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Do climate conditions and extreme events fuel conflict and migration? This question has been widely 
studied using causal designs that exploit natural variation in climate variables, often analyzed 
with linear fixed-effects models. Yet in this setting, nonlinear relationships, distributional features 
of outcomes, and spatial heterogeneity can cause these models to violate core assumptions and 
yield unreliable inferences. We propose a multilevel Bayesian framework that accommodates such 
features while retaining identification strategies from natural experiments. We illustrate its potential 
with a representative analysis from the literature of the effect of temperature anomalies on conflict 
in Somalia. When outcome distributions suited to event counts are combined with partial pooling 
across regions, the apparent aggregate climate effect disappears and marked regional heterogeneity 
emerges, with positive associations in only a few southern regions and negative or uncertain effects 
elsewhere. Extending pooling across time further improves predictive ability. More broadly, the 
multilevel Bayesian framework offers a general strategy for strengthening both explanatory and 
predictive inferences about climate and social outcomes, supporting internal and external validity 
while efficiently accommodating heterogeneity even with small samples. This methodological bridge 
between econometric identification strategies and statistical modeling provides a robust foundation 
for interdisciplinary climate-conflict-migration research.
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Do climate conditions, and notably climate extremes, fuel or lead to conflict and migration? This question has 
been addressed by a rapidly growing number of empirical studies over the past two decades, with contributions 
from a variety of disciplines. In parallel, a large number of systematic reviews have followed, assessing both 
the diversity of methods used to analyze the statistical relationship between climate and social instability and 
whether a consensus emerges (see Supplementary Information S.1 online for an overview of reviews published 
in the past dozen years). Taken together, these reviews find mixed evidence of substantial climate impacts, largely 
reflecting the variability of specifications and data—such as how the onset of civil war is defined, or which types 
of displacement are considered1–8. The most recent literature reviews and meta-analyses continue to highlight 
a lack of consensus9,10, underscoring the persistent methodological and empirical challenges in establishing 
robust causal relationships. However, those studies within the new climate-economy literature11, which uses 
reduced-form models exploiting variation in climate variables to identify causal effects, tend to suggest a net 
effect of climate on conflict12–14.

Research designs that leverage such natural or quasi-experiments are positioned to credibly identify causal 
effects. Here, quasi-experiments refer to observational studies in which quasi-randomization of a variable occurs 
without researcher intervention, approximating the exogeneity of a randomized experiment, though without full 
random assignment. Applying such designs to the climate-migration-conflict nexus is of increasing relevance as 
climate conditions that were historically rare become more frequent and as adaptation becomes a more salient 
concern. However, this nexus departs substantially from the statistical setting that motivates the widespread 
linear reduced-form model, in at least two important ways. First, multiple features of the data-generating 
processes in this context diverge, more strongly than in other contexts, from the assumptions of the linear model. 
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As a result, the best linear approximation to the conditional expectation function—what the linear reduced-form 
model provides—may not produce the desired information. Second, while causal inference and prediction can 
certainly be valuable on their own, we argue that causality questions in this area are often ultimately motivated 
by prediction; the causal effects of climate on conflict and migration are of increasing practical interest due 
to expected global changes in the distribution of climate. In effect, causality studies often make implicit or 
explicit prediction statements, based on their estimates of slope coefficients for climate regressors. Yet with 
many fixed effects and typically low explained variance, the uncertainty around such predictive statements 
may be rather large. This motivates turning to approaches that evaluate predictive performance explicitly, while 
accommodating and estimating heterogeneity in climate effects to support both explanation and prediction. The 
climate-migration-conflict nexus thereby prompts the use of statistical approaches that integrate both causal 
identification and predictive validity to provide meaningful insights. While traditional reduced-form linear 
models with fixed effects remain the standard approach in the causal inference literature, their limitations in 
capturing nonlinear climate responses and spatial heterogeneity efficiently limit explanatory power and policy 
relevance.

This paper proposes a multilevel Bayesian framework to analyze climate-fueled social instability. By 
explicitly modeling heterogeneous regional effects and nonlinear responses while leveraging quasi-experimental 
identification strategies, this framework offers a way of addressing the aforementioned limitations. We apply it 
to a dataset representative of the literature and directly compare its results with that from a linear fixed-effects 
approach. The application illustrates how the latter approach can not only obscure important heterogeneity in 
climate responses, but also mislead about the aggregate effect. In contrast, the multilevel Bayesian framework 
improves both the internal validity of causal estimates and out-of-sample predictive ability. In our application 
to the effect of temperature extremes on the number of conflict events in Somalia, we find that the apparent 
aggregate climate effect disappears once an outcome distribution suited to event counts is specified and regional 
pooling is introduced. Only a few southern regions drive positive estimates, whereas others show negative or 
highly uncertain effects. Moreover, regional partial pooling and then further temporal pooling incrementally 
improve predictive ability.

The remainder of the paper proceeds as follows. We first describe how specific features of climate-conflict 
data violate key assumptions of fixed-effects linear models, affecting both causal inference and predictive 
performance, and why these complementary statistical goals should be jointly considered. Next, we introduce 
the general multilevel Bayesian framework and describe a simple model for longitudinal data. We then illustrate 
its potential with the Somalia application and compare the results to those from the fixed-effects linear model. 
We finally discuss the broader implications of our findings for environmental social science research.

Assumptions and constraints of fixed-effects linear models
Research designs focused on quasi-experiments with adjustments for confounders commonly use a reduced-
form linear model to identify an average treatment effect. With longitudinal data, variation in climate variables is 
leveraged using a multivariate linear regression model, which includes indicator variables or ‘fixed effects’ for the 
units—e.g., locations—in the sample, as well as temporal fixed effects, to estimate the average effects of climate 
variables across units and periods. The multivariate linear regression model with fixed effects (MLR-FE) has the 
following general form:

	 yit = W′
itβ + X′

itδ + ϕi + ψt + eit, eit
iid∼ normal (0, σ); i = 1, . . . , n, t = 1, . . . , T � (1)

where yit is the outcome variable for unit i at time t, Wit is a vector of climate variables considered as treatment 
(often linear, sometimes including polynomials), Xit is an optional vector of adjustment variables, ϕi is a vector 
of unit fixed effects, and ψt is an optional vector of temporal fixed effects. The vector of key parameters of interest 
β is estimated either by maximum likelihood, with the explicit assumption of normally-distributed errors 
eit, or by least squares—where the same assumption is implicit for the typical tests of statistical significance. 
The motivation for using spatial and temporal fixed effects is to adjust for time-invariant and space-invariant 
unobserved confounders, respectively.

Assuming a strong causal identification strategy, the estimators of the slope parameters are unbiased 
conditional on the ability to adjust for all confounders. However, the validity, individual interpretation, and 
assessment of significance of the estimates β̂ still rely on the modeling assumptions of additivity, linearity, 
spherical errors, normally-distributed errors, and non-collinear regressors15. No assumption is ever expected 
to be met perfectly with real-world data, and exact compliance with all these assumptions is not required for 
consistency. But in the climate-migration-conflict nexus in particular, the features of the data-generating process 
often suggest particularly large departures from the assumptions of the MLR-FE model which can become 
consequential for inference, and include:

•	 Nonlinear functional forms. Migration or conflict outcomes often have nonlinear relationships to environ-
mental conditions, with frequent threshold effects16. In that context, the simple linear approximation to the 
conditional expectation function, even if accurate in capturing an average relationship, would fail to capture 
nonlinearities and thereby severely limit, if not mislead, the information carried by the slope coefficients, and 
have weaker predictive ability than a model that captures this behavior.

•	 Limited outcome data. In large samples, OLS estimators remain consistent under non-normal errors. But in 
this field, outcome data are measures of migration or conflict whose ranges of possible values are often limit-
ed—e.g., as they take the form of counts of rare events—producing strongly non-normal conditional distribu-
tions. Under such conditions, and especially with relatively small sample sizes, the reliability of conventional 
significance tests is diminished. This motivates outcome distributions better suited to the nature of the data, 
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and systematic use of diagnostics. Short records across a large number of spatial units also raise the risk of 
high-influence observations, given the presence of extremes of the often right-skewed climate variables, or of 
the highly-skewed outcome variables.

•	 Correlated climate regressors. The regression on several climate variables—such as temperature, precipitation, 
and indices derived from them—limits the simultaneous interpretation of coefficients as individual effects 
when these variables are highly correlated. In such cases, only their joint effect can be interpreted reliably, 
while slope estimates risk instability. The literature notes concerns about multicollinearity; some studies ad-
dress it for example by computing pairwise correlations among climate variables17 or by explicitly cautioning 
against interpreting coefficients simultaneously18.

•	 Dependence structures and heterogeneous treatment effects. Socio-ecological data in the climate-migra-
tion-conflict nexus often have a specific dependence structure—whether temporal, spatial or administrative5. 
Longitudinal data have a hierarchical structure, where a lower level is the repeated measure within the group 
across time and is nested within a higher level which represents the group-level data. So-called “sandwich” 
estimators, such as those proposed by Conley19 and Newey-West20, are a common way to adjust otherwise 
misleading estimates of parameter uncertainty for spatial and temporal autocorrelation. However, such ad-
justment is only valid to the extent that the dependence structure is correctly specified and the sample is 
sufficiently large. The MLR-FE model also typically fits a separate intercept per group and a homogeneous 
treatment effect, thereby modeling independent baseline outcome levels across groups, while assuming away 
similar group-level heterogeneity in the effect of the regressors. This no-pooling of intercepts and full-pooling 
of slopes corresponds not to absent or conservative assumptions, but instead to specific restrictive assump-
tions on the role of hierarchical structures in the data-generating process.

Predictive ability strengthens causal inference
Research questions on the statistical relationships between climate and social outcomes that go beyond merely 
describing associations can often be classified as belonging to one of three categories: 

	1.	 Forward causal inference or “what if ” questions, which seek to uncover the effects of causes21, e.g., ‘What is 
the average effect of heat waves on migration and conflict?’

	2.	 Reverse causal inference or “why” questions, regarding causes of effects, e.g., ‘What are the causes of the in-
creased rates of interpersonal conflict observed in location X in the last few decades?’

	3.	 Prediction, e.g., ‘How many annual international migrants from region A to region B are expected by mid-cen-
tury under a global average temperature increase of 2◦C above pre-industrial levels?’

In the heterogeneous body of work concerned with capturing how changes in climate impact conflict and 
migration, the distinction between these three proximate goals and the focus on different assumptions between 
disciplines partly explain the variety of statistical approaches. In particular, the divide between explanatory and 
predictive goals has consequences at every step of the modeling process, from data preparation to the choice 
of regressors and model selection, while some steps may even virtually disappear, such as model evaluation in 
causal inference settings22.

In the climate-economy literature, studies generally state the goal of forward causal inference. At the same 
time, the motivation for prediction is often present—even if implicit—in estimating climate impacts. This is 
the case in causal inference studies in general: Rubin23—the seminal paper presenting the potential outcomes 
framework, on which typical causal inference approaches are based—highlights how the results of a (true or 
quasi) experiment are generally of interest only to the extent that the observed data are representative of a 
population of future treatment assignments, i.e., that the causal relationship has a certain predictive ability. This 
is especially relevant in the case of climate impacts. The answer to “Do extreme climate events lead to conflict or 
migration?” has become an increasing concern under the assumption that it tells us something about “Will future 
climate changes bring more conflict or migration?”.

This underlying motivation is revealed by many causal inference studies themselves, which include predictive 
statements or pair the estimates from explanatory causal models with climate model output to form projections. 
In the latter case, Carleton et al.13 aptly describe the need to account for the multiple sources of uncertainty, 
namely (i) the statistical uncertainty from the fitted model, (ii) the variation in climate model predictions, and 
(iii) the potential adaptation of societies to climate change that could alter the response function. We emphasize 
the concern that the original fitted model might have little predictive power if it uses only climate regressors and 
fixed effects while imposing strong assumptions on unmodeled group-level effects.

In analyses concerned with estimating causally-interpretable parameters, considering the predictive ability 
of the model would not only support the external validity of the analysis as well as an ultimate motivation of 
the research, but also bolster its internal validity. This has been notably illustrated in the study of conflict24. 
Prediction accuracy supports causal inference by providing an additional check on its assumptions, namely: 
the statistical assumptions about the data-generating process, and the aforementioned assumption of subjective 
random sampling of trials. Modeling assumptions about the data-generating process can be supported in the 
pre-modeling phase by using prior theory to dictate the model, but also post-modeling, by testing the model 
against reality, i.e., by assessing its predictive accuracy25. As social science knowledge can often be too limited 
for deriving precise specifications, prediction provides a way to evaluate whether these assumptions hold in 
practice.

In summary, in the climate-migration-conflict nexus, the features of the data-generating process and the 
importance of predictive interpretations motivate both a systematic examination of the fixed-effects linear 
model assumptions and the exploration of more flexible approaches. In the next sections, we explore leveraging 
the same quasi-experimental variation in climate through a framework that addresses these complementary 
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statistical goals. We first introduce the implementation of the multilevel Bayesian framework with such causal 
identification strategies. We describe how it accommodates various conditional distributions of outcomes, 
models dependence in residuals and heterogeneous effects across spatial units, and propagates uncertainty into 
projections under simulated climate conditions.

The multilevel Bayesian framework
This section introduces the multilevel Bayesian framework as a generalization of the fixed-effects model. We first 
restate the fixed-effects specification, recasting it within this framework to highlight its underlying assumptions, 
and then show how a multilevel structure with partial pooling relaxes them.

Longitudinal data have a hierarchical structure, where repeated measures at the lower level (time within 
group) are nested within higher-level group data, for example, regions. Recast in a hierarchical (i.e., multilevel) 
modeling framework, the MLR-FE model (1) fit to such data embeds restrictive assumptions about between-
group variation: regional intercepts are completely independent or unpooled, while climate variables have 
homogeneous or fully-pooled effects across regions. This varying-intercepts fixed-slopes model is represented 
in Eq. (2), where the conditional distribution of the outcome variable is generalized as F (µ, θ) with mean µ 
and other parameters θ, and we consider the example of a vector of two climate-related predictors, such that 
β = (α, γ)′ and Wit = (Ait, Bit)′:

	 yit ∼ F (µit, θ), µit = αAit + γBit + X′
itδ + ϕi + ψt; i = 1, . . . , n; t = 1, . . . , T.� (2)

In this fixed-effects model, each regional intercept ϕi is estimated from the data of the given region i only, which is 
equivalent to assuming that the intercepts belong to a joint distribution with an infinite variance. Homogeneous 
slope parameters, on the other hand, implicitly represent the other extreme of zero variance between regions. 
It is often reasonable to assume instead some degree of closeness between effects across regions, and hence 
use a compromise between full pooling and no pooling of regional coefficients. In effect, one may assume that 
they belong to a common distribution and let the degree of pooling be determined by the data. This is easily 
implemented with a multilevel model, where within-group variation is explicitly modeled at the lower level, and 
between-group variation at the higher level. Modifying model (2) to allow for such partial pooling of both slopes 
and intercepts across regions results in the two-level model (3), where the vector of region-level coefficients is 
assumed to follow a joint multivariate normal (MVN) distribution. Group averages of the causal variables are 
added as covariates to address concerns of bias from time-invariant confounders introduced by the modeled 
region-level effects. This model is sometimes referred to as the “within-between random effects” model26 or the 
“correlated random effects” model27. By including the group averages as regressors, the problematic correlation 
between the treatment variables and the group effects is removed from the group-level error term, resolving the 
concern of bias from group-level (here: time-invariant) confounders in a manner similar to the fixed-effects 
model28.

	

yit ∼ F (µit, θ), µit = aiAit + biBit + X′
itδ + fi + η1Āi + η2B̄i + ψt; i = 1, . . . , n; t = 1, . . . , T[

ai

bi

fi

]
∼ MVN

([
α0
γ0
ϕ0

]
,

[
σ2

a σab σaf

σab σ2
b σbf

σaf σbf σ2
f

])
� (3)

In addition to relaxing the constraints on the distribution of regional coefficients, the multilevel structure allows 
them also to be informed by group-level predictors. In this simplest form of the model, the serial or spatial 
dependence structure is not explicitly represented; however, it could be modeled by including relevant additional 
regressors—such as lags of the dependent variable—alongside Xit.

This model can be estimated in a frequentist or Bayesian framework. We emphasize the Bayesian framework 
because it provides full posterior distributions for group-level and population parameters, regularizes estimation 
in small samples, and facilitates evaluation of predictive performance through posterior predictive checks. 
Specifically in the climate-conflict-migration context, it simultaneously allows for: (i) accounting for the typically 
limited nature of migration and conflict outcome data through an adequate choice of F (), (ii) partially pooling 
the intercept and slope coefficients across groups efficiently, and (iii) propagating uncertainty in parameter 
estimation. The posterior distributions produced can indeed be combined with simulations from climate models 
to account for the uncertainty in estimation when projecting outcomes.

The same identification strategies based on quasi-experiments and adjustments for confounders can be 
leveraged within this framework, which generalizes the typical linear model. Like any statistical approach, the 
multilevel Bayesian model also rests on assumptions: the functional form of the model, the specification of the 
outcome distribution, and the priors assigned to parameters all shape the resulting inferences. It is therefore 
essential to question these assumptions, and use tools such as posterior predictive checks to assess their 
plausibility. This framework also implies tradeoffs. The most prominent are higher computational costs and 
a potential reduction in the effective degrees of freedom for statistical tests. A further, though presumably less 
consequential, tradeoff is that of one linear assumption for another. Indeed, with a non-identity link function, 
the bias from time-invariant confounders is fully removed by including the group average of the causal variable 
as a covariate only if the random effect is a linear function of this average. That being said, simulations suggest 
that the remaining bias remains small in most situations26, and additional functions of the group average can 
also be included to characterize more flexible functional forms of the correlation. Although these tradeoffs 
exist, we propose that when model diagnostics show strong departures from the assumptions of the typical 
linear model—such that t tests of the coefficients of the best linear approximation to the conditional expectation 
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function do not provide the desired information—and when heterogeneity in treatment effects or prediction are 
of interest, as is generally the case in the climate-economy literature, these tradeoffs may be worthwhile.

Multilevel models have been used to study the relationship between climate and migration. For example, 
Nawrotzki et al.29 use a two-level regression model to account for the hierarchical structure of their data 
(households nested in municipalities). In a similar setting, Nawrotzki et al.30 consider a third level and include 
state-level predictors, explicitly addressing the fact that “migration decisions are influenced by forces operating 
at different scales.” In both studies, the central findings are the variation of the climate-migration association by 
location characteristics. However, only intercepts are modeled as random effects; slopes are fully pooled across 
units. The estimated relationships are not causally interpretable because they lack a strong identification strategy, 
and the predictive ability of the model is also not assessed. In the context of conflict outcomes, Burke et al.12 use 
a hierarchical Bayesian model to conduct a meta-analysis of estimates from the literature, themselves selected 
for their use of the MLR-FE framework. In the present paper, we suggest instead using the multilevel Bayesian 
framework in combination with established identification strategies, to combine the focus on identification with 
the consideration of modeling assumptions and account for heterogeneity by modeling slope parameters in 
addition to intercepts. This framework can be adopted not solely in settings with hierarchical levels within the 
spatial dimension, but in any longitudinal data.

In the next section, we apply this model to a dataset representative of the literature and compare the insights 
obtained with those from the fixed-effects linear model.

Application: temperature anomalies and civil war in Somalia
We consider the dataset on climate and conflict in Somalia used in Maystadt and Ecker31, hereafter M&E. This 
choice is motivated by the availability and representativeness of these data: their analysis was conducted within 
the MLR-FE modeling framework, and has been cited in a substantial number of literature reviews published 
since its original publication3,4,6,10,12–14,32.

The hypothesis originally tested with this dataset is that temperature extremes are an indirect determinant 
of conflicts in Somalia operating primarily through the channel of livestock prices. The dataset contains 
longitudinal, monthly data at the scale of administrative regions, over the period 1997–2009. Supplementary 
Figure S4 online shows a map of these 18 regions. The causal identification strategy uses the exogeneity of 
two main explanatory variables capturing the level and duration of temperature extremes—‘temperature 
anomaly’ TA and ‘drought length’ DL—and controls for ‘precipitation anomaly’ PA. The outcome of interest is 
the number of violent conflict events. The main variables are listed in Table 1 along with the raw data sources 
and transformation steps. The dataset also contains livestock prices, instrumented by the climate variables in a 
two-stage least-squares fixed-effect model to explore the mechanism driving the reduced-form relationship. As 
that instrumental variable specification adopts the same functional form and treatment of the error terms as the 
reduced-form—and our study focuses on these modeling assumptions, not causal-identification assumptions—
we present here only the reduced-form model.

Inferences from the MLR-FE model and other single-level specifications
We first estimate the effects of the climate variables of interest using the MLR-FE model, presented in Eq. (4), 
where i refers to the region, m the calendar month, y the year, and eimy  represents the error term.

	
conflictimy = αT Aimy + γDLimy + δP Aimy + ϕi + ψmy + ωim + eimy, eimy ∼ normal (0, σ);

i = 1, . . . , 18; m = 1, . . . , 12; y = 1, . . . , 13 � (4)

Like M&E, we include 18 region fixed effects captured by ϕi, 156 month-year fixed effects ψmy , and 216 region-
month fixed effects ωim. Temporal and spatial dependencies are accounted for simultaneously by estimating the 
variance-covariance matrix of the error term following the methods of Newey and West20 and Conley19 with 
uniform weighting kernels. Spatial dependency is assumed to disappear beyond a cutoff point of 263 kilometers, 
corresponding to the maximum distance between the centroids of any pair of neighboring regions, and time 
dependency is allowed up to four months. The summary of the results is presented in the first two columns of 
Table 2, and diagnostic plots of the residuals are presented in the first row of Fig. 1. Additional diagnostic plots 
are provided in detail in the Supplementary Information S.2 online.

Description Name Original resolution and processing steps Source

Count of violent conflict events conflict Region × month ACLED (2011)35

Temperature anomaly TA
0.5° × 0.5° grid × month (average of daily maximum Ts)
 a. T interpolated to region centers by kriging;
 b. anomaly computed w.r.t. 1980–2009;
 c. anomaly averaged over 3 months

CRU TS 3.1 (2008)36

Drought length DL count of consecutive months with positive TA values CRU TS 3.1 (2008)36

Precipitation anomaly PA
0.5° × 0.5° grid × month (total precipitation P)
 a. P interpolated to region centers by kriging;
 b. anomaly computed w.r.t. 1983–2009;
 c. anomaly averaged over 3 months

CRU TS 3.1 (2008)36

Table 1.  Main variables in M&E’s original reduced-form specification.
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The normal quantile-quantile diagnostic plot shows a strong departure from normality in the distribution 
of the residuals. A Shapiro-Wilk test and a Kolmogorov-Smirnov test further confirm this departure. TA and 
DL have a correlation coefficient of 0.28 when fixed effects are removed (see Supplementary Fig. S1 online). 
The computation of the correlations between explanatory variables by region shows that PA and DL are highly 
correlated in the northern regions of Awdal, Nugaal, Sool, and Togdheer. The share of the variation in outcomes 
within regions that is explained by the model, captured by the within R2, is negligible when adjusted for the 
degrees of freedom. The correlations of climate variables, the non-normality of the residuals, and the lack of 
information on the true correlation structure of the residuals, render the p-values of the regression coefficients 
unreliable indicators for causal identification.

We therefore explore the robustness of the results to an alternative model specification better suited to the 
data-generating process. We consider a negative binomial (NB) conditional distribution to account for the count 
nature of the outcome data, its positive skew and the frequency of zero values:

	

conflictimy ∼ NB (µimy, Θ); i = 1, . . . , 18; m = 1, . . . , 12; y = 1, . . . , 13
µimy = αT Aimy + γDLimy + δP Aimy + ϕi + ψmy

� (5)

The second row of Fig. 1 presents the diagnostic plots of this NB model (5), estimated as a generalized linear 
model with logarithmic link function. As expected, we no longer observe a stark departure from the modeling 
assumptions; the Akaike information criterion (AIC) is also substantially lower. With this distribution, we find 
that the key climate variables of interest are not statistically significant (Table 2).

A multilevel Bayesian model of climate-fueled conflict
We now relax the assumptions of no-pooling of baseline effects and full pooling of climate effects across regions 
by generalizing to the multilevel negative binomial model (6), which partially pools slopes and intercepts across 
regions, and we estimate it in the Bayesian framework. Removing the region-month interaction term ωim 
present in the single-level model specifications gives comparable results and is more computationally efficient, 
so we omit it from the multilevel model for simplicity. All parameters, including the hyperparameters of the 
between-group covariance matrix, are assigned weakly informative priors, i.e., prior distributions that mildly 
constrain parameters toward plausible values to regularize estimation without overwhelming the information in 
the data (see the Supplementary Information S.4 online for details).

Conditional
distribution

Normal
(originala SEs)

Normal
(corrected SEs) NB NB

TA
0.71 0.71 0.01 0.08

(0.25) (0.37) (0.12) (0.11)

DL
0.08 0.08 0.02 0.02

(0.01) (0.04) (0.01) (0.01)

PA
−0.47 −0.47 −0.08 −0.07
(0.20) (0.31) (0.16) (0.15)

Region FEs ✓ ✓ ✓ ✓
Year-month FEs ✓ ✓ ✓ ✓
Region-month FEs ✓ ✓ ✓
N 2808 2808 2808 2808

Multiple R2 0.43

Withinb R2 0.17 0.17

Adjusted within R2 0.04

AIC 16121 5837 5639

Table 2.  Frequentist estimates of slope coefficients of the single-level models. The raw regression coefficients 
are displayed; they represent additive changes in y in Gaussian models, and additive changes in log(y) in 
negative binomial models, where y is the number of conflicts. a The ‘original’ standard errors (SEs) are those 
reported in M&E. They were computed using a version of the ols_spatial_HAC function by Hsiang37 
which miscalculated the weights for serial autocorrelation. Using the corrected version (v3) in the authors’ 
Stata code results in the ‘corrected’ standard errors in the adjacent column. b The within or ‘projected’ R2 
corresponds to the R2 of the mean-deviated regression, i.e., after removing region fixed effects, and represents 
the share of the variation in the outcome within regions that is captured by the model.
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conflictimy ∼ NB (µimy, Θ); i = 1, . . . , 18; m = 1, . . . , 12; y = 1, . . . , 13
µimy = aiT Aimy + biDLimy + ciP Aimy + fi + η1T Ai + η2DLi + η3P Ai + ψmy




ai

bi

ci

fi


 ∼ MVN







α0
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ϕ0


 ,


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σ2
a σab σac σaf

σab σ2
b σbc σbf

σac σbc σ2
c σcf

σaf σbf σcf σ2
f







� (6)

Figure 2 shows the posterior distributions of the central slope coefficients of the two negative binomial 
models—(α, γ, δ) for the single-level model (5) and (α0, γ0, δ0) for the multilevel model (6)—estimated using 
a Bayesian framework. For each parameter of interest, Bayesian estimation produces a full posterior distribution, 
which represents the updated uncertainty about the value of the parameter after observing the data. To compare 
this estimation to results from a frequentist approach, like model (5) (which produces a single point estimate 
with an associated standard error and confidence intervals), we compute summary statistics of the posterior 
distribution, specifically the median as a measure of central tendency and 95% credible intervals. As expected, the 
median values of the distributions from the fixed-slope Bayesian model are virtually identical to the frequentist 
point estimates. However, in the partial pooling model, the distribution of the mean slope coefficient for DL 
shifts towards zero, making the evidence of an effect of the climate variable is inconclusive.
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Fig. 1.  Residual plots of the reduced-form model assuming a conditional normal distribution (top) or negative 
binomial distribution (bottom). Left: quantile-quantile plot of the residuals, including Kolmogorov-Smirnov 
(KS) test for the goodness of fit of the residuals to the specified distribution. Right: standardized residuals 
against model predictions; red stars represent outliers.
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The posterior distributions of the partially-pooled slope coefficients (ai, bi, ci) provide some insight into what 
drives these higher-order effects. Figure 3 shows substantial heterogeneity in the effect of DL between regions, 
with only a few southern regions (Banaadir, Bay, and Gedo) actually driving the positive causal relationship, while 
others experience negative effects, which helps explain the relatively weak results in the full-pooling model. The 
Banaadir and Bay regions experienced the lowest numbers of months without any conflict throughout the study 
period. The uncertainty around the parameters also shows large differences between regions. In the northern 
regions of Awdal and Sool, the large uncertainty reflects the low total number of conflicts over the study period 
(one and four, respectively).

Predictive ability
 Considering the model’s predictive ability—whether for model evaluation or for simulation—is hindered by 
the presence of temporal fixed effects. Indeed, what are the values of the coefficients on year-month indicator 
variables for future periods? Similarly to pooling region intercepts in place of using region fixed effects, the 
assumption of unrelated effects across months can be relaxed by pooling them, i.e., by modeling them as random 
effects. We can then form predictions for a time period outside of the sample by sampling from their estimated 
distribution. We explore this in model (7), where we further add predictors for the country-wide period effect 
wt. We include the group averages of the causal variables (taken over the regions within each period) to address 
unbiasedness concerns, as well as a time-varying climate forcing Ct experienced across all regions, and model 
wt as a simple linear function of this predictor. Given a climate time series cit, such as a drought index—or in 
our case the precipitation anomaly P Ait—we construct the climate forcing predictor Ct ≡

∑
i

cit
Qci

(.5)  which 
emphasizes threshold exceedance. Here Qci (.5) is the median of the climate time series. The general motivation 
for including group-level predictors is that they may reduce unexplained group-level variation and thus yield 
more precise estimates than by shrinking all groups equally toward the population mean. For this specific 
predictor, the motivation is two-fold: we may want to assess whether conflict responds to a pervasive spatial 
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Fig. 2.  Posterior distributions of the central slope coefficients of the Bayesian negative binomial models. Pink: 
single-level model (varying-intercept, fixed-slope), parameters α, γ, δ. Blue and green: multilevel models (blue: 
intercepts and slopes partially pooled across regions; green: intercepts partially pooled across regions and 
periods, slopes partially pooled across regions), hyperparameters α0, γ0, δ0. 95% credible intervals are shown 
as shaded areas under the curves around the median point estimates.
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impact or an aggregate climate anomaly aside from a regional climate anomaly, and we would expect it to be 
related to tail behavior of the same sign across locations. We also consider an alternative definition of the climate 
forcing that captures deviations from the average, with very similar results (see Supplementary Information S.3.2 
online).

	

conflictimy ∼ NB (µimy, Θ), i = 1, . . . , 18; m = 1, . . . , 12; y = 1, . . . , 13;
µimy = aiT Aimy + biDLimy + ciP Aimy + fi + η1T Ai + η2DLi + η3P Ai + wmy

wmy ∼ normal (ψ0 + ψ1T Amy + ψ2DLmy + ψ3Cmy, σw)
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Figure 4 shows a graphical comparison of relevant statistics of the observed data—namely, the proportion of 
zeros, due to the count nature of the outcome—against replicated datasets from the fits of the different models 
considered. This comparison of the posterior distributions shows that the original Gaussian model is not able 
to capture the count nature of the data. The negative binomial models with no pooling or partial pooling across 
regions provide better fits, and the partial pooling of temporal effects produces the best fit for the data. The 
higher performance of the multilevel models is also supported by cross-validation. We estimate the expected 
log predictive density (ELPD) of each model using leave-one-out cross-validation, then compute the differences 
between these ELPD estimates along with the standard errors of these differences. The results in Table 3 show 
the same hierarchy in expected predictive accuracy as in the comparison of posterior predictive statistics. We 
also replicate the partial-pooling model with the original Gaussian functional form, to assess how the predictive 
performance changes when using a multilevel model, compared to the original specification (see Supplementary 
Information S.3.1 online). We find, as captured by the ELPD, that the partial-pooling models perform marginally 
better than the no-pooling model; however, they do not match the performance of the NB model which accounts 
for the count nature of the outcome data.

Fig. 3.  Posterior distributions of the partially-pooled region-specific intercepts and slope coefficients (model 
(6)). 95% credible intervals are shown as shaded areas under the curves around the median point estimates.
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The application of hierarchical Bayesian models to this dataset illustrates how the standard MLR-FE model 
can be readily recast in the hierarchical Bayesian framework, with a better suited conditional distribution for 
the response variable, inferences on parameters generated using simulations—which enable the propagation 
of uncertainty if estimates are later used in projections—and the partial pooling of regression coefficients, and 
can thereby allow one to analyze and model differences across groups efficiently. The posterior distributions 
obtained can easily be combined with simulations similar to those proposed in M&E, e.g., of increases in one 

Model
Condit. distribution

(4)
Normal

(5)
NB

(6)
NB

(7)
NB

TA
0.71 0.08 0.12 0.19

(0.30) (0.12) (0.13) (0.12)

DL
0.08 0.02 0.01 0.01

(0.02) (0.01) (0.02) (0.02)

PA
−0.47 −0.04 −0.03 −0.03
(0.31) (0.16) (0.17) (0.16)

T Ai

−11.6 −11.13
(2.37) (2.23)

DLi

0.37 0.36

(0.19) (0.18)

P Ai

1.64 1.85

(3.07) (3.07)

T Amy

0.57

(0.29)

DLmy

−0.07
(0.04)

Cmy

0.01

(0.00)

Region FEs FEs Pooled Pooled

Month FEs FEs FEs Pooled

N 2808 2808 2808 2808

ELPD −8090.2 −2861.7 −2833.8 −2809.8

ELPDdiff −5280.3 −51.8 −24 0

SE[ELPDdiff] 186.4 13.8 9.5 0

Table 3.  Bayesian central estimates of slope coefficients of single-level and multilevel models. For each 
regressor, the table display summaries of its marginal posterior distribution: the distribution’s median (top 
sub-row) and an estimate of the distribution’s standard deviation (bottom sub-row, in parentheses) based 
on a scaling of the median absolute deviation around that median. ELPDdiff corresponds to the difference 
in expected log predictive density (ELPD) between models, and SE [ELPDdiff] to the standard error of that 
difference, where the reference is the model with the largest ELPD (model (7)).

 

Fig. 4.  Graphical posterior predictive check: comparison of the proportion of zeros in observed vs simulated 
datasets. For each model, 8000 datasets are simulated from the posterior predictive distribution using the 
observed predictors. The light blue histogram represents the distribution of the value of the statistic (the 
proportion of zeros) across the simulated datasets. The dark blue vertical line is the value of this statistic for the 
observed sample.
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standard deviation in the main climate variables, or of projected changes from global climate models under 
climate scenarios, to address what we can reasonably say about questions akin to ‘Will future climate changes 
bring more conflict or migration?’ and with how much uncertainty.

Discussion
The hierarchical Bayesian approach to studying climate-fueled migration and conflict addresses several statistical 
principles of particular concern in this interdisciplinary field. First, prediction and identification of causal effects 
are complementary pursuits. Together, they support the modeling assumptions and thus the internal validity of 
the statistical analysis while strengthening its external validity, which is generally of practical interest. Reporting 
both the model’s explanatory power and its predictive power, and considering the latter for model selection, 
may strengthen inference from natural experiments22. Second, the linear approximation of the conditional 
expectation function of the outcome—which is the target of the linear reduced-form model—may be misleading 
when the data-generating process departs substantially from the modeling assumptions. Separately from the 
identifying assumptions supported by quasi-experimental variation and the ability to adjust for confounders, the 
validity of inferences also rests on the underlying assumptions of the estimated model. An assessment of the key 
assumptions such as the conditional distribution of the outcome, the absence of high influence observations, and 
the non-collinearity of regressors is hence of particular interest and may be provided alongside the estimation 
results—see for example Cohen et al.33. Third, the response to climate variables can vary across spatial units 
but with the ability to estimate spatial sensitivity limited by the sample size. In such cases, a fully pooled model 
for the slope coefficients, as is typical in the MLR-FE framework, represents a tradeoff between the efficiency 
gained by using a larger sample size (by pooling across all locations) and the potential bias at each unit. Instead, 
generalizing to a partial pooling approach combines information across units, shrinking uncertainty while 
reducing bias at individual spatial units. This multilevel structure provides a principled way to assess whether 
variation in climate sensitivity across groups is meaningful and what observed attributes it may depend on.

The multilevel Bayesian framework, which is a generalization of the linear reduced-form model, brings the 
analysis closer to addressing the three concerns above, thereby strengthening inference from quasi-experiments 
in the climate-migration-conflict nexus. The benefits of such models and inference methods have been shown 
abundantly in the statistics literature and are relevant in many settings using observational data to generate 
causal and predictive inferences. They come down to considering more general statistical frameworks to learn 
from quasi-experimental data, and selecting models that approximate the data-generating process; essentially 
applying the recommendation of “a combination of the economists’ focus on identification strategies and the 
statisticians’ ability to build more complicated models to assess what might happen if the strict assumptions 
fall apart”34. This study emphasizes and illustrates how these benefits are particularly salient for studying the 
relationship between climate and social instability. In this application, most of the contrast in estimated climate 
effects arises from adopting a negative binomial outcome distribution, which better reflects the count nature 
of the conflict data. The Bayesian framework complements this correction by enabling partial pooling and 
coherent assessment of uncertainty and predictive performance, extending the analysis to capture heterogeneity 
and strengthen inference within a unified structure. Our findings suggest that a multilevel Bayesian approach 
has the potential to support the internal validity, external validity, and efficiency of inferences, providing a 
robust foundation for understanding the impacts of changes in climate on social outcomes of interest. This 
methodological bridge between econometric identification strategies and complex statistical modeling 
capabilities addresses a critical need in interdisciplinary climate impact research, where collaboration across 
disciplinary boundaries is essential.

Data availability
The code and datasets generated and used for the study are available on Zenodo at ​h​t​t​p​s​:​/​/​z​e​n​o​d​o​.​o​r​g​/​r​e​c​o​r​d​s​/​
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