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Urban microclimates result from complex interactions between buildings, vegetation, and human 
activities, impacting energy consumption, air quality, and urban planning. Understanding and mapping 
these microclimates is essential for sustainable city development. Geographic Information Systems 
(GIS) play a crucial role in analyzing microclimate patterns by integrating spatial datasets such as land 
cover, building heights, and meteorological data. This study examines urban microclimates in İzmir’s 
Konak District using GIS and unmanned aerial vehicles (UAVs) equipped with thermal sensors. By 
classifying Local Climate Zones (LCZs) and analyzing their relationship with land surface temperatures 
(LSTs), the research highlights how urban morphology shapes microclimatic conditions. The study area 
was divided into 2,435 grids, with UAV-based thermal imaging providing high-resolution temperature 
data. Findings indicate that LCZs with high impermeable surface fractions (e.g., LCZ 7, LCZ 8, and 
LCZ E) exhibited elevated temperatures, while vegetated or water-rich zones (e.g., LCZ B and LCZ 
G) demonstrated cooling effects. The Heat Load Map identified 8.8% of the district as experiencing 
excessive heat, while 21.7% benefited from optimal thermal conditions due to green and blue 
spaces. This study underscores the importance of increasing vegetation and permeable surfaces to 
mitigate urban heat islands (UHIs). By integrating UAV technology with GIS, it advances LCZ-based 
urban climate research and provides practical tools for climate-responsive planning. Understanding 
microclimates in dense urban areas enables targeted strategies to reduce heat stress, improve air 
quality, and enhance urban livability.
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Urban microclimates—resulting from the interactions among urban form, surface materials, vegetation, and 
anthropogenic heat emissions—significantly influence thermal comfort, energy demand, and health outcomes 
in cities, making them a central focus in climate-responsive planning1–3. The Urban Heat Island (UHI) effect, 
characterized by elevated temperatures in urban areas relative to their rural surroundings, has been shown to 
intensify in response to climate change, urban densification, and the degradation of vegetated surfaces4,5. These 
factors collectively exacerbate thermal disparities within cities and amplify public health and energy concerns 
during heatwave events. UHI increases energy consumption, degrades air quality, and heightens vulnerability to 
heat-related health issues, particularly during extreme heat events6,7.

Understanding UHI’s spatial variability within cities remains challenging due to both the limited resolution of 
conventional satellite data and the morphological complexity of urban landscapes8. In response to this challenge, 
urban climate researchers have increasingly turned to classification schemes that systematically account 
for morphological and functional characteristics. Among these, the Local Climate Zone (LCZ) framework 
introduced by Stewart and Oke6 has become the most widely adopted, as it provides a standardized typology for 
mapping urban and natural surfaces based on structure, land cover, and function. Its 17-zone classification (10 
built types and 7 land cover types) enables global comparative studies and forms the basis of initiatives such as 
the World Urban Database and Access Portal Tools (WUDAPT), which aim to produce standardized LCZ maps 
for cities worldwide9–11.
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LCZ classification has often been combined with satellite imagery, GIS, and machine learning to analyze 
surface UHI (SUHI) patterns. While this approach has yielded valuable insights, especially for large-scale inter-
city comparisons, the coarse resolution of satellite-derived Land Surface Temperature (LST) data frequently 
limits its usefulness for fine-scale urban planning12,13. For instance, Chen et al.14 in Chenzhou and Geletič & 
Lehnert15 in Olomouc demonstrated how LCZ-based mapping can reveal intra-urban temperature variations; 
however, their reliance on satellite-based LST data underscores the challenge of capturing detailed urban 
morphology with sufficient accuracy. This limitation has motivated emerging research to explore unmanned 
aerial vehicles (UAVs) as a flexible, high-resolution alternative capable of overcoming the spatial constraints of 
satellite observations.

Recent studies have shown that UAVs equipped with thermal sensors can provide sub-meter scale resolution, 
enabling highly precise neighborhood-scale temperature monitoring16–18. For example, Kim et al.17 demonstrated 
that UAV-derived thermal data captured land cover temperature differences in Korean urban green spaces with 
greater accuracy than satellite-derived LST, while Webster et al.19 employed UAVs to characterize vegetation 
canopies thermally in three dimensions. Together, these studies highlight how UAV-based thermal remote 
sensing has rapidly advanced the analytical scope of UHI research.

Beyond offering higher spatial resolution, UAVs enable monitoring of UHI intensity across multiple heights 
and times of day, providing crucial data for designing both vertical and temporal interventions. This capacity 
supports adaptive strategies such as building design modifications and time-sensitive cooling measures, which 
are particularly relevant for enhancing climate resilience in medium-sized and rapidly growing cities20,21. 
Moreover, the fine-grained thermal information generated by UAVs facilitates the detection of micro-urban 
heat islands (MUHIs) and localized hotspots that are often invisible to satellite-based analyses. Such detailed 
identification strengthens the potential for targeted mitigation strategies, from optimizing vegetation placement 
to planning energy consumption more effectively in heterogeneous urban landscapes22–24.

Despite advancements in high-resolution data acquisition and LCZ classification, studies systematically 
integrating UAV-derived thermal imagery with LCZ frameworks remain limited, often emphasizing classification 
accuracy or satellite-based LST analyses without delving into intra-zone temperature variations16. Studies 
show the integration of UAV-derived thermal data with LCZ classification enhances the spatial resolution 
and contextual relevance of urban heat assessments, enabling precise SUHI intensity mapping and temporal 
monitoring during heatwaves. This integration supports urban planning by providing actionable data for heat 
mitigation, energy efficiency measures, and climate adaptation strategies, as demonstrated in various case studies 
across different cities21,25,26. UAV-based LCZ analysis facilitates the development of localized urban heat hazard 
models and informs sustainable urban development decisions.

UAV and LCZ integrated approaches inform urban heat mitigation strategies by identifying high-risk zones 
and evaluating cooling effects of urban green spaces, albedo modifications, and morphological adjustments. 
These data support policy and design decisions aimed at improving outdoor thermal comfort, reducing energy 
consumption, and enhancing urban resilience to climate change21,26–29. Findings underscore the practical utility 
of fine-scale thermal and morphological data for sustainable urban development.

Deep learning models, object detection algorithms, and machine learning-based clustering techniques 
are increasingly applied to enhance LCZ classification accuracy and to model UHI dynamics effectively. 
These methods improve the semantic understanding of urban landscapes from high-resolution imagery and 
enable the identification of critical variables affecting UHI, such as building density and vegetation extent. 
The incorporation of AI-driven approaches facilitates automated, scalable analyses supporting urban climate 
resilience studies26,30,31.

Few studies have systematically combined UAV-derived thermal data with LCZ classification to assess surface 
temperature variations across entire urban districts. Where UAV studies exist, they typically focus on isolated 
features such as parks17 or infrastructure32, leaving a gap in large-scale applications that integrate both built and 
natural LCZ classes. Furthermore, Mediterranean cities, which are highly vulnerable to heat stress due to their 
dense urban forms and climatic conditions, remain underrepresented in UAV-based LCZ research.

The potential of UAV imagery to capture dynamic microclimatic variations and inform adaptive planning 
remains underutilized. In response to this research gap, this study proposes a localized, integrative approach. 
This study addresses this gap by integrating UAV-based LST measurements with GIS-derived LCZ classifications 
in Konak, İzmir, a dense urban area with diverse building morphologies and land uses. Combining thermal 
imagery from UAV flights with municipal zoning and functional data, the methodology classifies LCZs, assigns 
statistical temperature profiles, identifies high-heat-load zones, and simulates thermal impacts of future planning 
scenarios.

The novelty of this study lies in its empirical integration of UAV-derived thermal imagery with LCZ 
classification and spatial statistics to assess intra-zone temperature variability—an approach rarely applied at 
the neighborhood scale in high-density Mediterranean urban contexts. While satellite-based approaches offer 
broader coverage, they often lack the spatial resolution necessary to capture intra-urban heterogeneity. UAVs, by 
contrast, enable high-resolution temperature measurements but have rarely been applied systematically to classify 
LCZs and generate heat load maps for dense metropolitan areas. By combining real-time thermal mapping with 
zoning and functional land use data within a GIS framework, the study develops a replicable methodology 
that enables planners to identify high-risk heat exposure zones and simulate planning interventions. These 
contributions support climate-sensitive urban design and align with global policy frameworks such as the UN 
Sustainable Development Goals (Goal 11) and the New Urban Agenda, both of which emphasize data-driven 
resilience strategies for cities.
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Materials and methods
Study area
The study was conducted in Konak District, located at the core of İzmir, Turkey (Fig. 1). Konak serves as the 
historical, administrative, and commercial center of the city, hosting landmarks such as the Kemeraltı Bazaar, 
Konak Square, and the İzmir Clock Tower. While these cultural and historical features highlight the district’s 
importance, the urban morphology and environmental conditions are of particular relevance for climate 
and UHI studies. Konak is characterized by dense and heterogeneous land use, including commercial areas, 
residential neighborhoods, industrial zones, and port facilities. Its compact street network and mix of traditional 
and modern buildings contribute to diverse microclimatic conditions.

  
Climatically, Konak falls within the Mediterranean climate zone, with hot, dry summers and mild, wet 

winters. The annual average temperature is approximately 18–19 °C, with mean monthly temperatures ranging 
from around 10 °C in January to 28–30 °C in July and August36. Prevailing winds are dominated by northwesterly 
sea breezes (locally known as İmbat) during the summer, which provide natural cooling, while southerly winds 
are more common in winter months. Average annual precipitation is about 700–800 mm, concentrated between 
November and March.

The built environment of Konak predominantly features reinforced concrete structures with flat or tiled 
roofs, asphalt-paved roads, and extensive impervious surfaces. In the historic bazaar, narrow streets with 
stone pavements and metal or tile-roofed buildings are common, while modern residential and commercial 
zones employ concrete and glass as primary materials. Vegetation cover is sparse in the central areas, limited 
mostly to small urban parks, scattered street trees, and coastal green corridors. Typical plant species include 
Mediterranean evergreens such as olive (Olea europaea) and laurel (Laurus nobilis), as well as ornamental trees 
like plane (Platanus orientalis) and pine (Pinus pinea).

This combination of high-density built-up areas, limited vegetation, and climatic conditions makes Konak a 
suitable case study for exploring intra-urban thermal variability. The district’s heterogeneous urban morphology 
aligns well with the Local Climate Zone (LCZ) framework, enabling systematic classification and detailed 
examination of UHI effects at the neighborhood scale.

Methodology
The study conducted to determine the LCZs for the Konak District and to relate these areas to LST consists of 
the stages outlined in Fig. 2.

Data collection
The initial phase of the research involved gathering spatial and cadastral datasets from the Konak Municipality33. 
These datasets, provided in vector format, included building footprints, building heights, road networks and 
widths, land use classifications, and administrative boundaries. This information was essential for characterizing 
the urban environment and understanding the dynamics of the study area. Landsat 8 satellite images were 
obtained from the USGS37 portal. These images were used to derive land use, pervious surface fraction (PSF), 
and impervious surface fraction (ISF) indicators, all of which contribute to LCZ classification.

Fig. 1.  Study area (created by combining images adapted from33–35.
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Subdivision of the study area
LCZs are typically delineated using either city block-based units38 or standardized fixed-size grids39. A common 
method involves using 1-ha (100 × 100 m) grids, considered the smallest local spatial unit that significantly 
influences thermal behavior39. Alternatively, some studies determine optimal grid size by analyzing statistical 
variations in urban form, particularly building height14,40. In studies aimed at determining the appropriate grid 
size for the study area, “spatial autocorrelation,” which arises from the idea that nearby objects tend to show more 
similarity than distant ones, has been employed. In modeling, semivariance (γ) increases with distance (h) and 
reaches a maximum level at a threshold distance. In certain situations, when γ no longer changes with distance, 
this distance is considered the scale of spatial dependence. For instance, Zeng et al.40 applied Ordinary Kriging 
to identify optimal spatial scales in Hong Kong, resulting in a recommended 300 × 300 m grid. However, such 
approaches require extensive variogram analysis, which was not feasible in this study due to data and temporal 
constraints. Based on the literature and data characteristics of the study area, a finer-scale 100 × 100 m grid 
was adopted for all analyses, representing a standard unit in urban thermal studies. The total study area of 2435 
hectares has been divided into 2435 grids. Accordingly, the 2435 grids, each covering 1 hectare (100 m × 100 m), 
together represent the entire 2435-hectare study area.

Fig. 2.  Study workflow.
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GIS based LCZ classification
Drawing upon spatial datasets from the Konak Municipality and classification criteria proposed in LCZ literature 

Fig. 3.  LCZ classification flowchart.

 

Indicators Definition Basic data

BH Building Height: average building height of each grid, weighted by building floor area (BA: Building area, BAG: Building area of 
the grid)

Building Data - BasemapBH =

∑ n

i−1
BHiBAi

Σ n
i−1BAGi

BSF Building Surface Fraction: Fraction of the total building floor area within the grid (BA: Building area, GA: Grid area Building Data – Basemap
BSF =

∑ n

i· 1
BA

i̇

GA

AR Aspect Ratio: Ratio of average building height to average road width Building ve Road Data- 
Basemap and OSM

SVF
Skyview Factor: It is the SVF of the study area in an area without buildings (Chen et al., 2010). S_Sky and ∑Sb represent the sky 
area and the area occupied by buildings at a given point, respectively. SSky+∑Sb represents the entire hemispherical environment 
at a given point.

SV F =

∑ n

i· 1
SV F i

n

SV F i = SSky

(SSky+
∑

Sb

SF Pervious Surface Fraction: Ratio of pervious areas to grid area Landsat 8 Satellite Image -USGS

Indicators Definition Basic data

ISF Impervious Surface Fraction: Ratio of impervious areas to grid area Landsat 8 Satellite Image -USGS

LU Land Use: Land use classification was performed via supervised classification of Landsat 8 imagery and validated against 
municipal cadastral data. Landsat 8 Satellite Image -USGS

Table 1.  Data and calculation method for local climate zone (LCZ) indicators.
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(e.g6.,, a set of morphological and surface indicators were selected for determining LCZ types. These analyses, 
along with the data sources and calculation methods, are presented in Table 1.

The analyses have been fuzzified according to the ranges obtained in various studies based on the classification 
by Stewart and Oke6. The intervals that emerged as a result of the analyses conducted within the scope of the 
study and used for LCZ classification are given in the results section. Flowchart of developing LCZ classification 
is illustrated in Fig. 3.

Determining the representative grids for UAV flights
The sample size was determined using a standard formula for simple random sampling. There are a total of 2435 
squares in the study area. Based on a total population of 2435 units, the minimum required sample size was 
calculated using the standard formula for finite populations under simple random sampling. At a 95% confidence 
level and 5% margin of error, the sample size was 332; at 90% confidence, it was 245. However, considering that 
flights should be conducted with a drone at the same time intervals on days with similar temperatures, it was 
decided that it would not be feasible to conduct flights over a large number of 100 m x 100 m squares; thus, the 
total sample size was set at 245 squares with a confidence interval of 90% and a margin of error of 5%.

Following LCZ classification, 14 distinct zone types were identified across the Konak district. Accordingly, the 
“Stratified Random Sampling” method was chosen to determine the distribution of the total sample size among 
the LCZ classes. The stratified random sampling method is used in cases where the population is heterogeneous 
and there is a need to represent different subgroups of the population. Stratified sampling enhances precision in 
heterogeneous spatial populations by ensuring proportional representation of each stratum, thereby reducing 
sampling error. This approach is particularly effective in spatial studies where variability within strata is 
minimized, as demonstrated in recent applications utilizing geospatial technologies41–43. For stratified sampling, 
when the number of cells in each stratum is known, the following formula (1) was used to calculate the sample 
size for each stratum:

	 nk = n × Nk/N � (1) 

nk = Sample size for each stratum.
n = Total sample size.
Nk = Number of cells in each stratum.
N = Total number of cells.
To validate the representativeness of the sample across LCZ types, a chi-square goodness-of-fit test was 

conducted. This test compared the observed frequency of grids within each LCZ (based on the 245-sample 
distribution) against the expected frequencies calculated from the population LCZ proportions (totaling 2,435 
cells). The test statistic was computed as;

	
x2 =

∑ (Oi − Ei)2

Ei

where Oi O_i Oi​ is the observed frequency and Ei​ is the expected frequency, with degrees of freedom (df) 
determined as the number of LCZ categories minus one. This approach ensured that the sampling strategy 
aligned with the thermal diversity of the study area.

UAV flights and thermal imaging
Thermal data were acquired in the selected sample grids using the DJI Matrice 30 T, a commercial-grade UAV 
equipped with an integrated radiometric thermal camera, selected for its high operational reliability in urban 
environmental monitoring. The UAV operates within an ambient temperature range of − 20 °C to + 50 °C, with 
a thermal resolution of 640 × 512 pixels, 40 mm equivalent focal length, 30 fps frame rate, and a measurement 
accuracy of ± 2 °C under standard atmospheric conditions.

The flights were carried out between May 20 and May 31, at an altitude of 250 m above ground level, during 
the time period of 11:30 AM to 1:30 PM a time frame selected to minimize diurnal variability in land surface 
temperature caused by solar angle shifts. Given that the tallest building in the Konak District is approximately 
220 m, a flight altitude of 250 m above ground level (AGL) was selected to ensure obstacle clearance. Flights were 
executed at 7 m/s with image overlap rates of 80% (forward) and 60% (side).

For clarity, UAV flight altitudes may be referenced in three ways: (1) AGL – altitude relative to surface 
elevation; (2) ATO – fixed altitude relative to takeoff elevation; and (3) AMSL – altitude relative to mean sea 
level7. In this study, AGL was selected to maintain uniform vertical distance across the heterogeneous urban 
surface.

To address potential temperature fluctuations during UAV operations, all flights were conducted between 
11:30 AM and 1:30 PM under clear sky and low-wind conditions. This time window was chosen to minimize 
the impact of rapid surface temperature variations due to solar angle changes. The DJI Matrice 30 T UAV used 
in the study features a radiometrically calibrated thermal sensor. A pre-flight stabilization period of 5 min 
was applied prior to each mission to allow the thermal sensor to reach thermal equilibrium with ambient air 
temperature, reducing thermal drift and ensuring sensor accuracy44. To minimize variability in initial ground 
surface emissivity and thermal inertia, all UAV missions were launched from asphalt surfaces. These operational 
controls minimized intra-day LST variability, reducing the need for temporal normalization across the 245 
sampled grids and enhancing inter-grid comparability.
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Data analysis
Thermal images collected during UAV flights were processed in ArcGIS Drone2Map to generate radiometrically 
consistent orthomosaics through image alignment, georeferencing, and mosaicking procedures. Orthomosaics 
were imported into ArcGIS Pro 3.6, where average land surface temperature values were extracted for each 
100 × 100  m grid using the Zonal Statistics tool. The overall thermal data processing workflow, including 
mosaicking, temperature extraction, and spatial assignment to sample grids, is illustrated in Fig. 4.

Temporal normalization of UAV-based thermal observations
To correct for temporal variability in land surface temperature (LST) resulting from UAV flight durations 
exceeding one hour, a normalization approach was applied using LCZ E (bare rock or paved surfaces) grids, 
which are known to have low thermal inertia and stable diurnal profiles6. Due to their minimal vegetation 
and high thermal responsiveness, LCZ E areas are particularly suitable for representing short-term diurnal LST 
fluctuations under stable atmospheric conditions.

Each grid was timestamped according to UAV metadata, and surface temperature was extracted from 
calibrated thermal imagery with a temporal resolution sufficient to capture within-hour fluctuations. The data 
were used to construct a temporal LST regression model, forming the basis for interpolating surface temperatures 
to a common reference time.

All LST values across different LCZ classes were adjusted to a common reference time (12:30 PM) using a linear 
interpolation based on the LCZ E temperature-time curve. This approach minimized diurnal bias and ensured 
comparability among grids captured at different times during the UAV survey. The normalization enhances the 
temporal integrity of the LST dataset, thereby increasing the reliability of spatial analyses comparing thermal 
profiles across LCZ classes.

Establishing the statistical relationship between LCZs and LSTs and creating LST map
After calculating the average LST values for each grid, point representations were generated from the centroids 
of sampled grids, and spatial interpolation (Inverse Distance Weighting - IDW) was applied to produce a 
continuous ‘Average Surface Temperature’ map. In addition, a spatial ‘Heat Load’ map was generated to classify 
the thermal stress levels across Konak District based on standardized LST values.

Heat load can be classified into four categories (optimal, suitable, less suitable, and unsuitable) based on 
standardized temperature values derived from the applied z-transformation. The formula (2) used for this 
process is as follows45:

	 z = (X − µ)/σ� (2) 

where X is the average temperature of a single test cell, µ is the average temperature of all tested cells, and 
σ is the standard deviation of the average LST of all test cells. Areas with a value less than − 1 in this spatial 
z-transformation process are classified as having the lowest heat load, while areas with a value greater than 1 are 
defined as having the highest heat load. A raster was created by applying the formula to all grids with average 

Fig. 4.  Thermal image processing and spatial analysis workflow for LCZ-based sample grids.
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temperature data, followed by reclassification to produce a map showing the areas classified as optimal, suitable, 
less suitable, and unsuitable for heat load.

Results
The results of this study are presented in three subsections to offer a comprehensive and structured analysis 
of the urban thermal environment in Konak District. Initially, the spatial distribution of Local Climate Zones 
(LCZs) is examined, followed by a detailed analysis of the thermal characteristics of each LCZ type. Finally, the 
spatial differentiation patterns of heat load are investigated to highlight the key drivers of thermal stress within 
the study area.

Spatial distribution of LCZs in Konak district
The analysis prepared with the data obtained from Konak Municipality and Landsat 8 satellite images downloaded 
from the USGS portal are shown in Fig. 5.

  

Fig. 5.  Analysis maps (created by ArcGIS Pro (version 3.6, https://www.esri.com), combining data adapted 
from33,37.
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These analyses were fuzzified according to the ranges obtained in different studies according to Stewart and 
Oke6 classification. In our study, ranges were determined as shown in Table 2 by examining the building heights, 
permeable surface area ratio, etc. in the area. Local climate zones marked in red are not included in the study 
area.

Fig. 6.  Local climate zones of Konak district (Prepared by the author using ArcGIS Pro (version 3.6, ​h​t​t​p​s​:​/​/​w​
w​w​.​e​s​r​i​.​c​o​m​​​​​)​)​.​​​​

 

LCZ BH BSF SVF AR PSF ISF

Compact high-rise 1 >=15 40–60 0.2–0.4 > 2 <= 10 40–60

Compact midrise 2 5–15 40–70 0.3–0.6 0.75–2.75 < 20 50–100

Compact low-rise 3 1–5 40–70 0.2–0.6 0.75–1.5 =< 30 50–100

Open high-rise 4 <=15 20–40 0.5–0.7 0.75–1.25 30–40 30–50

Open midrise 5 5–15 20–40 0.5–0.8 0.3–0.75 20–40 30–50

Open low-rise 6 1–5 20–40 0.6–0.9 0.3–0.75 30–60 20–50

Lightweight low-rise 7 1–3 60–90 0.2–0.5 1–2 < 30 < 20

Large low-rise 8 1–5 30–50 > 0.7 0.1–0.3 =< 20 40–100

Sparsely built 9 1–10 10–20 > 0.8 0.1–0.25 60–80 < 20

Heavy industry 10 2–10 20–30 0.6–0.9 0.2–0.5 40–50 20–40

Dense trees A 0 < 10 < 0.4 > 1 > 90 =< 10

Scattered trees B 0 <= 10 0.5–0.8 0.25–0.75 > 90 <= 10

Bush. scrub C 0 =< 10 0.7–0.9 0.25–1.0.25.0 > 90 <= 10

Low plants D 0 < 10 > 0.9 < 0.1 > 90 < 10

Bare rock or paved E 0 < 10 > 0.9 < 0.1 =< 10 > 90

Bare soil or sand F 0 =< 10 > 0.9 < 0.1 > 90 <= 10

Water G 0 < 10 > 0.9 < 0.1 > 90 < 10

Table 2.  Geometric, surface cover, and thermal properties of each LCZ type in our study.
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As a result of these analyzes, the local climate zones map of Konak district, created as described in the 
methodology section, is presented in Fig. 6.

In the study, it was calculated that 245 grids were sufficient with a 90% confidence interval and 5% margin 
of error. This ensured that the selected sample was statistically robust enough to represent the variability across 
LCZ types while maintaining a manageable number of UAV flights. The distribution of these squares according 
to the LCZ classes is presented in Table 3, demonstrating balanced coverage across different urban morphologies.

Analysis of thermal environment characteristics of different LCZ types
The 245 grids, selected using stratified random sampling proportional to the LCZ area distribution within the 
2,435-cell grid system of Konak district. A chi-square test validated the representativeness, yielding a p-value of 
0.99 (df = 13, p > 0.05), indicating that the sample distribution aligns with the population LCZ proportions. This 
test is confirming that the sample adequately represents the dominant LCZ types (3, 5, 8, B, D, and E), which 
collectively account for approximately 92% of the total classified area. Single-sample LCZ classes (e.g., LCZ 2 and 
7) were excluded to ensure statistical robustness, as their limited representation could skew variance estimates, 
a decision supported by the methodology’s focus on reliable thermal pattern analysis. This sampling strategy 
ensures a representative coverage of thermal conditions across the study area’s urban typologies, as evidenced by 
the consistent temperature rankings (Spearman’s ρ ≈ 0.99).

After calculating the sample size for each LCZ, the selection of squares for flying was determined by opening 
the attribute table in GIS software, and a random selection was made for each LCZ class. This randomization 
reduced potential selection bias and guaranteed that both densely built and vegetated LCZs were proportionally 
included in the analysis. The squares planned for flights are shown in Fig.  7, forming the foundation for 
subsequent thermal comparisons between LCZ classes.

Although the UAV flights for surface temperature measurement was conducted during the peak midday 
hours, specifically between 11:30 AM and 1:30 PM, temporal normalization was deemed necessary to account 
for the intra-flight temperature variations. As described in the methodology section, this correction was based 
on 20 grids classified as LCZ E, which represent paved or rocky surfaces known for their thermal responsiveness. 
A temperature-time trend was derived from these LCZ E grids (Fig. 8), and all surface temperature values were 
adjusted to a reference time of 12:30 PM accordingly.

Following the assignment of temperature values to each sample grid via UAV-based orthomosaics, statistical 
analyses were performed to evaluate the temperature characteristics of each LCZ class. In addition, normalized 
LST values—adjusted to 12:30 PM using the LCZ E trend—were also calculated for all LCZ types as shown in 
Formula (3). These temporally corrected values are presented in Table 4.

	 Normalized Mean LST = Mean LST + (Reference LCZ E Temperature at 12:30 - Mean Temperature of LCZ E)� (3) 

Since LCZ 2, LCZ 7, LCZ F and LCZ G are represented by only one grid, these values are accepted without 
statistical processing for the grids belonging to these classes.

Accordingly, LCZ 7 (Lightweight Lowrise), LCZ 8 (Large Lowrise) and LCZ E (Bare Rock or Paved) have 
the highest mean and median temperature values. In these areas, metal roofing and asphalt surfaces raise the 
temperature considerably. In addition, the lowest mean and median temperature values were observed in LCZ 
G (Water), followed by LCZ B (Scattered Trees). The cooling effect of water and vegetation was once again 
observed.

LCZ Number of cells Surface (ha) % of study area

Simple random sampling - %90 confidence 
interval and %5 error margin

Calculated sample size Rounded sample size

2 8 7.2 0.30 0.7 1

3 1340 1321.5 55.33 135.5 136

4 34 33.25 1.39 3.4 3

5 242 239.5 10.03 24.56 25

6 48 47 1.97 4.8 5

7 12 12 0.50 1.23 1

8 221 219 9.17 22.46 22

9 31 31 1.30 3.17 3

B 96 93.2 3.90 9.56 10

C 65 63 2.64 6.46 6

D 112 104.7 4.38 10.74 11

E 208 199 8.33 20.41 20

F 14 14 0.59 1.43 1

G 4 4 0.17 0.41 1

TOTAL 2435 2388.4 100.00 244.83 245

Table 3.  Distrubition of LCZs.
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Fig. 8.  Temporal surface temperature trend for LCZ E grids.

 

Fig. 7.  Planned flight zones for simple random sampling (%90 Confidence Interval and %5 Error Margin) 
(Prepared by the author using ArcGIS Pro (version 3.6, https://www.esri.com).
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Fig. 9.  LCZ Classes’ Box-Plot Graph.

 

LCZ_CLASS Frequency Min.temp. Max.temp. Mean temp. Standard deviation Coefficient of variance Median temp. Normalized mean temp. (12:30)

2 1 33 33 33.00 0.00 0.00 33.00 33.45

3 136 22 42 35.95 3.48 12.12 36.00 36.40

4 3 34 34 34.00 0.00 0.00 34.00 34.45

5 25 30 35 32.28 1.54 2.38 33.00 32.73

6 5 30 36 33.20 2.59 6.70 34.00 33.65

7 1 41 41 41.00 0.00 0.00 41.00 41.45

8 22 27 38 32.05 3.11 9.66 32.00 32.50

9 3 29 33 30.67 2.08 4.33 30.00 31.12

B 10 29 33 31.00 1.56 2.44 31.00 31.45

C 6 28 41 31.67 4.72 22.27 30.50 32.12

D 11 26 43 33.18 5.44 29.56 32.00 33.63

E 20 28 38 35.75 2.61 6.83 37.00 36.20

F 1 33 33 33.00 0.00 0.00 33.00 33.45

G 1 23 23 23.00 0.00 0.00 23.00 23.45

Table 4.  Statistical properties calculated from example LCZ grids.
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For a better understanding of the temperature ranges of LCZ classes, box-plot graphs were prepared by 
excluding the classes with no difference between minimum and maximum values. As seen in Fig. 9, the largest 
temperature ranges were observed in LCZ 3 (20 °C), LCZ D (17 °C), LCZ C (13 °C) and LCZ 8 (11 °C) classes.

Spatial differentiation patterns of heat load
After obtaining the average temperature value for each LCZ class, a raster was created by entering the average 
temperature data in all grids. Using this raster, the “Heat Load” map, which shows the spatial distribution of 
different degrees of heat load, was prepared by raster calculation using the formula detailed in the method 
section.

As a result of this process, which is also defined as the spatial z-transformation process, areas with a value less 
than − 1 are defined as areas with the lowest heat load and areas with a value greater than 1 are defined as areas 
with the highest heat load (Fig. 10).

LCZ classes’ mean temperature: 35.16 °C.
LCZ classes’ standart deviation: 2.12 °C.
As can be seen in this map, the parts of the city with high-rise buildings, wide roads and concrete and asphalt 

surfaces such as the harbor are the areas with the highest heat load and cover 8.8% of the city, as can be seen in 
Table 5. Open green areas and wooded areas have the lowest heat load and cover 21.7% of the city’s surface area.

A geostatistical analysis is required for the spatial distribution of surface temperature. For this purpose, a 
polynomial local interpolation approach used to create surfaces based on the locations of predicted values and 

Heat load categories z-Scores Area %

1 (Optimal) <−1.00 21.7

2 (Suitable) from − 0.99 to 0.00 14.5

3 (Less Suitable) from 0.01 to 0.99 55

4 (Unsuitable) > 1.00 8.8

Table 5.  Heat load distrubition.

 

Fig. 10.  Heat Load Map (Prepared by the author using ArcGIS Pro (version 3.6, https://www.esri.com).
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measured values. The result of the spatial interpolation clearly shows that there are poly-structural (polycentric) 
urban heat islands in Konak District, but these centers are mostly clustered in the north (Fig. 11).

Evaluation and discussion
Contributions and methodological advancements
This study advances urban climatology by integrating high-resolution UAV-derived thermal imagery with 
GIS-based Local Climate Zone (LCZ) classification to assess intra-urban temperature dynamics in Konak, 
İzmir. The combination of a 100 m × 100 m grid system and stratified random sampling ensured spatially 
representative thermal assessments across 14 LCZ types. Our findings indicate that zones with high impervious 
surface fractions—such as LCZ 7 (Lightweight Low-rise), LCZ 8 (Large Low-rise), and LCZ E (Bare Rock or 
Paved)—consistently exhibited elevated mean land surface temperatures (LSTs), while vegetated and water-rich 
zones (e.g., LCZ B and LCZ G) showed noticeable cooling effects. These results are in alignment with existing 
literature6 and underscore the role of land cover in shaping urban microclimates.

Unlike satellite-based analyses limited by lower spatial resolution and temporal frequency, the UAV-based 
method employed here captures fine-scale temperature variations at the neighborhood level. The implementation 
of a temporal normalization procedure using LCZ E reference grids allowed for adjustment of intra-flight 
thermal fluctuations, enhancing the comparability of LST data across grids. This refinement is rarely used in 
UAV-based urban climate studies and represents a methodological contribution that improves data integrity 
and spatial consistency.

The combination of high-resolution UAV thermal imaging and Local Climate Zone (LCZ) analysis offers 
several advantages over traditional satellite remote sensing methods for urban planning. UAV thermal imaging 
provides much finer spatial resolution, allowing for detailed temperature mapping of individual buildings, streets, 
and small urban features that may be missed by coarser satellite data. This granular view enables planners to 
identify localized hot spots and cool areas within the urban fabric with greater precision. When integrated with 
LCZ classification, which characterizes urban morphology and land cover types, planners can better understand 
how specific urban forms and materials influence the thermal environment at the neighborhood scale.

Comparative analysis and contextual interpretation
When compared with studies from other urban contexts, the observed thermal patterns in Konak reveal both 
consistent and context-specific behaviors. For example, elevated temperatures in LCZ 8 are consistent with 

Fig. 11.  Avarage land surface temperature (Prepared by the author using ArcGIS Pro (version 3.6, ​h​t​t​p​s​:​/​/​w​w​w​
.​e​s​r​i​.​c​o​m​​​​​)​.​​​​
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findings from Bangkok and Hong Kong40,46, where extensive asphalt and metal surfaces contribute to heat 
retention. Meanwhile, lower LSTs in LCZ B and G are comparable to cooling trends observed in Lisbon47. 
However, the wider LST range observed in Konak’s LCZ 3 (Compact Low-rise) compared to Athens15 may 
reflect Konak’s complex urban morphology, including dense commercial areas like the Kemeraltı Bazaar and 
limited urban shading.

Such differences also highlight the significance of local building materials, surface characteristics, and 
ventilation conditions. For instance, the higher LSTs in Konak’s LCZ E compared to Hong Kong may be attributed 
to the prevalence of asphalt surfaces, which have higher thermal emissivity than concrete. Furthermore, unlike 
the monocentric UHI pattern reported in cities like Sofia25, Konak exhibited a polycentric UHI structure, with 
multiple heat accumulation zones identified in the northern harbor and commercial districts.

For high-density Mediterranean cities like İzmir, these findings have particular value in addressing urban heat 
challenges. The detailed thermal and LCZ data can guide targeted interventions to mitigate urban heat island 
effects, such as identifying optimal locations for green spaces, recommending building materials and designs 
that reduce heat absorption, and planning street orientations that maximize natural ventilation. Planners can use 
this information to develop climate-responsive urban designs that improve thermal comfort for residents while 
reducing energy demands for cooling. Additionally, the high-resolution data enables more accurate modeling of 
future climate scenarios at the city scale, allowing planners to anticipate and prepare for long-term temperature 
changes in the Mediterranean urban context.

Practical implications for urban planning
The heat load map generated from normalized LST data shows that approximately 8.8% of Konak’s urban area 
experiences high thermal stress, primarily concentrated in dense, impervious zones, while 21.7% benefits from 
optimal thermal conditions due to green and blue infrastructure. These results provide actionable insights for 
climate-responsive planning. To make the Konak District and İzmir “cooler,” our findings have direct, actionable 
guiding value. The analysis identified specific LCZ types with the highest heat load, such as Compact Low-Rise 
(LCZ 3) and Compact Mid-Rise (LCZ 2), which are the primary targets for urban heat mitigation. Based on these 
findings, we propose a multi-faceted approach centered on proactive retrofitting and urban design strategies.

First, prioritizing green infrastructure is essential. Our results highlight the significant cooling effect of 
vegetated zones, emphasizing the need to integrate urban forestry, pocket parks, and green roofs and walls into 
high-heat-load areas48. These measures enhance evapotranspiration and provide shade, effectively reducing both 
surface and air temperatures.

Second, the modification of urban materials is a critical strategy. In areas with extensive impervious surfaces, 
we recommend replacing dark, absorptive materials with those of high-albedo. This includes using light-
colored pavements, cool roofs, and reflective coatings on buildings to increase solar reflectance and reduce heat 
absorption.

Finally, optimizing urban form is key to promoting passive cooling. We recommend adjusting building 
orientations to maximize natural airflow and creating urban ventilation corridors. The implementation of water 
features, such as fountains and misting systems in public spaces, can also create localized cooling microclimates. 
Furthermore, encouraging the use of shading devices on buildings and in public areas can reduce direct solar 
radiation and enhance pedestrian thermal comfort49.

These recommendations should be integrated into a comprehensive urban heat island mitigation plan that 
aligns with zoning regulations and building codes. Engaging local communities in the planning process and 
educating residents about heat-reducing practices will be crucial for the success of these interventions. Regular 
monitoring and assessment of temperature changes across different LCZs will help evaluate the effectiveness of 
these strategies and guide future planning decisions. This study thus provides a tangible roadmap for planners to 
transition from broad, city-wide strategies to precise, neighborhood-level interventions, directly contributing to 
the “Cooler Cities” theme and enhancing urban resilience in Mediterranean climates.

Limitations and recommendations for future work
Several limitations of this study should be acknowledged. First, the thermal data were collected during a limited 
time window (late May, mid-day hours), which may not fully capture seasonal or diurnal variations in surface 
temperature. Atmospheric factors such as wind, humidity, and partial cloud cover during UAV flights may also 
introduce variability in the recorded temperatures, highlighting the sensitivity of UAV-based measurements to 
weather conditions. Second, while the sample of 245 grids ensured LCZ representation at a 90% confidence level, 
additional sampling across different seasons and times of day could strengthen the robustness of the thermal 
profiles.

The accuracy specification of the thermal camera used in this study is ± 2 °C. While this introduces a degree of 
uncertainty in absolute temperature values, the observed inter-class differences between LCZs (typically ranging 
from 4 to 8 °C) exceed this margin, supporting the robustness of the relative thermal patterns identified. Similar 
levels of sensor accuracy have been reported as acceptable in UAV-based LST studies (e.g17,50.,. Nevertheless, 
this margin should be considered when interpreting the results, particularly for LCZ classes with relatively small 
thermal contrasts.

Moreover, although İzmir shares key climatic and morphological characteristics with other Mediterranean 
cities, its unique urban morphology (e.g., compact commercial cores, industrial waterfronts) constrains the 
direct generalization of the results. Nevertheless, the methodological framework presented here—combining 
UAV-based LST measurements with LCZ classification—is transferable and adaptable to other Mediterranean 
urban contexts.
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This study also did not integrate socioeconomic or demographic variables, which are essential for 
understanding the intersection of thermal exposure and urban vulnerability. Including such data would enhance 
the capacity of the model to support equitable climate adaptation strategies.

Future research should expand UAV flights to capture seasonal and hourly variations in LST, allowing for 
a more comprehensive understanding of temporal dynamics. Integrating social vulnerability indicators into 
spatial thermal analyses would also enhance the capacity to link thermal exposure with urban resilience and 
equity considerations. In addition, testing the methodology in other Mediterranean cities could provide insights 
into the generalizability of the LCZ–temperature relationship beyond the case of İzmir. Finally, simulating future 
climate scenarios and evaluating adaptation interventions—such as reflective surfaces, cool roofs, or urban 
greening—would strengthen the practical relevance of the approach for climate-sensitive urban planning51,52.

Conclusion
The findings of this study provide actionable insights for urban planning and climate adaptation. In zones with 
elevated heat loads such as LCZ 7 (Lightweight Low-rise) and LCZ 8 (Large Low-rise), targeted interventions 
could include the introduction of reflective roofing materials, permeable pavements, and increased tree canopy 
cover to mitigate excessive surface heating. Or increasing green coverage in LCZ 3 (compact low-rise) areas by 
15–20% to reduce LST by up to 2–3 °C, as observed in the study’s heat load data. In contrast, cooling zones such 
as LCZ B (Scattered Trees) and LCZ G (Water) highlight the critical importance of preserving and expanding 
green and blue infrastructure within urban planning strategies. The heat load maps produced here can serve as 
decision-support tools for municipalities, helping to prioritize investment in vulnerable neighborhoods, design 
heat-resilient public spaces, and integrate climate-sensitive zoning regulations. By linking LCZ-based thermal 
analyses to planning actions, this methodology strengthens the policy relevance of UAV and GIS-based urban 
climate research. These strategies are adaptable to other Mediterranean cities with similar LCZ distributions, 
such as Athens or Valencia, pending local climate adjustments.

By addressing the spatial heterogeneity of urban heat patterns through a high-resolution, UAV-GIS integrated 
approach, this study provides a replicable and actionable framework for urban climate analysis. However, to 
fully inform climate-resilient and socially inclusive planning, future work must go beyond physical variables to 
incorporate social dimensions and broader temporal coverage.

In summary, this study demonstrates that UAV–LCZ integration can reliably capture fine-scale thermal 
differences across urban morphologies, highlighting priority areas for intervention (e.g., LCZ 7, LCZ 8, and LCZ 
3). By combining detailed temperature mapping with actionable planning recommendations, it bridges the gap 
between scientific analysis and policy application, while also setting the stage for future research that expands 
across seasons, integrates social vulnerability, and tests adaptability in other Mediterranean cities.

Data availability
The datasets generated and/or analyzed during the current study are not publicly available due to institutional 
restrictions imposed by Konak Municipality, as the thermal UAV imagery and related geospatial data are pro-
prietary to the municipality. However, these datasets are available from the corresponding author on reasonable 
request, subject to permission from Konak Municipality.
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