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Planning cooler cities through
integration of UAV thermal
Imagery and GIS in local climate
zone studies

Gokge Gonilll Sitcioglu®™ & Ayse Kalayci(?

Urban microclimates result from complex interactions between buildings, vegetation, and human
activities, impacting energy consumption, air quality, and urban planning. Understanding and mapping
these microclimates is essential for sustainable city development. Geographic Information Systems
(GIS) play a crucial role in analyzing microclimate patterns by integrating spatial datasets such as land
cover, building heights, and meteorological data. This study examines urban microclimates in izmir's
Konak District using GIS and unmanned aerial vehicles (UAVs) equipped with thermal sensors. By
classifying Local Climate Zones (LCZs) and analyzing their relationship with land surface temperatures
(LSTs), the research highlights how urban morphology shapes microclimatic conditions. The study area
was divided into 2,435 grids, with UAV-based thermal imaging providing high-resolution temperature
data. Findings indicate that LCZs with high impermeable surface fractions (e.g., LCZ 7, LCZ 8, and

LCZ E) exhibited elevated temperatures, while vegetated or water-rich zones (e.g., LCZ B and LCZ

G) demonstrated cooling effects. The Heat Load Map identified 8.8% of the district as experiencing
excessive heat, while 21.7% benefited from optimal thermal conditions due to green and blue

spaces. This study underscores the importance of increasing vegetation and permeable surfaces to
mitigate urban heat islands (UHIs). By integrating UAV technology with GIS, it advances LCZ-based
urban climate research and provides practical tools for climate-responsive planning. Understanding
microclimates in dense urban areas enables targeted strategies to reduce heat stress, improve air
quality, and enhance urban livability.

Keywo rds Local climate zones, Urban heat island, Urban climate, Unmanned aerial vehicle, Thermal
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Urban microclimates—resulting from the interactions among urban form, surface materials, vegetation, and
anthropogenic heat emissions—significantly influence thermal comfort, energy demand, and health outcomes
in cities, making them a central focus in climate-responsive planning!~>. The Urban Heat Island (UHI) effect,
characterized by elevated temperatures in urban areas relative to their rural surroundings, has been shown to
intensify in response to climate change, urban densification, and the degradation of vegetated surfaces*’. These
factors collectively exacerbate thermal disparities within cities and amplify public health and energy concerns
during heatwave events. UHI increases energy consumption, degrades air quality, and heightens vulnerability to
heat-related health issues, particularly during extreme heat events®’.

Understanding UHT’s spatial variability within cities remains challenging due to both the limited resolution of
conventional satellite data and the morphological complexity of urban landscapes®. In response to this challenge,
urban climate researchers have increasingly turned to classification schemes that systematically account
for morphological and functional characteristics. Among these, the Local Climate Zone (LCZ) framework
introduced by Stewart and Oke® has become the most widely adopted, as it provides a standardized typology for
mapping urban and natural surfaces based on structure, land cover, and function. Its 17-zone classification (10
built types and 7 land cover types) enables global comparative studies and forms the basis of initiatives such as
the World Urban Database and Access Portal Tools (WUDAPT), which aim to produce standardized LCZ maps
for cities worldwide®11.
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LCZ classification has often been combined with satellite imagery, GIS, and machine learning to analyze
surface UHI (SUHI) patterns. While this approach has yielded valuable insights, especially for large-scale inter-
city comparisons, the coarse resolution of satellite-derived Land Surface Temperature (LST) data frequently
limits its usefulness for fine-scale urban planning!>!3. For instance, Chen et al.'* in Chenzhou and Geleti¢ &
Lehnert!® in Olomouc demonstrated how LCZ-based mapping can reveal intra-urban temperature variations;
however, their reliance on satellite-based LST data underscores the challenge of capturing detailed urban
morphology with sufficient accuracy. This limitation has motivated emerging research to explore unmanned
aerial vehicles (UAVs) as a flexible, high-resolution alternative capable of overcoming the spatial constraints of
satellite observations.

Recent studies have shown that UAVs equipped with thermal sensors can provide sub-meter scale resolution,
enabling highly precise neighborhood-scale temperature monitoring'¢~'8. For example, Kim et al.!” demonstrated
that UAV-derived thermal data captured land cover temperature differences in Korean urban green spaces with
greater accuracy than satellite-derived LST, while Webster et al.'® employed UAVs to characterize vegetation
canopies thermally in three dimensions. Together, these studies highlight how UAV-based thermal remote
sensing has rapidly advanced the analytical scope of UHI research.

Beyond offering higher spatial resolution, UAV's enable monitoring of UHI intensity across multiple heights
and times of day, providing crucial data for designing both vertical and temporal interventions. This capacity
supports adaptive strategies such as building design modifications and time-sensitive cooling measures, which
are particularly relevant for enhancing climate resilience in medium-sized and rapidly growing cities?*?!.
Moreover, the fine-grained thermal information generated by UAVs facilitates the detection of micro-urban
heat islands (MUHIs) and localized hotspots that are often invisible to satellite-based analyses. Such detailed
identification strengthens the potential for targeted mitigation strategies, from optimizing vegetation placement
to planning energy consumption more effectively in heterogeneous urban landscapes®*-2*.

Despite advancements in high-resolution data acquisition and LCZ classification, studies systematically
integrating UAV-derived thermal imagery with LCZ frameworks remain limited, often emphasizing classification
accuracy or satellite-based LST analyses without delving into intra-zone temperature variations'®. Studies
show the integration of UAV-derived thermal data with LCZ classification enhances the spatial resolution
and contextual relevance of urban heat assessments, enabling precise SUHI intensity mapping and temporal
monitoring during heatwaves. This integration supports urban planning by providing actionable data for heat
mitigation, energy efficiency measures, and climate adaptation strategies, as demonstrated in various case studies
across different cities?!">>26, UAV-based LCZ analysis facilitates the development of localized urban heat hazard
models and informs sustainable urban development decisions.

UAV and LCZ integrated approaches inform urban heat mitigation strategies by identifying high-risk zones
and evaluating cooling effects of urban green spaces, albedo modifications, and morphological adjustments.
These data support policy and design decisions aimed at improving outdoor thermal comfort, reducing energy
consumption, and enhancing urban resilience to climate change??*-?°. Findings underscore the practical utility
of fine-scale thermal and morphological data for sustainable urban development.

Deep learning models, object detection algorithms, and machine learning-based clustering techniques
are increasingly applied to enhance LCZ classification accuracy and to model UHI dynamics effectively.
These methods improve the semantic understanding of urban landscapes from high-resolution imagery and
enable the identification of critical variables affecting UHI, such as building density and vegetation extent.
The incorporation of Al-driven approaches facilitates automated, scalable analyses supporting urban climate
resilience studies?®30:31,

Few studies have systematically combined UAV-derived thermal data with LCZ classification to assess surface
temperature variations across entire urban districts. Where UAV studies exist, they typically focus on isolated
features such as parks!” or infrastructure’?, leaving a gap in large-scale applications that integrate both built and
natural LCZ classes. Furthermore, Mediterranean cities, which are highly vulnerable to heat stress due to their
dense urban forms and climatic conditions, remain underrepresented in UAV-based LCZ research.

The potential of UAV imagery to capture dynamic microclimatic variations and inform adaptive planning
remains underutilized. In response to this research gap, this study proposes a localized, integrative approach.
This study addresses this gap by integrating UAV-based LST measurements with GIS-derived LCZ classifications
in Konak, Izmir, a dense urban area with diverse building morphologies and land uses. Combining thermal
imagery from UAYV flights with municipal zoning and functional data, the methodology classifies LCZs, assigns
statistical temperature profiles, identifies high-heat-load zones, and simulates thermal impacts of future planning
scenarios.

The novelty of this study lies in its empirical integration of UAV-derived thermal imagery with LCZ
classification and spatial statistics to assess intra-zone temperature variability—an approach rarely applied at
the neighborhood scale in high-density Mediterranean urban contexts. While satellite-based approaches offer
broader coverage, they often lack the spatial resolution necessary to capture intra-urban heterogeneity. UAVs, by
contrast, enable high-resolution temperature measurements but have rarely been applied systematically to classify
LCZs and generate heat load maps for dense metropolitan areas. By combining real-time thermal mapping with
zoning and functional land use data within a GIS framework, the study develops a replicable methodology
that enables planners to identify high-risk heat exposure zones and simulate planning interventions. These
contributions support climate-sensitive urban design and align with global policy frameworks such as the UN
Sustainable Development Goals (Goal 11) and the New Urban Agenda, both of which emphasize data-driven
resilience strategies for cities.
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Materials and methods

Study area

The study was conducted in Konak District, located at the core of [zmir, Turkey (Fig. 1). Konak serves as the
historical, administrative, and commercial center of the city, hosting landmarks such as the Kemeralt1 Bazaar,
Konak Square, and the Izmir Clock Tower. While these cultural and historical features highlight the district’s
importance, the urban morphology and environmental conditions are of particular relevance for climate
and UHI studies. Konak is characterized by dense and heterogeneous land use, including commercial areas,
residential neighborhoods, industrial zones, and port facilities. Its compact street network and mix of traditional
and modern buildings contribute to diverse microclimatic conditions.

Climatically, Konak falls within the Mediterranean climate zone, with hot, dry summers and mild, wet
winters. The annual average temperature is approximately 18-19 °C, with mean monthly temperatures ranging
from around 10 °C in January to 28-30 °C in July and August®. Prevailing winds are dominated by northwesterly
sea breezes (locally known as fmbat) during the summer, which provide natural cooling, while southerly winds
are more common in winter months. Average annual precipitation is about 700-800 mm, concentrated between
November and March.

The built environment of Konak predominantly features reinforced concrete structures with flat or tiled
roofs, asphalt-paved roads, and extensive impervious surfaces. In the historic bazaar, narrow streets with
stone pavements and metal or tile-roofed buildings are common, while modern residential and commercial
zones employ concrete and glass as primary materials. Vegetation cover is sparse in the central areas, limited
mostly to small urban parks, scattered street trees, and coastal green corridors. Typical plant species include
Mediterranean evergreens such as olive (Olea europaea) and laurel (Laurus nobilis), as well as ornamental trees
like plane (Platanus orientalis) and pine (Pinus pinea).

This combination of high-density built-up areas, limited vegetation, and climatic conditions makes Konak a
suitable case study for exploring intra-urban thermal variability. The district’s heterogeneous urban morphology
aligns well with the Local Climate Zone (LCZ) framework, enabling systematic classification and detailed
examination of UHI effects at the neighborhood scale.

Methodology
The study conducted to determine the LCZs for the Konak District and to relate these areas to LST consists of
the stages outlined in Fig. 2.

Data collection

The initial phase of the research involved gathering spatial and cadastral datasets from the Konak Municipality™.
These datasets, provided in vector format, included building footprints, building heights, road networks and
widths, land use classifications, and administrative boundaries. This information was essential for characterizing
the urban environment and understanding the dynamics of the study area. Landsat 8 satellite images were
obtained from the USGS?” portal. These images were used to derive land use, pervious surface fraction (PSF),
and impervious surface fraction (ISF) indicators, all of which contribute to LCZ classification.

Fig. 1. Study area (created by combining images adapted from®*-**.
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Fig. 2. Study workflow.

Subdivision of the study area

LCZs are typically delineated using either city block-based units®® or standardized fixed-size grids*. A common
method involves using 1-ha (100 x 100 m) grids, considered the smallest local spatial unit that significantly
influences thermal behavior®. Alternatively, some studies determine optimal grid size by analyzing statistical
variations in urban form, particularly building height!*%. In studies aimed at determining the appropriate grid
size for the study area, “spatial autocorrelation,” which arises from the idea that nearby objects tend to show more
similarity than distant ones, has been employed. In modeling, semivariance (y) increases with distance (h) and
reaches a maximum level at a threshold distance. In certain situations, when y no longer changes with distance,
this distance is considered the scale of spatial dependence. For instance, Zeng et al.** applied Ordinary Kriging
to identify optimal spatial scales in Hong Kong, resulting in a recommended 300 x 300 m grid. However, such
approaches require extensive variogram analysis, which was not feasible in this study due to data and temporal
constraints. Based on the literature and data characteristics of the study area, a finer-scale 100 x 100 m grid
was adopted for all analyses, representing a standard unit in urban thermal studies. The total study area of 2435
hectares has been divided into 2435 grids. Accordingly, the 2435 grids, each covering 1 hectare (100 m x 100 m),
together represent the entire 2435-hectare study area.
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Indicators | Definition Basic datav\ "
BH Building Height: average building height of each grid, weighted by building floor area (BA: Building area, BAG: Building area of | Byijding Basai—Basemap
the grid) T BA@Ii
. . . a3 1 . a1 . Building E—"Ba@map
BSF Building Surface Fraction: Fraction of the total building floor area within the grid (BA: Building area, GA: Grid area BSF = i1t
- GA
o a1 . . Building ve Road Data-
AR Aspect Ratio: Ratio of average building height to average road width Basemap and OSM
DU svri
Skyview Factor: It is the SVF of the study area in an area without buildings (Chen et al., 2010). S_Sky and ¥Sb represent the sky SVE = i1
SVF area and the area occupied by buildings at a given point, respectively. SSky+XSb represents the entire hemispherical environment "
at a given point. SVFi— — SSky
(SSky—+ Z Sb
SF Pervious Surface Fraction: Ratio of pervious areas to grid area Landsat 8 Satellite Image -USGS
Table 1. Data and calculation method for local climate zone (LCZ) indicators.
Building Road Landsat Image Land Use
Raster Calculations /Zonal Statistics -
Building Height Aspect Ratio Skyview factor
Classification
Pervious Surface Impervious Building Surface
Frac. Surface Frac. Frac.
Classification
v
(4
a®
LCZ Classes
According to > LCZ Classes
Urban Structure
Indicators | Definition Basic data
ISF Impervious Surface Fraction: Ratio of impervious areas to grid area Landsat 8 Satellite Image -USGS
U Lanq Use: Land use classification was performed via supervised classification of Landsat 8 imagery and validated against Landsat 8 Satellite Image -USGS
municipal cadastral data.

Fig. 3. LCZ classification flowchart.

GIS based LCZ classification
Drawing upon spatial datasets from the Konak Municipality and classification criteria proposed in LCZ literature
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(e.g%.,, a set of morphological and surface indicators were selected for determining LCZ types. These analyses,
along with the data sources and calculation methods, are presented in Table 1.

The analyses have been fuzzified according to the ranges obtained in various studies based on the classification
by Stewart and Oke®. The intervals that emerged as a result of the analyses conducted within the scope of the
study and used for LCZ classification are given in the results section. Flowchart of developing LCZ classification
is illustrated in Fig. 3.

Determining the representative grids for UAV flights
The sample size was determined using a standard formula for simple random sampling. There are a total of 2435
squares in the study area. Based on a total population of 2435 units, the minimum required sample size was
calculated using the standard formula for finite populations under simple random sampling. Ata 95% confidence
level and 5% margin of error, the sample size was 332; at 90% confidence, it was 245. However, considering that
flights should be conducted with a drone at the same time intervals on days with similar temperatures, it was
decided that it would not be feasible to conduct flights over a large number of 100 m x 100 m squares; thus, the
total sample size was set at 245 squares with a confidence interval of 90% and a margin of error of 5%.
Following LCZ classification, 14 distinct zone types were identified across the Konak district. Accordingly, the
“Stratified Random Sampling” method was chosen to determine the distribution of the total sample size among
the LCZ classes. The stratified random sampling method is used in cases where the population is heterogeneous
and there is a need to represent different subgroups of the population. Stratified sampling enhances precision in
heterogeneous spatial populations by ensuring proportional representation of each stratum, thereby reducing
sampling error. This approach is particularly effective in spatial studies where variability within strata is
minimized, as demonstrated in recent applications utilizing geospatial technologies*!~**. For stratified sampling,
when the number of cells in each stratum is known, the following formula (1) was used to calculate the sample
size for each stratum:

nk=mnx Nk/N (1)

nk = Sample size for each stratum.

n = Total sample size.

Nk = Number of cells in each stratum.

N = Total number of cells.

To validate the representativeness of the sample across LCZ types, a chi-square goodness-of-fit test was
conducted. This test compared the observed frequency of grids within each LCZ (based on the 245-sample
distribution) against the expected frequencies calculated from the population LCZ proportions (totaling 2,435
cells). The test statistic was computed as;

2 (Oi — Ei)?
=3 Ei

where Oi O_i Oi is the observed frequency and Ei is the expected frequency, with degrees of freedom (df)
determined as the number of LCZ categories minus one. This approach ensured that the sampling strategy
aligned with the thermal diversity of the study area.

UAV flights and thermal imaging

Thermal data were acquired in the selected sample grids using the DJI Matrice 30T, a commercial-grade UAV
equipped with an integrated radiometric thermal camera, selected for its high operational reliability in urban
environmental monitoring. The UAV operates within an ambient temperature range of —20 °C to + 50 °C, with
a thermal resolution of 640 x 512 pixels, 40 mm equivalent focal length, 30 fps frame rate, and a measurement
accuracy of +2 °C under standard atmospheric conditions.

The flights were carried out between May 20 and May 31, at an altitude of 250 m above ground level, during
the time period of 11:30 AM to 1:30 PM a time frame selected to minimize diurnal variability in land surface
temperature caused by solar angle shifts. Given that the tallest building in the Konak District is approximately
220 m, a flight altitude of 250 m above ground level (AGL) was selected to ensure obstacle clearance. Flights were
executed at 7 m/s with image overlap rates of 80% (forward) and 60% (side).

For clarity, UAV flight altitudes may be referenced in three ways: (1) AGL - altitude relative to surface
elevation; (2) ATO - fixed altitude relative to takeoff elevation; and (3) AMSL - altitude relative to mean sea
level’. In this study, AGL was selected to maintain uniform vertical distance across the heterogeneous urban
surface.

To address potential temperature fluctuations during UAV operations, all flights were conducted between
11:30 AM and 1:30 PM under clear sky and low-wind conditions. This time window was chosen to minimize
the impact of rapid surface temperature variations due to solar angle changes. The DJI Matrice 30 T UAV used
in the study features a radiometrically calibrated thermal sensor. A pre-flight stabilization period of 5 min
was applied prior to each mission to allow the thermal sensor to reach thermal equilibrium with ambient air
temperature, reducing thermal drift and ensuring sensor accuracy*$. To minimize variability in initial ground
surface emissivity and thermal inertia, all UAV missions were launched from asphalt surfaces. These operational
controls minimized intra-day LST variability, reducing the need for temporal normalization across the 245
sampled grids and enhancing inter-grid comparability.
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In 25 stages, individually processed thermal rasters were converted into
orthomosaic (ArcGIS Drone to Map).

The squares with thermal data were identified by associating thermal orthomosaic
with 100*100 grids used for LCZ classification within the borders of Konak district.

The number of sample grids was calculated for a 5% margin of error at 90% confidence interval.
These squares were randomly selected.

UAV-based Thermal Observations were normalized for exact time (12.30 pm)

For these grids, the average temperature value was generated with zonal statistics.

Tables with LCZ information and temperature values were prepared for the
sampled squares.

LCZ classes with only 1 sample were excluded from the evaluation and statistical

properties were extracted from the values of the sample grids for the LCZ classes.

Fig. 4. Thermal image processing and spatial analysis workflow for LCZ-based sample grids.

Data analysis

Thermal images collected during UAV flights were processed in ArcGIS Drone2Map to generate radiometrically
consistent orthomosaics through image alignment, georeferencing, and mosaicking procedures. Orthomosaics
were imported into ArcGIS Pro 3.6, where average land surface temperature values were extracted for each
100x100 m grid using the Zonal Statistics tool. The overall thermal data processing workflow, including
mosaicking, temperature extraction, and spatial assignment to sample grids, is illustrated in Fig. 4.

Temporal normalization of UAV-based thermal observations

To correct for temporal variability in land surface temperature (LST) resulting from UAV flight durations
exceeding one hour, a normalization approach was applied using LCZ E (bare rock or paved surfaces) grids,
which are known to have low thermal inertia and stable diurnal profiles®. Due to their minimal vegetation
and high thermal responsiveness, LCZ E areas are particularly suitable for representing short-term diurnal LST
fluctuations under stable atmospheric conditions.

Each grid was timestamped according to UAV metadata, and surface temperature was extracted from
calibrated thermal imagery with a temporal resolution sufficient to capture within-hour fluctuations. The data
were used to construct a temporal LST regression model, forming the basis for interpolating surface temperatures
to a common reference time.

AlILST values across different LCZ classes were adjusted to a common reference time (12:30 PM) using a linear
interpolation based on the LCZ E temperature-time curve. This approach minimized diurnal bias and ensured
comparability among grids captured at different times during the UAV survey. The normalization enhances the
temporal integrity of the LST dataset, thereby increasing the reliability of spatial analyses comparing thermal
profiles across LCZ classes.

Establishing the statistical relationship between LCZs and LSTs and creating LST map
After calculating the average LST values for each grid, point representations were generated from the centroids
of sampled grids, and spatial interpolation (Inverse Distance Weighting - IDW) was applied to produce a
continuous ‘Average Surface Temperature’ map. In addition, a spatial ‘Heat Load’ map was generated to classify
the thermal stress levels across Konak District based on standardized LST values.

Heat load can be classified into four categories (optimal, suitable, less suitable, and unsuitable) based on
standardized temperature values derived from the applied z-transformation. The formula (2) used for this
process is as follows*>:

z2=(X—p)/o (2)

where X is the average temperature of a single test cell, u is the average temperature of all tested cells, and
o is the standard deviation of the average LST of all test cells. Areas with a value less than —1 in this spatial
z-transformation process are classified as having the lowest heat load, while areas with a value greater than 1 are
defined as having the highest heat load. A raster was created by applying the formula to all grids with average
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temperature data, followed by reclassification to produce a map showing the areas classified as optimal, suitable,

less suitable, and unsuitable for heat load.

Results

The results of this study are presented in three subsections to offer a comprehensive and structured analysis
of the urban thermal environment in Konak District. Initially, the spatial distribution of Local Climate Zones
(LCZs) is examined, followed by a detailed analysis of the thermal characteristics of each LCZ type. Finally, the
spatial differentiation patterns of heat load are investigated to highlight the key drivers of thermal stress within

the study area.

Spatial distribution of LCZs in Konak district

The analysis prepared with the data obtained from Konak Municipality and Landsat 8 satellite images downloaded

from the USGS portal are shown in Fig. 5.
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Compact high-rise | 1 >=15 | 40-60 | 0.2-0.4 | >2 <=10 | 40-60
Compact midrise 2 5-15 | 40-70 | 0.3-0.6 | 0.75-2.75 <20 50-100
Compact low-rise 3 1-5 | 40-70 | 0.2-0.6 | 0.75-1.5 =<30 | 50-100
Open high-rise 4 <=15 | 20-40 | 0.5-0.7 | 0.75-1.25 30-40 | 30-50
Open midrise 5 5-15 | 20-40 | 0.5-0.8 | 0.3-0.75 20-40 | 30-50
Open low-rise 6 1-5 | 20-40 | 0.6-0.9 | 0.3-0.75 30-60 | 20-50
Lightweight low-rise | 7 1-3 | 60-90 | 0.2-0.5 | 1-2 <30 | <20
Large low-rise 8 1-5 | 30-50 | >0.7 0.1-0.3 =<20 | 40-100
Sparsely built 9 1-10 | 10-20 | >0.8 0.1-0.25 60-80 | <20
Heavy industry 10 2-10 | 20-30 | 0.6-0.9 | 0.2-0.5 40-50 | 20-40
Dense trees A 0 <10 <0.4 >1 >90 =<10
Scattered trees B 0 <=10 | 0.5-0.8 | 0.25-0.75 >90 <=10
Bush. scrub C 0 =<10 [0.7-0.9 | 0.25-1.0.25.0 | >90 | <=10
Low plants D 0 <10 |>09 <0.1 >90 | <10
Bare rock or paved | E 0 <10 |>0.9 <0.1 =<10 |>90
Bare soil or sand F 0 =<10 |[>0.9 <0.1 >90 [<=10
Water G 0 <10 >0.9 <0.1 >90 <10

Table 2. Geometric, surface cover, and thermal properties of each LCZ type in our study.
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Fig. 6. Local climate zones of Konak district (Prepared by the author using ArcGIS Pro (version 3.6, https://w
ww.esri.com)).

These analyses were fuzzified according to the ranges obtained in different studies according to Stewart and
Oke® classification. In our study, ranges were determined as shown in Table 2 by examining the building heights,
permeable surface area ratio, etc. in the area. Local climate zones marked in red are not included in the study
area.
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Simple random sampling - %90 confidence
interval and %5 error margin

LCZ Number of cells | Surface (ha) | % of study area | Calculated ple size | Rounded ple size

2 8 7.2 0.30 0.7 1

3 1340 1321.5 55.33 135.5 136

4 34 33.25 1.39 34 3

5 242 239.5 10.03 24.56 25

6 48 47 1.97 4.8 5

7 12 12 0.50 1.23 1

8 221 219 9.17 22.46 22

9 31 31 1.30 3.17 3

B 96 93.2 3.90 9.56 10

C 65 63 2.64 6.46 6

D 112 104.7 4.38 10.74 11

E 208 199 8.33 20.41 20

F 14 14 0.59 1.43 1

G 4 4 0.17 0.41 1

TOTAL | 2435 2388.4 100.00 244.83 245

Table 3. Distrubition of LCZs.

As a result of these analyzes, the local climate zones map of Konak district, created as described in the
methodology section, is presented in Fig. 6.

In the study, it was calculated that 245 grids were sufficient with a 90% confidence interval and 5% margin
of error. This ensured that the selected sample was statistically robust enough to represent the variability across
LCZ types while maintaining a manageable number of UAV flights. The distribution of these squares according
to the LCZ classes is presented in Table 3, demonstrating balanced coverage across different urban morphologies.

Analysis of thermal environment characteristics of different LCZ types

The 245 grids, selected using stratified random sampling proportional to the LCZ area distribution within the
2,435-cell grid system of Konak district. A chi-square test validated the representativeness, yielding a p-value of
0.99 (df=13, p>0.05), indicating that the sample distribution aligns with the population LCZ proportions. This
test is confirming that the sample adequately represents the dominant LCZ types (3, 5, 8, B, D, and E), which
collectively account for approximately 92% of the total classified area. Single-sample LCZ classes (e.g., LCZ 2 and
7) were excluded to ensure statistical robustness, as their limited representation could skew variance estimates,
a decision supported by the methodology’s focus on reliable thermal pattern analysis. This sampling strategy
ensures a representative coverage of thermal conditions across the study area’s urban typologies, as evidenced by
the consistent temperature rankings (Spearman’s p=0.99).

After calculating the sample size for each LCZ, the selection of squares for flying was determined by opening
the attribute table in GIS software, and a random selection was made for each LCZ class. This randomization
reduced potential selection bias and guaranteed that both densely built and vegetated LCZs were proportionally
included in the analysis. The squares planned for flights are shown in Fig. 7, forming the foundation for
subsequent thermal comparisons between LCZ classes.

Although the UAV flights for surface temperature measurement was conducted during the peak midday
hours, specifically between 11:30 AM and 1:30 PM, temporal normalization was deemed necessary to account
for the intra-flight temperature variations. As described in the methodology section, this correction was based
on 20 grids classified as LCZ E, which represent paved or rocky surfaces known for their thermal responsiveness.
A temperature-time trend was derived from these LCZ E grids (Fig. 8), and all surface temperature values were
adjusted to a reference time of 12:30 PM accordingly.

Following the assignment of temperature values to each sample grid via UAV-based orthomosaics, statistical
analyses were performed to evaluate the temperature characteristics of each LCZ class. In addition, normalized
LST values—adjusted to 12:30 PM using the LCZ E trend—were also calculated for all LCZ types as shown in
Formula (3). These temporally corrected values are presented in Table 4.

Normalized Mean LST = Mean LST + (Reference LCZ E Temperature at 12:30 - Mean Temperature of LCZ E)  (3)

Since LCZ 2, LCZ 7, LCZ F and LCZ G are represented by only one grid, these values are accepted without
statistical processing for the grids belonging to these classes.

Accordingly, LCZ 7 (Lightweight Lowrise), LCZ 8 (Large Lowrise) and LCZ E (Bare Rock or Paved) have
the highest mean and median temperature values. In these areas, metal roofing and asphalt surfaces raise the
temperature considerably. In addition, the lowest mean and median temperature values were observed in LCZ
G (Water), followed by LCZ B (Scattered Trees). The cooling effect of water and vegetation was once again
observed.
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Fig. 7. Planned flight zones for simple random sampling (%90 Confidence Interval and %5 Error Margin)
(Prepared by the author using ArcGIS Pro (version 3.6, https://www.esri.com).

Temporal Surface Temperature Trend - LCZ E Grids

321
31 —-=- Interpolated Temp @ 12:30 = 36.20°C
) Q \gJ QO ) ) Q \2) Q
N % X IS > B> S o %)
Ny o ot Ny NV Ny & e ~
Time of Image Capture
Fig. 8. Temporal surface temperature trend for LCZ E grids.
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2 1 33 33 33.00 0.00 0.00 33.00 33.45
3 136 22 42 35.95 3.48 12.12 36.00 36.40
4 3 34 34 34.00 0.00 0.00 34.00 34.45
5 25 30 35 32.28 1.54 2.38 33.00 32.73
6 5 30 36 33.20 2.59 6.70 34.00 33.65
7 1 41 41 41.00 0.00 0.00 41.00 41.45
8 22 27 38 32.05 3.11 9.66 32.00 32.50
9 3 29 33 30.67 2.08 4.33 30.00 31.12
B 10 29 33 31.00 1.56 2.44 31.00 31.45
C 6 28 41 31.67 4.72 22.27 30.50 32.12
D 11 26 43 33.18 5.44 29.56 32.00 33.63
E 20 28 38 35.75 2.61 6.83 37.00 36.20
F 1 33 33 33.00 0.00 0.00 33.00 3345
G 1 23 23 23.00 0.00 0.00 23.00 23.45

Table 4. Statistical properties calculated from example LCZ grids.

Temperature ranges according to LCZ classes
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Fig. 9. LCZ Classes’ Box-Plot Graph.
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1 (Optimal) <-1.00 21.7
2 (Suitable) from —0.99 to 0.00 | 14.5
3 (Less Suitable) from 0.01 to 0.99 55
4 (Unsuitable) >1.00 8.8

Table 5. Heat load distrubition.

For a better understanding of the temperature ranges of LCZ classes, box-plot graphs were prepared by
excluding the classes with no difference between minimum and maximum values. As seen in Fig. 9, the largest
temperature ranges were observed in LCZ 3 (20 °C), LCZ D (17 °C), LCZ C (13 °C) and LCZ 8 (11 °C) classes.

Spatial differentiation patterns of heat load

After obtaining the average temperature value for each LCZ class, a raster was created by entering the average
temperature data in all grids. Using this raster, the “Heat Load” map, which shows the spatial distribution of
different degrees of heat load, was prepared by raster calculation using the formula detailed in the method
section.

As aresult of this process, which is also defined as the spatial z-transformation process, areas with a value less
than —1 are defined as areas with the lowest heat load and areas with a value greater than 1 are defined as areas
with the highest heat load (Fig. 10).

LCZ classes’ mean temperature: 35.16 °C.

LCZ classes’ standart deviation: 2.12 °C.

As can be seen in this map, the parts of the city with high-rise buildings, wide roads and concrete and asphalt
surfaces such as the harbor are the areas with the highest heat load and cover 8.8% of the city, as can be seen in
Table 5. Open green areas and wooded areas have the lowest heat load and cover 21.7% of the city’s surface area.

A geostatistical analysis is required for the spatial distribution of surface temperature. For this purpose, a
polynomial local interpolation approach used to create surfaces based on the locations of predicted values and
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Fig. 11. Avarage land surface temperature (Prepared by the author using ArcGIS Pro (version 3.6, https://www
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measured values. The result of the spatial interpolation clearly shows that there are poly-structural (polycentric)
urban heat islands in Konak District, but these centers are mostly clustered in the north (Fig. 11).

Evaluation and discussion

Contributions and methodological advancements

This study advances urban climatology by integrating high-resolution UAV-derived thermal imagery with
GIS-based Local Climate Zone (LCZ) classification to assess intra-urban temperature dynamics in Konak,
[zmir. The combination of a 100 m x 100 m grid system and stratified random sampling ensured spatially
representative thermal assessments across 14 LCZ types. Our findings indicate that zones with high impervious
surface fractions—such as LCZ 7 (Lightweight Low-rise), LCZ 8 (Large Low-rise), and LCZ E (Bare Rock or
Paved)—consistently exhibited elevated mean land surface temperatures (LSTs), while vegetated and water-rich
zones (e.g., LCZ B and LCZ G) showed noticeable cooling effects. These results are in alignment with existing
literature® and underscore the role of land cover in shaping urban microclimates.

Unlike satellite-based analyses limited by lower spatial resolution and temporal frequency, the UAV-based
method employed here captures fine-scale temperature variations at the neighborhood level. The implementation
of a temporal normalization procedure using LCZ E reference grids allowed for adjustment of intra-flight
thermal fluctuations, enhancing the comparability of LST data across grids. This refinement is rarely used in
UAV-based urban climate studies and represents a methodological contribution that improves data integrity
and spatial consistency.

The combination of high-resolution UAV thermal imaging and Local Climate Zone (LCZ) analysis offers
several advantages over traditional satellite remote sensing methods for urban planning. UAV thermal imaging
provides much finer spatial resolution, allowing for detailed temperature mapping of individual buildings, streets,
and small urban features that may be missed by coarser satellite data. This granular view enables planners to
identify localized hot spots and cool areas within the urban fabric with greater precision. When integrated with
LCZ classification, which characterizes urban morphology and land cover types, planners can better understand
how specific urban forms and materials influence the thermal environment at the neighborhood scale.

Comparative analysis and contextual interpretation
When compared with studies from other urban contexts, the observed thermal patterns in Konak reveal both
consistent and context-specific behaviors. For example, elevated temperatures in LCZ 8 are consistent with
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findings from Bangkok and Hong Kong!®, where extensive asphalt and metal surfaces contribute to heat

retention. Meanwhile, lower LSTs in LCZ B and G are comparable to cooling trends observed in Lisbon®’.
However, the wider LST range observed in Konak's LCZ 3 (Compact Low-rise) compared to Athens'> may
reflect Konak’s complex urban morphology, including dense commercial areas like the Kemeralt1 Bazaar and
limited urban shading.

Such differences also highlight the significance of local building materials, surface characteristics, and
ventilation conditions. For instance, the higher LSTs in Konak’s LCZ E compared to Hong Kong may be attributed
to the prevalence of asphalt surfaces, which have higher thermal emissivity than concrete. Furthermore, unlike
the monocentric UHI pattern reported in cities like Sofia?®, Konak exhibited a polycentric UHI structure, with
multiple heat accumulation zones identified in the northern harbor and commercial districts.

For high-density Mediterranean cities like Izmir, these findings have particular value in addressing urban heat
challenges. The detailed thermal and LCZ data can guide targeted interventions to mitigate urban heat island
effects, such as identifying optimal locations for green spaces, recommending building materials and designs
that reduce heat absorption, and planning street orientations that maximize natural ventilation. Planners can use
this information to develop climate-responsive urban designs that improve thermal comfort for residents while
reducing energy demands for cooling. Additionally, the high-resolution data enables more accurate modeling of
future climate scenarios at the city scale, allowing planners to anticipate and prepare for long-term temperature
changes in the Mediterranean urban context.

Practical implications for urban planning

The heat load map generated from normalized LST data shows that approximately 8.8% of Konak’s urban area
experiences high thermal stress, primarily concentrated in dense, impervious zones, while 21.7% benefits from
optimal thermal conditions due to green and blue infrastructure. These results provide actionable insights for
climate-responsive planning. To make the Konak District and [zmir “cooler;” our findings have direct, actionable
guiding value. The analysis identified specific LCZ types with the highest heat load, such as Compact Low-Rise
(LCZ 3) and Compact Mid-Rise (LCZ 2), which are the primary targets for urban heat mitigation. Based on these
findings, we propose a multi-faceted approach centered on proactive retrofitting and urban design strategies.

First, prioritizing green infrastructure is essential. Our results highlight the significant cooling effect of
vegetated zones, emphasizing the need to integrate urban forestry, pocket parks, and green roofs and walls into
high-heat-load areas*®. These measures enhance evapotranspiration and provide shade, effectively reducing both
surface and air temperatures.

Second, the modification of urban materials is a critical strategy. In areas with extensive impervious surfaces,
we recommend replacing dark, absorptive materials with those of high-albedo. This includes using light-
colored pavements, cool roofs, and reflective coatings on buildings to increase solar reflectance and reduce heat
absorption.

Finally, optimizing urban form is key to promoting passive cooling. We recommend adjusting building
orientations to maximize natural airflow and creating urban ventilation corridors. The implementation of water
features, such as fountains and misting systems in public spaces, can also create localized cooling microclimates.
Furthermore, encouraging the use of shading devices on buildings and in public areas can reduce direct solar
radiation and enhance pedestrian thermal comfort*.

These recommendations should be integrated into a comprehensive urban heat island mitigation plan that
aligns with zoning regulations and building codes. Engaging local communities in the planning process and
educating residents about heat-reducing practices will be crucial for the success of these interventions. Regular
monitoring and assessment of temperature changes across different LCZs will help evaluate the effectiveness of
these strategies and guide future planning decisions. This study thus provides a tangible roadmap for planners to
transition from broad, city-wide strategies to precise, neighborhood-level interventions, directly contributing to
the “Cooler Cities” theme and enhancing urban resilience in Mediterranean climates.

Limitations and recommendations for future work

Several limitations of this study should be acknowledged. First, the thermal data were collected during a limited
time window (late May, mid-day hours), which may not fully capture seasonal or diurnal variations in surface
temperature. Atmospheric factors such as wind, humidity, and partial cloud cover during UAV flights may also
introduce variability in the recorded temperatures, highlighting the sensitivity of UAV-based measurements to
weather conditions. Second, while the sample of 245 grids ensured LCZ representation at a 90% confidence level,
additional sampling across different seasons and times of day could strengthen the robustness of the thermal
profiles.

The accuracy specification of the thermal camera used in this study is + 2 °C. While this introduces a degree of
uncertainty in absolute temperature values, the observed inter-class differences between LCZs (typically ranging
from 4 to 8 °C) exceed this margin, supporting the robustness of the relative thermal patterns identified. Similar
levels of sensor accuracy have been reported as acceptable in UAV-based LST studies (e.g”’so.,. Nevertheless,
this margin should be considered when interpreting the results, particularly for LCZ classes with relatively small
thermal contrasts.

Moreover, although Izmir shares key climatic and morphological characteristics with other Mediterranean
cities, its unique urban morphology (e.g., compact commercial cores, industrial waterfronts) constrains the
direct generalization of the results. Nevertheless, the methodological framework presented here—combining
UAV-based LST measurements with LCZ classification—is transferable and adaptable to other Mediterranean
urban contexts.
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This study also did not integrate socioeconomic or demographic variables, which are essential for
understanding the intersection of thermal exposure and urban vulnerability. Including such data would enhance
the capacity of the model to support equitable climate adaptation strategies.

Future research should expand UAV flights to capture seasonal and hourly variations in LST, allowing for
a more comprehensive understanding of temporal dynamics. Integrating social vulnerability indicators into
spatial thermal analyses would also enhance the capacity to link thermal exposure with urban resilience and
equity considerations. In addition, testing the methodology in other Mediterranean cities could provide insights
into the generalizability of the LCZ-temperature relationship beyond the case of Izmir. Finally, simulating future
climate scenarios and evaluating adaptation interventions—such as reflective surfaces, cool roofs, or urban
greening—would strengthen the practical relevance of the approach for climate-sensitive urban planning®!>2.

Conclusion

The findings of this study provide actionable insights for urban planning and climate adaptation. In zones with
elevated heat loads such as LCZ 7 (Lightweight Low-rise) and LCZ 8 (Large Low-rise), targeted interventions
could include the introduction of reflective roofing materials, permeable pavements, and increased tree canopy
cover to mitigate excessive surface heating. Or increasing green coverage in LCZ 3 (compact low-rise) areas by
15-20% to reduce LST by up to 2-3 °C, as observed in the study’s heat load data. In contrast, cooling zones such
as LCZ B (Scattered Trees) and LCZ G (Water) highlight the critical importance of preserving and expanding
green and blue infrastructure within urban planning strategies. The heat load maps produced here can serve as
decision-support tools for municipalities, helping to prioritize investment in vulnerable neighborhoods, design
heat-resilient public spaces, and integrate climate-sensitive zoning regulations. By linking LCZ-based thermal
analyses to planning actions, this methodology strengthens the policy relevance of UAV and GIS-based urban
climate research. These strategies are adaptable to other Mediterranean cities with similar LCZ distributions,
such as Athens or Valencia, pending local climate adjustments.

By addressing the spatial heterogeneity of urban heat patterns through a high-resolution, UAV-GIS integrated
approach, this study provides a replicable and actionable framework for urban climate analysis. However, to
fully inform climate-resilient and socially inclusive planning, future work must go beyond physical variables to
incorporate social dimensions and broader temporal coverage.

In summary, this study demonstrates that UAV-LCZ integration can reliably capture fine-scale thermal
differences across urban morphologies, highlighting priority areas for intervention (e.g., LCZ 7, LCZ 8, and LCZ
3). By combining detailed temperature mapping with actionable planning recommendations, it bridges the gap
between scientific analysis and policy application, while also setting the stage for future research that expands
across seasons, integrates social vulnerability, and tests adaptability in other Mediterranean cities.

Data availability

The datasets generated and/or analyzed during the current study are not publicly available due to institutional
restrictions imposed by Konak Municipality, as the thermal UAV imagery and related geospatial data are pro-
prietary to the municipality. However, these datasets are available from the corresponding author on reasonable
request, subject to permission from Konak Municipality.
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