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Prediabetes is a major risk factor for the development of diabetes, defined by blood glucose levels 
that are elevated but not yet high enough to meet the diagnostic criteria for Diabetes Mellitus. This 
condition is often clinically “silent” yet it can already lead to negative effects on various organ systems 
and frequently indicates the impending onset of type 2 diabetes mellitus. This study aimed to compare 
a traditional statistical model, the Generalized Linear Mixed Model (GLMM), with two tree-based 
machine learning models, Random Forest (RF) and Generalized Mixed-Effects Random Forest (GMERF), 
for predicting prediabetes and identifying key risk indicators in longitudinal data. The study sample 
included 5361 individuals aged over 20 years, focusing on 32 different variables. The target variable 
was the presence of prediabetes in a longitudinal setting. We applied three models: RF, which is tree-
based but does not account for repeated measurements; GLMM, which handles random effects but 
assumes linear relationships; and GMERF, a hybrid model that incorporates both random effects and 
the nonlinearity of decision trees. Model performance was evaluated using standard predictive metrics. 
Among the three models, GMERF achieved the highest predictive performance. The area under the 
ROC curve was 0.63 for RF, 0.70 for GLMM, and 0.74 for GMERF. In the GMERF model, the top five 
predictive variables were Waist-to-Hip Ratio (WHR), age, waist circumference, triglyceride level, and 
Waist-to-Height Ratio (WHtR). WHR was ranked as the most important feature in both the GMERF and 
RF models. All of these variables, except WHtR, were also found to be significant in the GLMM model. 
In longitudinal data, there is an inherent dependence between observations collected over time. By 
incorporating these considerations, models that account for this data structure are better equipped to 
handle the complexities of longitudinal data, leading to more reliable and accurate predictions.

Keywords  Prediabetes, Machine learning, GMERF, GLMM, Longitudinal data

Pre-diabetes is a condition where an individual’s blood glucose levels are elevated above normal but not high 
enough to be diagnosed as diabetes1. This state indicates an increased risk of developing type 2 diabetes and other 
diseases, such as cardiovascular diseases, if not addressed2. Prediabetes has become a worldwide epidemic3, 
characterized by various associated complications, and its prevalence is on the rise, notwithstanding its treatable 
nature4,5. The Expert Committee on Diagnosis and Classification of DM in 1997 initially recognized prediabetes 
as an intermediate stage, signifying a relatively elevated risk for future diabetes development6. It has been 
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documented that around 5–10% of individuals with untreated prediabetes subsequently progress to develop 
diabetes. With prolonged observation, there is a potential for an increase in this progression rate7. This statistic 
is especially concerning, given the high prevalence of prediabetes among Iranian adults (18.2%)8. In Iran, it is 
predicted that the prevalence of diabetes will increase by 91% by 2035, and the associated economic burden 
is expected to increase significantly by 20359,10. Therefore, identifying people with prediabetes provides an 
opportunity for intervention through lifestyle modification and pharmacological treatments aimed at preventing 
the progression of diabetes11,12. The primary aim of the present study is to investigate the determinants of 
prediabetes within an urban population in Tehran, Iran.

Existing prediabetes screening tools, which rely on a limited selection of established risk factors, reportedly 
failed to identify a significant proportion of undetected individuals with prediabetes13. In addition to clinical 
tools for the diagnosis of pre-diabetes, the scientific community has increasingly focused on the use of powerful 
statistical models for early and accurate prediction of pre-diabetes. These models can contribute to identifying 
predisposing factors for pre-diabetes in various communities, particularly in Iranian society, and aid in delaying 
or preventing diabetes. As a result, they can help reduce mortality and associated complications in the studied 
population.

This study analyzes longitudinal data from the Tehran Lipid and Glucose Study (TLGS) using advanced 
statistical models. Traditional methods, such as generalized linear mixed models (GLMM), are commonly 
applied to such data but have certain limitations14–16. A key limitation of GLMMs is the need for users to pre-
specify interactions between predictors and nonlinear relationships with the outcome, features that are often 
unknown beforehand and difficult to identify in high-dimensional datasets17. To address these challenges, 
machine learning (ML) models have been increasingly utilized. Although ML techniques are more complex 
than conventional statistical methods, they do not rely on assumptions such as linear relationships or normally 
distributed residuals18. This flexibility enables data analysts to explore large datasets with many variables more 
thoroughly and efficiently19.

Currently, ML methods are being employed for the detection and prediction of pre-diabetes, complications, 
and disease progression20–24. One of the advanced ML methods used for developing predictive models is the 
Random Forest (RF) algorithm. The standard RF algorithm, like other ML methods, assumes that observations 
are independently sampled from the population. Ignoring the dependencies among observations collected 
over time in longitudinal data can result in biased inferences, such as underestimated standard errors in linear 
models25. To date, research studies have not adequately emphasized the examination and understanding of the 
correlations within the data learning methods that have recently been proposed. One advanced technique is 
generalized mixed effects random forests (GMERF)26. The main concept of integrating random forests into 
mixed linear models is to replace the fixed effect component with a tree or forest while using random effects 
to model the dependence structure26. This comprehensive approach enables scientists, especially in areas like 
healthcare, to investigate intricate questions about treatment efficacy while considering the diverse responses of 
individual subjects27.

The objective of this research is to utilize a more advanced statistical model to determine the most efficient 
ML approaches for examining interrelated data. Additionally, it seeks to rigorously evaluate the predictive 
capabilities of the selected model in accurately classifying new patients at risk of prediabetes. For the first time, 
we incorporate the longitudinal nature of the Tehran Lipid and Glucose Study (TLGS) data into the RF models. 
Our objective is to predict prediabetes based on key indicators utilizing the GMERF method. The results will be 
compared with those obtained from GLMM and a standard RF model. The investigators aim for these findings 
to help identify individuals at risk of developing prediabetes, thereby contributing to a reduction in the disease’s 
burden on the population.

Materials and methods
Data source
The Tehran Lipid and Glucose Study (TLGS) is the first prospective population-based study in Iran, initiated in 
1998, aimed at determining risk factors for non-communicable diseases, including glucose and lipid disorders, 
obesity, smoking, low physical activity, and hypertension, with the goal of improving lifestyle to prevent these 
risk factors. This study was conducted on a group of residents aged 3–69 years in District 13 of Tehran. District 
13 was chosen as the sampling framework due to the greater stability of its residents, the presence of healthcare 
centers affiliated with the University of Medical Sciences, and the demographic similarities (age and gender 
distribution) of its population to that of the broader Tehran population. The participants were invited to the Lipid 
and Glucose Research Unit through face-to-face contact, where their data were collected through interviews, 
physical examinations, serum tests, and anthropometry measurements. This study consists of seven phases, with 
measurements repeated every three years. The design and methodology of the TLGS have been thoroughly 
detailed in previously published works28.

Initially, 15,011 subjects participated in the Tehran Lipid and Glucose Study. Due to dropouts during the 
first phase and enrolling new subjects in the second phase, the combined data from both phases were treated 
as the initial phase of the study. In other words, this combined phase included participants from both phases. 
Ultimately, the total study population consisted of 12,240 subjects.

Inclusion criteria
The inclusion criteria for this study were: age over 20 years, participants who were healthy in phase one (i.e., 
without prediabetes, diabetes, or cancer), and individuals who participated in at least two phases of the study. 
After applying these criteria, 5361 participants remained eligible for the study. Since participants might develop 
pre-diabetes between phases, the independent risk factors from the previous phase were considered for each 
outcome phase. For example, the risk factors from the second phase were used for the third phase outcome, 

Scientific Reports |        (2025) 15:41361 2| https://doi.org/10.1038/s41598-025-25350-4

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


and similarly, up to the seventh phase, where the independent variables from the sixth phase were considered. 
According to this definition, five phases were identified in total. The next scenario in the study was the possibility 
that individuals might progress directly from being healthy to developing diabetes without passing through 
a pre-diabetes stage. This could be due to unrecorded pre-diabetes in previous phases, non-attendance, or 
developing pre-diabetes in the time interval between phases. Therefore, the initial phase of diabetes onset for 
these individuals was classified as prediabetes, and any subsequent records for those individuals were removed 
from the study.

Main outcome and potential predictors
In this study, the primary outcome variable was prediabetes, defined as a binary variable based on fasting blood 
sugar (FBS) between 100 and 125.9 mg/dL or 2-h post-load blood sugar (BS2HR) between 140 and 199.9 mg/
dL, with no use of anti-diabetic medication. In addition, 31 variables were initially treated as the potential 
factors influencing pre-diabetes. These variables included demographic factors (such as age, gender, marital 
status, occupation, and education), medical history (including the use of thyroid drugs, antihyperlipidemic 
drugs, antihypertensive drugs, cardiac drugs, corticosteroids, aspirin, family history of diabetes, family history 
of cardiovascular diseases (CVD), and history of CVD, as well as smoking and the metabolic equivalent of task 
(MET). Additionally, medical examination data including pulse rate, systolic blood pressure (SBP), diastolic 
blood pressure (DBP), and anthropometric measurements such as body mass index (BMI), waist circumference 
(WC), wrist circumference, hip circumference, waist-to-height ratio (WHtR), and waist-to-hip ratio (WHR) 
were considered. Blood biomarkers including HDL, total cholesterol (TC), creatinine, triglycerides (TG), 
Glomerular Filtration Rate (GFR), TC-to-HDL ratio, and TG-to-HDL ratio were also analyzed. In this study, 
individuals (ID) were used as a clustering variable, or, in other words, as a random effect. Comprehensive 
information regarding anthropometric and laboratory measurements, along with the techniques used, can be 
found in earlier published studies29.

Statistical analysis
For each variable in the dataset, the proportion of missing data was below 20%. We assessed the missing data 
patterns and found no evidence of systematic bias, suggesting that the data were missing at random (MAR). 
Missing values were imputed using the Multiple Imputation by Chained Equations (MICE) package in R, 
employing the weighted predictive mean matching (WPMM) method. Five imputed datasets were generated 
and combined using Rubin’s rules to account for imputation uncertainty30. In the quantitative analysis, central 
tendency and variability measures were computed for numerical variables, while qualitative factors were 
summarized using frequency distributions. To evaluate model performance, the data was randomly split into 
80% training and 20% test sets, ensuring that the outcome variable’s distribution remained consistent across 
both data sets. The data splitting method ensured that all occurrences of a given ID were assigned to either the 
training or test dataset, not split between them.

In the second step, we employed the ‘varSelRF’ and ‘VSURF’ R packages to address the problem of feature 
multicollinearity. This step focused on identifying a definitive set of features most pertinent to predictive 
modeling, aiming to enhance the effectiveness of our ML techniques. The varSelRF method, developed by Diaz-
Uriarte et. al., employs a backward elimination approach for the feature selection. This technique systematically 
removes the least important features while preserving a comparable error rate to that of the full model 
(including all features)31. The VSURF is a method that utilizes a stepwise procedure introduced by Genuer et 
al. This approach also ensures that the error rate remains similar to that of the full model32. We selected these 
two algorithms because they are robust to multicollinearity, widely validated in biomedical studies, and well-
suited to high-dimensional data. Their ensemble nature reduces variance and overfitting, thus improving the 
generalizability of the models31,33.

Then, the predictor variables were utilized to fit a multivariable random intercept mixed-effects logistic 
regression (LR) model using the glmer package. The model parameters were estimated using the restricted 
maximum likelihood (REML) method and Z-normalization was finally applied to the numerical variables.

The GMERF is based on a GLMM, where the fixed effects are estimated using an RF, while the dependence 
structure is preserved through random effects. The RF aims to handle interactions among covariates and 
addresses highly nonlinear effects.

The severe class imbalance in our longitudinal data, with only 25% of cases belonging to the positive class 
(those with prediabetes), posed a significant challenge. This imbalance can hinder the model’s ability to accurately 
classify cases, leading to low sensitivity (true positive rate) and potentially low specificity (true negative rate). To 
address this issue, we adjusted the decision threshold, lowering it to improve sensitivity, though at the expense of 
specificity. The cutoff point was chosen to ensure that the proportion of instances assigned to the positive class in 
the training set closely matched the true proportion of the positive class34. Finally, we compared the performance 
of the GMERF model with the GLMM and RF models in predicting prediabetes. The evaluation was based on 
various metrics, including accuracy, sensitivity, specificity, and the area under the ROC curve (AUC).

It is crucial to note that the validation parameters were determined using the ten-fold cross-validation 
technique, tailored to each algorithm type. For the RF algorithm specifically, we fine-tuned several parameters: the 
total quantity of decision trees in the RF35, the maximum depth of trees (deeper trees can capture more intricate 
patterns but risk overfitting36 and the number of features considered at each node split35. Other parameters 
were left at their default settings. The prediction error was quantified as the average absolute difference between 
predicted and observed values, corresponding to the predictive misclassification rate (PMCR).

Prediction models based on ML were developed using the variables obtained from comparing two feature 
selection methods. To ensure robust performance and avoid overfitting, we employed the K-fold cross-validation 
procedure. This approach helps prevent artificially inflated validation metrics by providing a more reliable 
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estimate of model performance37. Figure  1 presents a detailed overview of the study design framework. All 
statistical analyses were conducted using the R version 4.4.1, with P values less than 0.05 considered statistically 
significant.

Ethical approval
The research was carried out in alignment with ethical guidelines and national standards for medical research in 
Iran. All procedures involving human participants in the Tehran Lipid and Glucose Study (TLGS) were approved 
by the National Research Council of the Islamic Republic of Iran, and written informed consent was obtained 
from each participant.

Additionally, the study received approval from the Ethics Committee of Shahid Beheshti University of 
Medical Sciences under approval number IR.SBMU.RETECH.REC.1402.593.

Results
This study analyzed data from a cohort of 5361 individuals. Table 1 presents the distribution of participants by 
gender, along with the mean (SD) age and the percentage of prediabetes for each phase of the study. In addition, 
Table 2 displays the general characteristics of the population under study. Based on the varSelRF and VSURF 
packages, we included the variables identified as important by both methods in the modeling process. Regarding 
this, 21 variables (features) were selected to include the described models (Fig. 2). The selected features were: age, 
gender, education, antihyperlipidemic drugs, antihypertensive drugs, SBP, DBP, BMI, WC, wrist circumference, 
hip circumference, HDL, TC, creatinine, TG, GFR, WHtR, WHR, TC-to-HDL ratio, TG-to-HDL ratio, and 
Time (Phase).

Phase Gender No Age (Mean ±SD) Prediabetes No. (%)

1

Male 2306 41.75 ± 14.71 381 (16.52)

Female 3055 39.16 ±13.09 407 (13.32)

Total 5361 40.28 ± 13.87 788 (14.70)

2

Male 2249 45.27 ± 14.75 612 (27.21)

Female 2981 42.41 ± 12.77 646 (21.67)

Total 5230 43.64 ± 13.73 1258 (24.05)

3

Male 2219 47.63 ± 14.25 687 (30.96)

Female 2934 45.53 ± 12.08 741 (25.26)

Total 5153 46.43 ± 13.49 1482 (27.71)

4

Male 2167 50.56 ± 14.20 717 (33.09)

Female 2865 48.39 ± 12.56 752 (26.25)

Total 5032 49.32 ± 13.33 1469 (29.19)

5

Male 2104 53.39 ±13.97 705 (33.51)

Female 2787 51.65 ±12.50 756 (27.13)

Total 4891 52.40 ± 13.18 1461 (29.87)

Table 1.  Percentage of prediabetes for each phase of the study.

 

Fig. 1.  Flowchart of the study design.
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In the next step, a multivariate mixed-effects LR model was utilized to identify the risk factors for prediabetes 
within the study population. Table 3 presents the estimated values obtained from the analysis. The results 
indicate that the variables age, education, antihyperlipidemic drugs, antihypertensive drugs, SBP, BMI, Waist 
circumference, Hip circumference, HDL, TC, TG, WHR, TC-to-HDL were significantly linked to the presence 
of prediabetes in the cohort under investigation (P < 0.05).

Additionally, we applied a conventional RF model to the dataset. The variable importance indices obtained 
from the fitted RF model are displayed in Fig. 3. Based on these findings, it can be inferred that five variables 
emerged as the most significant predictors of prediabetes: WHR, TG-to-HDL, WHtR, BMI, and TC-to-HDL. 
Conversely, the five variables with the lowest importance scores were: time, education, antihypertensive drugs, 
antihyperlipidemic drugs, and gender.

In the third stage of data analysis, we fitted the GMERF model to the data. The most influential predictors 
identified by the GMERF model were: WHR, age, WC, time (phase), and TG. The least important variables were 
creatinine, education, antihypertensive drugs, antihyperlipidemic drugs, and gender (Fig. 4).

Figure 6 presents the ranked importance of all 21 predictor variables in both the RF and GMERF models. 
The figure highlights shifts in variable importance between models using connecting lines, allowing for visual 
comparison of their relative rankings.

Lastly, we calculated the predictive power indices for the conventional RF, GLMM, and GMERF models 
(Table 4). The results indicate that the GMERF model outperforms the other models in terms of predictive 
capability. The RF model exhibited the lowest sensitivity (0.62) and specificity (0.63) values among the fitted 
models. To visually compare the estimated predictive criteria of these models, we assessed their effectiveness in 

Variable Category X ± SD or %

Gender
Male 43.03

Female 56.97

Occupation
Employed 58.20

Unemployed 41.80

Education

Primary 20.69

Secondary 55.09

Higher 24.22

Marital status
Married 82.50

Single/Divorced or Widowed 17.50

Corticosteroids Yes 1.45

Aspirin use Yes 6.44

Antihyperlipidemic drugs Yes 5.15

Cardiac drugs Yes 2.12

Antihypertensive drugs Yes 7.58

Thyroid drugs Yes 4.92

Smoking status Yes 8.52

CVD history in 1st  degree family Yes 6.01

Diabetes history in 1st  degree family Yes 12.13

Physical activity

< 600 74.68

≥ 600 and < 1500 16.80

≥ 1500 8.52

History of CVD Yes 11.42

Age (year) – 46.28 ± 14.18

Pulse rate – 78.24 ± 10.74

SBP (mmHg) – 114.24 ± 17.09

DBP (mmHg) – 75.35 ± 10.49

BMI (kg/m2) – 27.49 ± 4.60

WC (cm) – 92.15 ± 11.79

Wrist circumference (cm) – 16.54 ± 1.48

Hip circumference (cm) – 100.78 ± 8.32

HDL (mg/dL) – 45.41 ± 12.03

Total cholesterol (mg/dL) – 190.93 ± 38.69

Creatinine (mg/dL) – 1.06 ± 0.23

Triglyceride (mg/dL) – 141.30 ± 82.69

GFR – 70.93 ± 15.19

Table 2.  General characteristics of the population under study.
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predicting prediabetes using the ROC curve. In this context, the RF and GMERF models showed, respectively, 
the lowest and highest area under the ROC curve, with AUC of 0.65 and 0.75. Additionally, the GLMM model 
demonstrated better performance than the RF model, with an estimated AUC of 0.73 (Fig. 5).

Discussion
Early identification of individuals at risk for prediabetes is crucial for preventing the onset of type 2 diabetes38,39. 
Despite the benefits of early intervention, no effective strategy currently exists for large-scale prediabetes 
screening40,41. Our research explored the use of ML approaches to create robust predictive models for diseases. 
An analysis of predictive power indices showed that the GMERF model outperformed other evaluated models. 
The GLMM ranked second in performance, yielding results very similar to those of the GMERF model. The 

Variable Subgroup Adjusted OR (95%CI) p value

Gender (Female) 0.93 (0.77,1.13) 0.457

Age 1.25 (1.17,1.34) < 0.001

Education

Primary -  -

Secondary 0.98 (0.87,1.09) 0.700

Higher 0.84 (0.73,0.97) 0.016

Antihyperlipidemic drugs use 1.19 (1.03,1.38) 0.020

Antihypertensive drugs use 1.16 (1.02,1.32) 0.030

SBP 1.08 (1.03,1.14) 0.003

DBP 1.11 (0.94,1.14) 0.660

BMI 1.22 (1.09,1.36) < 0.001

WC 2.00 (1.34,3.55) 0.017

Wrist circumference 1.07 (0.99,1.16) 0.072

Hip circumference 1.66 (1.42,1.86) 0.006

HDL 1.31 (1.69,1.86) < 0.001

TC 1.15 (1.02,1.29) 0.020

Creatinine 1.05 (0.89,1.12) 0.165

TG 1.36 (1.17,1.58) < 0.001

GFR 1.03 (0.93,1.07) 0.340

WHtR 1.03 (0.96,1.29) 0.111

WHR 1.18 (1.07, 1.21) 0.010

TC-to-HDL 1.21 (1.01,1.29) 0.030

TG-to-HDL ratio 1.16 (0.98,1.28) 0.080

Table 3.  Results of mixed-effects logistic regression analysis of risk factors for prediabetes in the TLGS. BMI 
body mass index; WC waist circumference; HDL high-density lipoprotein; SBP systolic blood pressure; DBP 
diastolic blood pressure; GFR glomerular filtration rate; TG triglycerides; TC total cholesterol; WHR waist-to-
hip ratio; WHtR waist-to-height ratio.

 

Fig. 2.  Feature selection of variables using: (A) VSURF algorithm, (B) varSelRF algorithm.

 

Scientific Reports |        (2025) 15:41361 6| https://doi.org/10.1038/s41598-025-25350-4

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Model Sensitivity (Recall) Specificity Precision F1-score Accuracy (95% CI) AUC (95% CI)

GLMM 0.68 0.70 0.84 0.75 0.68 (0.67, 0.70) 0.73 (0.72,0.75)

RF 0.62 0.63 0.83 0.69 0.62 (0.60,0.63) 0.65 (0.63,0.67)

GMERF 0.70 0.74 0.85 0.77 0.71 (0.70,0.73) 0.75 (0.74,0.77)

Table 4.  Comparison of predictive power indices for GLMM, RF, and GMERF.

 

Fig. 4.  Importance index of variables in GMERF. TG_HDL, TG-to-HDL ratio; TC_HDL, TC to HDL ratio.

 

Fig. 3.  Importance index of variables in RF. TG_HDL, TG-to-HDL ratio; TC_HDL, TC to HDL ratio.
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RF model demonstrated lower accuracy compared to both. This is in agreement with the results of the study 
conducted by Asadi et al. to diagnose cardiovascular disease (CVD) in clustered data. Among the four statistical 
models—Generalized Linear Mixed Model tree (GLMMtree), decision tree (DT), GMERF, and RF—the GMERF 
model showed the best performance, while the RF model had the lowest accuracy42 (Fig. 6).

According to the findings from the GMERF model in our study, waist-to-hip ratio and age have the greatest 
impact on predicting prediabetes. Similarly, in the GLMM model, these variables also had a significant effect on 
the outcome. A cross-sectional study conducted in Vietnam, which included 2142 individuals aged 30–72 years, 
found that waist-to-hip ratio and systolic blood pressure are significant predictors of type 2 diabetes risk. The 
area under the ROC curve for these two risk factors was 0.73 for men and 0.69 for women43. Numerous studies 
have explored the use of ML for predicting and diagnosing diabetes, presenting various prediction models and 
comparing their sensitivity and ROC curves44–47. In a cross-sectional study conducted in 2024, a total of 3376 
individuals over the age of 30 in Iran, who participated in a diabetes screening program across 16 comprehensive 

Fig. 6.  Variable importance comparison between RF and GMERF models for all 21 predictors.

 

Fig. 5.  Receiver operating characteristic (ROC) curve for different machine learning models and GLMM.
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health service centers, were included. Five different ML algorithms—CatBoost, RF, XGBoost, logistic regression 
(LR), and artificial neural networks (ANN)—were used to model the dataset. Among these models, CatBoost 
performed slightly better, achieving an overall AUC of 0.737. Age, WHR, BMI, and SBP were identified as the 
most important factors for predicting diabetes48. A cohort of 36,652 individuals from a rural population in 
China was analyzed to predict the risk of T2DM using six machine learning algorithms: logistic regression 
(LR), classification and regression tree (CART), artificial neural network (ANN), support vector machine 
(SVM), random forest (RF), and gradient boosting machine (GBM). Model performance was evaluated using 
30 variables in each algorithm, except for the CART model49. In that study, a high urinary glucose level was 
identified as the most significant variable by all algorithms. However, urinary glucose was not measured in our 
study, which limits direct comparison. Despite this, obesity indicators such as WHR and WHtR consistently 
ranked among the most important variables across all ML models in both studies, aligning with our findings. 
Other significant risk factors identified in the Chinese cohort included gender, age, family history of diabetes, 
WC, BMI, and SBP. In our analysis, however, gender and family history of diabetes were not among the top 
predictive variables50.

Our study demonstrated that WC is an important additional factor in the prediabetes prediction model. In 
a study conducted by Hu et al. in 2020 on 22,945 prediabetic individuals who were followed for eight years, it 
was concluded that those who later developed diabetes experienced a greater annual increase in BMI and WC 
compared to those who did not develop diabetes51. Additionally, Alperet et al. demonstrated that for diagnosing 
diabetes mellitus, central obesity criteria such as WC and WHtR are more effective than BMI in three major 
Asian ethnic groups (Chinese, Malay, and Asian-Indian)52. In Europe, WC has been identified as a stronger 
predictor of diabetes risk compared to BMI53. Prospective analyses in the Iranian population also revealed 
comparable associations between BMI and WC in predicting diabetes progression54.

In an analytical cross-sectional study conducted in Mashhad, the statistical population was selected using 
a stratified-cluster sampling method, comprising 8810 individuals aged 35–64 years. LR models were utilized 
to identify determinants of prediabetes, revealing significant statistical associations between age (OR = 1.055), 
WC (OR = 1.02), and TG (OR = 1.002) with prediabetes. Furthermore, gender, marital status, and tobacco use 
did not show significant relationships with prediabetes. The prevalence of prediabetes in this study was 10.2% 
(885 cases)55. In a study conducted in South Africa involving 6442 individuals aged over 15, it was shown that 
gender and WC have significant relationships with prediabetes56, whereas, in our study, the gender variable was 
not significantly important.

Interestingly, gender did not emerge as a significant predictor of prediabetes in our study, which contrasts 
with some previous research reporting gender-related differences in metabolic risk57–59. This discrepancy could 
stem from population-specific factors, such as genetic background, lifestyle behaviors, or cultural influences 
unique to the TLGS cohort. Additionally, our modeling approach, which adjusted for a comprehensive set of 
covariates and considered repeated measures, may have reduced residual confounding that could otherwise 
amplify gender effects. Another possible explanation is that the interaction between gender and other predictors 
(e.g., age, waist circumference, or lipid profiles) may have moderated the direct effect of gender itself. Further 
studies are warranted to explore potential gender interactions or to validate this finding in different populations 
and using alternative modeling strategies.

In our analysis, both triglyceride (TG) levels and time (i.e., study phase) emerged as important predictors 
of prediabetes, particularly in the GMERF model. The significant role of TG is consistent with previous 
epidemiological studies demonstrating its association with insulin resistance and impaired glucose metabolism. 
For instance, a large-scale longitudinal study by Guo et al. in 2024 showed that elevated TG levels were 
independently associated with increased risk of type 2 diabetes, even after adjusting for other metabolic risk 
factors60. Our findings align with this evidence, as TG was significantly associated with prediabetes across all 
three modeling approaches (GLMM, RF, GMERF). Similarly, “time” was identified as an important variable in 
the GMERF model. This reflects the dynamic nature of prediabetes risk, which can evolve over different phases 
of follow-up due to aging, lifestyle changes, and cumulative exposure to risk factors. In longitudinal or multi-
phase cohort studies, time functions as a proxy for these evolving influences. Its predictive importance in our 
model suggests that incorporating temporal dynamics may improve risk stratification, particularly in settings 
where data are collected across multiple time points or phases61,62.

This study represents the first application of an ML model that accounts for the correlation structure of 
the data to the TLGS dataset. A key aspect of our approach is the comprehensive feature selection and model 
development process. We utilized the power of ML algorithms to systematically assess the significance of these 
features in predicting prediabetes. Interestingly, our results indicated that the RF model exhibited the lowest 
accuracy compared to GMERF and GLMM. This discrepancy may arise from the inherent assumptions of the RF 
algorithm. Like many other machine learning methods, RF assumes that observations are sampled independently 
from the population, which may not hold true in longitudinal settings. Although RF assumes independent 
observations and is therefore suboptimal in this context, its widespread use in clinical prediction tasks and 
decision-support systems makes it a relevant comparator in real-world healthcare applications. In longitudinal 
data, however, this assumption is often violated due to the inherent dependence between observations collected 
over time. Despite this limitation, RF was included as a benchmark model in our study to highlight the potential 
drawbacks of neglecting intra-individual correlations. Its inclusion allowed us to contrast traditional ML 
methods with those designed to handle clustered or repeated measures data. Ignoring this dependence can 
result in biased inferences, such as underestimated standard errors in linear models63. This bias may help explain 
the subpar accuracy observed in the RF model. In contrast, classification methods that properly account for 
the data structure and effectively handle the correlations from repeated measurements generally exhibit better 
predictive performance64,65. By incorporating these considerations, GMERF and GLMM models are better 
equipped to handle the complexities of longitudinal data, leading to more reliable and accurate predictions with 
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direct relevance to clinical risk stratification and early intervention. Conversely, the GLMM model exhibited 
accuracy that was nearly comparable to, but slightly lower than, that of GMERF. This difference may arise from 
the GLMM’s reliance on certain assumptions, including a linear relationship between the response and the 
predictors, as well as a normal distribution of the residuals. Departures from these assumptions may result in 
inaccurate interpretations, especially in mixed-effects models. In contrast, the GMERF method does not impose 
these assumptions, allowing for greater flexibility in modeling.

Therefore, the GMERF model holds promise for integration into clinical screening protocols, particularly 
for identifying individuals at elevated risk of prediabetes in longitudinal cohort settings, where capturing intra-
individual variation is essential. Beyond the statistical performance of the models, the clinical implications of 
our findings are of significant importance. The identification of waist-to-hip ratio (WHR), age, and triglyceride 
(TG) levels as key predictive factors offers a practical advantage, as these are non-invasive, low-cost, and 
routinely collected measures in primary care. WHR, in particular, emerged as a dominant predictor, supporting 
its integration into prediabetes risk assessment tools, especially in resource-limited settings. Age is an easily 
obtainable demographic factor that can help stratify individuals into risk categories, while TG levels represent 
a modifiable metabolic risk factor that can guide early lifestyle or pharmacological interventions. By translating 
these findings into clinical screening protocols and public health strategies, healthcare providers can identify at-
risk individuals earlier and more effectively, enabling timely preventive interventions and potentially reducing 
the burden of diabetes.

Finally, we acknowledge that the TLGS data are based on a Tehran-specific urban population, which may 
raise concerns regarding the generalizability of the findings to other geographic or ethnic groups. However, 
previous studies have shown that the TLGS cohort is demographically representative of both the city of Tehran 
and the broader Iranian population in terms of age and sex distribution66,67. Nevertheless, external validation 
using independent datasets from other populations is necessary.

Conclusion
This study acknowledges the inherent dependence between observations collected over time, and we account 
for this data structure in our models. In the current work, we utilized approaches for feature selection and 
model development. The integrated application of feature selection and machine learning offers a broad array 
of potential risk factors—such as demographic details, medical history, medical examinations, anthropometric 
measurements, and blood biomarkers—enabling more accurate predictions of prediabetes. This approach 
enhances our understanding of potential prediabetes risk ratios at the public health level, facilitating the 
implementation of more effective diabetes prevention and control strategies. These findings can guide targeted 
screening and early intervention efforts to delay or prevent progression to type 2 diabetes. In addition, future 
research should focus on validating these models on external datasets, testing additional machine learning 
algorithms, and incorporating time-varying predictors to enhance model performance and generalizability.

Study’s limitations
This study has some limitations that should be addressed in future research. Although the longitudinal design 
of the Tehran Lipid and Glucose Study (TLGS) is a key strength, we did not explore whether the importance of 
predictors changes over time. Analyzing time-dependent variable importance could provide valuable insights 
into how risk factors evolve, and we suggest that this could be an important direction for future research.

Regarding the GMERF model, while it demonstrated the best predictive performance with an AUC of 0.75, 
this accuracy is still moderate. There is potential to improve predictive power by exploring more advanced 
machine learning models, such as XGBoost or neural networks. However, these models do not naturally account 
for the inherent dependencies in longitudinal data and would require additional adaptations, which were beyond 
the scope of this study. Future studies could address this limitation by incorporating more complex models 
designed specifically for longitudinal data, and by considering additional predictors, such as dietary or genetic 
factors, to further enhance performance.

Although we addressed class imbalance by adjusting the decision threshold, we acknowledge that this 
approach has limitations. Methods like SMOTE, commonly used for cross-sectional data, are not suitable for 
longitudinal datasets due to the inherent correlation within subjects over time. Applying SMOTE would violate 
these dependencies and potentially introduce bias. Therefore, while threshold adjustment helped mitigate 
imbalance, this approach remains a limitation. Future research could explore imbalance-handling techniques 
specifically designed for longitudinal data, such as subject-level resampling or model-based.

Data availability
The datasets used and analyzed during the current study are not publicly available due to privacy and security 
concerns. However, interested researchers can request access to the original raw data by contacting the Endo-
crine and Metabolic Sciences Research Institute at Shahid Beheshti University of Medical Sciences via email at 
dkhalili@endocrine.ac.ir.
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