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Automatic and reliable urine sediment analysis is essential for timely diagnosis and management of 
renal and urinary disorders. However, manual methods are time-consuming, subjective, and limited 
by operator abilities. In this study, we propose a novel deep learning method based on a multi-head 
YOLOv12 architecture combined with self-supervised pretraining and advanced inference through 
Slicing Aided Hyper Inference (SAHI) to effectively address these challenges. Unlike prior methods that 
employed a single detection head, our architecture features six specialized and independent detection 
heads: Cells, Casts, Crystals, Microorganisms/Yeast, Artifact, and Others, enabling simultaneous 
and fine-grained classification of the full spectrum of urine sediment particles, including all relevant 
subclasses. To facilitate robust training, we created a large-scale dataset (OpenUrine) encompassing 
790 labeled images with over 31,285 bounding boxes across 39 categories, and 5640 unlabeled 
images for self-supervised learning. Evaluated on this complex 39-class dataset, our model achieved 
a precision of 76.59% and a mean Average Precision (mAP) of 64.15%, demonstrating competitive 
performance in detection accuracy, especially of small and low-contrast objects.

Urine sediment analysis is a cornerstone of clinical diagnostics, essential for the assessment and management of 
kidney diseases, urinary tract infections, and various systemic disorders1,2. In clinical practice, examining the 
microscopic components of urine, such as cells, casts, and crystals, provides vital clues about renal function and 
the presence of pathological abnormalities1. However, despite its clinical significance, manual urine sediment 
analysis remains a labor-intensive, subjective, and operator-dependent procedure, which leads to variability in 
results between professionals and laboratories3–5. With the rising volume of laboratory requests and limited 
availability of skilled personnel, there is a pressing need for accurate and efficient automated methods that 
deliver reliable and standardized results4.

The main problem addressed in our study is the challenge of automating urine sediment analysis using 
artificial intelligence (AI), especially for detecting and classifying the full spectrum of urinary particles. Many of 
these particles have highly diverse morphologies, small sizes, and are frequently underrepresented in datasets6,7. 
Although state-of-the-art AI methods are promising, they often depend on large, labeled datasets and tend to 
struggle with real-world image diversity and rare category detection5,6,8. This situation highlights the need for 
novel solutions that can leverage both labeled and unlabeled data within robust architectures.

Deep learning, especially convolutional neural networks (CNNs), has revolutionized medical image analysis 
in recent years. It offers automated feature extraction and remarkable performance in tasks such as disease 
detection, localization, and segmentation across multiple imaging modalities9–12. However, applying deep 
learning to urine sediment images presents unique challenges, including the lack of large annotated datasets, 
high-resolution imaging requirements, and wide variation in image quality. Recent advances demonstrate the 
value of self-supervised learning13,14, where unlabeled data is used to pretrain models via methods such as image 
reconstruction. This method can help to overcome data scarcity and improve model generalizability15. In this 
context, we introduce a large and diverse dataset, OpenUrine, which contains 790 labeled images (with over 
31,285 expert-annotated bounding boxes across 39 categories) and an additional 5,640 unlabeled images for 
self-supervised learning.

A key innovation in our study is the design of a multi-head YOLOv12 architecture. Six parallel detection 
heads are specifically dedicated to Cells, Casts, Crystals, Microorganisms/Yeast, Artifacts, and Others. These 
heads operate simultaneously to enable comprehensive and precise detection of all relevant urinary sediment 
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particles and their respective subclasses. Unlike previous single-head models, this architecture allows the model 
to independently capture the distinct morphological and visual characteristics of diverse particle types. Such a 
multi-head mechanism is essential for robust identification and discrimination among particle classes that differ 
widely in size, shape, and appearance, ensuring that both common and rare elements are detected with high 
accuracy.

The primary goal of this research is to develop and validate an effective and scalable deep learning method 
based on the multi-head YOLOv12, complemented by self-supervised pretraining and Slicing Aided Hyper 
Inference (SAHI)-based inference, for comprehensive and automated detection and classification of urinary 
sediment particles in microscopy images.

Related works
The potential of deep learning to overcome the limitations of traditional urine sediment analysis has spurred 
significant research efforts in developing deep learning-based AI models for automated analysis6. These models 
are designed to automatically identify and classify the various microscopic particles found in urine sediment, 
including red blood cells, white blood cells, epithelial cells, casts, crystals, bacteria, and yeast. Researchers have 
explored a wide range of deep learning architectures for this purpose, with CNNs being particularly prominent. 
Models such as AlexNet16, ResNet17, GoogleNet18, DenseNet19, MobileNet20, and YOLO have been adapted and 
applied to the task of urine particle classification and detection.

Some studies have focused on specific clinical applications of these AI models. For instance, research has 
explored the use of deep learning to detect bacteria in urine samples directly from microscopic images, eliminating 
the need for traditional, time-consuming urine culture methods21. Another study has investigated the potential 
of AI to screen for rare diseases, such as Fabry disease, by identifying unique cellular morphologies in urine 
sediment images22. To enhance the performance of these models, researchers are continuously exploring various 
techniques, including novel image amplification methods to augment training datasets, the incorporation of 
attention mechanisms to focus on relevant image features, and the development of hybrid methods that combine 
the strengths of CNNs with traditional feature extraction techniques like Local Binary Patterns (LBP)5,6,23,24. 
The use of pre-trained models and transfer learning is also a common strategy, allowing researchers to leverage 
knowledge gained from training on large general image datasets to improve the performance of models on 
the often-smaller urine sediment image datasets8 Furthermore, object detection methods like Faster R-CNN25, 
SSD26, and YOLO are being applied to simultaneously locate and classify urine particles within microscopic 
images, providing a more comprehensive analysis than simple image-level classification6.

The application of deep learning to urine sediment analysis encompasses various methodes tailored to 
specific analytical needs. Many studies focus on classification tasks, where the goal is to categorize individual 
urine sediment particles into predefined classes, such as red blood cells, white blood cells, and different types 
of crystals5,12. These models learn to recognize the distinct visual features of each particle type to perform 
accurate classification. Another significant method involves object detection tasks, where the AI model aims to 
not only classify but also to precisely locate multiple urine particles within a single microscopic image7,12. This 
is particularly valuable in clinical settings as it allows for the quantification of different particle types and the 
analysis of their spatial relationships within the urine sediment.

Liang et al.27 in their study used a dataset containing 10,752 images with seven classes consisting of urinary 
particles (erythrocytes, leukocytes, epithelial, low-transitional epithelium, casts, crystal, and squamous epithelial 
cells). It was stated that after balancing the image categories, the data was used to train a RetinaNet model28. It 
was stated that an 88.65% accuracy value was obtained with this developed method on a test set, with a processing 
time of 0.2 s per image. Yildirim et al.5 in their study used a data set containing 8,509 particle images with eight 
classes obtained from urine sediment. They developed a hybrid model based on textural (LBP) and ResNet50. 
It was stated that after optimizing and combining features, a high accuracy value of 96.0% was obtained with 
the proposed model. Liang et al.23 conducted a series of studies aimed at improving urinary sediment analysis 
through deep learning-based object detection models. In one study, they proposed the Dense Feature Pyramid 
Network (DPFN) architecture, integrating DenseNet into the standard FPN model and incorporating attention 
mechanisms into the network head. This method significantly mitigated class confusion in urine sediment 
images, particularly improving erythrocyte detection accuracy from 65.4% to 93.8%, and achieving a mean 
average precision (mAP) of 86.9% on the test set. In a complementary study29, they framed urinary particle 
recognition as an object detection task using CNN-based models such as Faster R-CNN and SSD. Evaluated on 
a dataset of 5,376 labeled images across seven urinary particle categories, their best-performing model achieved 
an mAP of 84.1%.

Ji et al.15 proposed a semi-supervised network model (US-RepNet) to classify urine sediment images. 
They used a data set containing 429,605 urine sediment images with 16 classes. They stated that they obtained 
a 94% accuracy value with their suggested model. Li et al.30 in their study used a data set containing 2551 
urine sediment images with four classes (red blood cells, white blood cells, epithelial cells, and crystals). They 
developed a modified LeNet-531. They stated that they performed classification with 92% accuracy. Khalid et 
al.24 compiled a dataset of 820 annotated urine sediment images. This dataset was used to train and evaluate five 
convolutional neural network models - MobileNet, VGG1632, DenseNet, ResNet50, and InceptionV333 - along 
with a proposed CNN architecture. MobileNet achieved the highest true positive recall, followed closely by the 
proposed model. Both models reached a top accuracy of 98.3%, while InceptionV3 and DenseNet demonstrated 
slightly lower but still comparable accuracy of 96.5

Avci et al.34 developed a model for urinary particle recognition that enhances the resolution of microscopic 
images using a super-resolution Faster R-CNN method. They utilized pre-trained architectures including 
AlexNet, VGG16, and VGG19. Among these, the AlexNet-based model delivered the best performance, 
achieving a recognition accuracy of 98.6%. In another study35, they introduced a combination of Discrete 
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Wavelet Transform (DWT) and a neural network-based system, the ADWEENN algorithm, for recognizing 10 
different categories of urine sediment particles, achieving an accuracy of 97.58%.

In another study, Erten et al. introduced Swin-LBP, a handcrafted feature engineering model for urine sediment 
classification that combines the Swin transformer architecture with local binary pattern (LBP) techniques. Their 
six-phase approach—including LBP-based feature extraction, neighborhood component analysis (NCA) for 
feature selection, and support vector machine (SVM)36 classification achieved an accuracy of 92.60% across 7 
classes of urinary sediment elements, outperforming conventional deep learning methods applied on the same 
dataset37. In a subsequent study, the same group proposed another model integrating cryptographic-inspired 
image preprocessing techniques, notably the Arnold Cat Map (ACM), with patch-based mixing and transfer 
learning. Leveraging DenseNet201 for deep feature extraction and NCA for feature selection, this model reached 
an even higher classification accuracy of 98.52% for seven types of urinary particles8.

A recent study proposed a combined CNN model integrated with an Area Feature Algorithm (AFA), enabling 
improved recognition of 10 urine sediment categories from a large dataset of 300,000 images, achieving a test 
accuracy of 97% and significantly enhancing the recognition of visually similar particles such as RBCs and 
WBCs38. A deep learning model based on VGG-16 was developed to classify 15 types of urinary sediment 
crystals using 441 images, which were augmented to 60,000 images through targeted data augmentation. 
Removing the random cropping step in data augmentation significantly improved accuracy, and the model 
achieved a performance of 91.8%39.

Lyu et al.7 developed an advanced deep learning model, YUS-Net, based on an improved YOLOX40 
architecture for multi-class detection of urinary sediment particles. The model integrates domain-specific data 
augmentation, attention mechanisms, and Varifocal loss to enhance the detection of challenging particle types, 
particularly small and densely distributed objects. Evaluated on the USE dataset, YUS-Net achieved impressive 
performance, with a mean Average Precision (mAP) of 96.07%, 99.35% average precision, and 96.77% average 
recall, demonstrating its potential for efficient and accurate end-to-end urine sediment analysis.

A critical limitation of existing research is the narrow scope of detection. The vast majority of published 
object detection studies focus on a small number of classes. For example, the influential work by Liang et al.29 
used a dataset of 5,376 labeled images across seven urinary particle categories. The dataset used by Li et al.27 also 
contained seven classes. The hybrid classification model by Yildirim et al.5 was trained on eight particle types. 
Even more ambitious studies, such as that by Ji et al.15, which used a large dataset, topped out at 16 categories.

Beyond prior urine microscopy studies, several recent deep learning frameworks across other domains 
further highlight the rapid evolution of hybrid architectures. In biomedical imaging, models such as DCSSGA-
UNet41 and EFFResNet-ViT42 adopt dense connectivity, semantic attention, and CNN–Transformer fusion to 
enhance segmentation and classification precision. Similarly, deep hybrid and self-supervised architectures 
from cyber-physical security research43–45 demonstrate parallel methodological advances in representation 
learning and encoder–decoder design. Comparable trends have also appeared in unrelated areas such as sports 
performance analytics and wearable sensor forecasting46,47, reflecting the general shift toward multi-branch and 
attention-driven deep models across domains.

This “granularity gap” between existing research and the diverse reality of clinical samples is a major barrier 
to practical deployment. Our work directly confronts this gap by introducing a model and a public dataset, 
OpenUrine, designed for the comprehensive detection of 39 distinct categories, representing a significant leap 
in complexity and clinical relevance.

Dataset
The dataset utilized in this study, named OpenUrine, comprises 6430 images of the urinary sediment. OpenUrine 
consists of a total of 790 anonymized, expert-labeled microscopic images of urinary sediment, in addition to 
5,640 unlabeled images used for self-supervised learning. This is the first publicly available dataset dedicated to 
urinary particle detection. No patient metadata was collected at any stage; all samples were fully anonymized 
and are referenced only by randomly assigned identification codes. None of the images carry patient-specific 
information, ensuring complete privacy and compliance with ethical data standards. Images were collected from 
multiple laboratories using different microscope models and various smartphone cameras to ensure a broad 
range of imaging conditions reflective of real-world clinical variability.

An overview of the dataset, including the number of labeled and unlabeled images as well as the total 
number of bounding box annotations, is presented in Table 1. Table 2 provides a detailed breakdown of all 39 
categories, reporting the number of annotated objects, number of images containing each label, and a brief 
scientific description for each particle type, facilitating a comprehensive understanding of the dataset’s diversity 
and clinical relevance.

Dataset Image Box

Labeled data 790 31,285

Unlabeled data 5640 –

Table 1.  Summary of the OpenUrine dataset, detailing the number of images and annotated bounding boxes 
for both labeled and unlabeled subsets.
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Data labeling
Each image was assigned a unique identification code upon acquisition. Two experienced clinical biochemistry 
experts conducted the labeling process independently, ensuring high reliability and consensus in recognizing and 
delineating all urinary sediment structures present. All detectable objects were marked with bounding boxes and 
assigned one of the 39 class labels. Figure  1 presents sample annotated microscopic fields from the OpenUrine 

Label Category
Number 
of boxes

Number 
of 
images Description

Muddy brown cast Casts 350 24 Brown casts indicating acute tubular necrosis; typically associated with kidney injury

Granular cast Casts 172 63 Cylindrical structures formed from protein and cellular debris, indicating kidney damage

Hyaline cast Casts 160 42 Clear, colorless casts formed from protein; may indicate dehydration or kidney disease

Waxy cast Casts 56 42 Broad casts indicating chronic renal failure; they appear broad and are formed from degenerated cells

Mixed cell cast Casts 44 41 Casts containing various types of cells; their presence can indicate kidney pathology

RBC cast Casts 20 19 Casts formed from red blood cells; presence indicates glomerular damage or bleeding within the kidneys

RBC Cells 5752 213 Red blood cells; their presence in urine (hematuria) can indicate bleeding within the urinary tract

WBC Cells 2654 210 White blood cells; an increased number (pyuria) suggests infection or inflammation, such as a urinary tract 
infection

Epithelial cell 
(squamous) Cells 889 175 Flat cells from the urethra or vaginal lining; usually considered normal unless present in excess

Epithelial cell 
(transitional) Cells 233 70 Cells lining the bladder and ureters; increased numbers may suggest infection, inflammation, or, rarely, 

malignancy

Suspected atypical cell Cells 187 44 Unusual cells that may require further investigation to rule out malignancy.

Epithelial cell (renal) Cells 126 46 Cells originating from the renal tubules; their presence may indicate tubular injury or necrosis

WBC clump Cells 103 16 Aggregates of white blood cells; may indicate significant infection or inflammation within the urinary tract

Lipid cast Cells 24 22 Casts containing fat droplets, indicating nephrotic syndrome when present in excess

RBC clump Cells 24 5 Aggregates of red blood cells; may indicate significant bleeding or injury within the urinary tract

Calcium oxalate Crystals 2872 115 Colorless, envelope-shaped (dihydrate) or dumbbell-shaped (monohydrate) crystals; commonly seen in 
individuals who consume oxalate-rich foods or have kidney stones

Amorphous Crystals 951 35 Aggregates of fine granules; amorphous urates appear in acidic urine, while amorphous phosphates appear in 
alkaline urine; generally of little clinical significance

Triple phosphate Crystals 778 31 Coffin-lid shaped crystals; typically found in alkaline urine and associated with urinary tract infections

Uric acid Crystals 699 42 Yellow to reddish-brown, diamond or barrel-shaped crystals; common in acidic urine and can be associated 
with gout or chemotherapy

Ammonium biurat Crystals 394 27 Yellow-brown, thorn-apple shaped crystals; often found in old or poorly preserved urine samples

Hippuric acid Crystals 210 8 Colorless or pale yellow needles or prisms; rare and typically of little clinical significance

Calcium phosphate Crystals 200 27 Colorless, needle-like or rosette formations; typically found in alkaline urine; generally not clinically significant

Cystine Crystals 137 11 Colorless, hexagonal plates; indicative of cystinuria, a rare genetic disorder

Leucine Crystals 91 11 Spherical crystals with concentric rings and radial striations; associated with severe liver disease

Tyrosine crystal Crystals 81 20 Fine, needle-like crystals; may indicate severe liver disease

Calcium carbonate Crystals 76 4 Small, colorless granules or dumbbell-shaped crystals; typically found in alkaline urine; usually not clinically 
significant

Cholesterol Crystals 58 13 Large, flat, transparent plates with notched corners; may be seen in nephrotic syndrome.

Bilirubin Crystals 43 11 Yellow to reddish brown, needle-like or granular crystals, associated with liver disorders

Bacteria Microorganisms 12406 248 Their presence, especially in large numbers, suggests a urinary tract infection

Yeast Microorganisms 446 32 Often appear as budding cells; can indicate a yeast infection, particularly in diabetic patients

Enterobius 
vermicularis egg Microorganisms 81 13 Oval-shaped eggs with a characteristic flattened side; indicates pinworm infection, often due to fecal 

contamination

Fungal hyphae Microorganisms 72 10 Branching filamentous structures; indicate a fungal infection, more common in immunocompromised 
individuals

Schistosoma 
haematobium eggs Microorganisms 31 17 Oval eggs with a terminal spine; indicate schistosomiasis, a parasitic infection affecting the urinary tract

Trichomonas vaginalis Microorganisms 26 17 A motile parasite; its presence indicates trichomoniasis, a sexually transmitted infection

Sperm Others 382 21 May be present in urine after ejaculation; typically not clinically significant

Mucus Others 198 59 Thread-like structures; generally not clinically significant but can be confused with casts

Fat droplets Others 53 15 Free-floating droplets; indicate lipiduria, often associated with nephrotic syndrome

Oval fat bodies Others 38 20 Renal tubular cells filled with fat droplets; suggestive of nephrotic syndrome

Artifact Artifact 168 94 Any foreign substance or error that does not represent actual urine components

Total 31285 790

Table 2.  Detailed breakdown of the 39 categories in OpenUrine dataset. The total count represents image-label 
pairs, as individual images may contain multiple particle types. The actual number of unique images is 790.
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dataset. Each sub-image shows a real clinical sample with expert-verified bounding box annotations identifying 
and localizing multiple urinary particles across diverse imaging conditions. Figure  2 displays representative 
examples of all 39 particle categories present in the dataset. Each image illustrates the unique morphology and 
appearance of a specific urinary sediment particle, such as various cell types, casts, crystals, microorganisms, 
and artifacts.

Fig. 1.  Representative annotated microscopic fields from the OpenUrine dataset. Each sub-image shows a 
clinical urine sample with expert-labeled bounding boxes over multiple particle types, reflecting the high 
density, diversity, and spatial complexity encountered in real-world urinalysis.
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Unlabeled images for self-supervised learning
Beyond the labeled portion, the OpenUrine dataset also includes 5,640 unlabeled images. These images, which 
share the same acquisition characteristics as the labeled set, were used in the self-supervised stage of the proposed 
method to further boost model performance and robustness.

Fig. 2.  Example images representing all 39 urinary sediment particle categories included in the OpenUrine 
dataset.
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Data partitioning
The labeled dataset was divided into training and testing sets in an 80:20 ratio at the patient level, ensuring 
that all images from a single patient are assigned to either the training or testing set, but not both. This patient-
level split prevents data leakage and ensures realistic evaluation of the model’s generalization capability to new 
patients.

The labeled dataset was divided using 5-fold cross-validation. Each fold was trained independently, and 
the reported results represent the mean±std (%) across the five folds. This partitioning and validation process 
ensures fair and objective model assessment.

Method
This section outlines the methodology for fully automated detection and categorization of urinary sediment 
particles in high-resolution microscopy, leveraging a custom multi-head YOLOv12 architecture designed 
specifically for the OpenUrine dataset.

Architecture overview
As illustrated in Fig.  3, the proposed method is a multi-head object detection based on YOLOv1248,49, adapted 
and optimized for challenging urinary sediment images (average size 1800 × 1800 px). A key innovation is the 
separation of the detection module into six distinct semantic heads, each corresponding to a clinically relevant 
super-category of urinary sediment objects. This structure enhances discrimination and robustness, particularly 
for rare or visually subtle subclasses. To further address the challenges of detecting small, densely packed 
structures in large fields, Slicing Aided Hyper-Inference (SAHI)50 is tightly integrated into the inference pipeline.

Backbone network
Each input image X is processed by a YOLO backbone, which extracts multiscale, high-level feature maps:

	 F = Backbone(X)

These feature maps provide rich spatial and morphological representations crucial for accurate detection across 
a wide range of object scales.

Fig. 3.  Overview of the proposed two-stage deep learning method. (A) The encoder–decoder network 
is pretrained via self-supervised reconstruction on unlabeled urine sediment images to learn rich feature 
representations. (B) The pretrained encoder (backbone) is fine-tuned for object detection using six parallel 
heads, enabling precise multi-class identification of urinary particles.
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Multi-head detection module
The detection module utilizes six parallel output heads, each specializing in one clinically important super-
category of urinary sediment particles: Cells, Casts, Crystals, Microorganisms/Yeast, Artifact, and Others. This 
categorization directly follows established clinical taxonomy and precisely matches the semantic groupings 
defined in Table 2. Each head is responsible for detecting all subcategories corresponding to its group.

For each group i, the shared feature map F is passed to the corresponding detection head:

	 Yi = Headi(F )

where Yi encodes the bounding boxes, objectness scores, and class probabilities for all subclasses assigned to 
that head.

Loss function
In our architecture, the detection loss follows the YOLOv12 formulation48, but is applied independently to each 
of the six output heads. This design allows every head, specialized for its own clinical super-category, to optimize 
its parameters without interference from unrelated particle types, while still contributing to the overall network 
performance.

The total loss is the weighted sum of the head-specific losses, as shown in Equation 1.

	
Ltotal =

6∑
i=1

λi Li� (1)

where λi controls the relative weight of head i based on its clinical importance and representation in the dataset. 
The values are tuned as shown in Table 3.

Each head-specific loss Li is defined in Eq. 2.

	 Li = gainbox · L
(i)
bbox + gainobj · L

(i)
obj + gaincls · L

(i)
cls � (2)

where gainbox, gaincls, and gainobj correspond to box loss gain, classification loss gain, and objectness scaling 
hyperparameters defined in Table 3.

Bounding box regression in YOLOv12 combines IoU-based loss51 with the Distribution Focal Loss (DFL)52 
to enhance localization precision. The bounding box regression loss for head i is expressed in Eq. (3).

	 L
(i)
bbox = L

(i)
CIoU + gainDFL · L

(i)
DFL� (3)

Here, LCIoU accounts for overlap, center distance, and aspect ratio, while LDFL refines predicted box coordinates 
at sub-pixel resolution. The complete IoU loss term is defined in Eq. (4).

Parameter Optimal value

Input image size (960,960)

Optimizer SGD with momentum

Momentum 0.939

Initial learning rate (lr0) 0.00996

Final learning rate (lrf) 0.00724

Loss weight coefficients (λ) Artifact=0.5, casts=1.5, others=1.5, other heads=1.0

Weight decay 0.0005

Warmup epochs 2.03

Warmup momentum 0.874

Box loss gain 5.5

Classification loss gain (cls) 0.699

DFL loss gain 1.43

HSV_h (hue) 0.0173

HSV_s (saturation) 0.828

HSV_v (value) 0.238

Translate (fraction) 0.135

Scale (gain factor) 0.35

Fliplr (horizontal flip) 0.286

Mosaic 0.408

Table 3.  Optimized hyperparameters for our method training on the OpenUrine dataset.
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L

(i)
CIoU = 1 − IoU(b, bGT ) + ρ2(bc, bGT

c )
c2 + αv� (4)

where ρ is the center-point distance, c is the diagonal length of the smallest enclosing box, and v is the aspect 
ratio term with balance factor α. The distribution focal loss is expressed in Eq. (5).

	
L

(i)
DFL = − 1

Ni

Ni∑
j=1

[
qj log(pj) + (1 − qj) log(1 − pj)

]
� (5)

where pj  is the predicted probability for the discretized bin of a coordinate value and qj  is the corresponding 
soft target.

Objectness loss53 measures how well the model distinguishes objects from background. The objectness loss 
for head i is formulated in Eq. (6).

	
L

(i)
obj = − 1

Mi

Mi∑
j=1

[
oGT

j log(oj) + (1 − oGT
j ) log(1 − oj)

]
� (6)

where oj  is the predicted objectness score for anchor j, and oGT
j ∈ {0, 1}.

Classification loss53 ensures correct subclass identification within each head. The classification loss for head 
i is defined in Eq. (7).

	
L

(i)
cls = − 1

Pi

Pi∑
j=1

Ci∑
k=1

[
yj,k log(pj,k) + (1 − yj,k) log(1 − pj,k)

]
� (7)

where pj,k  is the predicted probability for subclass k in sample j, and Ci is the number of subclasses in head i.
Unlike a unified detector that learns all categories together, here each head focuses only on the visual patterns 

of its assigned group, using Eqs. 3 through 7 independently. This separation avoids competition between unrelated 
classes, reduces the impact of severe class imbalance, and allows adjusting λi in Eq. 1 to boost underrepresented 
yet clinically significant categories. As our ablation studies show, removing this head-level independence leads 
to the sharpest drop in mean Average Precision (mAP) and recall.

Training procedure
A two-stage training strategy, optimized to leverage both labeled and unlabeled data, is applied.

(1) Self-supervised pretraining: during the self-supervised pretraining stage, all 5640 unlabeled images were 
utilized in an image reconstruction autoencoder architecture (as illustrated in Fig. 3). The network follows 
an encoder-decoder structure: the encoder mirrors the YOLOv12 backbone to extract latent morphological 
representations, and the decoder reconstructs the input image using these features. The model was optimized 
with a combined L1 + SSIM reconstruction loss, enforcing both pixel-level accuracy and structural consistency 
between input and reconstructed outputs. This pretext task effectively encourages the backbone to capture 
intrinsic microscopic texture and morphology priors even without labels. The pretrained encoder weights were 
subsequently transferred to initialize the YOLOv12 backbone during the supervised fine-tuning stage.

(2) Supervised fine-tuning: the backbone’s pretrained weights initialize the detection model, which is then 
fine-tuned using the 790 image-level-labeled samples and bounding box annotations. Each particle is routed to 
its corresponding semantic head, and the total loss is jointly optimized. Diverse data augmentation (e.g., Mosaic, 
Sacle) and a SGD with Momentum are employed.

Inference with SAHI
For inference, we employed SAHI to enhance detection performance on high-resolution microscopic images. 
SAHI systematically divides each input image into overlapping tiles of 640×640 pixels with an overlap ratio of 
0.25 (25%) in both horizontal and vertical directions. This slicing strategy enables the model to process smaller 
image regions with higher effective resolution, significantly improving detection sensitivity for small and densely 
packed urinary particles that might be missed in full-resolution inference.

Each slice is independently processed by our proposed method, generating separate predictions for particles 
within that region. The tiled outputs are subsequently merged through non-maximum suppression (NMS) to 
eliminate duplicate detections and produce consolidated, non-redundant bounding boxes.

Results
To comprehensively evaluate the effectiveness of our proposed object detection method, we conducted a series 
of experiments on the OpenUrine dataset. These experiments were specifically designed to demonstrate the 
superiority of our method compared to prior object detection methods under identical conditions.

Performance evaluation metrics
Model performance was assessed using several established object detection metrics. Precision quantifies the 
proportion of correctly identified positive detections among all predicted positives, as defined in Eq. (8):
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Precision = T P

T P + F P
� (8)

where T P  and F P  denote the numbers of true positive and false positive predictions, respectively. Recall 
measures the proportion of actual positives that are correctly detected by the model, as shown in Eq. (9):

	
Recall = T P

T P + F N
� (9)

where F N  is the number of false negatives. The overall detection capability is further summarized by the mean 
Average Precision (mAP), which is the unweighted mean of the Average Precision (AP) across all object classes, 
as presented in Eq. (10):

	
mAP = 1

N

N∑
i=1

APi� (10)

where N  is the total number of classes under consideration. Additionally, the evaluation follows the COCO 
protocol54 by reporting mAP@50-95, which represents the mean AP computed over multiple intersection-over-
union (IoU) thresholds ranging from 0.5 to 0.95 (in increments of 0.05), thereby providing a stricter and more 
comprehensive measure of detection performance.

Implementation details
A comprehensive hyperparameter optimization protocol was carried out as part of our experimental design (see 
Fig.  4). For this purpose, we performed 300 independent training runs, each for 100 epochs, gradually searching 
the space of learning rate, momentum, weight decay, and various augmentation factors as listed in Table  3. 
Each configuration was evaluated on the validation split after every epoch, allowing us to systematically identify 
optimal values. All experiments, including baseline comparisons, were performed on the OpenUrine dataset for 
scientific consistency.

The scatter plots in Fig. 4 visualize the relationship between key hyperparameters and resulting detection 
metrics (such as mAP, mAP@50-95, Precision, and Recall); final selected values are denoted by a cross marker.

For the final training of our best-performing model, we utilized the optimal parameters over 300 epochs with 
a batch size of 16 and an input image size of 960 × 960 pixels, ensuring maximal capacity to learn robust object 
representations.

Comparative evaluation
Quantitative and qualitative evaluation of automated urine sediment analysis models is crucial for establishing 
their accuracy, robustness, and clinical viability. In this section, we present a comprehensive comparative analysis 
of our proposed method,and state-of-the-art methods, followed by investigations into how input image size and 
particle class influence model performance. The reliability and interpretability of the deep network are further 
validated through visual explanation techniques such as Grad-CAM.

Comparison with state-of-the-art methods
Table  4 provides a comprehensive comparison between our method, ans state-of-the-art methods. Our 
proposed method achieves the highest performance on all core metrics (precision, recall, mAP50, mAP50−95), 
outperforming both the latest YOLO models and prior state-of-the-art methods. While absolute values such 
as 76.59% precision may appear modest compared to simpler tasks, it is important to note that the OpenUrine 
dataset includes 39 diverse classes, making it a far more complex challenge than datasets used in previous studies. 
The ablation results reveal that both the multi-head detection strategy and self-supervised pretraining contribute 
substantially to the observed gains. In particular, removing the multi-head scheme leads to the largest drop 
in precision, recall, and mean average precision, highlighting the value of specialized detection branches for 
different particle types. Our method, even without some of these advanced modules, remains competitive with 
or superior to prior works. YOLO-based baselines and state-of-the art methods, while strong, are outperformed 
by our method, especially on the challenging OpenUrine dataset. These results demonstrate the effectiveness of 
our architectural innovations for improving the automated analysis of urine sediment images.

Impact of input size
As shown in Table 6, an input resolution of 960 × 960 pixels yielded the highest overall mAP while maintaining 
stable convergence and feasible GPU memory usage (24 GB). Hence, this resolution was adopted for all 
subsequent experiments. The model achieves optimal results at 960 × 960 pixels, outperforming both smaller 
and even larger input sizes on almost all metrics. While a further increase to 1280 × 1280 yields competitive 
results, there is no consistent improvement and some metrics are slightly reduced, likely due to increased 
computational noise, overfitting, or diminished returns with upscaling. Notably, reducing the input size below 
960 sharply degrades performance, especially for mAP50 and recall. This is particularly important because many 
urinary particles (such as bacteria and crystals) are small and easily lost at lower resolutions. At the lowest tested 
sizes (80 and 40 pixels), model recall especially collapses, confirming that sufficient image resolution is critical 
for the reliable detection of fine and small-scale particles. These findings underscore the need to optimize input 
size for automatic urine sediment analysis, balancing computational efficiency with the necessity to preserve 
particle detail.
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Impact of heads
The influence of each detection head was evaluated through a head-wise ablation test, as summarized in Table 
5. When any single head was removed, its corresponding samples were not excluded from training; instead, all 
annotations were reassigned to the Others head to preserve the dataset composition and training balance. The 
results show that disabling any individual head consistently reduced detection accuracy, indicating that each 
contributes unique and complementary information. The most pronounced performance drop occurred when 
the Microorganisms head was removed, reflecting their critical role in discriminating morphologically complex 
or clinically significant particle groups.

Class-wise analysis
The results in Table 7 demonstrate that our method substantially improves detection accuracy across most urinary 
sediment particle classes compared to previous baselines. The model achieves high precision and recall on classes 
with distinctive morphological features, such as Calcium Oxalate, Bilirubin, and Calcium Carbonate, showing 

Fig. 4.  Scatter plots illustrating the effect of key hyperparameters on object detection performance across 300 
training runs (each for 100 epochs) on the OpenUrine dataset. Cross markers denote the final optimal values 
used for the main model training.
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the benefit of leveraging their unique visual patterns. However, certain classes remain challenging: for example, 
Bacteria achieve high precision but low recall, likely due to their small size and tendency to be overlooked in 
crowded backgrounds. Morphologically similar cells, notably RBC and WBC, are sometimes confused due to 
their overlapping appearance, limiting further accuracy improvements in these categories. Additionally, rare or 
subtle classes such as Fat Droplets and Renal Epithelial Cells still suffer from lower detection rates.

Typical failure cases include missed detections in densely clustered regions, merged bounding boxes where 
adjacent particles overlap, and occasional confusion between morphologically similar RBC and WBC, especially 
when illumination or focus artifacts blur their boundaries. Quantitative analysis indicates that approximately 
38% of the undetected WBC instances were misclassified as RBC, while 43% of the missed RBC instances were 
incorrectly detected as WBC. This bidirectional confusion highlights their strong morphological resemblance 
under bright-field microscopy. In crowded microscopic fields, small Bacteria are sometimes undetected or 

Configuration Precision (%) Recall (%) mAP@50 (%) mAP@50:95 (%)

Without casts head 72.58±2.67 60.68±2.21 62.73±1.23 45.42±0.83
Without cells head 73.69±3.09 60.28±2.74 61.98±1.04 46.56±0.98
Without crystals head 73.58±2.39 61.71±2.39 60.38±1.13 44.70±0.87
Without microorganisms head 72.69±2.42 59.35±3.29 59.47±1.12 44.52±0.78
Full (all six heads) 76.59±3.29 62.45±2.94 64.15±1.56 47.20±0.72

Table 5.  Head-wise ablation analysis of the proposed method. Removing each head degrades detection 
accuracy even though all data remain in use (annotations of the removed head were redirected to the others 
head).

 

Method Precision (%) Recall (%) mAP50 (%) mAP50-95 (%)

YOLO8-medium 57.85±2.00 54.43±0.84 57.39±0.30 41.66±1.03
YOLO9-medium 57.45±5.16 52.17±1.40 53.56±0.04 37.60±0.62
YOLO11-medium 60.27±0.52 54.81±1.19 58.30±0.22 43.10±0.22
YOLO12-nano 63.40±0.30 53.00±2.10 55.98±0.31 38.91±0.68
YOLO12-small 56.09±5.19 53.72±2.21 56.20±0.18 40.33±0.13
YOLO12-large 58.81±5.86 54.42±2.05 58.46±0.11 42.13±0.58
YOLO12-XLarge 58.51±0.91 57.06±3.69 58.40±0.24 41.63±1.00
EfficientDet-D255 57.16±4.29 50.49±3.19 52.54±0.86 37.13±0.43
ViTDet56 56.67±2.31 52.70±3.81 54.90±1.18 38.21±0.89
RT-DETR large57 58.69±2.92 53.62±2.83 57.73±1.26 40.35±0.68
RT-DETRv2 large58 61.99±3.17 51.65±3.15 57.44±0.86 41.20±0.38
Liang et al. 23 57.06±7.08 49.93±2.49 52.03±0.53 36.00±0.63
Liang et al. 29 59.44±3.80 49.05±2.66 52.41±0.55 38.03±0.45
Li et al. 27 62.79±4.15 50.30±2.02 52.89±0.20 36.81±0.26
Avci et al. 34 55.16±5.24 54.53±2.97 53.09±0.08 36.58±0.32
Lyu et al. 7 56.43±3.83 52.10±1.67 54.32±0.29 39.43±0.43
Wang et al. 59 65.28±2.73 51.73±2.90 55.04±0.21 39.04±0.18
Komori et al. 60 56.04±2.63 52.76±3.21 55.41±0.37 37.80±0.13
Suahil et al. 61 63.86±2.94 51.21±0.86 55.77±0.12 40.68±0.40
Naznine et al. 62 55.89±2.65 56.02±1.64 57.00±0.40 40.95±0.30
Akhtar et al. 63 68.23±3.85 54.04±2.03 58.22±0.23 43.03±0.46
YOLOv12-M 62.45±3.35 54.54±2.28 58.66±0.08 41.88±0.65
YOLOv12-M + SAHI 62.91±2.68 56.49±1.98 59.91±0.74 42.27±0.80
YOLOv12-M + SAHI + Self-supervised + Single-head 63.20±5.13 58.60±2.30 61.08±0.36 44.44±0.74
YOLOv12-M + SAHI + Multi-head 70.19±5.20 60.34±2.83 62.01±0.49 45.21±0.75
Our method (YOLOv5-M backbone) 70.14±3.56 58.73±2.37 58.84±0.47 43.26±1.01

Our method (YOLOv8-M backbone) 72.12±4.37 60.36±3.71 59.04±0.52 44.79±0.29
Our method (YOLOv12-M backbone) 76.59±3.29 62.45±2.94 64.15±1.56 47.20±0.72

Table 4.  Comparison of our proposed method and state-of-the-art methods on the OpenUrine dataset. 
Metrics are reported as mean±std (%) across five cross-validation folds. Bold values indicate the best result per 
metric.
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merged with noise, while low-contrast Renal Epithelial Cells may be mistaken for background structures. These 
qualitative observations (illustrated in Fig.5) reveal the key limitations of the current model and inform future 
improvements such as boundary-aware loss design and targeted synthetic data augmentation for rare or visually 
ambiguous categories.

Overall, while our model demonstrates meaningful advances in most categories, the reliable detection of 
small, ambiguous, or visually similar particles remains a significant challenge for automated urine sediment 
analysis.

Clinical validation
Urine microscopy results from 84 patients, previously analyzed and verified by experienced laboratory 
technologists, were employed for clinical validation of the proposed model. For each sample, three to five 
representative microscopic fields were processed by the model, and the predictions were averaged at the patient 
level before comparison with the laboratory-reported results. The predicted outputs were mapped to the standard 
five-level microscopic quantitation scale (none, rare, few, moderate, many) used in routine clinical reporting. A 
prediction was considered correct when the model’s categorical output matched the laboratory category for the 
same urinary component.

All major urinary sediment components, including RBCs, WBCs, epithelial cells, calcium oxalate crystals, 
bacteria, and mucus, were evaluated accordingly. Table 8 presents the clinical accuracy of the proposed model 
relative to technologist reports. Discrepant samples were further reviewed by an independent clinical biochemist 
to confirm the final reference label.

Interpretability via visual explanation
In Fig.  5, a comparison is presented between the model’s bounding box predictions (left) and Grad-CAM 
visualizations (right) for selected test images. The detection results illustrate the network’s ability to localize 
and classify different urine sediment constituents, such as amorphous particles and epithelial cells. Notably, 
the Grad-CAM activation maps reveal that the highlighted regions (red areas) are primarily concentrated over 
clear and well-defined particles within the microscopic fields, confirming that the model bases its predictions on 
relevant visual cues rather than background artifacts. This qualitative interpretability analysis demonstrates the 
reliability and transparency of the network’s decision-making process in real-world clinical samples.

Conclusion
In this study, we introduced a novel deep learning method tailored for automated urine sediment analysis, 
integrating a multi-head YOLOv12 architecture, self-supervised pretraining, and SAHI-based inference. Our 
method effectively addresses critical challenges such as small-object detection, class imbalance, and data scarcity, 
leading to a competitive precision of 76.59% on a large, diverse dataset. The deployment of six specialized 
detection heads allows for detailed and simultaneous classification across all relevant urinary particles and 
artifacts, supporting detailed clinical interpretation. Furthermore, the establishment and public release of the 
OpenUrine dataset fill a crucial gap, providing a valuable resource for further research in this domain.

Future work will focus on refining the model’s performance, especially for rare or visually ambiguous particle 
types, by exploring adaptive focal loss weighting, targeted synthetic data augmentation, and self-supervised 
consistency regularization to mitigate class imbalance. We also intend to integrate physical and chemical 
urinalysis test data to further enhance diagnostic precision and generalizability.

Input size Precision (%) Recall (%) mAP50 (%) mAP50-95 (%)

40 79.60±10.1 7.75±1.74 9.73±0.15 5.40±0.18
80 43.86±3.82 20.41±1.80 15.07±0.18 9.51±0.54
160 54.90±6.82 29.39±0.84 28.94±0.56 19.83±0.15
320 53.70±0.76 38.09±1.44 39.51±0.30 27.52±0.47
640 60.55±1.69 51.57±0.63 51.88±0.07 36.92±0.41
960 63.40±0.30 53.00±2.10 55.98±0.31 38.91±0.68
1280 56.29±3.97 53.49±3.08 54.00±0.30 36.44±0.45

Table 6.  Evaluation results of YOLO12-Nano with different input image sizes on the OpenUrine test set. 
Metrics are reported as mean±std (%) across five cross-validation folds. The table demonstrates how increasing 
input resolution substantially improves the detection of urinary sediment particles, with the best performance 
achieved at 960 × 960 pixels.
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Class Precision (%) Recall (%) mAP50 (%) mAP50-95 (%)

Ammonium Biurat 100 68.88 84.28 57.96

Amorphous 82.60 85.40 85.54 47.46

Artifact 81.20 72.80 83.02 62.86

Bacteria 66.78 11.34 26.18 11.90

Bilirubin 100 100 100 100

Calcium Carbonate 100 100 100 100

Calcium Oxalate 95.76 90.16 98.56 65.66

Calcium Phosphate 51.10 70.00 70.56 53.34

Cholesterol 100 63.70 90.58 50.40

Cystine 94.50 35.00 54.46 42.42

Enterobius Vermicularis Egg 100 100 100 100

Epithelial Cell (Renal) 13.30 38.22 14.84 11.06

Epithelial Cell (Squamous) 98.28 100 100 74.34

Epithelial Cell (Transitional) 72.94 90.02 70.28 55.86

Fat Droplets 99.12 7.42 13.02 8.68

Fungal Hyphae 86.24 23.38 37.10 19.18

Granular Cast 100 49.98 73.50 45.22

Hippuric Acid 96.74 46.20 48.86 21.56

Hyaline Cast 85.12 70.00 75.18 36.82

Leucine 74.76 100 100 100

Lipid Cast 36.26 84.00 41.16 27.72

Mixed Cell Cast 100 98.00 100 100

Mucus 94.93 100 100 76.64

Muddy Brown Cast 100 73.36 98.84 69.30

Oval Fat Bodies 96.46 41.72 61.32 42.28

RBC 82.88 85.68 83.30 50.68

RBC Cast 62.02 56.00 67.62 55.02

RBC Clump 65.38 35.00 38.92 28.56

Schistosoma haematobium Eggs 43.96 100 100 100

Sperm 75.88 69.02 63.84 30.94

Suspected atypical cell 44.24 98.00 57.82 41.72

Trichomonas vaginalis 100 100 100 84.98

Triple Phosphate 92.26 94.50 95.62 64.54

Tyrosine crystal 33.74 38.22 28.42 14.00

Uric Acid 79.24 81.48 78.26 47.32

WBC 83.02 91.42 81.62 53.06

WBC Clump 43.12 3.64 5.18 3.64

Waxy Cast 100 52.50 59.36 49.70

Yeast 52.08 15.96 15.82 5.75

Unweighted average  79.07 67.97 69.31 52.40

Weighted average 76.59 61.22 62.88 45.70

Table 7.  Class-wise detection performance of the best model on the OpenUrine test set. Numbers are reported 
as percentages. Metrics include Precision, Recall, mAP@50, and mAP@50-95 for each urinary sediment class, 
as well as unweighted and instance-weighted averages across all classes.
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Fig. 5.  Grad-CAM visualization of model attention across representative classes. Top row: detection and 
attention patterns for Amorphous particles, showing that the model accurately localizes dense crystalline 
regions and focuses its activations (red/yellow) on texture-rich clusters relevant to this class. Bottom row: 
predictions for Epithelial Cells where the model highlights cell nuclei and boundary contours while de-
emphasizing background noise and staining artifacts. In each pair, the left image displays predicted bounding 
boxes and class labels, while the right image presents the corresponding Grad-CAM heatmap. Warmer 
colors (red/yellow) indicate regions contributing most to the network’s decision, confirming that it primarily 
attends to morphologically informative structures such as epithelial cells and amorphous deposits rather than 
irrelevant background patterns.
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Data availability
The OpenUrine dataset is available from the corresponding author on reasonable request. Interested researchers 
are invited to submit an application through the designated request form available at www.github.com/alika-
rimi120/OpenUrine. It should be noted that this dataset is provided solely for academic and non-commercial 
research purposes. Prior to access, requestors are required to agree to the terms and conditions specified in the 
request form, ensuring the data will be used in accordance with ethical standards and regulations.

Code availability
Sample codes, experiments results, and models are hosted on the following GitHub repository: www.github.
com/alikarimi120/OpenUrine.
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