www.nature.com/scientificreports

scientific reports

W) Check for updates

OPEN A multi-head YOLOvV12 with self-

supervised pretraining for urinary
sediment particle detection
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Samad Akbarzadeh?, Majid Sirati-Sabet'™ & Mohammad Ali Akhaee?™*

Automatic and reliable urine sediment analysis is essential for timely diagnosis and management of
renal and urinary disorders. However, manual methods are time-consuming, subjective, and limited
by operator abilities. In this study, we propose a novel deep learning method based on a multi-head
YOLOvV12 architecture combined with self-supervised pretraining and advanced inference through
Slicing Aided Hyper Inference (SAHI) to effectively address these challenges. Unlike prior methods that
employed a single detection head, our architecture features six specialized and independent detection
heads: Cells, Casts, Crystals, Microorganisms/Yeast, Artifact, and Others, enabling simultaneous

and fine-grained classification of the full spectrum of urine sediment particles, including all relevant
subclasses. To facilitate robust training, we created a large-scale dataset (OpenUrine) encompassing
790 labeled images with over 31,285 bounding boxes across 39 categories, and 5640 unlabeled

images for self-supervised learning. Evaluated on this complex 39-class dataset, our model achieved

a precision of 76.59% and a mean Average Precision (mAP) of 64.15%, demonstrating competitive
performance in detection accuracy, especially of small and low-contrast objects.

Urine sediment analysis is a cornerstone of clinical diagnostics, essential for the assessment and management of
kidney diseases, urinary tract infections, and various systemic disorders!2. In clinical practice, examining the
microscopic components of urine, such as cells, casts, and crystals, provides vital clues about renal function and
the presence of pathological abnormalities'. However, despite its clinical significance, manual urine sediment
analysis remains a labor-intensive, subjective, and operator-dependent procedure, which leads to variability in
results between professionals and laboratories®=>. With the rising volume of laboratory requests and limited
availability of skilled personnel, there is a pressing need for accurate and efficient automated methods that
deliver reliable and standardized results*.

The main problem addressed in our study is the challenge of automating urine sediment analysis using
artificial intelligence (AI), especially for detecting and classifying the full spectrum of urinary particles. Many of
these particles have highly diverse morphologies, small sizes, and are frequently underrepresented in datasets®”.
Although state-of-the-art AI methods are promising, they often depend on large, labeled datasets and tend to
struggle with real-world image diversity and rare category detection®®8. This situation highlights the need for
novel solutions that can leverage both labeled and unlabeled data within robust architectures.

Deep learning, especially convolutional neural networks (CNNs), has revolutionized medical image analysis
in recent years. It offers automated feature extraction and remarkable performance in tasks such as disease
detection, localization, and segmentation across multiple imaging modalities®~!2. However, applying deep
learning to urine sediment images presents unique challenges, including the lack of large annotated datasets,
high-resolution imaging requirements, and wide variation in image quality. Recent advances demonstrate the
value of self-supervised learning!®!4, where unlabeled data is used to pretrain models via methods such as image
reconstruction. This method can help to overcome data scarcity and improve model generalizability'®. In this
context, we introduce a large and diverse dataset, OpenUrine, which contains 790 labeled images (with over
31,285 expert-annotated bounding boxes across 39 categories) and an additional 5,640 unlabeled images for
self-supervised learning.

A key innovation in our study is the design of a multi-head YOLOvV12 architecture. Six parallel detection
heads are specifically dedicated to Cells, Casts, Crystals, Microorganisms/Yeast, Artifacts, and Others. These
heads operate simultaneously to enable comprehensive and precise detection of all relevant urinary sediment

1Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences,
Tehran, Iran. 2School of Electrical and Computer Engineering, College of Engineering, University of Tehran,
Tehran, Iran. 3Department of Clinical Biochemistry, Bushehr University of Medical Sciences, Bushehr, Iran. “‘email:
sirati@sbmu.ac.ir; akhaee@ut.ac.ir

Scientific Reports |

(2025) 15:41347 | https://doi.org/10.1038/s41598-025-25339-z nature portfolio


http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-025-25339-z&domain=pdf&date_stamp=2025-10-27

www.nature.com/scientificreports/

particles and their respective subclasses. Unlike previous single-head models, this architecture allows the model
to independently capture the distinct morphological and visual characteristics of diverse particle types. Such a
multi-head mechanism is essential for robust identification and discrimination among particle classes that differ
widely in size, shape, and appearance, ensuring that both common and rare elements are detected with high
accuracy.

The primary goal of this research is to develop and validate an effective and scalable deep learning method
based on the multi-head YOLOv12, complemented by self-supervised pretraining and Slicing Aided Hyper
Inference (SAHI)-based inference, for comprehensive and automated detection and classification of urinary
sediment particles in microscopy images.

Related works

The potential of deep learning to overcome the limitations of traditional urine sediment analysis has spurred
significant research efforts in developing deep learning-based Al models for automated analysis®. These models
are designed to automatically identify and classify the various microscopic particles found in urine sediment,
including red blood cells, white blood cells, epithelial cells, casts, crystals, bacteria, and yeast. Researchers have
explored a wide range of deep learning architectures for this purpose, with CNNs being particularly prominent.
Models such as AlexNet!®, ResNet!”, GoogleNet!8, DenseNet!®, MobileNet?’, and YOLO have been adapted and
applied to the task of urine particle classification and detection.

Some studies have focused on specific clinical applications of these AI models. For instance, research has
explored the use of deep learning to detect bacteria in urine samples directly from microscopic images, eliminating
the need for traditional, time-consuming urine culture methods?!. Another study has investigated the potential
of Al to screen for rare diseases, such as Fabry disease, by identifying unique cellular morphologies in urine
sediment images??. To enhance the performance of these models, researchers are continuously exploring various
techniques, including novel image amplification methods to augment training datasets, the incorporation of
attention mechanisms to focus on relevant image features, and the development of hybrid methods that combine
the strengths of CNNs with traditional feature extraction techniques like Local Binary Patterns (LBP)>%23:24,
The use of pre-trained models and transfer learning is also a common strategy, allowing researchers to leverage
knowledge gained from training on large general image datasets to improve the performance of models on
the often-smaller urine sediment image datasets® Furthermore, object detection methods like Faster R-CNN?Z,
SSD?, and YOLO are being applied to simultaneously locate and classify urine particles within microscopic
images, providing a more comprehensive analysis than simple image-level classification®.

The application of deep learning to urine sediment analysis encompasses various methodes tailored to
specific analytical needs. Many studies focus on classification tasks, where the goal is to categorize individual
urine sediment particles into predefined classes, such as red blood cells, white blood cells, and different types
of crystals>!2. These models learn to recognize the distinct visual features of each particle type to perform
accurate classification. Another significant method involves object detection tasks, where the AI model aims to
not only classify but also to precisely locate multiple urine particles within a single microscopic image”"*2. This
is particularly valuable in clinical settings as it allows for the quantification of different particle types and the
analysis of their spatial relationships within the urine sediment.

Liang et al.”’ in their study used a dataset containing 10,752 images with seven classes consisting of urinary
particles (erythrocytes, leukocytes, epithelial, low-transitional epithelium, casts, crystal, and squamous epithelial
cells). It was stated that after balancing the image categories, the data was used to train a RetinaNet model?. It
was stated that an 88.65% accuracy value was obtained with this developed method on a test set, with a processing
time of 0.2 s per image. Yildirim et al.’ in their study used a data set containing 8,509 particle images with eight
classes obtained from urine sediment. They developed a hybrid model based on textural (LBP) and ResNet50.
It was stated that after optimizing and combining features, a high accuracy value of 96.0% was obtained with
the proposed model. Liang et al.?* conducted a series of studies aimed at improving urinary sediment analysis
through deep learning-based object detection models. In one study, they proposed the Dense Feature Pyramid
Network (DPFEN) architecture, integrating DenseNet into the standard FPN model and incorporating attention
mechanisms into the network head. This method significantly mitigated class confusion in urine sediment
images, particularly improving erythrocyte detection accuracy from 65.4% to 93.8%, and achieving a mean
average precision (mAP) of 86.9% on the test set. In a complementary study?, they framed urinary particle
recognition as an object detection task using CNN-based models such as Faster R-CNN and SSD. Evaluated on
a dataset of 5,376 labeled images across seven urinary particle categories, their best-performing model achieved
an mAP of 84.1%.

Ji et al.’® proposed a semi-supervised network model (US-RepNet) to classify urine sediment images.
They used a data set containing 429,605 urine sediment images with 16 classes. They stated that they obtained
a 94% accuracy value with their suggested model. Li et al.*® in their study used a data set containing 2551
urine sediment images with four classes (red blood cells, white blood cells, epithelial cells, and crystals). They
developed a modified LeNet-5°!. They stated that they performed classification with 92% accuracy. Khalid et
al?* compiled a dataset of 820 annotated urine sediment images. This dataset was used to train and evaluate five
convolutional neural network models - MobileNet, VGG162, DenseNet, ResNet50, and InceptionV33? - along
with a proposed CNN architecture. MobileNet achieved the highest true positive recall, followed closely by the
proposed model. Both models reached a top accuracy of 98.3%, while InceptionV3 and DenseNet demonstrated
slightly lower but still comparable accuracy of 96.5

Avci et al.** developed a model for urinary particle recognition that enhances the resolution of microscopic
images using a super-resolution Faster R-CNN method. They utilized pre-trained architectures including
AlexNet, VGG16, and VGG19. Among these, the AlexNet-based model delivered the best performance,
achieving a recognition accuracy of 98.6%. In another study®, they introduced a combination of Discrete
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Wavelet Transform (DWT) and a neural network-based system, the ADWEENN algorithm, for recognizing 10
different categories of urine sediment particles, achieving an accuracy of 97.58%.

Inanother study, Erten etal. introduced Swin-LBP, ahandcrafted feature engineering model for urine sediment
classification that combines the Swin transformer architecture with local binary pattern (LBP) techniques. Their
six-phase approach—including LBP-based feature extraction, neighborhood component analysis (NCA) for
feature selection, and support vector machine (SVM)*¢ classification achieved an accuracy of 92.60% across 7
classes of urinary sediment elements, outperforming conventional deep learning methods applied on the same
dataset””. In a subsequent study, the same group proposed another model integrating cryptographic-inspired
image preprocessing techniques, notably the Arnold Cat Map (ACM), with patch-based mixing and transfer
learning. Leveraging DenseNet201 for deep feature extraction and NCA for feature selection, this model reached
an even higher classification accuracy of 98.52% for seven types of urinary particles®.

A recent study proposed a combined CNN model integrated with an Area Feature Algorithm (AFA), enabling
improved recognition of 10 urine sediment categories from a large dataset of 300,000 images, achieving a test
accuracy of 97% and significantly enhancing the recognition of visually similar particles such as RBCs and
WBCs*. A deep learning model based on VGG-16 was developed to classify 15 types of urinary sediment
crystals using 441 images, which were augmented to 60,000 images through targeted data augmentation.
Removing the random cropping step in data augmentation significantly improved accuracy, and the model
achieved a performance of 91.8%°.

Lyu et al.” developed an advanced deep learning model, YUS-Net, based on an improved YOLOX*
architecture for multi-class detection of urinary sediment particles. The model integrates domain-specific data
augmentation, attention mechanisms, and Varifocal loss to enhance the detection of challenging particle types,
particularly small and densely distributed objects. Evaluated on the USE dataset, YUS-Net achieved impressive
performance, with a mean Average Precision (mAP) of 96.07%, 99.35% average precision, and 96.77% average
recall, demonstrating its potential for efficient and accurate end-to-end urine sediment analysis.

A critical limitation of existing research is the narrow scope of detection. The vast majority of published
object detection studies focus on a small number of classes. For example, the influential work by Liang et al.*
used a dataset of 5,376 labeled images across seven urinary particle categories. The dataset used by Li et al.?” also
contained seven classes. The hybrid classification model by Yildirim et al.’ was trained on eight particle types.
Even more ambitious studies, such as that by Ji et al.!, which used a large dataset, topped out at 16 categories.

Beyond prior urine microscopy studies, several recent deep learning frameworks across other domains
further highlight the rapid evolution of hybrid architectures. In biomedical imaging, models such as DCSSGA-
UNet*! and EFFResNet-ViT*? adopt dense connectivity, semantic attention, and CNN-Transformer fusion to
enhance segmentation and classification precision. Similarly, deep hybrid and self-supervised architectures
from cyber-physical security research®*~*> demonstrate parallel methodological advances in representation
learning and encoder-decoder design. Comparable trends have also appeared in unrelated areas such as sports
performance analytics and wearable sensor forecasting?®?’, reflecting the general shift toward multi-branch and
attention-driven deep models across domains.

This “granularity gap” between existing research and the diverse reality of clinical samples is a major barrier
to practical deployment. Our work directly confronts this gap by introducing a model and a public dataset,
OpenUrine, designed for the comprehensive detection of 39 distinct categories, representing a significant leap
in complexity and clinical relevance.

Dataset

The dataset utilized in this study, named OpenUrine, comprises 6430 images of the urinary sediment. OpenUrine
consists of a total of 790 anonymized, expert-labeled microscopic images of urinary sediment, in addition to
5,640 unlabeled images used for self-supervised learning. This is the first publicly available dataset dedicated to
urinary particle detection. No patient metadata was collected at any stage; all samples were fully anonymized
and are referenced only by randomly assigned identification codes. None of the images carry patient-specific
information, ensuring complete privacy and compliance with ethical data standards. Images were collected from
multiple laboratories using different microscope models and various smartphone cameras to ensure a broad
range of imaging conditions reflective of real-world clinical variability.

An overview of the dataset, including the number of labeled and unlabeled images as well as the total
number of bounding box annotations, is presented in Table 1. Table 2 provides a detailed breakdown of all 39
categories, reporting the number of annotated objects, number of images containing each label, and a brief
scientific description for each particle type, facilitating a comprehensive understanding of the dataset’s diversity
and clinical relevance.

Dataset Image | Box
Labeled data 790 31,285
Unlabeled data | 5640 | -

Table 1. Summary of the OpenUrine dataset, detailing the number of images and annotated bounding boxes
for both labeled and unlabeled subsets.
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Number
Number | of
Label Category of boxes |images | Description
Muddy brown cast Casts 350 24 Brown casts indicating acute tubular necrosis; typically associated with kidney injury
Granular cast Casts 172 63 Cylindrical structures formed from protein and cellular debris, indicating kidney damage
Hyaline cast Casts 160 42 Clear, colorless casts formed from protein; may indicate dehydration or kidney disease
Waxy cast Casts 56 42 Broad casts indicating chronic renal failure; they appear broad and are formed from degenerated cells
Mixed cell cast Casts 44 41 Casts containing various types of cells; their presence can indicate kidney pathology
RBC cast Casts 20 19 Casts formed from red blood cells; presence indicates glomerular damage or bleeding within the kidneys
RBC Cells 5752 213 Red blood cells; their presence in urine (hematuria) can indicate bleeding within the urinary tract
WBC Cells 2654 210 i\:f];ictﬁgrllood cells; an increased number (pyuria) suggests infection or inflammation, such as a urinary tract
?P ithelial cell Cells 889 175 Flat cells from the urethra or vaginal lining; usually considered normal unless present in excess
squamous)
Epithe'li'al cell Cells 233 70 Cell§ lining the bladder and ureters; increased numbers may suggest infection, inflammation, or, rarely,
(transitional) malignancy
Suspected atypical cell | Cells 187 44 Unusual cells that may require further investigation to rule out malignancy.
Epithelial cell (renal) | Cells 126 46 Cells originating from the renal tubules; their presence may indicate tubular injury or necrosis
WBC clump Cells 103 16 Aggregates of white blood cells; may indicate significant infection or inflammation within the urinary tract
Lipid cast Cells 24 22 Casts containing fat droplets, indicating nephrotic syndrome when present in excess
RBC clump Cells 24 5 Aggregates of red blood cells; may indicate significant bleeding or injury within the urinary tract
Glemouine ooy | |15 | ol mhone shred W ol et (el s commonty s
Amorphous Crystals 951 35 gigfieng:tuersigi;ﬁgr; g:ﬁ;ﬂ;;;l iz;gleoiﬁlr:ioclﬁ ;rgar:leg :;;E;ar in acidic urine, while amorphous phosphates appear in
Triple phosphate Crystals 778 31 Coffin-lid shaped crystals; typically found in alkaline urine and associated with urinary tract infections
Uric acid Crystals 699 0 ieiltl}(lngot:troerdéi}ilse};l();gngrr:})(;iamond or barrel-shaped crystals; common in acidic urine and can be associated
Ammonium biurat Crystals 394 27 Yellow-brown, thorn-apple shaped crystals; often found in old or poorly preserved urine samples
Hippuric acid Crystals 210 8 Colorless or pale yellow needles or prisms; rare and typically of little clinical significance
Calcium phosphate Crystals 200 27 Colorless, needle-like or rosette formations; typically found in alkaline urine; generally not clinically significant
Cystine Crystals 137 11 Colorless, hexagonal plates; indicative of cystinuria, a rare genetic disorder
Leucine Crystals 91 11 Spherical crystals with concentric rings and radial striations; associated with severe liver disease
Tyrosine crystal Crystals 81 20 Fine, needle-like crystals; may indicate severe liver disease
Calcium carbonate Crystals 76 4 S:gl;ilgc«;(;lfrless granules or dumbbell-shaped crystals; typically found in alkaline urine; usually not clinically
Cholesterol Crystals 58 13 Large, flat, transparent plates with notched corners; may be seen in nephrotic syndrome.
Bilirubin Crystals 43 11 Yellow to reddish brown, needle-like or granular crystals, associated with liver disorders
Bacteria Microorganisms | 12406 248 Their presence, especially in large numbers, suggests a urinary tract infection
Yeast Microorganisms | 446 32 Often appear as budding cells; can indicate a yeast infection, particularly in diabetic patients
Enterobius Mi . 81 13 Oval-shaped eggs with a characteristic flattened side; indicates pinworm infection, often due to fecal
vermicularis egg leroorganisms contamination
Fungal hyphae Microorganisms | 72 10 irsir:,cig;r;iﬁlamentous structures; indicate a fungal infection, more common in immunocompromised
}Slil;it;ti%%; eggs Microorganisms | 31 17 Oval eggs with a terminal spine; indicate schistosomiasis, a parasitic infection affecting the urinary tract
Trichomonas vaginalis | Microorganisms | 26 17 A motile parasite; its presence indicates trichomoniasis, a sexually transmitted infection
Sperm Others 382 21 May be present in urine after ejaculation; typically not clinically significant
Mucus Others 198 59 Thread-like structures; generally not clinically significant but can be confused with casts
Fat droplets Others 53 15 Free-floating droplets; indicate lipiduria, often associated with nephrotic syndrome
Oval fat bodies Others 38 20 Renal tubular cells filled with fat droplets; suggestive of nephrotic syndrome
Artifact Artifact 168 94 Any foreign substance or error that does not represent actual urine components
Total 31285 790
Table 2. Detailed breakdown of the 39 categories in OpenUrine dataset. The total count represents image-label
pairs, as individual images may contain multiple particle types. The actual number of unique images is 790.
Data labeling
Each image was assigned a unique identification code upon acquisition. Two experienced clinical biochemistry
experts conducted the labeling process independently, ensuring high reliability and consensus in recognizing and
delineating all urinary sediment structures present. All detectable objects were marked with bounding boxes and
assigned one of the 39 class labels. Figure 1 presents sample annotated microscopic fields from the OpenUrine
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Fig. 1. Representative annotated microscopic fields from the OpenUrine dataset. Each sub-image shows a
clinical urine sample with expert-labeled bounding boxes over multiple particle types, reflecting the high
density, diversity, and spatial complexity encountered in real-world urinalysis.

dataset. Each sub-image shows a real clinical sample with expert-verified bounding box annotations identifying
and localizing multiple urinary particles across diverse imaging conditions. Figure 2 displays representative
examples of all 39 particle categories present in the dataset. Each image illustrates the unique morphology and
appearance of a specific urinary sediment particle, such as various cell types, casts, crystals, microorganisms,
and artifacts.
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Fig. 2. Example images representing all 39 urinary sediment particle categories included in the OpenUrine
dataset.

Unlabeled images for self-supervised learning

Beyond the labeled portion, the OpenUrine dataset also includes 5,640 unlabeled images. These images, which
share the same acquisition characteristics as the labeled set, were used in the self-supervised stage of the proposed
method to further boost model performance and robustness.
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Data partitioning
The labeled dataset was divided into training and testing sets in an 80:20 ratio at the patient level, ensuring
that all images from a single patient are assigned to either the training or testing set, but not both. This patient-
level split prevents data leakage and ensures realistic evaluation of the model’s generalization capability to new
patients.

The labeled dataset was divided using 5-fold cross-validation. Each fold was trained independently, and
the reported results represent the meanzstd (%) across the five folds. This partitioning and validation process
ensures fair and objective model assessment.

Method

This section outlines the methodology for fully automated detection and categorization of urinary sediment
particles in high-resolution microscopy, leveraging a custom multi-head YOLOv12 architecture designed
specifically for the OpenUrine dataset.

Architecture overview

As illustrated in Fig. 3, the proposed method is a multi-head object detection based on YOLOv12%%%°, adapted
and optimized for challenging urinary sediment images (average size 1800 x 1800 px). A key innovation is the
separation of the detection module into six distinct semantic heads, each corresponding to a clinically relevant
super-category of urinary sediment objects. This structure enhances discrimination and robustness, particularly
for rare or visually subtle subclasses. To further address the challenges of detecting small, densely packed
structures in large fields, Slicing Aided Hyper-Inference (SAHI)* is tightly integrated into the inference pipeline.

Backbone network
Each input image X is processed by a YOLO backbone, which extracts multiscale, high-level feature maps:

F = Backbone(X)

These feature maps provide rich spatial and morphological representations crucial for accurate detection across
a wide range of object scales.

Structural Similarity Loss + Mean Squared Error Loss

Self-supervised Learning Stage Supervised Learning Stage

0000

o ® O] o ®
e v G YOLOV12-M L =gain, - L, +gain, -L, +gain, -L,
L, =— ”‘E. I, Dlog(e,) + (1 =y, Dlog(1 ~p )] Backbone

Final Prediction
(x,y,label)

Post processing

[om | [ \ [ [\ [\ [ oo\

Total loss g -
Classification loss Head Loss:

[ Total Loss:
Objectness loss
Total loss 6

M

) ot = 2 MLy
=-5rZ [0]"log(0) + (1 = 0 )log(1 = 0)]
/=1

®
L
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Distribution Focal loss

N
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Fig. 3. Overview of the proposed two-stage deep learning method. (A) The encoder-decoder network

is pretrained via self-supervised reconstruction on unlabeled urine sediment images to learn rich feature
representations. (B) The pretrained encoder (backbone) is fine-tuned for object detection using six parallel
heads, enabling precise multi-class identification of urinary particles.
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Multi-head detection module
The detection module utilizes six parallel output heads, each specializing in one clinically important super-
category of urinary sediment particles: Cells, Casts, Crystals, Microorganisms/Yeast, Artifact, and Others. This
categorization directly follows established clinical taxonomy and precisely matches the semantic groupings
defined in Table 2. Each head is responsible for detecting all subcategories corresponding to its group.

For each group i, the shared feature map F is passed to the corresponding detection head:

Y; = Head,; (F)

where Y; encodes the bounding boxes, objectness scores, and class probabilities for all subclasses assigned to
that head.

Loss function
In our architecture, the detection loss follows the YOLOv12 formulation®3, but is applied independently to each
of the six output heads. This design allows every head, specialized for its own clinical super-category, to optimize
its parameters without interference from unrelated particle types, while still contributing to the overall network
performance.

The total loss is the weighted sum of the head-specific losses, as shown in Equation 1.

6
Liotar = »_ Ai Li (1)
=1

where \; controls the relative weight of head i based on its clinical importance and representation in the dataset.
The values are tuned as shown in Table 3.
Each head-specific loss L; is defined in Eq. 2.

Li = ga‘inbox ' Lgﬁox + ga’inobj ! nggj + ga‘incls ! L((:iz (2)
where gainy,, gain,,, and gain,;,; correspond to box loss gain, classification loss gain, and objectness scaling

hyperparameters defined in Table 3.
Bounding box regression in YOLOv12 combines IoU-based loss®! with the Distribution Focal Loss (DFL
to enhance localization precision. The bounding box regression loss for head i is expressed in Eq. (3).

)52

L{j}zox = L(c?ou + gainppy, - L](Di%‘L 3)

Here, Lciou accounts for overlap, center distance, and aspect ratio, while Lprr, refines predicted box coordinates
at sub-pixel resolution. The complete IoU loss term is defined in Eq. (4).

Parameter Optimal value

Input image size (960,960)

Optimizer SGD with momentum
Momentum 0.939

Initial learning rate (Ir0) 0.00996

Final learning rate (Irf) 0.00724

Loss weight coefficients (\) | Artifact=0.5, casts=1.5, others=1.5, other heads=1.0
Weight decay 0.0005

Warmup epochs 2.03

Warmup momentum 0.874

Box loss gain 5.5

Classification loss gain (cls) | 0.699

DFL loss gain 1.43
HSV_h (hue) 0.0173
HSV_s (saturation) 0.828
HSV_v (value) 0.238
Translate (fraction) 0.135
Scale (gain factor) 0.35
Fliplr (horizontal flip) 0.286
Mosaic 0.408

Table 3. Optimized hyperparameters for our method training on the OpenUrine dataset.
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p2(b57 bfT)

= + av (4)

Loy =1 = ToU(b,b°") +

where p is the center-point distance, ¢ is the diagonal length of the smallest enclosing box, and v is the aspect
ratio term with balance factor a.. The distribution focal loss is expressed in Eq. (5).

Ll = - Z g; log(p;) + (1 — g;) log(1 — p;)] (5)

where p; is the predicted probability for the discretized bin of a coordinate value and g; is the corresponding
soft target.

Objectness loss®® measures how well the model distinguishes objects from background. The objectness loss
for head i is formulated in Eq. (6).

M;
i 1
L3y = =31 2 [0 oa(os) + (1= of ) log(1 — 0;)] ©)

j=1

where o; is the predicted objectness score for anchor j, and OjGT € {0,1}.
Classification loss®® ensures correct subclass identification within each head. The classification loss for head
i is defined in Eq. (7).

cls

B \

P, C;
Z > [winlog(psk) + (1 = ) log(1 = pjx)] 7)

1 k=1

where pj 1. is the predicted probability for subclass k in sample j, and C} is the number of subclasses in head i.

Unlike a unified detector that learns all categories together, here each head focuses only on the visual patterns
ofits assigned group, using Egs. 3 through 7 independently. This separation avoids competition between unrelated
classes, reduces the impact of severe class imbalance, and allows adjusting A; in Eq. 1 to boost underrepresented
yet clinically significant categories. As our ablation studies show, removing this head-level independence leads
to the sharpest drop in mean Average Precision (mAP) and recall.

Training procedure
A two-stage training strategy, optimized to leverage both labeled and unlabeled data, is applied.

(1) Self-supervised pretraining: during the self-supervised pretraining stage, all 5640 unlabeled images were
utilized in an image reconstruction autoencoder architecture (as illustrated in Fig. 3). The network follows
an encoder-decoder structure: the encoder mirrors the YOLOv12 backbone to extract latent morphological
representations, and the decoder reconstructs the input image using these features. The model was optimized
with a combined L1 + SSIM reconstruction loss, enforcing both pixel-level accuracy and structural consistency
between input and reconstructed outputs. This pretext task effectively encourages the backbone to capture
intrinsic microscopic texture and morphology priors even without labels. The pretrained encoder weights were
subsequently transferred to initialize the YOLOv12 backbone during the supervised fine-tuning stage.

(2) Supervised fine-tuning: the backbone’s pretrained weights initialize the detection model, which is then
fine-tuned using the 790 image-level-labeled samples and bounding box annotations. Each particle is routed to
its corresponding semantic head, and the total loss is jointly optimized. Diverse data augmentation (e.g., Mosaic,
Sacle) and a SGD with Momentum are employed.

Inference with SAHI
For inference, we employed SAHI to enhance detection performance on high-resolution microscopic images.
SAHI systematically divides each input image into overlapping tiles of 640 x 640 pixels with an overlap ratio of
0.25 (25%) in both horizontal and vertical directions. This slicing strategy enables the model to process smaller
image regions with higher effective resolution, significantly improving detection sensitivity for small and densely
packed urinary particles that might be missed in full-resolution inference.

Each slice is independently processed by our proposed method, generating separate predictions for particles
within that region. The tiled outputs are subsequently merged through non-maximum suppression (NMS) to
eliminate duplicate detections and produce consolidated, non-redundant bounding boxes.

Results

To comprehensively evaluate the effectiveness of our proposed object detection method, we conducted a series
of experiments on the OpenUrine dataset. These experiments were specifically designed to demonstrate the
superiority of our method compared to prior object detection methods under identical conditions.

Performance evaluation metrics
Model performance was assessed using several established object detection metrics. Precision quantifies the
proportion of correctly identified positive detections among all predicted positives, as defined in Eq. (8):
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TP
Precision = TP TP (8)

where TP and F'P denote the numbers of true positive and false positive predictions, respectively. Recall
measures the proportion of actual positives that are correctly detected by the model, as shown in Eq. (9):

TP
Recall = m (9)

where F'N is the number of false negatives. The overall detection capability is further summarized by the mean
Average Precision (mAP), which is the unweighted mean of the Average Precision (AP) across all object classes,
as presented in Eq. (10):

N
1
mAP = ZAPZ- (10)
i=1

where N is the total number of classes under consideration. Additionally, the evaluation follows the COCO
protocol®® by reporting mAP@50-95, which represents the mean AP computed over multiple intersection-over-
union (IoU) thresholds ranging from 0.5 to 0.95 (in increments of 0.05), thereby providing a stricter and more
comprehensive measure of detection performance.

Implementation details
A comprehensive hyperparameter optimization protocol was carried out as part of our experimental design (see
Fig. 4). For this purpose, we performed 300 independent training runs, each for 100 epochs, gradually searching
the space of learning rate, momentum, weight decay, and various augmentation factors as listed in Table 3.
Each configuration was evaluated on the validation split after every epoch, allowing us to systematically identify
optimal values. All experiments, including baseline comparisons, were performed on the OpenUrine dataset for
scientific consistency.
The scatter plots in Fig. 4 visualize the relationship between key hyperparameters and resulting detection
metrics (such as mAP, mAP@50-95, Precision, and Recall); final selected values are denoted by a cross marker.
For the final training of our best-performing model, we utilized the optimal parameters over 300 epochs with
a batch size of 16 and an input image size of 960 x 960 pixels, ensuring maximal capacity to learn robust object
representations.

Comparative evaluation

Quantitative and qualitative evaluation of automated urine sediment analysis models is crucial for establishing
their accuracy, robustness, and clinical viability. In this section, we present a comprehensive comparative analysis
of our proposed method,and state-of-the-art methods, followed by investigations into how input image size and
particle class influence model performance. The reliability and interpretability of the deep network are further
validated through visual explanation techniques such as Grad-CAM.

Comparison with state-of-the-art methods

Table 4 provides a comprehensive comparison between our method, ans state-of-the-art methods. Our
proposed method achieves the highest performance on all core metrics (precision, recall, mAPso, mAP50—95),
outperforming both the latest YOLO models and prior state-of-the-art methods. While absolute values such
as 76.59% precision may appear modest compared to simpler tasks, it is important to note that the OpenUrine
dataset includes 39 diverse classes, making it a far more complex challenge than datasets used in previous studies.
The ablation results reveal that both the multi-head detection strategy and self-supervised pretraining contribute
substantially to the observed gains. In particular, removing the multi-head scheme leads to the largest drop
in precision, recall, and mean average precision, highlighting the value of specialized detection branches for
different particle types. Our method, even without some of these advanced modules, remains competitive with
or superior to prior works. YOLO-based baselines and state-of-the art methods, while strong, are outperformed
by our method, especially on the challenging OpenUrine dataset. These results demonstrate the effectiveness of
our architectural innovations for improving the automated analysis of urine sediment images.

Impact of input size

As shown in Table 6, an input resolution of 960 x 960 pixels yielded the highest overall mAP while maintaining
stable convergence and feasible GPU memory usage (24 GB). Hence, this resolution was adopted for all
subsequent experiments. The model achieves optimal results at 960 x 960 pixels, outperforming both smaller
and even larger input sizes on almost all metrics. While a further increase to 1280 x 1280 yields competitive
results, there is no consistent improvement and some metrics are slightly reduced, likely due to increased
computational noise, overfitting, or diminished returns with upscaling. Notably, reducing the input size below
960 sharply degrades performance, especially for mAP50 and recall. This is particularly important because many
urinary particles (such as bacteria and crystals) are small and easily lost at lower resolutions. At the lowest tested
sizes (80 and 40 pixels), model recall especially collapses, confirming that sufficient image resolution is critical
for the reliable detection of fine and small-scale particles. These findings underscore the need to optimize input
size for automatic urine sediment analysis, balancing computational efficiency with the necessity to preserve
particle detail.
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Fig. 4. Scatter plots illustrating the effect of key hyperparameters on object detection performance across 300
training runs (each for 100 epochs) on the OpenUrine dataset. Cross markers denote the final optimal values
used for the main model training.

Impact of heads

The influence of each detection head was evaluated through a head-wise ablation test, as summarized in Table
5. When any single head was removed, its corresponding samples were not excluded from training; instead, all
annotations were reassigned to the Others head to preserve the dataset composition and training balance. The
results show that disabling any individual head consistently reduced detection accuracy, indicating that each
contributes unique and complementary information. The most pronounced performance drop occurred when
the Microorganisms head was removed, reflecting their critical role in discriminating morphologically complex
or clinically significant particle groups.

Class-wise analysis

The results in Table 7 demonstrate that our method substantially improves detection accuracy across most urinary
sediment particle classes compared to previous baselines. The model achieves high precision and recall on classes
with distinctive morphological features, such as Calcium Oxalate, Bilirubin, and Calcium Carbonate, showing
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Method Precision (%) | Recall (%) mAP50 (%) mAP50-95 (%)
YOLO8-medium 57.8542.00 |54.43+0.84 |57.39£0.30 |41.66+1.03
YOLO9-medium 57.45£5.16 |52.17+1.40 |53.56+0.04 |37.60+0.62
YOLO11-medium 60.27+£0.52 |54.814+1.19 |58.304+0.22 |43.1040.22
YOLO12-nano 63.4040.30 |53.00+£2.10 |55.98+0.31 |38.91+0.68
YOLO12-small 56.09+£5.19 |53.72+2.21 56.20+0.18 |40.33+0.13
YOLO12-large 58.81£5.86 |54.424+2.05 |58.46+0.11 |42.134+0.58
YOLO12-XLarge 58.51£0.91 57.06+£3.69 |58.40+0.24 |41.63£1.00
EfficientDet-D2%° 57.16+4.29 |50.494+3.19 |52.544+0.86 |37.13+0.43
ViTDet* 56.67+£2.31 |52.70+3.81 |54.90+1.18 |38.214+0.89
RT-DETR large®’ 58.6942.92 |53.624+2.83 |57.73£1.26 |40.35+0.68
RT-DETRv2 large®® 61.9943.17 |51.654+3.15 |57.444+0.86 |41.204+0.38
Liang et al. 57.064£7.08 |49.93+2.49 |52.03£0.53 |36.00+0.63
Liang etal. 59.4443.80 |49.054+2.66 |52.41+0.55 |38.03+0.45
Lietal. ¥ 62.79£4.15 |50.304+2.02 |52.894+0.20 |36.811+0.26
Avcietal 3 55.164+5.24 | 54.53+2.97 | 53.09£0.08 |36.58+0.32
Lyuetal.” 56.43+3.83 |52.104+1.67 |54.324+0.29 |39.431+0.43
Wang et al. > 65.28+2.73 |51.73+2.90 |55.044+0.21 |39.044+0.18
Komori et al. ©© 56.04+2.63 |52.76+3.21 |55.414+0.37 |37.804+0.13
Suahil et al. ¢! 63.86+2.94 |51.214+0.86 |55.77+0.12 |40.684+0.40
Naznine et al. ¢ 55.89£2.65 |56.02+1.64 |57.00+0.40 |40.954+0.30
Akhtar et al. © 68.231+3.85 | 54.04+2.03 |58.2240.23 |43.031+0.46
YOLOvI12-M 62.45+3.35 |54.544+2.28 |58.66+0.08 |41.884+0.65
YOLOvI12-M + SAHI 62.91£2.68 |56.49+1.98 |59.91+0.74 |42.27+0.80
YOLOVI12-M + SAHI + Self-supervised + Single-head | 63.204+5.13 | 58.60+2.30 |61.0840.36 |44.44+0.74
YOLOVI2-M + SAHI + Multi-head 70.194£5.20 |60.344+2.83 |62.01+£0.49 |45.214+0.75
Our method (YOLOvV5-M backbone) 70.14+3.56 |58.73+2.37 |58.844+0.47 |43.26+1.01
Our method (YOLOv8-M backbone) 72.124+4.37 |60.36+3.71 |59.044+0.52 |44.794+0.29
Our method (YOLOvV12-M backbone) 76.59+3.29 | 62.45+2.94 | 64.15+1.56 | 47.20+0.72

Table 4. Comparison of our proposed method and state-of-the-art methods on the OpenUrine dataset.
Metrics are reported as meanzstd (%) across five cross-validation folds. Bold values indicate the best result per
metric.

Configuration Precision (%) | Recall (%) mAP@50 (%) | mAP@50:95 (%)
Without casts head 72.58%2.67 | 60.68+2.21 | 62.73+1.23 | 45.424+0.83
Without cells head 73.6943.09 | 60.28+2.74 | 61.98+1.04 | 46.56+0.98
Without crystals head 73.58+2.39 | 61.71+2.39 | 60.38+1.13 | 44.70+0.87
Without microorganisms head | 72.69+2.42 | 59.354:3.29 | 59.4741.12 | 44.5240.78
Full (all six heads) 76.5943.29 | 62.454+2.94 | 64.15+1.56 | 47.20+0.72

Table 5. Head-wise ablation analysis of the proposed method. Removing each head degrades detection
accuracy even though all data remain in use (annotations of the removed head were redirected to the others
head).

the benefit of leveraging their unique visual patterns. However, certain classes remain challenging: for example,
Bacteria achieve high precision but low recall, likely due to their small size and tendency to be overlooked in
crowded backgrounds. Morphologically similar cells, notably RBC and WBC, are sometimes confused due to
their overlapping appearance, limiting further accuracy improvements in these categories. Additionally, rare or
subtle classes such as Fat Droplets and Renal Epithelial Cells still suffer from lower detection rates.

Typical failure cases include missed detections in densely clustered regions, merged bounding boxes where
adjacent particles overlap, and occasional confusion between morphologically similar RBC and WBC, especially
when illumination or focus artifacts blur their boundaries. Quantitative analysis indicates that approximately
38% of the undetected WBC instances were misclassified as RBC, while 43% of the missed RBC instances were
incorrectly detected as WBC. This bidirectional confusion highlights their strong morphological resemblance
under bright-field microscopy. In crowded microscopic fields, small Bacteria are sometimes undetected or
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Input size | Precision (%) | Recall (%) mAP50 (%) mAP50-95 (%)
40 79.60+£10.1 | 7.75+1.74 9.73+0.15 5.40+0.18
80 43.86+3.82 |20.41+1.80 |15.07£0.18 |9.514+0.54
160 54.90£6.82 |29.394+0.84 |28.944+0.56 |19.8340.15
320 53.70£0.76 |38.09+1.44 |39.51+£0.30 |27.5240.47
640 60.554+1.69 |51.57+0.63 | 51.88+0.07 |36.924+0.41
960 63.40+£0.30 | 53.00+2.10 | 55.98+0.31 | 38.91+0.68
1280 56.29£3.97 |53.49+3.08 |54.00+0.30 |36.4440.45

Table 6. Evaluation results of YOLO12-Nano with different input image sizes on the OpenUrine test set.
Metrics are reported as meanzstd (%) across five cross-validation folds. The table demonstrates how increasing
input resolution substantially improves the detection of urinary sediment particles, with the best performance
achieved at 960 x 960 pixels.

merged with noise, while low-contrast Renal Epithelial Cells may be mistaken for background structures. These
qualitative observations (illustrated in Fig.5) reveal the key limitations of the current model and inform future
improvements such as boundary-aware loss design and targeted synthetic data augmentation for rare or visually
ambiguous categories.

Overall, while our model demonstrates meaningful advances in most categories, the reliable detection of
small, ambiguous, or visually similar particles remains a significant challenge for automated urine sediment
analysis.

Clinical validation

Urine microscopy results from 84 patients, previously analyzed and verified by experienced laboratory
technologists, were employed for clinical validation of the proposed model. For each sample, three to five
representative microscopic fields were processed by the model, and the predictions were averaged at the patient
level before comparison with the laboratory-reported results. The predicted outputs were mapped to the standard
five-level microscopic quantitation scale (none, rare, few, moderate, many) used in routine clinical reporting. A
prediction was considered correct when the model’s categorical output matched the laboratory category for the
same urinary component.

All major urinary sediment components, including RBCs, WBCs, epithelial cells, calcium oxalate crystals,
bacteria, and mucus, were evaluated accordingly. Table 8 presents the clinical accuracy of the proposed model
relative to technologist reports. Discrepant samples were further reviewed by an independent clinical biochemist
to confirm the final reference label.

Interpretability via visual explanation

In Fig. 5, a comparison is presented between the model’s bounding box predictions (left) and Grad-CAM
visualizations (right) for selected test images. The detection results illustrate the network’s ability to localize
and classify different urine sediment constituents, such as amorphous particles and epithelial cells. Notably,
the Grad-CAM activation maps reveal that the highlighted regions (red areas) are primarily concentrated over
clear and well-defined particles within the microscopic fields, confirming that the model bases its predictions on
relevant visual cues rather than background artifacts. This qualitative interpretability analysis demonstrates the
reliability and transparency of the network’s decision-making process in real-world clinical samples.

Conclusion

In this study, we introduced a novel deep learning method tailored for automated urine sediment analysis,
integrating a multi-head YOLOVI12 architecture, self-supervised pretraining, and SAHI-based inference. Our
method effectively addresses critical challenges such as small-object detection, class imbalance, and data scarcity,
leading to a competitive precision of 76.59% on a large, diverse dataset. The deployment of six specialized
detection heads allows for detailed and simultaneous classification across all relevant urinary particles and
artifacts, supporting detailed clinical interpretation. Furthermore, the establishment and public release of the
OpenUrine dataset fill a crucial gap, providing a valuable resource for further research in this domain.

Future work will focus on refining the model’s performance, especially for rare or visually ambiguous particle
types, by exploring adaptive focal loss weighting, targeted synthetic data augmentation, and self-supervised
consistency regularization to mitigate class imbalance. We also intend to integrate physical and chemical
urinalysis test data to further enhance diagnostic precision and generalizability.
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Class Precision (%) | Recall (%) | mAP50 (%) | mAP50-95 (%)
Ammonium Biurat 100 68.88 84.28 57.96
Amorphous 82.60 85.40 85.54 47.46
Artifact 81.20 72.80 83.02 62.86
Bacteria 66.78 11.34 26.18 11.90
Bilirubin 100 100 100 100
Calcium Carbonate 100 100 100 100
Calcium Oxalate 95.76 90.16 98.56 65.66
Calcium Phosphate 51.10 70.00 70.56 53.34
Cholesterol 100 63.70 90.58 50.40
Cystine 94.50 35.00 54.46 42.42
Enterobius Vermicularis Egg 100 100 100 100
Epithelial Cell (Renal) 13.30 38.22 14.84 11.06
Epithelial Cell (Squamous) 98.28 100 100 74.34
Epithelial Cell (Transitional) 72.94 90.02 70.28 55.86
Fat Droplets 99.12 7.42 13.02 8.68
Fungal Hyphae 86.24 23.38 37.10 19.18
Granular Cast 100 49.98 73.50 45.22
Hippuric Acid 96.74 46.20 48.86 21.56
Hyaline Cast 85.12 70.00 75.18 36.82
Leucine 74.76 100 100 100
Lipid Cast 36.26 84.00 41.16 27.72
Mixed Cell Cast 100 98.00 100 100
Mucus 94.93 100 100 76.64
Muddy Brown Cast 100 73.36 98.84 69.30
Oval Fat Bodies 96.46 41.72 61.32 42.28
RBC 82.88 85.68 83.30 50.68
RBC Cast 62.02 56.00 67.62 55.02
RBC Clump 65.38 35.00 38.92 28.56
Schistosoma haematobium Eggs | 43.96 100 100 100
Sperm 75.88 69.02 63.84 30.94
Suspected atypical cell 44.24 98.00 57.82 41.72
Trichomonas vaginalis 100 100 100 84.98
Triple Phosphate 92.26 94.50 95.62 64.54
Tyrosine crystal 33.74 38.22 28.42 14.00
Uric Acid 79.24 81.48 78.26 47.32
WBC 83.02 91.42 81.62 53.06
WBC Clump 43.12 3.64 5.18 3.64
Waxy Cast 100 52.50 59.36 49.70
Yeast 52.08 15.96 15.82 5.75
Unweighted average 79.07 67.97 69.31 52.40
Weighted average 76.59 61.22 62.88 45.70

Table 7. Class-wise detection performance of the best model on the OpenUrine test set. Numbers are reported
as percentages. Metrics include Precision, Recall, mnAP@50, and mAP@50-95 for each urinary sediment class,
as well as unweighted and instance-weighted averages across all classes.
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Fig. 5. Grad-CAM visualization of model attention across representative classes. Top row: detection and
attention patterns for Amorphous particles, showing that the model accurately localizes dense crystalline
regions and focuses its activations (red/yellow) on texture-rich clusters relevant to this class. Bottom row:
predictions for Epithelial Cells where the model highlights cell nuclei and boundary contours while de-
emphasizing background noise and staining artifacts. In each pair, the left image displays predicted bounding
boxes and class labels, while the right image presents the corresponding Grad-CAM heatmap. Warmer

colors (red/yellow) indicate regions contributing most to the network’s decision, confirming that it primarily
attends to morphologically informative structures such as epithelial cells and amorphous deposits rather than
irrelevant background patterns.

Scientific Reports|  (2025) 15:41347 | https://doi.org/10.1038/s41598-025-25339-z nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Urinary component | Clinical accuracy (%)
RBC 87.31
WBC 88.40
Epithelial cells 97.10
Calcium oxalate 93.79
Bacteria 59.36
Mucus 93.32
Mean accuracy 86.55

Table 8. Patient-level accuracy of the proposed method for major urinary particle types compared with
laboratory technologist reports.

Data availability

The OpenUrine dataset is available from the corresponding author on reasonable request. Interested researchers
are invited to submit an application through the designated request form available at www.github.com/alika-
rimil120/OpenUrine. It should be noted that this dataset is provided solely for academic and non-commercial
research purposes. Prior to access, requestors are required to agree to the terms and conditions specified in the
request form, ensuring the data will be used in accordance with ethical standards and regulations.

Code availability
Sample codes, experiments results, and models are hosted on the following GitHub repository: www.github.
com/alikarimil20/OpenUrine.
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