrated by AUC = 1.00 across all classes validate our hypothesis 
that semantic clustering enhances rather than compromises model performance. This finding contrasts 
sharply with traditional dimensionality reduction approaches that typically sacrifice discriminative power for 
computational efficiency. Our approach achieves both objectives simultaneously, establishing a new paradigm 
for attack taxonomy design in IoMT security.

Comparative analysis: semantic vs. granular classification
The semantic clustering approach provides multiple advantages: (1) 99.9% accuracy compared to 99.9% for 
19-class supervised learning, (2) superior few-shot performance with lower variance, (3) 2.3× training efficiency 
improvement, (4) enhanced class separability (0.97 vs. 0.94), and (5) 68% entropy reduction while preserving 
92% of mutual information. These results establish semantic clustering as the preferred approach for both 
computational efficiency and classification performance.. While both approaches achieve excellent results 
in supervised learning scenarios, the semantic clustering provides computational advantages (2.3× training 
efficiency) while maintaining essential discriminative capabilities. This efficiency gain becomes particularly 
valuable in federated learning environments where communication costs and computational resources are 
critical constraints.

Explainable AI analysis and interpretability framework
Multi-level XAI framework evaluation
Our multi-level XAI framework provides comprehensive interpretability across feature, attention, and prototype 
levels, addressing healthcare’s stringent explainability requirements. Table 7 compares FedMedSecure’s 
explainable AI capabilities with existing approaches in IoMT security, demonstrating our framework’s superiority 
in providing comprehensive, privacy-preserving explanations.

Fig. 4.  Ensemble model confusion matrix: perfect classification performance achievement on 19-class attack 
classification.
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SHAP feature importance analysis
Figure 10 presents comprehensive SHAP feature importance analysis, revealing key discriminative features for 
attack classification. The SHAP analysis identifies critical network traffic characteristics that drive classification 
decisions, revealing that packet timing features, flow duration statistics, and protocol-specific attributes 
constitute the most influential factors in attack detection, aligning perfectly with established cybersecurity 
domain expertise and validating our model’s decision-making process.

The analysis demonstrates that the top 10 features account for over 80% of the model’s decision-making 
process. This concentration of importance in a subset of features validates our feature selection methodology 
and provides actionable insights for network security monitoring. The rankings reveal the relative importance of 
different network traffic characteristics in distinguishing between various attack types and benign traffic.

LIME local explanation analysis
Figure 11 provides instance-level interpretability through LIME explanations, demonstrating how specific feature 
combinations contribute to individual predictions. The local explanations show clear decision boundaries and 
feature contribution patterns, enabling security analysts to understand why specific network traffic samples were 
classified as malicious or benign. This local explainability is crucial for healthcare cybersecurity analysts who 
need to understand and validate automated decisions for regulatory compliance.

Federated learning performance and convergence analysis
Federated learning comparison
Table 8 compares FedMedSecure’s federated learning capabilities with existing federated approaches in IoMT 
security. Our federated learning implementation across 8 simulated healthcare institutions demonstrates 
excellent convergence properties and privacy preservation capabilities, achieving the highest global accuracy 
among all federated approaches while providing formal differential privacy guarantees.

Federated training performance analysis
Figure 12 illustrates the training dynamics across 10 federated rounds, showing consistent improvement in global 
model performance. The federated learning protocol achieved 99.98% global accuracy while maintaining strong 
convergence properties across heterogeneous healthcare institutions, as detailed in Table 10. The low standard 

Fig. 5.  Ensemble model ROC curves: superior performance demonstration across all attack categories.
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Fig. 7.  CIDC2017 dataset ROC curves: perfect classification performance (AUC = 1.000) across all attack 
categories.

 

Fig. 6.  FedMedSecure ensemble confusion matrix on CIDC2017 dataset: multi-class attack classification 
performance validation.
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deviation across clients (≤0.0005) indicates effective knowledge sharing despite non-IID data distributions 
representative of different hospital types (ICU, Emergency, Research facilities).

Advanced federated technical analysis
Figure 13 provides detailed technical analysis including communication patterns, parameter synchronization 
efficiency, and privacy preservation metrics. The analysis demonstrates that our gradient compression achieves 
75% communication reduction while maintaining convergence properties. The differential privacy analysis 
with (ϵ, δ) = (1.0, 10−5) achieves an optimal balance for healthcare applications, with privacy parameters 
conservative enough to satisfy stringent healthcare regulations while permitting sufficient information sharing 
to maintain model utility.

Final federated model performance
Figure 14 demonstrates perfect classification performance in the federated setting, confirming that collaborative 
learning enhances rather than compromises detection capabilities. The confusion matrix shows flawless 

Fig. 9.  ROC curves for ensemble model on 5-class semantic clustering: perfect discrimination performance 
(AUC = 1.00) across all attack categories.

 

Fig. 8.  Ensemble model confusion matrix on 5-class semantic clustering: near-perfect classification 
performance with minimal cross-class confusion.
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classification across all attack categories, validating the effectiveness of our federated training protocol and 
multi-model ensemble approach in maintaining high performance while preserving privacy.

Few-shot learning evaluation and adaptation analysis
Few-shot learning performance analysis
Our few-shot learning evaluation follows the rigorous protocol outlined in Section 3.9, testing rapid adaptation 
capabilities with varying shot configurations (5, 10, 20, 50) across both semantic groupings and the original 
attack taxonomy. Table 11 presents comprehensive few-shot learning results for both classification scenarios. 
These shot values are carefully selected to reflect realistic IoMT threat detection scenarios: K=5 represents 
extreme data scarcity during initial novel attack emergence when only a handful of labeled samples are available 
from early detection systems or security incident reports; K=10 reflects early detection phase after preliminary 
analysis where security analysts have identified and labeled approximately 10 instances per attack type across 
network logs; K=20 represents moderate data collection after several hours of monitoring where sufficient 
examples exist for preliminary pattern analysis; K=50 simulates scenarios where healthcare institutions have 
accumulated substantial labeled examples over days of observation, approaching the boundary between few-
shot and traditional supervised learning. This progression from extreme scarcity (K=5) to moderate availability 
(K=50) enables evaluation of adaptation speed across the full spectrum of real-world data availability conditions 
encountered during novel IoMT threat response, where rapid adaptation with minimal labels is critical for 
timely defense deployment before attacks propagate across healthcare networks.

Multi-shot few-shot learning analysis
Figure 15 presents the confusion matrices for different shot configurations, demonstrating consistent high-
quality predictions across varying data availability scenarios. The results show remarkable stability in ensemble 
performance despite the challenging classification scenarios. Remarkably, the 19-class scenario achieved 
higher accuracy (99.7-99.8%) compared to the 5-class grouping (98.6-99.5%), with significantly lower standard 
deviations (0.3-0.4% vs. 1.2-3.0%). This counterintuitive result suggests that our semantic clustering, while 
theoretically sound, may have introduced information loss that affects few-shot adaptation performance in 
practice.

Figure 16 illustrates few-shot learning performance on CIDC2017, showing improvement from 91.0
Figure 17 provides detailed confusion matrices across shot configurations.

Fig. 10.  SHAP feature importance summary plot: comprehensive analysis for ensemble model explainability.
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Few-shot performance trends analysis
Figure 18 illustrates the performance trends across shot configurations, showing remarkable stability in ensemble 
performance despite the challenging 19-class scenario. The consistent high performance across different shot 
configurations (5, 10, 20, 50) demonstrates remarkable robustness to data scarcity scenarios, which is essential 
for healthcare environments that frequently encounter novel attack patterns with limited labeled examples. 
FedMedSecure introduces the first comprehensive few-shot learning evaluation for IoMT cybersecurity, 
addressing rapid adaptation to emerging threats-a capability not evaluated in existing literature.

Combined federated few-shot learning results
Integrated framework performance
The integration of federated learning with few-shot capabilities represents our framework’s most sophisticated 
evaluation scenario. Table 12 presents comprehensive results for the combined federated few-shot learning 
evaluation, demonstrating the effectiveness of our integrated architecture.

Computational complexity comparison with state-of-the-art
To provide comprehensive evaluation context, Table 13 compares FedMedSecure’s computational requirements 
against existing intrusion detection schemes on identical hardware (NVIDIA V100 GPU, 32GB RAM).

Complexity Analysis: While FedMedSecure requires higher computational resources (32.3M parameters, 12 
ms inference) compared to lightweight approaches like AttackNet (5M parameters, <5 ms), this overhead is 
justified by unique capabilities: (1) Few-shot learning enabling 99.7-99.8% accuracy with only 5-50 shots per class 
(unavailable in any existing work); (2) Formal privacy guarantees with differential privacy (ϵ = 1.0, δ = 10−5) 

Approach FL architecture Clients Global accuracy Privacy guarantees Communication efficiency

FedMedSecure Multi-Model Ensemble 8 99.8% DP (ϵ=1.0, δ=10−5) 75% Reduction

Jeremiah et al.26 TabNet+MLP Multiple 99.70% Not Specified Not Reported

Misbah et al.25 Ensemble (RF, AdaBoost, SVM, DL) 10 99.22% Data Partitioning Not Reported

Sharma & Shambharkar27 Lightweight DNN Multiple 91.44% (Cross-dataset) Not Specified Not Reported

Table 8.  Federated learning performance comparison with state-of-the-art approaches.

 

Fig. 11.  LIME Local explanations: instance-level interpretability for individual prediction analysis.
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for collaborative learning without data sharing; (3) Multi-level explainability (SHAP + Attention + Prototypes) 
required for healthcare regulatory compliance. The 12 ms inference latency remains acceptable for real-time 
network monitoring as threat detection operates at second-level granularity. Communication efficiency is 
achieved through 75% gradient compression (2.58 GB total for 10 rounds vs. 10.32 GB uncompressed), making 
federated deployment practical for bandwidth-constrained healthcare networks. Standard hospital servers 
(16-64 GB RAM) can accommodate the 2.5 GB memory footprint while monitoring 100-1000 IoMT devices 
simultaneously.

Combined federated few-shot performance analysis
Figure 19 demonstrates convergence patterns across 10 federated rounds with integrated few-shot ensemble 
learning. The analysis shows the sophisticated coordination between federated learning protocols and few-shot 
adaptation mechanisms, resulting in superior performance that exceeds individual component capabilities. 
The majority voting ensemble achieved perfect 100% accuracy in the combined federated few-shot scenario, 
demonstrating the effectiveness of our integrated architecture. Detailed computational complexity analysis 
comparing FedMedSecure with existing approaches is presented in Table 13. architecture.

Comprehensive ablation studies
Component contribution analysis
Table 14 presents detailed ablation studies examining the contribution of each framework component to overall 
performance. These studies systematically evaluate the impact of individual models, fusion mechanisms, privacy 
preservation, and architectural innovations.

Detailed analysis of confidence-weighted fusion impact
To thoroughly evaluate the contribution of our confidence-weighted fusion mechanism, we conducted 
comprehensive ablation experiments comparing different fusion strategies. Table 15 presents detailed results 
across attack categories.

The ablation results reveal that confidence-weighted fusion provides greatest benefit for PROTOCOL_
ATTACKS (+0.4%), the most challenging category involving sophisticated attacks (SQL Injection, XSS, 
Infiltration, Brute Force) that mimic legitimate traffic patterns and require nuanced discrimination. The 
mechanism also improves performance on RECONNAISSANCE (+0.2%) and BENIGN (+0.2%) categories, 
with the latter being particularly important for reducing false positives in healthcare operations. Confidence 
weighting reduces performance variance across 5-fold cross-validation from ±0.15% (uniform averaging) to 

Fig. 12.  Federated learning performance analysis: training dynamics across 10 federated rounds.
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±0.02%, representing a 7.5× reduction that demonstrates superior robustness and consistency across different 
data splits.

Statistical significance testing using McNemar’s test confirms that confidence-weighted fusion significantly 
outperforms uniform averaging (χ2 = 78.4, p < 0.001), particularly for minority attack classes where adaptive 
weighting compensates for class imbalance effects. While the overall accuracy improvement appears modest 
at +0.1%, this translates to 8,775 fewer misclassifications on CICIoMT2024’s 8.7M samples-a reduction that is 
critical in healthcare contexts where false negatives could compromise patient safety and false positives create 
alert fatigue for security analysts.

Analysis of weight evolution during training (Table 6) reveals sophisticated adaptive behavior by the 
confidence mechanism. CrossTransformer weight increased from initial 25% to final 57.5% (+130% relative gain), 
reflecting its superior attention-based pattern recognition capabilities across all attack categories. FEAT weight 
increased from 25% to 42.0% (+68% relative gain), leveraging its robust set-to-set adaptation mechanisms for 
handling diverse attack signatures. In contrast, RelationNetwork weight was systematically reduced from 25% to 
0.5% (-98% relative loss), automatically identifying its weakness on severely imbalanced classes where it achieves 
only 52.1% accuracy in 5-shot scenarios (Table 11), particularly struggling with rare attacks like Infiltration 
that comprise only 0.01% of the dataset. The mechanism compensates for RelationNetwork’s limitations by 
increasing contributions from complementary models, demonstrating query-adaptive intelligence rather than 
fixed weighting.

The superiority of confidence weighting over fixed strategies stems from its query-adaptive behavior that 
dynamically adjusts based on input characteristics. For challenging PROTOCOL_ATTACKS samples, the 
mechanism increases CrossTransformer weight to exploit its superior attention on complex patterns while 
reducing RelationNetwork contribution that struggles with sophisticated evasion techniques. The mechanism 
automatically identifies each model’s optimal operating regime: CrossTransformer excels at all categories (99.9% 
accuracy), FEAT handles episodic adaptation robustly (99.9% few-shot), while RelationNetwork contributes 
minimally due to imbalance sensitivity. This dynamic adjustment provides more stable predictions across 
different data distributions (±0.02% standard deviation) compared to uniform averaging (±0.15%), which is 
critical for reliable healthcare deployment where consistent performance is essential.

Analysis of misclassified samples (0.1% of dataset) reveals an important limitation: failures often occur when 
the confidence mechanism incorrectly assigns high weight to a model that confidently predicts the wrong class. 
This represents a fundamental limitation of confidence-based ensemble methods where high confidence does 
not guarantee correctness. The mechanism provides graceful degradation when individual models fail (e.g., 
RelationNetwork on rare attacks) by down-weighting unreliable predictions and leveraging remaining models, 

Fig. 13.  Advanced federated learning technical analysis: communication efficiency and privacy metrics.
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CICIoMT2024: 19-Class Original Classification

Shots Ensemble CrossTransformer RelationNet MAML FEAT

5 99.7 ± 0.4% 99.7 ± 0.4% 52.1 ± 3.0% 5.2 ± 2.8% 46.5 ± 3.8%

10 99.8 ± 0.3% 99.8 ± 0.3% 51.8 ± 3.2% 5.7 ± 3.8% 46.1 ± 3.9%

20 99.7 ± 0.4% 99.7 ± 0.4% 47.9 ± 3.9% 5.6 ± 3.9% 47.0 ± 3.9%

50 99.7 ± 0.4% 99.7 ± 0.4% 57.1 ± 3.1% 5.3 ± 3.2% 46.4 ± 3.1%

CICIoMT2024: 5-Class Semantic Grouping

5 99.9 ± 0.2% 99.9 ± 0.2% 75.8 ± 8.5% 28.7 ± 
9.1% 82.6 ± 6.2%

10 99.9 ± 0.2% 99.9 ± 0.2% 78.5 ± 7.1% 32.3 ± 
8.7% 85.1 ± 5.6%

20 99.9 ± 0.2% 99.9 ± 0.2% 84.7 ± 6.6% 35.4 ± 
7.7% 87.1 ± 4.8%

50 99.9 ± 0.1% 99.9 ± 0.1% 88.4 ± 5.6% 38.3 ± 
6.1% 89.6 ± 3.5%

CIDC2017: 14-Class General IoT

5 91.0 ± 2.1% 89.2 ± 2.8% 67.5 ± 4.2% 12.3 ± 
3.1% 85.1 ± 3.5%

10 97.0 ± 1.8% 95.8 ± 2.1% 71.2 ± 3.8% 15.7 ± 
2.9% 92.3 ± 2.4%

20 98.0 ± 1.2% 97.1 ± 1.5% 78.4 ± 2.9% 18.2 ± 
2.6% 95.7 ± 1.8%

50 99.3 ± 0.8% 98.9 ± 1.1% 84.6 ± 2.1% 21.4 ± 
2.2% 97.8 ± 1.2%

Table 11.  Comprehensive few-shot learning performance analysis: multi-dataset validation.

 

Fig. 14.  Federated learning final performance: confusion matrix demonstrating perfect global model 
classification.
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but cannot completely eliminate errors stemming from confident-incorrect predictions. Future work should 
investigate uncertainty-aware fusion mechanisms that distinguish between confident-correct and confident-
incorrect predictions to address this limitation.

Fig. 17.  CIDC2017 few-shot learning confusion matrices: performance analysis for 5, 10, 20, and 50-shot 
configurations.

 

Fig. 16.  Few-shot learning performance trends on CIDC2017 dataset: rapid adaptation capabilities.

 

Fig. 15.  Few-shot learning multi-configuration analysis: confusion matrices for 5, 10, 20, and 50 shots.
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Fig. 19.  Combined federated learning and few-shot ensemble performance: comprehensive analysis across 10 
rounds.

 

Fig. 18.  Few-shot learning performance trends: stability analysis across different shot configurations.
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Evaluation scenario 5-Class semantic 19-Class original Performance gap Significance

Supervised Learning 99.9% 99.9% 0.00% None

Few-Shot (5 shots) 99.9 ± 0.2% 99.7 ± 0.4% +0.2% p < 0.05

Few-Shot (10 shots) 99.9 ± 0.2% 99.8 ± 0.3% +0.1% p < 0.05

Few-Shot (20 shots) 99.9 ± 0.2% 99.7 ± 0.4% +0.2% p < 0.05

Few-Shot (50 shots) 99.9 ± 0.1% 99.7 ± 0.4% +0.2% p < 0.01

Federated Learning 99.9% 99.8% +0.1% p < 0.05

Cross-Institution 99.9% 99.8% +0.1% p < 0.05

Information-Theoretic Metrics

Entropy Reduction 68% 0% − −

Mutual Information Preservation 92% 100% − −

Class Separability 0.97 0.94 − −

Training Efficiency 2.3× 1.0× − −

Table 16.  Semantic clustering vs. original taxonomy ablation analysis.

 

Attack category Conf-weighted Uniform Avg Fixed weight Majority vote Improvement

BENIGN 99.8% 99.6% 99.7% 99.8% +0.2%

DDOS_ATTACKS 100.0% 99.9% 99.9% 100.0% +0.1%

DOS_ATTACKS 100.0% 99.9% 99.9% 100.0% +0.1%

RECONNAISSANCE 99.9% 99.7% 99.8% 99.9% +0.2%

PROTOCOL_ATTACKS 99.3% 98.9% 99.0% 99.1% +0.4%

Overall Accuracy 99.9% 99.8% 99.8% 99.9% +0.1%

Std Dev (5-fold CV) ±0.02% ±0.15% ±0.12% ±0.08% 7.5×reduction

Table 15.  Confidence-weighted fusion impact: performance breakdown by attack category.

 

Configuration Accuracy F1-Score Training time Memory usage

Individual Model Contributions

CrossTransformer Only 99.9% 99.8% High 1.2 GB

FEAT Only 99.9% 99.9% Medium 0.6 GB

RelationNetwork Only 99.7% 99.7% Low 0.4 GB

MAML Only 99.8% 99.7% Medium 0.3 GB

Ensemble Fusion Mechanisms

Uniform Averaging 99.8% 99.8% Medium 2.5 GB

Weighted Voting 99.8% 99.8% Medium 2.5 GB

Confidence-Weighted (Ours) 99.9% 99.9% Medium 2.5 GB

Majority Vote 99.9% 99.8% Medium 2.5 GB

Privacy Mechanism Impact

No Privacy (Baseline) 99.9% 99.9% Medium 2.5 GB

DP (ϵ=2.0, δ=10−5) 99.8% 99.8% Medium 2.6 GB

DP (ϵ=1.0, δ=10−5) 99.8% 99.8% Medium 2.7 GB

DP (ϵ=0.5, δ=10−5) 99.7% 99.7% Medium 2.8 GB

Feature Selection Impact

All 46 Features 99.7% 99.7% High 3.1 GB

Top 30 Features 99.8% 99.8% Medium 2.8 GB

Top 20 Features (Ours) 99.9% 99.9% Medium 2.5 GB

Top 10 Features 99.6% 99.6% Low 2.2 GB

Attention Mechanism Ablations

Without Cross-Attention 99.5% 99.5% Medium 2.1 GB

Standard Self-Attention 99.6% 99.6% Medium 2.3 GB

Cross-Attention (Ours) 99.9% 99.9% Medium 2.5 GB

Multi-Head (8 heads) 99.9% 99.8% High 2.7 GB

Table 14.  Comprehensive ablation study results.
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Semantic clustering vs. original taxonomy analysis
Table 16 presents detailed comparison between our semantic clustering approach and the original 19-class 
taxonomy across different evaluation scenarios. The results reveal important insights about the relationship 
between class granularity and learning effectiveness in cybersecurity contexts.

Approach XAI methods Explanation levels Privacy-preserving XAI

FedMedSecure SHAP + Attention + Prototypes Multi-level Yes

Alabbadi & Bajaber29 LIME + SHAP Feature-level No

Sharma & Shambharkar27 Attention weights Attention-level No

Other approaches Not Provided − No

Table 7.  Explainable AI Capabilities Comparison with State-of-the-Art Approaches.

 

Epoch CrossTransformer RelationNetwork FEAT Val accuracy

1 0.516 0.019 0.465 0.9975

5 0.558 0.006 0.436 0.9995

10 0.569 0.005 0.425 0.9999

15 0.573 0.005 0.422 0.9998

20 0.566 0.005 0.429 0.9999

25 0.575 0.005 0.420 1.0000

Table 6.  Evolution of ensemble weights during training.

 

Benchmark category FedMedSecure achievement Previous best

19-Class Classification Accuracy 99.9% 97.66%

5-Class Semantic Classification 99.9% Not Available

Few-Shot Learning (5 shots, 5-class) 99.9 ± 0.2% Not Available

Few-Shot Learning (5 shots, 19-class) 99.7 ± 0.4% Not Available

Federated Global Accuracy 99.8% 99.70%

Privacy-Preserving Performance 99.8% with DP Not Available

Communication Efficiency 75% Reduction Not Reported

Multi-Level XAI Integration SHAP + Attention + Prototypes Limited XAI

Cross-Attack Category Robustness 99.9% All Categories Variable Performance

Statistical Significance p < 0.001 Not Evaluated

Semantic Clustering Efficiency 2.3×Training Speedup Not Available

Table 18.  Performance benchmarks established by FedMedSecure.

 

Comparison χ2  Statistic p-value Significance level

FedMedSecure vs. Best Existing 245.7 < 0.001 Highly Significant

Ensemble vs. Individual Models 189.3 < 0.001 Highly Significant

5-class vs. 19-class Few-shot 78.4 < 0.001 Highly Significant (5-class better)

Federated vs. Centralized 123.4 < 0.001 Highly Significant

Semantic vs. Original Clustering 156.8 < 0.001 Highly Significant (Semantic better)

Cross-Validation Robustness Analysis

Approach Mean Accuracy Std Deviation 95% Confidence Interval

FedMedSecure (5-class) 99.9% ±0.02% [99.88%, 99.92%]

FedMedSecure (19-class) 99.8% ±0.03% [99.77%, 99.83%]

Best Existing 99.78% ±0.15% [99.63%, 99.93%]

Average Existing 98.92% ±0.87% [98.05%, 99.79%]

Table 17.  Comprehensive statistical validation results.
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Cross-dataset performance analysis
The comprehensive evaluation across both healthcare-specific (CICIoMT2024) and general IoT (CIDC2017) 
datasets reveals important insights about FedMedSecure’s generalizability and domain adaptation capabilities, as 
detailed in Table 9. The performance comparison demonstrates that while the framework achieves exceptional 
results on both datasets, domain-specific characteristics influence overall performance metrics.

The healthcare IoT dataset (CICIoMT2024) benefits from more structured attack patterns and protocol-
specific signatures, enabling perfect classification performance (Table 9). In contrast, the general IoT dataset 
(CIDC2017) presents more diverse attack vectors and network behaviors, resulting in slightly lower but still 
excellent performance (99.1

The few-shot learning results reveal particularly interesting domain transfer characteristics. The CIDC2017 
dataset shows more substantial improvement with increased shot counts (91.0% to 99.3%), suggesting that 
general IoT environments may require slightly more examples for optimal adaptation compared to healthcare-
specific scenarios. This finding has important implications for practical deployment in diverse IoT environments.

The perfect AUC scores achieved across both datasets validate the robustness of our attention mechanisms 
and ensemble fusion strategies, demonstrating that FedMedSecure’s architectural innovations are effective across 
diverse cybersecurity domains beyond healthcare applications.

Statistical validation and robustness analysis
Statistical significance testing
Table 17 presents comprehensive statistical validation results including McNemar’s test comparisons, cross-
validation analysis, and confidence interval estimation. Statistical significance testing using McNemar’s test 
demonstrates significant performance improvements over existing approaches.

Research impact and performance benchmarks
FedMedSecure establishes new performance benchmarks for IoMT cybersecurity across multiple dimensions. 
Table 18 summarizes the comprehensive benchmarks established by our framework, demonstrating significant 
advancement over existing state-of-the-art approaches.

These comprehensive results demonstrate that FedMedSecure significantly advances the state-of-the-art in 
IoMT cybersecurity, providing superior performance across all evaluation dimensions while introducing novel 
capabilities including few-shot learning adaptation, formal privacy guarantees, and comprehensive explainable 
AI integration. The framework’s combination of federated learning, few-shot adaptation, and explainable AI 
establishes a new paradigm for trustworthy collaborative cybersecurity in healthcare environments, with 
immediate applicability to financial services, critical infrastructure, and government networks requiring similar 
privacy-preserving collaborative threat detection capabilities.

Round Global accuracy Min client Max client Std Dev Round time (s)

1 0.9977 0.9968 0.9974 0.0002 205.0

2 0.9983 0.9969 0.9982 0.0005 204.7

3 0.9980 0.9970 0.9979 0.0003 206.8

5 0.9989 0.9981 0.9988 0.0003 205.1

7 0.9995 0.9981 0.9992 0.0004 205.1

10 0.9998 0.9992 0.9997 0.0002 206.1

Table 10.  Detailed federated learning convergence analysis.

 

Dataset Model Accuracy Precision Recall F1-Score

CICIoMT2024

CrossTransformer 99.9% 99.8% 99.9% 99.9%

FEAT 99.9% 99.9% 99.8% 99.9%

RelationNetwork 99.7% 99.0% 99.8% 99.7%

Ensemble 99.9% 99.9% 99.9% 99.9%

CIDC2017

CrossTransformer 98.5% 98.2% 98.8% 98.5%

FEAT 97.8% 97.5% 97.9% 97.7%

RelationNetwork 96.2% 95.8% 96.5% 96.1%

Ensemble 99.1% 98.8% 99.3% 99.0%

Table 9.  Comprehensive performance comparison: CICIoMT2024 vs. CIDC2017 dataset validation.
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Discussion
Performance analysis and architectural insights
The experimental results demonstrate that FedMedSecure achieves exceptional performance across all evaluation 
metrics, with ensemble accuracies consistently exceeding 99.5% in few-shot scenarios and reaching perfect 100% 
in standard supervised and federated settings. This performance represents a significant advancement in IoMT 
cybersecurity, particularly considering the CICIoMT2024 dataset’s realistic class imbalance and comprehensive 
attack diversity spanning multiple protocols and threat vectors.

The CrossTransformer’s superior performance validates our novel attack-signature attention mechanism 
design. The learnable attack signature queries enable explicit modeling of relationships between network traffic 
patterns and attack characteristics, providing both exceptional accuracy and interpretability. This architectural 
innovation addresses a critical gap in existing transformer-based cybersecurity approaches that treat network 
traffic as generic sequence data without domain-specific adaptations.

The ensemble weight evolution revealed in Table 6 demonstrates profound insights into model 
complementarity and automatic quality assessment. The systematic reduction of RelationNetwork’s contribution 
from 19% to 0.5% demonstrates our confidence-weighted fusion mechanism’s ability to identify and mitigate 
individual model weaknesses while preserving their strengths. This adaptive behavior is crucial for robust 
cybersecurity deployment where attack patterns evolve continuously and model performance may degrade over 
time.The perfect ensemble performance across multiple evaluation scenarios (standard supervised, federated, 
few-shot) suggests that our multi-model architecture successfully captures complementary aspects of IoMT 
threat detection: CrossTransformer excels at complex pattern recognition through attention mechanisms, FEAT 
provides robust adaptation capabilities, and RelationNetwork offers interpretable prototype-based reasoning, 
albeit with limitations in severely imbalanced scenarios. Computational complexity comparisons with state-
of-the-art approaches are detailed in Table 13, demonstrating that while FedMedSecure requires higher 
computational resources, this overhead is justified by unique capabilities unavailable in existing work.

Few-shot learning capabilities and semantic clustering analysis
The few-shot learning results reveal unexpected and important insights regarding the relationship between 
semantic clustering and rapid adaptation performance. While our 5-class semantic grouping achieved significant 
theoretical benefits (68% entropy reduction, 92% mutual information preservation), the 19-class original 
taxonomy demonstrated superior few-shot performance with substantially lower variance (0.3-0.4% vs. 1.2-
3.0%).

This counterintuitive finding challenges conventional wisdom about optimal class granularity for few-
shot learning and suggests that information-theoretic optimality may not always translate to improved rapid 
adaptation performance. The original 19-class taxonomy, despite higher complexity, appears to provide more 
granular discriminative information that benefits meta-learning algorithms in distinguishing between subtle 
attack variants.

Several factors may contribute to this phenomenon: (1) semantic clustering may have inadvertently merged 
attack types with distinct but subtle feature signatures that are crucial for few-shot discrimination; (2) the 
increased number of classes in the 19-class scenario provides richer episodic training diversity that enhances 
meta-learning generalization; (3) our cross-attention mechanisms may be particularly effective at handling fine-
grained distinctions when provided with more specific target classes.

The consistent high performance across different shot configurations (5, 10, 20, 50) shown in Figs. 13, 14, 
15, 16, 17 and 18 demonstrates remarkable robustness to data scarcity scenarios. Healthcare environments 
frequently encounter novel attack patterns with limited labeled examples, making this capability essential for 
practical deployment. The minimal performance degradation even with only 5 shots per class indicates that our 
framework can rapidly adapt to emerging threats within hours of initial detection.

Explainable AI integration and healthcare compliance
Our multi-level XAI framework successfully addresses healthcare’s stringent explainability requirements while 
maintaining high performance. The SHAP analysis presented in Fig. 10 reveals that packet timing features, 
protocol-specific attributes, and flow statistics are the primary drivers of classification decisions, aligning 
perfectly with established cybersecurity domain expertise and threat modeling principles.

The feature importance distributions demonstrate that our model has learned meaningful representations 
that correspond to actual attack mechanisms. For instance, the prominence of flow inter-arrival time and packet 
length variance in SHAP rankings reflects their importance in detecting volumetric attacks like DDoS, while 
TCP flag combinations are crucial for identifying protocol manipulation attacks.

The attention visualizations provide intuitive insights into attack pattern recognition, enabling security 
analysts to understand which network traffic characteristics receive focus for different attack types. This 
interpretability bridges the gap between automated detection and human understanding, crucial for maintaining 
analyst trust and enabling effective incident response.

The LIME explanations shown in Fig. 8 represent a novel contribution, maintaining interpretability while 
preserving privacy-a challenge rarely addressed in existing XAI literature. Our approach demonstrates that 
explainability and privacy preservation can be achieved simultaneously without significant performance trade-
offs, opening new directions for privacy-preserving interpretable AI in sensitive domains.

Federated learning effectiveness and privacy preservation
The federated learning implementation successfully demonstrates collaborative threat detection across 8 
simulated healthcare institutions while maintaining strict privacy guarantees. The remarkably low variance 
across clients (≤ 0.0005) despite heterogeneous data distributions indicates that our federated averaging 
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protocol effectively balances local and global knowledge, enabling institutions with different infrastructure types 
and threat exposure to benefit from collective intelligence.

The rapid convergence to 99.98% global accuracy within 10 rounds, as shown in Fig. 12, demonstrates the 
efficiency of our federated protocol. This fast convergence is particularly important for healthcare cybersecurity 
where threats evolve rapidly and defense mechanisms must adapt quickly to remain effective.

The differential privacy analysis with (ϵ, δ) = (1.0, 10−5) achieves an optimal balance for healthcare 
applications. The privacy parameters are conservative enough to satisfy stringent healthcare regulations 
while permitting sufficient information sharing to maintain model utility. The minimal utility loss (< 0.1%) 
demonstrates that formal privacy guarantees need not come at the expense of security effectiveness.

The 75% communication reduction through gradient compression addresses a critical practical concern for 
healthcare networks with bandwidth constraints and regulatory oversight of data transmission. This efficiency 
enables real-time collaborative threat detection without overwhelming network infrastructure or triggering 
regulatory compliance concerns about data movement.

Practical implications and deployment readiness
FedMedSecure’s exceptional performance metrics and comprehensive privacy guarantees position it as a practical 
solution for immediate deployment in real-world healthcare cybersecurity operations. The framework’s ability 
to detect novel attacks with minimal labeled samples directly addresses the dynamic nature of IoMT threat 
landscapes where new attack variants emerge daily and traditional signature-based detection fails.

The explainable AI capabilities facilitate seamless integration with existing healthcare security operations 
centers (SOCs), enabling analysts to understand, validate, and act upon automated threat detection decisions. 
This interpretability is not merely a technical feature but a regulatory necessity for healthcare deployment where 
“black box” AI systems face significant adoption barriers due to compliance requirements.

The federated architecture enables unprecedented collaborative threat intelligence sharing across healthcare 
institutions without exposing sensitive patient data or violating HIPAA regulations. This capability transforms 
cybersecurity from an institutional challenge to a community defense capability, potentially reducing successful 
attack rates across the entire healthcare ecosystem.

The framework’s computational efficiency and scalability metrics indicate readiness for production 
deployment. The ability to process 8.7M samples with sub-second inference times while maintaining perfect 
accuracy suggests that the system can handle real-world healthcare network traffic volumes without introducing 
latency that could impact critical medical operations.Communication overhead, while reduced 75% through 
compression, may challenge rural/developing-region institutions with <10 Mbps bandwidth (requiring 53 
seconds per round). Future work should investigate adaptive compression and asynchronous protocols for 
bandwidth-constrained participants. Regarding blockchain integration mentioned in Section 5.7, we clarify this 
represents future research rather than current implementation. The current system achieves security through 
differential privacy and secure aggregation without blockchain dependency, avoiding blockchain latency (0.3-15 
seconds per transaction) and throughput constraints (10-100 TPS) that would limit real-time federated learning. 
Future blockchain integration for audit trails would require consortium blockchains with off-chain model 
storage (on-chain cryptographic hashes only) to maintain acceptable latency while providing immutable records 
for regulatory compliance. Resource Constraints for IoMT Device Deployment Our framework was developed 

Approach Training Inference Memory Parameters Accuracy

FedMedSecure (Ours) 4.5 min 12 ms 2.5 GB 32.3M 99.9%

Nandanwar (AttackNet)14 2.7 min <5 ms 0.8 GB 5M 99.75%

Tawfik16 − <10 ms 2.0 GB 20M 99.7%

Shebl32 High 15 ms 1.5 GB 15M 99.98%

Jeremiah26 4.0 min 8 ms 1.0 GB 8M 99.7%

Alabbadi29 High 10 ms 1.8 GB 18M 97.66%

Table 13.  Computational Complexity Comparison with Existing Approaches.

 

Model component Individual accuracy Parameters Training time Memory usage

RelationNetwork 99.09% 1,343,878 Low 0.4 GB

MAML 99.78% 715,269 Medium 0.3 GB

CrossTransformer 93.59% 25,794,566 High 1.2 GB

FEAT 99.76% 4,397,829 Medium 0.6 GB

Ensemble Fusion Results

Majority Vote 99.9% − − 2.5 GB

Weighted Vote 99.8% − − 2.5 GB

Confidence Weighted 99.7% − − 2.5 GB

Table 12.  Combined federated few-shot learning performance results.
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and evaluated on cloud infrastructure (Google Colab Pro+ with NVIDIA V100 GPUs). However, practical IoMT 
security requires deployment consideration for resource-constrained medical devices. Table 12 shows ensemble 
memory requirements (2.5 GB) exceed typical IoMT device capabilities (medical sensors, wearables with 512 
MB - 2 GB RAM). Our current architecture is suitable for:

•	 Edge gateway deployment: Hospital edge servers (16-64 GB RAM, 4-8 CPU cores) can run full ensemble for 
network traffic analysis, protecting multiple downstream IoMT devices

•	 Institutional server deployment: Healthcare data center servers aggregate and analyze traffic from all insti-
tutional IoMT devices

•	 Federated participants: Hospital IT infrastructure acts as federated clients, not individual IoMT devices

Direct on-device deployment requires model compression strategies: knowledge distillation could reduce 
model size by 70-80% (from 2.5 GB to 500-750 MB), quantization (INT8) provides 4× memory reduction, 
and pruning eliminates 40-60% of parameters with <2% accuracy loss. Energy consumption analysis is needed: 
our current training (10 rounds, 4.5 minutes) consumes approximately 0.15 kWh on V100 GPU, acceptable for 
server deployment but requiring optimization for battery-powered edge devices. Future work should evaluate 
lightweight model variants (MobileNet-style architectures, <100 MB) suitable for resource-constrained IoMT 
gateways while maintaining >95% detection accuracy.

Limitations and research challenges
Despite exceptional experimental performance, several limitations warrant careful consideration and future 
research attention. First, our evaluation relies entirely on simulated federated environments rather than actual 
healthcare network deployments with genuine institutional privacy constraints, regulatory oversight, and 
network heterogeneity. The transition from simulation to real-world deployment may reveal challenges not 
captured in our experimental setup.

Second, the semantic clustering approach showed mixed results with theoretical optimality not translating 
to improved few-shot performance. This finding suggests that our understanding of the relationship between 
information-theoretic measures and few-shot learning effectiveness in cybersecurity contexts requires deeper 
investigation. Future work should explore alternative clustering strategies and develop new metrics that better 
predict few-shot learning performance.

Third, our evaluation focuses exclusively on network-level attacks captured in the CICIoMT2024 dataset. 
The framework’s effectiveness against application-level threats, insider attacks, and emerging IoMT-specific 
vulnerabilities such as firmware manipulation, medical device hijacking, and sensor spoofing remains untested. 
Healthcare cybersecurity extends beyond network traffic analysis to encompass device integrity, user behavior, 
and application security.

Adversarial robustness and byzantine fault tolerance Additionally, the framework’s performance under 
adversarial conditions where attackers specifically target federated learning systems needs comprehensive 
evaluation. Our current federated aggregation uses simple weighted averaging, which assumes all participating 
healthcare institutions are honest-but-curious. This represents a significant limitation when facing adversarial 
scenarios where malicious nodes may send corrupted model updates. While our differential privacy mechanism 
(ϵ = 1.0, δ = 10−5) provides theoretical privacy guarantees and gradient clipping (norm ≤ 1.0) bounds 
individual client influence, we have not conducted explicit adversarial experiments against:

•	 Byzantine attacks: Where malicious clients send arbitrarily corrupted model updates. Our current aggrega-
tion is vulnerable to such attacks. Future work should integrate robust aggregation methods such as Krum61, 
Trimmed Mean, or Median aggregation that can tolerate up to 33% Byzantine clients.

•	 Model poisoning: Where adversaries craft subtle model updates that degrade global model performance on 
specific attack types while maintaining normal accuracy on benign traffic. Defense mechanisms like anomaly 
detection on gradient distributions and cosine similarity filtering between client updates should be investi-
gated.

•	 Inference attacks: Despite differential privacy, membership inference and model inversion attacks may still 
extract sensitive information from model parameters. Stronger privacy budgets (ϵ < 1.0) or federated learn-
ing with secure multi-party computation provide enhanced protection but require privacy-utility trade-off 
analysis.

Formal security proofs under Byzantine threat models and empirical adversarial robustness evaluation represent 
critical future work for production healthcare deployment where attackers may specifically target the federated 
learning protocol.

Broader impact and future research directions
FedMedSecure’s success demonstrates the transformative potential of federated few-shot learning for 
addressing critical cybersecurity challenges beyond healthcare. The framework’s principles-privacy-preserving 
collaboration, rapid adaptation to novel threats, and explainable decision-making-are directly applicable to other 
privacy-sensitive domains including financial services, critical infrastructure protection, government networks, 
and industrial control systems.

The research opens several promising future directions: (1) integration with blockchain technologies for 
enhanced trust, transparency, and audit trails in federated learning; (2) development of continual learning 
capabilities that adapt to gradually evolving threat landscapes without catastrophic forgetting; (3) extension 
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to multi-modal threat detection incorporating device behavior analysis, user activity monitoring, and network 
traffic analysis for comprehensive security coverage.

Investigation of adversarial robustness represents a critical research priority. As federated learning systems 
become more widespread, attackers will develop sophisticated strategies to poison local models, manipulate 
global aggregation, or exploit the federated training process itself. Developing robust defenses against these 
meta-attacks while maintaining privacy guarantees presents significant research challenges.

The framework’s explainable AI capabilities create opportunities for automated threat report generation, 
intelligent incident response workflows, and adaptive security policy recommendation systems. Future work 
should explore how XAI insights can drive autonomous security orchestration and reduce the burden on human 
security analysts.

Finally, the development of formal verification techniques for federated few-shot learning systems represents 
an important theoretical challenge. Healthcare applications require formal guarantees about system behavior, 
privacy preservation, and security effectiveness that extend beyond empirical evaluation to mathematical proofs 
of correctness and robustness.

The convergence of federated learning, few-shot adaptation, and explainable AI in FedMedSecure represents 
a significant step toward trustworthy, collaborative, and adaptive cybersecurity systems. As healthcare becomes 
increasingly digitized and interconnected, such frameworks will be essential for protecting patient safety and 
institutional integrity in the face of evolving cyber threats.

Conclusion
This paper introduced FedMedSecure, a novel federated few-shot learning framework for IoMT cybersecurity 
that successfully integrates privacy-preserving collaborative learning, rapid threat adaptation, and explainable 
AI. Our multi-model ensemble architecture combines CrossTransformer with learnable attack signature queries, 
FEAT, RelationNetwork with adaptive prototypes, and regularized MAML to achieve superior threat detection 
while maintaining formal differential privacy guarantees.

Extensive evaluation on the CICIoMT2024 dataset containing 8.7 million samples demonstrates exceptional 
performance: 99.99% accuracy in standard supervised learning, 99.7-99.8% accuracy in few-shot scenarios 
with as few as 5 shots per class, and 99.98% global accuracy in federated settings across 8 institutions. The 
framework achieves 75% communication reduction while preserving (ϵ, δ) = (1.0, 10−5) differential privacy. 
Counterintuitively, the original 19-class attack taxonomy outperformed our theoretically optimized 5-class 
semantic clustering in few-shot learning, revealing important insights about class granularity and meta-learning 
effectiveness.

Our multi-level XAI framework provides comprehensive interpretability across feature, attention, and 
prototype levels, with SHAP analysis revealing packet timing features and protocol-specific attributes as 
primary attack discriminators. The confidence-weighted ensemble fusion mechanism automatically adapts to 
individual model performance, with RelationNetwork contributions reduced from 19% to 0.5% while balancing 
CrossTransformer (57.5%) and FEAT (42.0%) contributions.

FedMedSecure enables collaborative threat detection across healthcare institutions without compromising 
patient privacy, transforming cybersecurity from an institutional challenge to a community defense capability. 
The framework’s combination of federated learning, few-shot adaptation, and explainable AI establishes a new 
paradigm for trustworthy cybersecurity in sensitive domains, with immediate applicability to financial services, 
critical infrastructure, and government networks. Future work will focus on real-world deployment validation, 
adversarial robustness, and multi-modal threat detection integration.

Future work
Future research directions include: (1) validation in real healthcare network deployments with genuine 
institutional constraints; (2) blockchain integration for audit trails (noting this is future work, not current 
implementation-current system uses differential privacy and secure aggregation for security without blockchain 
latency/throughput constraints); (3) investigation of adversarial robustness against sophisticated attacks 
targeting federated learning protocols, and extension to multi-modal threat detection incorporating device 
behavior and user activity analysis. Additional priorities include integration with blockchain technologies for 
enhanced trust and transparency, development of continual learning capabilities for evolving threat landscapes, 
and formal verification techniques for federated few-shot learning systems in critical healthcare applications.

Data availability
This study utilized two publicly available benchmark datasets: the CICIoMT2024 dataset4 (https://www.unb.ca/ 
cic/datasets/iomt-dataset-2024.html), containing 8.7 million IoMT network traffic samples across 19 attack cat-
egories, and the CICIDS2017 dataset60 (https://www.unb.ca/cic/datasets/ids-2017.html), containing 2.8 million 
general IoT samples across 14 attack categories. Both datasets are freely accessible from the Canadian Institute 
for Cybersecurity at the University of New Brunswick.

Received: 24 July 2025; Accepted: 17 October 2025

References
	 1.	 Niu, Q. et al. Toward the Internet of Medical Things: Architecture, trends and challenges. Math. Biosci. Eng. 21, 650–678. ​h​t​t​p​s​:​/​/​d​

o​i​.​o​r​g​/​1​0​.​3​9​3​4​/​m​b​e​.​2​0​2​4​0​2​8​​​​ (2024).

Scientific Reports |        (2025) 15:40050 40| https://doi.org/10.1038/s41598-025-25107-z

www.nature.com/scientificreports/

https://www.unb.ca
https://www.unb.ca/cic/datasets/ids-2017.html
https://doi.org/10.3934/mbe.2024028
https://doi.org/10.3934/mbe.2024028
http://www.nature.com/scientificreports


	 2.	 Ewoh, P. & Vartiainen, T. Vulnerability to cyberattacks and sociotechnical solutions for health care systems: Systematic review. J. 
Med. Internet Res. 26, e46904. https://doi.org/10.2196/46904 (2024).

	 3.	 Ahmed, S. F. et al. Insights into Internet of Medical Things (IoMT): Data fusion, security issues and potential solutions. Information 
Fusion 102, 102060. https://doi.org/10.1016/j.inffus.2023.102060 (2024).

	 4.	 Dadkhah, S. et al. CICIoMT2024: Attack vectors in healthcare devices-a multi-protocol dataset for assessing IoMT device security. 
Internet of Things 28, 101321. https://doi.org/10.1016/j.iot.2024.101321 (2024).

	 5.	 Thabit, F. & Can, O. Internet of Medical Things (IoMT) security: A comprehensive review. Comput. Commun. 218, 48–66. ​h​t​t​p​s​:​/​/​
d​o​i​.​o​r​g​/​1​0​.​1​0​1​6​/​j​.​c​o​m​c​o​m​.​2​0​2​4​.​0​1​.​0​2​0​​​​ (2024).

	 6.	 Teo, Z. L. et al. Federated machine learning in healthcare: A systematic review on clinical applications and technical architecture. 
Cell Rep. Med. 5, 101419. https://doi.org/10.1016/j.xcrm.2024.101419 (2024).

	 7.	 Rahman, A. et al. Federated learning-based AI approaches in smart healthcare: concepts, taxonomies, challenges and open issues. 
Clust. Comput. 26, 2271–2311. https://doi.org/10.1007/s10586-022-03658-4 (2023).

	 8.	 Nandanwar, H. & Katarya, R. A secure and privacy-preserving IDS for IoT networks using hybrid blockchain and federated 
learning. In Proceedings of International Conference on Next-Generation Communication and Computing (NGCCOM 2024), vol. 
1305 of Lecture Notes in Networks and Systems, 207–219, https://doi.org/10.1007/978-981-96-3725-6_18 (Springer, Singapore, 
2025).

	 9.	 Nandanwar, H. & Katarya, R. Privacy-preserving data sharing in blockchain-enabled IoT healthcare management system. Comput. 
J. https://doi.org/10.1093/comjnl/bxaf065 (2025).

	10.	 Nandanwar, H. & Katarya, R. Optimized intrusion detection and secure data management in IoT networks using GAO-XGBoost 
and ECC-integrated blockchain framework. Knowl. Inf. Syst. https://doi.org/10.1007/s10115-025-02513-3 (2025).

	11.	 Khatun, M. A., Memon, S. F., Eising, C. & Dhirani, L. L. Machine learning for healthcare-IoT security: A review and risk mitigation. 
IEEE Access 11, 145869–145896. https://doi.org/10.1109/ACCESS.2023.3346320 (2023).

	12.	 Liu, C. et al. Overcoming data limitations: A few-shot specific emitter identification method using self-supervised learning and 
adversarial augmentation. IEEE Trans. Inf. Forensics Secur. 19, 500–513. https://doi.org/10.1109/TIFS.2024.3427361 (2024).

	13.	 Wang, R. et al. A lightweight model design approach for few-shot malicious traffic classification. Sci. Rep. 14, 24710. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​
g​/​1​0​.​1​0​3​8​/​s​4​1​5​9​8​-​0​2​4​-​7​3​3​4​2​-​7​​​​ (2024).

	14.	 Nandanwar, H. & Katarya, R. Deep learning enabled intrusion detection system for industrial iot environment. Expert Syst. Appl. 
249, 123808. https://doi.org/10.1016/j.eswa.2024.123808 (2024).

	15.	 Zhang, H., Li, J. L., Liu, X. M. & Dong, C. Multi-dimensional feature fusion and stacking ensemble mechanism for network 
intrusion detection. Futur. Gener. Comput. Syst. 122, 130–143. https://doi.org/10.1016/j.future.2021.03.024 (2021).

	16.	 Tawfik, M. Optimized intrusion detection in IoT and fog computing using ensemble learning and advanced feature selection. PLoS 
ONE 19, e0304082. https://doi.org/10.1371/journal.pone.0304082 (2024).

	17.	 Arreche, O., Guntur, T. R., Roberts, J. W. & Abdallah, M. E-XAI: Evaluating black-box explainable AI frameworks for network 
intrusion detection. IEEE Access 12, 23954–23988. https://doi.org/10.1109/ACCESS.2024.3365140 (2024).

	18.	 Mohale, V. Z. & Obagbuwa, I. C. Evaluating machine learning-based intrusion detection systems with explainable AI: enhancing 
transparency and interpretability. Front. Comput. Sci. https://doi.org/10.3389/fcomp.2025.1476721 (2025).

	19.	 Brauneck, A. et al. Federated machine learning, privacy-enhancing technologies, and data protection laws in medical research: 
Scoping review. J. Med. Internet Res. 25, e41588. https://doi.org/10.2196/41588 (2023).

	20.	 Shen, A., Francisco, L., Sen, S. & Tewari, A. Exploring the relationship between privacy and utility in mobile health: a simulation of 
federated learning, differential privacy, and external attacks. J. Med. Internet Res. 25, e43664. https://doi.org/10.2196/43664 (2023).

	21.	 Bhushan, B. et al. Towards a secure and sustainable internet of medical things (iomt): Requirements, design challenges, security 
techniques, and future trends. Sustainability 15, 6177. https://doi.org/10.3390/su15076177 (2023).

	22.	 Tauqeer, H. et al. Enhanced intrusion detection system for Internet of Medical Things using meta-learning. Sensors 23, 5456. 
https://doi.org/10.3390/s23125456 (2023).

	23.	 Yan, Y. et al. Meta learning-based few-shot intrusion detection for 5G-enabled industrial internet. Complex Intell. Syst. 10, 4589–
4608. https://doi.org/10.1007/s40747-024-01388-1 (2024).

	24.	 Qi, T. et al. Collaborative machine learning with differential privacy for healthcare. eBioMedicine 101, 105006. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​
0​1​6​/​j​.​e​b​i​o​m​.​2​0​2​4​.​1​0​5​0​0​6​​​​ (2024).

	25.	 Misbah, A., Sebbar, A. & Hafidi, I. Securing Internet of Medical Things: An advanced federated learning approach. Int. J. Adv. 
Comput. Sci. Appl. 16 (2025).

	26.	 Jeremiah, S. R., El Azzaoui, A., Gritzalis, S. & Park, J. H. Multi-view learning and model fusion framework for threat detection in 
multi-protocol IoMT networks. Information Fusion https://doi.org/10.1016/j.inffus.2025.103435 (2025).

	27.	 Sharma, N. & Shambharkar, P. G. Multi-attention DeepCRNN: an efficient and explainable intrusion detection framework for 
Internet of Medical Things environments. Knowledge and Information Systems 1–67 (2025).

	28.	 Kavkas, N. C. & Yildiz, K. Enhancing IoMT security with deep learning based approach for medical IoT threat detection. In 2025 
13th International Symposium on Digital Forensics and Security (ISDFS), 1–5, https://doi.org/10.1109/ISDFS65363.2025.11012062 
(IEEE, 2025).

	29.	 Alabbadi, A. & Bajaber, F. X-FuseRLSTM: A cross-domain explainable intrusion detection framework in IoT using the attention-
guided dual-path feature fusion and residual LSTM. Sensors 25, 3693. https://doi.org/10.3390/s25123693 (2025).

	30.	 Akar, G., Sahmoud, S., Onat, M., Cavusoglu, Ü. & Malondo, E. L2D2: A novel LSTM model for multi-class intrusion detection 
systems in the era of IoMT. IEEE Access https://doi.org/10.1109/ACCESS.2025.3526883 (2025).

	31.	 Hernandez-Jaimes, M. L., Martinez-Cruz, A., Ramírez-Gutiérrez, K. A. & Morales-Reyes, A. Network traffic inspection to enhance 
anomaly detection in the Internet of Things using attention-driven deep learning. Integration 103, 102398. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​0​1​6​
/​j​.​v​l​s​i​.​2​0​2​5​.​1​0​2​3​9​8​​​​ (2025).

	32.	 Shebl, A., Elsedimy, E. I., Ismail, A., Salama, A. A. & Herajy, M. DCNN: A novel binary and multi-class network intrusion detection 
model via deep convolutional neural network. EURASIP J. Inf. Secur. 2024, 36 (2024).

	33.	 Alturki, B. & Alsulami, A. A. Semi-supervised learning with entropy filtering for intrusion detection in asymmetrical IoT systems. 
Symmetry 17, 973. https://doi.org/10.3390/sym17060973 (2025).

	34.	 Kharoubi, K., Cherbal, S., Mechta, D. & Gawanmeh, A. Network intrusion detection system using convolutional neural networks: 
Nids-dl-cnn for iot security. Clust. Comput. 28, 219. https://doi.org/10.1007/s10586-024-04904-7 (2025).

	35.	 Doménech, J., León, O., Siddiqui, M. S. & Pegueroles, J. Evaluating and enhancing intrusion detection systems in IoMT: The 
importance of domain-specific datasets. Internet of Things https://doi.org/10.1016/j.iot.2025.101631 (2025).

	36.	 Rehman, M.  U., Kalakoti, R. & Bahşi, H. Comprehensive feature selection for machine learning-based intrusion detection in 
healthcare IoMT networks. In Proceedings of the 11th International Conference on Information Systems Security and Privacy - 
Volume 2: ICISSP, 248–259, https://doi.org/10.5220/0013313600003899. INSTICC (SciTePress, 2025).

	37.	 Hernandez-Jaimes, M. L., Martínez-Cruz, A., Ramírez-Gutiérrez, K. A. & Guevara-Martínez, E. Enhancing machine learning 
approach based on nilsimsa fingerprinting for ransomware detection in IoMT. IEEE Access ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​1​0​9​/​A​C​C​E​S​S​.​2​0​2​4​
.​3​4​8​0​8​8​9​​​​ (2024).

	38.	 Kumar, H., Kumar, H., Harish, Nandanwar, H. & Katarya, R. Enhancing security and scalability of IoMT systems using blockchain: 
Addressing key challenges and limitations. In Proceedings of the 6th International Conference on Deep Learning, Artificial Intelligence 
and Robotics (ICDLAIR 2024), 191–202, https://doi.org/10.2991/978-94-6463-740-3_17 (Atlantis Press, 2025).

Scientific Reports |        (2025) 15:40050 41| https://doi.org/10.1038/s41598-025-25107-z

www.nature.com/scientificreports/

https://doi.org/10.2196/46904
https://doi.org/10.1016/j.inffus.2023.102060
https://doi.org/10.1016/j.iot.2024.101321
https://doi.org/10.1016/j.comcom.2024.01.020
https://doi.org/10.1016/j.comcom.2024.01.020
https://doi.org/10.1016/j.xcrm.2024.101419
https://doi.org/10.1007/s10586-022-03658-4
https://doi.org/10.1007/978-981-96-3725-6_18
https://doi.org/10.1093/comjnl/bxaf065
https://doi.org/10.1007/s10115-025-02513-3
https://doi.org/10.1109/ACCESS.2023.3346320
https://doi.org/10.1109/TIFS.2024.3427361
https://doi.org/10.1038/s41598-024-73342-7
https://doi.org/10.1038/s41598-024-73342-7
https://doi.org/10.1016/j.eswa.2024.123808
https://doi.org/10.1016/j.future.2021.03.024
https://doi.org/10.1371/journal.pone.0304082
https://doi.org/10.1109/ACCESS.2024.3365140
https://doi.org/10.3389/fcomp.2025.1476721
https://doi.org/10.2196/41588
https://doi.org/10.2196/43664
https://doi.org/10.3390/su15076177
https://doi.org/10.3390/s23125456
https://doi.org/10.1007/s40747-024-01388-1
https://doi.org/10.1016/j.ebiom.2024.105006
https://doi.org/10.1016/j.ebiom.2024.105006
https://doi.org/10.1016/j.inffus.2025.103435
https://doi.org/10.1109/ISDFS65363.2025.11012062
https://doi.org/10.3390/s25123693
https://doi.org/10.1109/ACCESS.2025.3526883
https://doi.org/10.1016/j.vlsi.2025.102398
https://doi.org/10.1016/j.vlsi.2025.102398
https://doi.org/10.3390/sym17060973
https://doi.org/10.1007/s10586-024-04904-7
https://doi.org/10.1016/j.iot.2025.101631
https://doi.org/10.5220/0013313600003899
https://doi.org/10.1109/ACCESS.2024.3480889
https://doi.org/10.1109/ACCESS.2024.3480889
https://doi.org/10.2991/978-94-6463-740-3_17
http://www.nature.com/scientificreports


	39.	 McMahan, B., Moore, E., Ramage, D., Hampson, S. & Aguera y Arcas, B. Communication-efficient learning of deep networks from 
decentralized data. In Proceedings of the 20th International Conference on Artificial Intelligence and Statistics (2017).

	40.	 Wei, K. et al. Federated learning with differential privacy: Algorithms and performance analysis. IEEE Trans. Inf. Forensics Secur. 
https://doi.org/10.1109/TIFS.2020.2988575 (2020).

	41.	 Finn, C., Abbeel, P. & Levine, S. Model-agnostic meta-learning for fast adaptation of deep networks. In Proceedings of the 34th 
International Conference on Machine Learning, https://doi.org/10.5555/3305381.3305498 (2017).

	42.	 Snell, J., Swersky, K. & Zemel, R. S. Prototypical networks for few-shot learning. Adv. Neural Inf. Process. Syst. (2017).
	43.	 Dwork, C. Differential privacy. In 33rd International Colloquium on Automata, Languages and Programming, ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​0​

0​7​/​1​1​7​8​7​0​0​6​_​1​​​​ (2006).
	44.	 Ye, H.-J., Hu, H., Zhan, D.-C. & Sha, F. Few-shot learning via embedding adaptation with set-to-set functions. In Proceedings of the 

IEEE/CVF Conference on Computer Vision and Pattern Recognition (2020).
	45.	 Li, T. et al. Federated optimization in heterogeneous networks. Proceedings of Machine Learning and Systems ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​4​8​

5​5​0​/​a​r​X​i​v​.​1​8​1​2​.​0​6​1​2​7​​​​ (2020).
	46.	 Dadkhah, S. et al. CICIoMT2024: A benchmark dataset for multi-protocol security assessment in IoMT. Internet of Things 28, 

101351. https://doi.org/10.1016/j.iot.2024.101351 (2024).
	47.	 Kale, R. & Thing, V. L. L. Few-shot weakly-supervised cybersecurity anomaly detection. Comput. Secur. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​0​1​6​/​j​.​

c​o​s​e​.​2​0​2​3​.​1​0​3​1​9​4​​​​ (2023).
	48.	 Breiman, L. Random forests. Mach. Learn. https://doi.org/10.1023/A:1010933404324 (2001).
	49.	 Freund, Y. & Schapire, R.  E. Experiments with a new boosting algorithm. In Machine Learning: Proceedings of the Thirteenth 

International Conference (1996).
	50.	 Al-rimy, B. A. S., Maarof, M. A. & Shaid, S. Z. M. Ensemble learning for intrusion detection systems: A systematic mapping study 

and cross-benchmark evaluation. Comput. Commun. https://doi.org/10.1016/j.comcom.2021.08.011 (2021).
	51.	 Sung, F. et al. Learning to compare: Relation network for few-shot learning. IEEE/CVF Conf. Comput. Vis. Pattern Recogn. ​h​t​t​p​s​:​/​/​

d​o​i​.​o​r​g​/​1​0​.​1​1​0​9​/​C​V​P​R​.​2​0​1​8​.​0​0​1​3​1​​​​ (2018).
	52.	 Vaswani, A. et al. Attention is all you need. In Advances in Neural Information Processing Systems, vol. 30 (2017).
	53.	 Long, Z., Yan, H., Shen, G., Li, J. & Yu, S. A transformer-based network intrusion detection approach for cloud security. J. Cloud 

Comput. https://doi.org/10.1186/s13677-023-00574-9 (2024).
	54.	 Laghrissi, F., Douzi, S., Douzi, K. & Hssina, B. Ids-attention: An efficient algorithm for intrusion detection systems using attention 

mechanism. J. Big Data https://doi.org/10.1186/s40537-021-00544-5 (2021).
	55.	 Chahal, A., Gupta, A. & Chandra, P. Design of a federated ensemble model for intrusion detection in distributed iiot networks for 

enhancing cybersecurity. Comput. Electr. Eng. https://doi.org/10.1016/j.compeleceng.2024.109724 (2025).
	56.	 Rieke, N. et al. The future of digital health with federated learning. npj Digital Medicine ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​0​3​8​/​s​4​1​7​4​6​-​0​2​0​-​0​0​3​2​

3​-​1​​​​ (2020).
	57.	 Lundberg, S. M. & Lee, S.-I. A unified approach to interpreting model predictions. In Advances in Neural Information Processing 

Systems (2017).
	58.	 Ribeiro, M. T., Singh, S. & Guestrin, C. Why should i trust you?: Explaining the predictions of any classifier. In Proceedings of the 

22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, https://doi.org/10.1145/2939672.2939778 
(2016).

	59.	 Gaspar, D., Silva, P. & Silva, C. Explainable ai for intrusion detection systems: Lime and shap applicability on multi-layer perceptron. 
IEEE Access https://doi.org/10.1109/ACCESS.2024.3368377 (2024).

	60.	 Sharafaldin, I., Lashkari, A.  H. & Ghorbani, A.  A. Toward generating a new intrusion detection dataset and intrusion traffic 
characterization. ICISSp 108–116 (2018).

	61.	 Blanchard, P., Mhamdi, E. M. E., Guerraoui, R. & Stainer, J. Machine learning with adversaries: Byzantine tolerant gradient descent. 
Adv. Neural Inf. Process. Syst. (NeurIPS) 30, 119–129 (2017).

Author contributions
M.T. conceived the study, developed the methodology including few-shot learning algorithms and federated 
learning protocols, and conducted experiments. A.A.A. contributed to privacy analysis and differential priva-
cy implementation. H.M.N. provided technical guidance on experimental design and assisted with validation. 
A.H.A. contributed to cybersecurity analysis and threat modeling. I.S.F. contributed to the explainable AI frame-
work development and manuscript review. All authors reviewed and approved the final manuscript.

Declarations

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to M.T.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Scientific Reports |        (2025) 15:40050 42| https://doi.org/10.1038/s41598-025-25107-z

www.nature.com/scientificreports/

https://doi.org/10.1109/TIFS.2020.2988575
https://doi.org/10.5555/3305381.3305498
https://doi.org/10.1007/11787006_1
https://doi.org/10.1007/11787006_1
https://doi.org/10.48550/arXiv.1812.06127
https://doi.org/10.48550/arXiv.1812.06127
https://doi.org/10.1016/j.iot.2024.101351
https://doi.org/10.1016/j.cose.2023.103194
https://doi.org/10.1016/j.cose.2023.103194
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1016/j.comcom.2021.08.011
https://doi.org/10.1109/CVPR.2018.00131
https://doi.org/10.1109/CVPR.2018.00131
https://doi.org/10.1186/s13677-023-00574-9
https://doi.org/10.1186/s40537-021-00544-5
https://doi.org/10.1016/j.compeleceng.2024.109724
https://doi.org/10.1038/s41746-020-00323-1
https://doi.org/10.1038/s41746-020-00323-1
https://doi.org/10.1145/2939672.2939778
https://doi.org/10.1109/ACCESS.2024.3368377
http://www.nature.com/scientificreports


Open Access   This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 
4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in 
any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide 
a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have 
permission under this licence to share adapted material derived from this article or parts of it. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence 
and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to 
obtain permission directly from the copyright holder. To view a copy of this licence, visit ​h​t​t​p​:​/​/​c​r​e​a​t​i​v​e​c​o​m​m​o​
n​s​.​o​r​g​/​l​i​c​e​n​s​e​s​/​b​y​-​n​c​-​n​d​/​4​.​0​/​​​​​.​​

© The Author(s) 2025 

Scientific Reports |        (2025) 15:40050 43| https://doi.org/10.1038/s41598-025-25107-z

www.nature.com/scientificreports/

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.nature.com/scientificreports

	﻿FedMedSecure: federated few-shot learning with cross-attention mechanisms and explainable AI for collaborative healthcare cybersecurity
	﻿﻿Related work
	﻿Federated learning approaches for healthcare IoT security
	﻿Deep Learning and Attention Mechanisms for Intrusion Detection
	﻿Multi-model and ensemble approaches
	﻿Explainable AI in healthcare cybersecurity
	﻿Domain-specific considerations and cross-domain generalization
	﻿Blockchain integration and hybrid security frameworks
	﻿Advanced ensemble learning and feature fusion approaches

	﻿﻿Methodology
	﻿Notation and terminology
	﻿ Formulation and theoretical framework
	﻿Theoretical convergence guarantees


	﻿﻿Enhanced dataset specification and semantic attack taxonomy
	﻿CICIoMT2024 dataset characteristics
	﻿Novel semantic attack clustering
	﻿Information-theoretic analysis of clustering

	﻿Stability-enhanced multi-method feature selection
	﻿Selected features analysis
	﻿Multi-method ensemble feature selection
	﻿Feature stability analysis



