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Sarcopenia (SARC), a progressive degenerative disorder associated with aging, is characterized by 
a gradual loss of muscle mass and strength and imposes major burdens on individuals and society. 
Current diagnostic and therapeutic methods for SARC remain limited, highlighting the urgent need for 
novel biomarkers. The present research was designed to investigate the role of lactate metabolism–
related differentially expressed genes (LMRDEGs) in SARC, identify key genes and pathways, and 
develop a diagnostic model for the disease. Differentially expressed genes (DEGs) were identified 
using data from the Gene Expression Omnibus database. Gene set enrichment analysis was used to 
determine signaling pathways associated with the DEGs. Pearson’s correlation analysis was used 
to quantify the strength of linear relationships between coding genes and DEGs. Protein–protein 
interaction networks of DEGs were constructed using the STRING database. Functional annotation 
of DEGs was conducted using comprehensive enrichment analyses based on Gene Ontology (GO) 
terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways to elucidate their biological 
relevance. Seventeen LMRDEGs were found to be significantly upregulated or downregulated in 
SARC, underscoring their pivotal roles in disease pathogenesis. GO and KEGG pathway enrichment 
analyses revealed that these DEGs were primarily involved in metabolic energy regulation and 
intracellular signal transduction, suggesting their functional importance in SARC development. 
Immune infiltration analysis suggested substantial variations in immune cell abundance among SARC 
samples, emphasizing the immune system’s potential contribution to disease progression. This study 
demonstrates the importance of LMRDEGs in SARC and the need for further investigation into their 
roles as potential therapeutic targets.
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Sarcopenia (SARC), defined as age-related degenerative decline in muscle mass and functional capacity, presents 
a major public health challenge that primarily affects elderly individuals. It is associated with substantial 
deterioration in physical health and imposes a considerable economic burden on healthcare systems1. Current 
treatment options for SARC are limited, mainly involving physical exercise and nutritional interventions. 
Although these approaches offer benefits, their effectiveness can vary markedly among individuals, highlighting 
the urgent need for innovative biomarkers and diagnostic tools to facilitate early detection and targeted treatment 
of SARC.

SARC exhibits a multifaceted etiology, encompassing factors such as aging, chronic inflammation, and 
hormonal imbalances2. Moreover, emerging evidence has revolutionized our understanding of lactate’s 
contribution, shifting its perceived role from a metabolic byproduct to a key regulator of muscle function and 
disease processes3. Previous research has demonstrated that lactate metabolism is critical for muscle regulation, 
suggesting that lactate may act as a signaling molecule influencing muscle regeneration and adaptation4. Notably, 
disruptions in lactate metabolism have been associated with muscle atrophy and SARC5,6, prompting further 
investigation into lactate metabolism–related differentially expressed genes (LMRDEGs) and their role in 
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SARC7. However, the heterogeneity of SARC makes it difficult to define its association with lactate metabolism8. 
Lactate not only functions as a byproduct of energy metabolism but also as a vital signaling molecule9. The 
expression patterns of its synthesis (LDHA), transport (MCT1/4), and utilization (LDHB) genes may vary across 
tissues10, complicating the identification of key targets in bioinformatics analyses. Moreover, current databases 
predominantly focus on inflammatory or apoptotic pathways in the omics data of patients with SARC, with 
limited coordinated annotation of lactate metabolism genes11. Constructing reliable coexpression networks 
from limited samples and validating the regulatory importance of lactate-related genes pose methodological 
challenges.

This study aimed to identify genes and molecular pathways contributing to SARC development and clarify 
the relationship between LMRDEGs and SARC. By developing a diagnostic model based on the identified 
biomarkers, we seek to improve early detection and therapeutic strategies for SARC.

Materials and methods
Data download
The SARC datasets GSE847912 and GSE142813 were downloaded from the Gene Expression Omnibus (GEO) 
database14 (https://www.ncbi.nlm.nih.gov/geo/) using the R package GEOquery15 (version 2.70.0). Samples of 
human (Homo sapiens) skeletal muscle tissue (vastus lateralis) were derived from both GSE8479 and GSE1428. 
The GSE8479 and GSE1428 datasets were generated usingGPL2700 and GPL96 microarray platforms, as shown 
in Table 1. The present study incorporated gene expression data from two independent datasets: GSE8479, 
including 25 SARC specimens and 26 matched controls, and GSE1428, containing 12 SARC cases and 10 control 
samples. All SARC and control groups were included in the analysis.

 Lactic acid metabolism–related genes (LMRGs) were collected using the GeneCards database16 ​(​​​h​t​t​p​s​:​/​/​w​
w​w​.​g​e​n​e​c​a​r​d​s​.​o​r​g​/​​​​​)​, which offers extensive genomic annotations of human genes. Using “Lactate Metabolism” 
as the main search term and applying a minimum relevance score exceeding zero for protein-coding genes, 
we identified 56 LMRGs. In addition, a PubMed search (https://pubmed.ncbi.nlm.nih.gov/) using the same 
keyword led to the identification of 22 additional LMRGs from previously published studies17. Following data 
integration and elimination of redundant entries from the datasets, 73 unique LMRGs were identified (Table S1).

Batch effect correction across microarray datasets (GSE8479, GSE1428, and the merged GEO dataset) was 
conducted using the sva package (v3.50.0)18 in R. The final dataset comprised 37 SARC specimens and 36 
matched controls. Preprocessing of the merged GEO dataset, including probe annotation, data standardization, 
and normalization, was performed using the limma package (v3.58.1)19. To evaluate the effectiveness of 
batch effect correction, principal component analysis (PCA) was applied to gene expression data before and 
after adjustment. PCA is a multivariate statistical method that reduces high-dimensional data into a lower-
dimensional feature space using orthogonal eigenvectors, facilitating visualization of complex biological data in 
two- or three-dimensional coordinate systems while preserving maximal variance.

Differentially expressed genes (DEGs) related to lactate metabolism in SARC
The study cohort from the integrated GEO dataset was systematically stratified into two groups: SARC cases and 
matched healthy controls. To identify DEGs across groups, we employed the limma package (version 3.58.1) in 
R. DEGs were defined as those with an absolute log2 fold change (logFC) of > 0 and a false discovery rate (FDR)-
adjusted p value of < 0.05. Genes with positive logFC values (logFC > 0) and significant adjusted p-values (adj. 
p < 0.05) were classified as significantly upregulated. Conversely, genes with negative logFC values (logFC < 0) 
meeting the same significance threshold were categorized as downregulated. P value correction was conducted 
using the Benjamini–Hochberg (BH) method. Results were visualized as volcano plots generated using the 
ggplot2 package (version 3.4.4). To identify LMRDEGs associated with SARC, we conducted an intersection 
analysis between the DEGs from the combined GEO dataset (filtered by |log2FC| > 0 and adj. p < 0.05) and the 
previously identified LMRGs. The overlapping gene set was visualized using a Venn diagram. The visualization 
of gene expression patterns was performed using the pheatmap tool (version 1.2.2) implemented in R statistical 
software, and chromosomal localization was illustrated via the RCircos package (version 1.2.2)20.

To assess correlations among LMRDEGs, we applied the Spearman algorithm to analyze their expression 
patterns in the integrated GEO dataset. The correlation analysis results were displayed as a heatmap generated 
using the ggplot2 package (version 3.3.6). To further examine the differential expression of LMRDEGs between 
the SARC and control groups, we constructed a comparative expression plot based on their expression levels in 
the combined GEO dataset.

GSE8479 GSE1428

Platform GPL2700 GPL96

Species Homo sapiens Homo sapiens

Tissue Vastus lateralis Vastus lateralis

Samples in SARC group 25 12

Samples in control group 26 10

Reference PMID: 17,520,024 PMID: 15,687,482

Table 1.  GEO microarray chip Information. GEO, Gene expression omnibus; SARC, Sarcopenia
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Gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathway 
analyses
GO21 analysis is a fundamental bioinformatics approach for functionally annotating gene sets by categorizing 
gene products into three domains: biological processes (BPs) characterizing molecular activities, cellular 
components (CCs) describing subcellular locations, and molecular functions (MFs) defining biochemical 
interactions. KEGG22 is a widely used bioinformatics resource that integrates data on genomic sequences, 
metabolic and signaling pathways, disease mechanisms, and pharmacological compounds. GO and KEGG 
enrichment analyses for LMRDEGs were performed using the clusterProfiler package (version 4.10.0)23 in R. 
These analyses were executed under stringent statistical criteria, including adj. p < 0.05 and FDR (q-value) < 0.05 
as significance thresholds. Multiple testing correction was applied using the BH method.

Gene set enrichment analysis (GSEA)
GSEA24 is a computational method used to determine whether predefined gene sets show statistically significant, 
coordinated differences between two biological states. In the present study, all genes from the merged GEO 
dataset were first ranked based on their logFC values by comparing SARC samples with control specimens. This 
ranked gene list was then analyzed via GSEA using the clusterProfiler package (version 4.10.0) in R, which enabled 
a systematic evaluation of pathway-level expression changes across the integrated datasets. Furthermore, this 
approach enabled a comprehensive assessment of coordinated gene expression patterns potentially contributing 
to observed phenotypic differences.

Next, SARC samples from the integrated GEO dataset were stratified into HighRisk and LowRisk groups 
based on the median least absolute shrinkage and selection operator (LASSO) RiskScore. Differential expression 
analysis was conducted utilizing the limma package (version 3.58.1) in R. Differential expression results were 
visualized through the utilization of the R package ggplot2 (version 3.3.6), and heatmaps were created with 
pheatmap package (version 1.0.12). For GSEA, genes from the SARC samples were again ranked by logFC values 
between the HighRisk and LowRisk groups. The ranked gene list was analyzed using clusterProfiler (version 
4.10.0).

GSEA parameters included seed = 2022, minimum gene set size = 10, and maximum gene set size = 500. 
The Molecular Signatures Database (MSigDB) was used to access the c2 gene set (Cp. All.v2022.1.Hs). For 
statistical significance, we required an adj. p value of < 0.05 and an FDR of < 0.05. Multiple testing correction was 
implemented using the BH method to control type I errors.

Gene set variation analysis (GSVA)
GSVA25 is a nonparametric, unsupervised method that converts sample-specific gene expression profiles into 
pathway-level enrichment scores, enabling the evaluation of pathway enrichment differences between groups. 
The h.all.v7.4.symbols.gmt gene set was acquired from MSigDB26. Subsequently, we conducted GSVA on the 
merged GEO dataset using the GSVA package (version 1.50.5) in R. This analytical approach enabled the 
quantification of differences in pathway activity between the SARC and control groups. We then applied the 
same gene signature on the integrated GEO dataset for functional enrichment analysis, comparing patients in 
the HighRisk and LowRisk groups. This comparison aimed to elucidate differential pathway activation patterns. 
Statistical significance was determined using a threshold of p < 0.05 for gene set enrichment.

Construction of a diagnostic model for SARC
Logistic regression analysis was conducted to identify LMRDEGs and construct a diagnostic model for SARC 
based on the combined GEO dataset. When the dependent variable was binary (SARC vs. control), we analyzed 
the relationship between independent variables and the dependent variable using p < 0.05 as a significance 
threshold. A logistic regression framework was implemented to model these associations. Expression patterns of 
genes included in the regression model were visualized using forest plots.

Next, the support vector machine recursive feature elimination (SVM-RFE) algorithm27 was applied using the 
R package e1071 (v1.7.14) to screen potential biomarkers from the LMRDEGs identified via logistic regression. 
This algorithm iteratively removes the least informative features to improve classification performance.

Finally, we applied the LASSO method using the glmnet package (version 4.1.8) in R statistical software28, 
with parameters set to seed = 500) and family =“binomial” based on the LMRDEGs identified using the SVM-
RFE algorithm. LASSO regression analysis, which applies a penalty term (λ × |β|), was employed to reduce 
model overfitting and improve generalizability. LASSO regression outcomes were graphically represented using 
diagnostic model plots and coefficient path plots. LASSO regression yielded a predictive model for diagnosing 
SARC, incorporating selected LMRDEGs. A LASSO risk score (RiskScore) was computed from the regression 
coefficients as follows:

	
riskScore =

∑
iCoefficient (genei) × mRNA Expression (genei)

Validation of the SARC diagnostic model
A nomogram29 is a visual tool that represents functional relationships among predictor variables using scaled 
line segments in a coordinate framework. According to the results of logistic regression analysis, a nomogram 
was developed using the rms package (version 6.7.1) in R to visualize associations among model genes. The 
predictive capability of the SARC diagnostic model was evaluated through a calibration plot constructed with 
LASSO regression, which enabled a quantitative evaluation of model accuracy and discriminative ability. To 
assess the clinical utility of the model, decision curve analysis (DCA) was performed using the ggDCA package30 
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(version 1.1) in R. This analysis provided a comprehensive evaluation of the model’s clinical utility in the 
integrated GEO dataset, focusing on the performance characteristics of the selected gene signatures.

Subsequently, receiver operating characteristic (ROC) curves were generated using the R package pROC31 
(version 1.18.5), and area under the curve (AUC) values were calculated to assess the diagnostic performance 
of the LASSO-derived RiskScore. SARC samples were divided into HighRisk and LowRisk groups based on the 
median RiskScore from the diagnostic model. To explore gene expression differences between these groups, 
comparative expression profiles were generated. Finally, ROC curves were plotted, and AUC values were 
calculated for each individual model gene using the pROC package (version 1.18.5). AUC values range from 0.5 
to 1.0, where 0.5–0.7 indicates low diagnostic accuracy, 0.7–0.9 suggests moderate accuracy, and > 0.9 reflects 
high accuracy. Thus, the closer the AUC is to 1, the better the model’s predictive performance.

Protein–protein interaction (PPI) network
PPI networks represent complex systems of molecular interactions that regulate critical cellular processes, such 
as signal transduction, transcriptional regulation, metabolism, and cell cycle progression. Investigating these 
networks provides fundamental insights into protein function, disease-associated molecular pathways, and 
the intricate relationships between biomolecules within cellular systems. To establish a PPI network for the 
model genes, we utilized the STRING database32 (https://cn.string-db.org/) with a high-confidence interaction 
score threshold of 0.900. Highly interconnected modules within the PPI network were considered indicative 
of functionally relevant protein complexes. Genes showing significant interactions in the PPI network were 
identified as hub genes for further analysis.

To investigate the functional associations of hub genes, we used the GeneMANIA platform33 ​(​​​h​t​t​p​s​:​/​/​g​e​n​
e​m​a​n​i​a​.​o​r​g​/​​​​​)​, a bioinformatics resource applied to perform gene function predictions, gene list analysis, and 
candidate gene prioritization for subsequent experimental validation. The platform integrates multiple genomic 
and proteomic data sources to predict functionally related genes. This approach employs a weighted scoring 
system to prioritize datasets according to its relevance and infers gene functions through interaction patterns. 
The functional associations of hub genes were determined using GeneMANIA to construct an expanded PPI 
network incorporating genes with similar biological functions.

Immune infiltration analysis of high and low risk groups
To characterize immune cell populations, we applied the single-sample GSEA (ssGSEA) method. This method 
included profiling multiple human immune cell subpopulations, such as activated CD8+ T cells, activated 
dendritic cells, γδ T cells, natural killer (NK) cells, and immunosuppressive regulatory T cells. Enrichment scores 
from ssGSEA were used to construct an immune cell infiltration profile that quantitatively characterized the 
distribution patterns of various immune cell populations in SARC samples obtained from the integrated GEO 
dataset. The ggplot2 package (version 3.4.4) in R was then used to visualize differences in immune cell expression 
between the LowRisk and HighRisk groups in the SARC samples. Significantly differentially expressed immune 
cells were identified for subsequent analyses.

Spearman’s rank correlation was used to evaluate relationships among immune cells, with results visualized 
via heatmaps constructed using pheatmap (version 1.0.12). In addition, correlations between hub genes and 
immune cells were analyzed using Spearman’s method and displayed as bubble plots generated via ggplot2 
(version 3.4.4).

Construction of a regulatory network
Transcription factors (TFs) play a pivotal role in modulating gene expression through interacting with hub 
genes in post-transcriptional processes. The ChIPBase database34 (http://rna.sysu.edu.cn/chipbase/) was used to 
identify TFs associated with hub genes. A TF–mRNA regulatory network was then constructed and visualized 
using Cytoscape35.

Micro RNAs (miRNAs) are crucial molecular regulators that govern fundamental BPs during development 
and evolutionary adaptation. They modulate multiple target genes, and individual genes may be targeted by 
several miRNAs. To explore potential regulatory interactions between hub genes and miRNAs, we used the 
StarBase v3.0 platform36 (https://starbase.sysu.edu.cn/) and subsequently constructed a gene–miRNA interaction 
network using Cytoscape.

RNA-binding proteins (RBPs)37 play essential roles in gene expression regulation, including transcriptional 
processing, differential splicing, post-transcriptional modifications, intracellular RNA trafficking, and protein 
synthesis. Using the StarBase v3.0 database36 (https://starbase.sysu.edu.cn/), we predicted RBPs targeting hub 
genes. Subsequently, Cytoscape software was utilized to construct and visualize the mRNA-RBP interaction 
network.

Finally, direct and indirect pharmacological targets associated with hub genes were identified using the 
Comparative Toxicogenomics Database (CTD)38 (https://ctdbase.org/). These drug–gene interactions were 
integrated into a comprehensive mRNA–drug regulatory framework, which was subsequently graphically 
represented through Cytoscape visualization software.

Statistical analysis
All statistical analyses were conducted using R software (version 4.3.3). For continuous variables with normal 
distribution, independent two-sample t-tests were used. When analyzing non-normally distributed datasets, 
we utilized the Wilcoxon rank-sum test (also known as the Mann-Whitney U test) for two-group comparisons. 
For experimental designs involving multiple groups (three or more), the Kruskal-Wallis nonparametric test 
was applied. To evaluate potential relationships between molecular variables, we performed correlation analysis 

Scientific Reports |        (2025) 15:41689 4| https://doi.org/10.1038/s41598-025-25525-z

www.nature.com/scientificreports/

https://cn.string-db.org/
https://genemania.org/
https://genemania.org/
http://rna.sysu.edu.cn/chipbase/
https://starbase.sysu.edu.cn/
https://starbase.sysu.edu.cn/
https://ctdbase.org/
http://www.nature.com/scientificreports


using Spearman’s rank correlation coefficient. Unless explicitly stated, all p-values were two-tailed, and statistical 
significance was defined as p < 0.05.

Results
Technology roadmap
This study employed well-established bioinformatics tools and parameters (such as limma, sva, and ComBat) for 
data preprocessing, differential expression analysis, feature selection, and model construction (Fig. 1), ensuring 
that the results were scientifically valid and reproducible.

Merging SARC datasets
To construct an integrated dataset for SARC analysis, batch effects between the GSE8479 and GSE8479 datasets 
were removed using the sva package (version 3.50.0) in R, which yielded an integrated GEO dataset. Comparative 
analysis of expression profiles was performed through distribution boxplots (Fig. 2A, B), which illustrated the 
effectiveness of batch effect normalization. PCA was then employed to assess the spatial distribution of samples 
in reduced dimensions, with corresponding plots (Fig. 2C, D) illustrating the dataset structure before and after 
batch correction.

DEGs related to lactate metabolism in SARC
The integrated GEO dataset was categorized into SARC and control cohorts, and comparative transcriptomic 
profiling was conducted using the limma package in R to identify DEGs. Based on the significance threshold 
(|logFC| > 0 and adj. p < 0.05), 2,160 significant DEGs were identified, including 1,119 upregulated genes and 
1,041 downregulated genes. The differential expression landscape was visualized in a volcano plot (Fig. 3A). 
To detect LMRDEGs, we conducted a comprehensive intersection analysis between all significant DEGs and 
previously documented LMRGs. The results, shown in a Venn diagram (Fig. 3B), revealed 17 LMRDEGs: 
FOXO3, IGFBP6, ADRB2, PER2, PIK3C2A, HTT, STAT3, SLC25A12, PPARGC1A, DNM1L, LDHA, CS, MRS2, 
GSR, BSG, LDHB, and GCKR. The expression patterns of these LMRDEGs among different sample groups were 
analyzed in the integrated GEO dataset, with results presented in a heatmap generated via pheatmap (Fig. 3C). 
Chromosomal localization analysis, which was performed using RCircos (Fig. 3D), demonstrated that several 
LMRDEGs were clustered on chromosomes 12 (CS, IGFBP6, DNM1L, and LDHB) and 2 (GCKR, SLC25A12, 
and PER2).

Statistical analysis revealed significant intergenic correlations among the 17 LMRDEGs, as illustrated in 
a correlation heatmap (Fig. 3E). Most DEGs exhibited strong positive correlations, suggesting their potential 
functional relationships or coregulatory mechanisms. To further characterize the transcriptional profiles of 
LMRDEGs, we conducted a comparative analysis (Fig. 3F) to identify distinct expression patterns between 
SARC and control samples. In total, 13 LMRDEGs exhibited significant differential expression (p < 0.001): 
FOXO3, IGFBP6, ADRB2, PER2, PIK3C2A, SLC25A12, PPARGC1A, DNM1L, LDHA, CS, MRS2, GSR, and 
BSG. Furthermore, the LMRDEGs HTT, GCKR, LDHB, and STAT3 showed significant differential expression 
(p < 0.01).

GO and KEGG pathway enrichment analyses
To investigate the biological significance of the 17 LMRDEGs in SARC, we conducted GO and KEGG pathway 
enrichment analyses by integrating logFC values. These analyses enabled us to explore potential BPs, CCs, MFs, 
and associated signaling pathways. As demonstrated in Table 2, these LMRDEGs were enriched in BPs such as 
generation of precursor metabolites and energy, regulation of autophagy, and expression of genes involved in 
ATP metabolic process, cellular carbohydrate metabolic process, and response to peptide. For MFs, these genes 
were notably enriched in chromatin DNA binding. KEGG pathway analysis revealed enrichment in glucagon 
signaling pathway, HIF-1 signaling pathway, propanoate metabolism, pyruvate metabolism, and cysteine and 
methionine metabolism (Fig. 4A). The overall results, combined with logFC values, were further visualized 
using a bubble plot (Fig. 4B) and chord diagram (Fig. 4C). Network diagrams were also constructed to illustrate 
relationships among BPs, MFs, and KEGG pathways (Fig. 4D–F), where node size represented the number of 
associated molecules and connecting lines indicated specific molecular associations.

GSEA
To investigate the influence of transcriptional profiles obtained from the combined GEO dataset on SARC 
development, GSEA was performed using the logFC values of all genes, comparing SARC samples with controls. 
This approach allowed systematic exploration of associations between genome-wide expression signatures 
and corresponding biological pathways, cellular structures, and molecular mechanisms (Fig. 5A). Results are 
presented in Table 3.

GSEA revealed significant enrichment of genes from the integrated GEO dataset in several key pathways: 
interleukin-4 and interleukin-13 signaling (Fig. 5B), kynurenine pathway and links to cell senescence (Fig. 5C), 
NAD metabolism in oncogene-induced senescence and mitochondrial dysfunction-associated senescence (Fig. 
5D), and pyruvate metabolism and citric acid TCA cycle (Fig. 5E), among other biologically relevant pathways 
and cellular functions.

GSVA
To examine differences in the h.all.v7.4.symbols.gmt gene sets between the SARC and control groups, we 
conducted GSVA using the integrated GEO dataset (Table 4). Statistically significant pathways (p < 0.05) 
were systematically categorized according to their log2FC magnitude. The 20 most differentially expressed 
pathways (10 upregulated and 10 downregulated) were selected for further analysis. The differential expression 
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Fig. 1.  Flow chart for the comprehensive analysis of LMRDEGs. SARC, Sarcopenia; DEGs, Differentially 
Expressed Genes; LMRGs, Lactate Metabolism-Related Genes; LMRDEGs, Lactate Metabolism-Related 
Differentially Expressed Genes; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; 
GSEA, Gene Set Enrichment Analysis; GSVA, Gene Set Variation Analysis; PPI, Protein-Protein Interaction; 
TF, Transcription Factor; RBP, RNA-Binding Protein.
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patterns of these signaling cascades were analyzed and contrasted between the SARC and control groups, 
with the results graphically represented through a heatmap visualization (Fig. 6A). Statistical significance 
was confirmed through the Mann–Whitney U test, with the comparative analysis results visually presented in 
(Fig. 6B). GSVA identified multiple pathways with significant differential activity (p < 0.05) in SARC samples: 
OXIDATIVE PHOSPHORYLATION, FATTY ACID METABOLISM, ADIPOGENESIS, PEROXISOME, BILE 
ACID METABOLISM, NOTCH SIGNALING, PI3K AKT MTOR SIGNALING, MTORC1 SIGNALING, 
SPERMATOGENESIS, PANCREAS BETA CELLS, APICAL JUNCTION, INFLAMMATORY RESPONSE, 
CHOLESTEROL HOMEOSTASIS, KRAS SIGNALING UP, ANDROGEN RESPONSE, COAGULATION, 
EPITHELIAL MESENCHYMAL TRANSITION, P53 PATHWAY, TNFA SIGNALING VIA NFKB, APOPTOSIS.

Construction of a diagnostic model for SARC
To assess the diagnostic value of 17 LMRDEGs in SARC, we performed logistic regression analysis, with 
results visualized as a forest plot (Fig. 7A). All 17 LMRDEGs showed statistically significant associations 
(p < 0.05) within the regression model. Next, we applied the SVM-RFE algorithm with 3-fold cross-validation 
to the 17 LMRDEGs. Through iterative feature selection, we ranked genes and identified the optimal subset 

Fig. 2.  Batch Effects Removal of GSE8479 and GSE1428. (A) Box plot of Combined GEO Datasets distribution 
before batch processing. (B) Post-batch integrated GEO Datasets (Combined Datasets) distribution boxplots. 
(C) PCA plot of the datasets before debatching. (D) PCA plot of the Combined GEO Datasets following 
batch processing. PCA, Principal Component Analysis; SARC, Sarcopenia. The SARC dataset GSE8479 is 
represented in blue, while the SARC dataset GSE1428 is shown in yellow.
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that minimized classification error (Fig. 7B) while maximizing predictive performance (Fig. 7C). The results 
indicated that the SVM model achieved peak accuracy when the following five genes, which consistently ranked 
highest, were incorporated: PPARGC1A, PIK3C2A, FOXO3, HTT, and GSR. We developed a LASSO regression–
based diagnostic model for SARC incorporating these five LMRDEGs. Model performance was illustrated via 
regression coefficient plots (Fig. 7D) and variable selection trajectories (Fig. 7E). All five genes were confirmed 
as significant molecular markers contributing to the model’s diagnostic accuracy.

Validation of the SARC diagnostic model
To assess the SARC model’s diagnostic value, we constructed a predictive nomogram incorporating the five 
model genes to visualize their interrelationships in the combined GEO dataset (Fig. 8A). Among the genes, 
PPARGC1A exerted the strongest influence, whereas GSR had the lowest impact on diagnostic scoring. The 
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predictive accuracy and classification performance of the SARC model were assessed through calibration curve 
analysis, as illustrated in (Fig. 8B). Using the calibration curve, the concordance between observed event rates and 
model-predicted probabilities was analyzed across conditions. The calibration curve exhibited slight deviations 
from the perfect diagonal, yet maintained excellent overall agreement. DCA was used to quantify the clinical 
applicability of the SARC diagnostic model (Fig. 8C), demonstrating consistently higher net benefit across a 
range of thresholds compared with the “all-positive” and “all-negative” reference lines and thereby indicating 
superior clinical effectiveness.

Using the median RiskScore, patients were categorized into HighRisk and LowRisk groups. A statistical 
comparative of model gene expression between groups (Fig. 14D) revealed that PPARGC1A exhibited the most 
pronounced variation (p < 0.001). Finally, ROC curves were conducted using pROC to evaluate the diagnostic 
accuracy of each model gene (Fig. 14E–H). Results indicated moderate-to-high diagnostic performance for 
PPARGC1A, with AUC values between 0.7 and 0.9 across various comparisons.

GSEA for highrisk and lowrisk groups
To analyze differences among SARC samples, we stratified the integrated GEO dataset into HighRisk and LowRisk 
cohorts according to the median LASSO RiskScore. The limma-based differential expression analysis revealed 
1,031 DEGs (absolute logFC > 0 with p-value < 0.05), comprising 521 genes showing increased expression and 
510 downregulated genes. Results were visualized via a volcano plot (Fig. 9A) and pheatmap-generated heatmap 
(Fig. 9B).

To evaluate global gene expression impacts on SARC pathogenesis, we computed logFC values for all genes 
between risk groups. GSEA was conducted to investigate associations between gene expression patterns and BPs, 
with results visualized in a mountain plot (Fig. 9C) and summarized in Table 5. Significantly enriched pathways 
included IL12_2 pathway (Fig. 9D), kynurenine pathway (Fig. 9E), pyruvate metabolism and citric acid TCA 
cycle (Fig. 9F), and pyruvate metabolism (Fig. 9G).

GSVA in highrisk and lowrisk groups
To explore pathway-level differences between the HighRisk and LowRisk SARC groups, GSVA was performed 
on all genes using the h.all.v7.4.symbols.gmt gene set (Table 6). Six significantly altered pathways (p < 0.05) were 
identified based on descending absolute logFC values (Fig. 10A). The results were further validated using the 
Mann–Whitney U test and visualized in a comparative group plot (Fig. 10B). The following pathways exhibited 
statistically significant differences between the HighRisk and LowRisk groups: ADIPOGENESIS, FATTY_
ACID_METABOLISM, MTORC1_SIGNALING, OXIDATIVE_PHOSPHORYLATION, and PEROXISOME.

Fig. 3.  Differential Gene Expression Analysis. (A) Volcano plot of differentially expressed gene analysis 
between the SARC group and the Control group in the Combined GEO Datasets. (B) Venn diagram of DEGs 
and LMRGs in integrated GEO Datasets (Combined Datasets). (C) Heat map of LMRDEGs in the integrated 
GEO Datasets (Combined Datasets). (D) Chromosomal mapping of LMRDEGs. (E) Correlation heat map of 
LMRDEGs in Combined GEO Datasets. (F) Group comparison map of LMRDEGs in SARC and Control of 
integrated GEO Datasets (Combined Datasets). ** stands for p-value < 0.01, highly statistically significant; *** 
represents p-value < 0.001 and highly statistically significant. SARC, Sarcopenia; DEGs, Differentially Expressed 
Genes; LMRGs, Lactate Metabolism-Related Genes; LMRDEGs, Lactate Metabolism-Related Differentially 
Expressed Genes. In the heat map, the yellow color represents the SARC group, while blue denotes the Control 
group. Red indicates high expression levels, whereas blue signifies low expression levels. For the correlation 
heat map, red illustrates positive correlations, blue demonstrates negative correlations, and color intensity 
reflects the correlation strength.

◂

ONTOLOGY ID Description Generatio Bgratio p-value adj.p q-value

BP GO:0006091 generation of precursor metabolites and energy 7/17 494/18,800 1.28333E-07 6.20492E-05 3.40421E-05

BP GO:0010506 regulation of autophagy 6/17 336/18,800 3.26719E-07 0.000105313 5.77778E-05

BP GO:0046034 ATP metabolic process 5/17 273/18,800 3.33899E-06 0.000645761 0.000354285

BP GO:0044262 cellular carbohydrate metabolic process 5/17 287/18,800 4.26318E-06 0.000687082 0.000376955

BP GO:1,901,652 response to peptide 5/17 491/18,800 5.68035E-05 0.002762887 0.001515806

MF GO:0031490 chromatin DNA binding 3/17 105/18,410 0.000115663 0.01110367 0.006452791

KEGG hsa04922 Glucagon signaling pathway 3/12 107/8164 0.000441873 0.017963539 0.013015278

KEGG hsa04066 HIF-1 signaling pathway 3/12 109/8164 0.000466585 0.017963539 0.013015278

KEGG hsa00640 Propanoate metabolism 2/12 32/8164 0.000958646 0.024605247 0.017827452

KEGG hsa00620 Pyruvate metabolism 2/12 47/8164 0.002063865 0.03346945 0.024249909

KEGG hsa00270 Cysteine and methionine metabolism 2/12 51/8164 0.002426315 0.03346945 0.024249909

Table 2.  Results of GO and KEGG enrichment analysis for LMRDEGs. GO, Gene ontology; BP, Biological 
process; CC, Cellular component; MF, Molecular function; KEGG, Kyoto encyclopedia of genes and genomes; 
LMRDEGs, Lactate metabolism-related differentially expressed genes

 

Scientific Reports |        (2025) 15:41689 9| https://doi.org/10.1038/s41598-025-25525-z

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Fig. 4.  GO and KEGG Enrichment Analysis for LMRDEGs B. Bar graph of GO and KEGG enrichment 
analysis results of LMRDEGs: BP, MF and KEGG. B. Bubble plot of GO and KEGG enrichment analysis results 
of LMRDEGs. C. String diagram of GO and KEGG enrichment analysis results of LMRDEGs. D-F. GO and 
KEGG enrichment analysis results of LMRDEGs network diagram: BP (D), MF (E) and KEGG (F). Yellow 
nodes represent items, blue nodes represent molecules, and the connecting lines illustrate the relationships 
between items and molecules. LMRDEGs, Lactate Metabolism-Related Differentially Expressed Genes; GO, 
Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; BP, Biological Process; MF, Molecular 
Function. The screening criteria for GO and KEGG pathway enrichment analyses were an adjusted p-value < 
0.05 and a FDR value (q-value) < 0.05, with the p-value correction method being BH.
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PPI interaction network
To investigate PPIs involving the five candidate genes, we established a PPI network using the STRING database 
(Fig. 11A), which revealed that PPARGC1A, FOXO3, and HTT were interconnected as hub genes. Further 
analysis using GeneMANIA extended the network to include these hub genes and 20 functionally associated 
proteins (Fig. 11B). Interaction types, including coexpression and shared protein domains, have been depicted 
using color-coded edges.

Immune infiltration analysis (ssGSEA) of highrisk and lowrisk groups
To evaluate the infiltration characteristics of immune cells in SARC samples obtained from the combined 
GEO dataset, we employed ssGSEA to systematically measure the proportional representation of 28 immune 
cell types. Comparative analysis examining intergroup variations in immune infiltration levels (Fig. 12A) 
revealed significant differences in immune infiltration (p < 0.05), particularly among macrophages and NK 
cells. Correlation heatmaps illustrated interrelationships among all immune cell types (Fig. 12B, C). We also 
investigated correlations between hub gene expression and immune cell infiltration, with findings shown in 
bubble plots (Fig. 12D, E). Notably, HTT was positively correlated with NK cells in the LowRisk group (r = 0.55, 
p < 0.05; Fig. 12D), whereas FOXO3 showed a positive correlation with plasmacytoid dendritic cells in the 
HighRisk group (r = 0.54, p < 0.05; Fig. 12E). 

Construction of the regulatory network
 To elucidate the regulatory mechanisms of hub genes, we analyzed their interactions with various biomolecules. 
Initially, TFs potentially binding to hub genes were predicted through the ChIPBase database, after which an 
mRNA–TF regulatory network was constructed using Cytoscape (Fig. 13A), with this network incorporating 2 
hub genes and 26 TFs (Table S2). Subsequent analysis focused on microRNA-mediated regulation, identifying 
miRNAs potentially targeting hub genes via the StarBase database. The resulting mRNA–miRNA interaction 

Fig. 5.  GSEA for combined datasets A. Mountain map presentation of 4 biological functions from GSEA of 
Combined GEO Datasets. B-E. GSEA showed that the Combined GEO Datasets were significantly enriched 
in INTERLEUKIN-4 AND INTERLEUKIN-13 SIGNALING (B), KYNURENINE PATHWAY AND LINKS 
TO CELL SENESCENCE (C), NAD METABOLISM IN ONCOGENEINDUCED SENESCENCE AND 
MITOCHONDRIAL DYSFUNCTIONASSOCIATED SENESCENCE (D), PYRUVATE METABOLISM AND 
CITRIC ACID TCA CYCLE (E). The screening criteria of GSEA were adj.p < 0.05 and FDR value (q-value) < 
0.05, and the p-value correction method was BH.
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network (Fig. 13B) revealed 2 hub genes potentially regulated by 41 distinct miRNAs (Table S3). For post-
transcriptional regulation analysis, RBPs interacting with hub genes were also predicted using StarBase. 
The mRNA–RBP regulatory network (Fig. 13C) revealed interactions between 3 hub genes and 31 RBPs, 
with molecular details provided in Table S4. Finally, we queried the CTD to identify 32 drug compounds 
targeting 2 hub genes, forming an mRNA–drug interaction network (Fig. 13D) comprising the hub genes and 
pharmacologically active compounds (Table S5).

Discussion
SARC is a degenerative condition characterized by the progressive loss of muscle mass and function. This age-
associated pathology has emerged as a major public health concern, particularly affecting the elderly. Despite 
its growing public health impact, early diagnostic tools remain lacking39, underscoring the need for reliable 

ID logFC Aveexpr t p-value adj.p B

OXIDATIVE_PHOSPHORYLATION 0.532667 −0.000126 12.55144 0.000000 0.000000 36.77376

FATTY_ACID_METABOLISM 0.225002 0.006251 6.875144 0.000000 0.000000 11.31207

ADIPOGENESIS 0.188855 0.003316 6.236834 0.000000 0.000000 8.544764

PEROXISOME 0.173997 0.002921 5.791768 0.000000 0.000001 6.671987

BILE_ACID_METABOLISM 0.160146 −0.000200 6.676084 0.000000 0.000000 10.44030

NOTCH_SIGNALING 0.143962 0.013383 3.067677 0.002921 0.009737 −3.019175

PI3K_AKT_MTOR_SIGNALING 0.102818 0.001248 4.397415 0.000033 0.000181 1.245634

MTORC1_SIGNALING 0.084117 0.012006 2.632941 0.010111 0.024073 −4.156346

SPERMATOGENESIS 0.083731 −0.005312 3.006287 0.003507 0.010950 −3.188285

PANCREAS_BETA_CELLS 0.076525 −0.000974 2.301519 0.023895 0.049781 −4.924273

APICAL_JUNCTION −0.084432 −0.001772 −2.270450 0.025798 0.051596 −4.991651

INFLAMMATORY_RESPONSE −0.090485 −0.002681 −3.077619 0.002835 0.009737 −2.991531

CHOLESTEROL_HOMEOSTASIS −0.101881 0.001687 −2.853857 0.005465 0.014380 −3.596243

KRAS_SIGNALING_UP −0.113939 0.000589 −3.927990 0.000178 0.000888 −0.381275

ANDROGEN_RESPONSE −0.115459 0.004598 −3.643640 0.000470 0.002134 −1.305700

COAGULATION −0.119480 −0.003428 −2.889433 0.004934 0.013706 −3.502572

EPITHELIAL_MESENCHYMAL_TRANSITION −0.121374 0.005798 −2.430391 0.017260 0.037522 −4.636254

P53_PATHWAY −0.151852 −0.001811 −6.133916 0.000000 0.000000 8.107029

TNFA_SIGNALING_VIA_NFKB −0.154492 0.000404 −4.611362 0.000015 0.000091 2.024977

APOPTOSIS −0.180046 −0.002865 −5.787750 0.000000 0.000001 6.655333

Table 4.  Results of GSVA for combined datasets. GSVA, Gene set variation analysis

 

ID
Set 
size

Enrichment 
score NES p-value adj.p q-value

INTERLEUKIN_4_AND_INTERLEUKIN_13_SIGNALING 102 0.530085438 2.013374534 0.000383877 0.017083693 0.015159772

KYNURENINE_PATHWAY_AND_LINKS_TO_CELL_SENESCENCE 18 0.709298332 1.90075194 0.001184366 0.030378064 0.026956965

COMPLEMENT_CASCADE 50 0.540009721 1.834070292 0.000763942 0.024393624 0.021646478

TYROBP_CAUSAL_NETWORK_IN_MICROGLIA 47 0.54834946 1.832609194 0.000762777 0.024393624 0.021646478

BMP2WNT4FOXO1_PATHWAY_IN_PRIMARY_ENDOMETRIAL_STROMAL_CELL_
DIFFERENTIATION 12 0.755431385 1.83013082 0.001965409 0.038915094 0.034532578

FOXO_MEDIATED_TRANSCRIPTION_OF_CELL_DEATH_GENES 15 0.712423322 1.829252239 0.001564333 0.033485186 0.029714172

SMAD2_3NUCLEAR_PATHWAY 73 0.498472522 1.809851227 0.000754432 0.024393624 0.021646478

BIOCARTA_ETS_PATHWAY 14 0.716864789 1.808177328 0.002372479 0.045096085 0.040017481

NOTCH_PATHWAY 49 0.533667006 1.80222822 0.000762486 0.024393624 0.021646478

SA_G1_AND_S_PHASES 14 0.711158262 1.793783522 0.002372479 0.045096085 0.040017481

P53_TRANSCRIPTIONAL_GENE_NETWORK 77 0.487174073 1.785012916 0.000752445 0.024393624 0.021646478

HAIR_FOLLICLE_DEVELOPMENT_CYTODIFFERENTIATION_PART_3_OF_3 71 0.490986156 1.774873697 0.001126549 0.030378064 0.026956965

OVERLAP_BETWEEN_SIGNAL_TRANSDUCTION_PATHWAYS_CONTRIBUTING_
TO_LMNA_LAMINOPATHIES 51 0.518803976 1.768155155 0.001526718 0.033485186 0.029714172

NAD_METABOLISM_IN_ONCOGENEINDUCED_SENESCENCE_AND_
MITOCHONDRIAL_DYSFUNCTIONASSOCIATED_SENESCENCE 23 −0.74306012 −2.142357039 0.000412541 0.017083693 0.015159772

PYRUVATE_METABOLISM_AND_CITRIC_ACID_TCA_CYCLE 49 −0.777456953 −2.643079404 0.000420345 0.017083693 0.015159772

Table 3.  Results of GSEA for combined datasets. GSEA, Gene set enrichment analysis
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Fig. 6.  GSVA B-B. Heat map (A) and group comparison map (B) of GSVA results between SARC and 
Control groups of Combined GEO Datasets. SARC, Sarcopenia; GSVA, Gene Set Variation Analysis. * 
represents p-value < 0.05, statistically significant; ** represents p-value < 0.01, highly statistically significant; 
*** represents p-value < 0.001 and highly statistically significant. Yellow represents the SARC group and blue 
represents the Control group. The screening criterion for GSVA was a p-value < 0.05. Blue represents low 
enrichment and red represents high enrichment in the heat map.
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biomarkers and therapeutic targets. Our findings suggest that LMRDEGs significantly contribute to SARC 
progression, warranting further exploration.

We identified 17 LMRDEGs that were differentially expressed between SARC and control samples. These 
genes may regulate lactate metabolism and offer insights into SARC’s pathophysiology. Their involvement in 
related metabolic disorders and potential as therapeutic targets merit further study.

FOXO3, as a transcription factor, serves multiple biological functions40. It can promote the degradation 
of muscle proteins and atrophy by regulating pathways such as Atrogin-1/MAFbx and MuRF141, while also 
upregulating antioxidant enzymes such as superoxide dismutase to protect against oxidative damage42. 
In this study, the upregulation of FOXO3 likely reflects the complex stress and regulatory dynamics during 
the progression of sarcopenia43, rather than exerting a singular protective or damaging effect. Regarding the 
upregulation of oxidative phosphorylation–related genes, although sarcopenia is typically accompanied 
by mitochondrial dysfunction, this study found that related genes were upregulated. This may represent a 
compensatory response of muscle cells to impaired energy metabolism. However, this interpretation remains 
speculative, as direct mechanistic evidence is lacking. Further research, including longitudinal population 
studies, cellular experiments, and animal models, is required to confirm these findings. Future research should 
focus on the dynamic regulatory roles of key genes in sarcopenia progression and their molecular mechanisms, 
with the aim of providing a stronger theoretical basis for diagnosis and therapeutic intervention.

Fig. 7.  Diagnostic model of SARCA. Forest Plot of 17 LMRDEGs included in the Logistic regression model in 
the diagnostic model of sarcopenia. B-C. The number of genes with the lowest error rate (B) and the number 
of genes with the highest accuracy (C) obtained by SVM-RFE algorithm are visualized. D-E. Diagnostic model 
plot (D) and variable trajectory plot (E) of LASSO regression model. SARC, Sarcopenia; LMRDEGs, Lactate 
Metabolism-Related Differentially Expressed Genes; SVM, Support Vector Machine; LASSO, Least Absolute 
Shrinkage and Selection Operator.
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This study highlights DEGs related to lactate metabolism and systematically analyzes their association with 
abnormal molecular pathways in sarcopenia. Enrichment analysis revealed that LMRDEGs are involved not only 
in energy generation and utilization pathways, such as pyruvate metabolism and oxidative phosphorylation, 
but also in key signaling pathways, including HIF-1 and mTOR. Lactate, as a signaling molecule, can directly 
upregulate HIF-1 activity, enabling muscle cells to adapt to hypoxia and metabolic stress44. Conversely, imbalances 
in lactate metabolism can disrupt energy-sensing pathways such as mTOR and AMPK, thereby altering the 
balance between protein synthesis and degradation45. Key LMRDEGs such as LDHA and LDHB are central 

Fig. 8.  Diagnostic and validation analysis of SARC (A). Diagnostic nomograms of model genes in combined 
GEO datasets for SARC. B-C. Calibration curve (B) and decision curve analysis (C) of model genes in 
integrated GEO datasets (combined datasets) for SARC diagnosis. (D). Group comparison plots of Model 
Genes in HighRisk and LowRisk of SARC. E-H. ROC curves of model genes PPARGC1A (E), PIK3C2A 
(F), FOXO3 (G), and HTT/GSR (H) in SARC. The DCA ordinate shows net benefit, while the abscissa 
represents threshold probability. SARC, Sarcopenia; DCA, Decision Curve Analysis; ROC, Receiver Operating 
Characteristic; AUC, Area Under the Curve; TPR, True Positive Rate; FPR, False Positive Rate. *** represents 
a p-value < 0.001 and highly statistically significant. When AUC > 0.5, it indicates that the expression of the 
molecule is a trend to promote the occurrence of the event, and the closer the AUC is to 1, the better the 
diagnostic effect. The AUC had some accuracy in the range of 0.7 to 0.9. Yellow represents HighRisk and blue 
represents LowRisk.
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to lactate production and utilization46, while PPARGC1A and FOXO3 regulate mitochondrial function and 
oxidative stress47. Abnormal expression of these molecular nodes can lead to muscle wasting and dysfunction 
by disrupting energy metabolism and redox balance47,48. In summary, lactate metabolic abnormalities may serve 
as a molecular link in the development of sarcopenia through the regulation of energy metabolism, oxidative 

Fig. 9.  Differential Gene Expression Analysis and GSEA for SARC Sample B. Volcano plot (A) and heat map 
(B) of differentially expressed genes analysis in the HighRisk and LowRisk groups of SARC samples from the 
integrated GEO dataset. (C). GSEA of 4 biological function bubble plots of SARC samples. D-G. GSEA showed 
that the SARC samples from the integrated GEO dataset were significantly enriched in IL12 2pathway (D). 
Kynurenine Pathway and Links To Cell Senescence (E), Pyruvate Metabolism and Citric Acid Tca Cycle (F), 
Pyruvate Metabolism (G). SARC, Sarcopenia; GSEA, Gene Set Enrichment Analysis. Yellow represents the 
high-risk (HighRisk) group while blue represents the low-risk (LowRisk) group. In the heatmap, red indicates 
high expression and blue indicates low expression. The screening criteria for GSEA were adj.p < 0.05 and FDR, 
q-value < 0.05, with using the BH correction method.
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stress, and signaling pathways. This study provides a theoretical framework for understanding the role of lactate 
metabolism in sarcopenia and identifying potential targets for intervention.

Immune infiltration analysis via ssGSEA, assessing 28 immune cell types in SARC, revealed distinct 
patterns of macrophage and NK cell infiltration between risk groups, consistent with immune dysregulation 
in muscle wasting49. Differential macrophage infiltration aligns with findings in age-related SARC, where 
polarized macrophages regulate muscle regeneration through IL-10/STAT3 signaling50. The observed NK cell 
enrichment in the LowRisk group supports their protective roles in murine models of muscle injury51, suggesting 
conserved mechanisms warranting validation. Notably, the FOXO3–plasmacytoid dendritic cell association 
extends FOXO3’s known immunomodulatory roles in aging, strengthening the concept of immune–metabolic 
crosstalk in SARC pathogenesis52. These immune features suggest promising therapeutic targets, particularly in 
macrophage polarization, an area under preclinical exploration for related myopathies53.

Using LASSO regression, we developed a diagnostic model incorporating five LMRGs (PPARGC1A, 
PIK3C2A, FOXO3, HTT, and GSR), achieving AUCs of 0.7–0.9. Inclusion of FOXO3 and PPARGC1A supports 
their established roles in muscle metabolism54, whereas the involvement of HTT aligns with its emerging role in 
Huntington’s disease–related myopathy55. The model mirrors current trends in lactate-focused diagnostics, such 
as in cancer cachexia56; however, it has some limitations. Clinical variables, such as gait speed and grip strength, 
which have been shown to improve diagnostic validity in the FNIH SARC Project57, should be integrated. 
Environmental modulation of LMRDEGs also deserves attention, particularly given the effectiveness of lifestyle 
interventions observed in the SPRINTT trial58.

The present study had several limitations. The small sample size may affect external validity, warranting future 
validation in larger cohorts. In addition, the lack of experimental validation limits mechanistic insights into the 
identified LMRDEGs, and potential batch effects from dataset integration should be addressed. Nevertheless, our 
identification of 17 LMRDEGs offers valuable insights into the molecular mechanisms of SARC and highlights 
potential targets for intervention.

ID logFC Aveexpr t p-value adj.p B

PEROXISOME −0.112077 0.005078 −2.374395 0.021950 0.253951 −3.395191

ADIPOGENESIS −0.117102 0.017172 −2.313087 0.025395 0.253951 −3.515193

FATTY_ACID_METABOLISM −0.120356 0.009235 −2.463940 0.017671 0.253951 −3.215681

PROTEIN_SECRETION −0.142890 0.028487 −2.156539 0.036479 0.303995 −3.810525

MTORC1_SIGNALING −0.145698 0.016058 −3.226169 0.002354 0.117692 −1.505522

OXIDATIVE_PHOSPHORYLATION −0.191631 0.015229 −2.403147 0.020484 0.253951 −3.338097

PEROXISOME1 −0.112077 0.005078 −2.374395 0.021950 0.253951 −3.395191

ADIPOGENESIS1 −0.117102 0.017172 −2.313087 0.025395 0.253951 −3.515193

FATTY_ACID_METABOLISM1 −0.120356 0.009235 −2.463940 0.017671 0.253951 −3.215681

PROTEIN_SECRETION1 −0.142890 0.028487 −2.156539 0.036479 0.303995 −3.810525

MTORC1_SIGNALING1 −0.145698 0.016058 −3.226169 0.002354 0.117692 −1.505522

OXIDATIVE_PHOSPHORYLATION1 −0.191631 0.015229 −2.403147 0.020484 0.253951 −3.338097

Table 6.  Results of GSVA for risk group. GSVA, Gene set variation analysis

 

ID Set Size Enrichment score NES p-value adj.p q-value

PYRUVATE_METABOLISM_AND_CITRIC_ACID_TCA_CYCLE 49 −0.621170043 −2.270049704 0.000367647 0.023645085 0.020961286

IL12_2PATHWAY 58 0.566247533 2.224086836 0.000442087 0.023645085 0.020961286

RACHIDONIC_ACID_METABOLISM 47 0.562425618 2.108191635 0.000437445 0.023645085 0.020961286

NONALCOHOLIC_FATTY_LIVER_DISEASE 129 −0.48440995 −2.101148722 0.000345423 0.023645085 0.020961286

OXIDATIVE_PHOSPHORYLATION 81 −0.489045571 −1.969498032 0.000358166 0.023645085 0.020961286

GLYCOLYSIS_AND_GLUCONEOGENESIS 44 −0.549955605 −1.960900456 0.00036914 0.023645085 0.020961286

KYNURENINE_PATHWAY_AND_LINKS_TO_CELL_SENESCENCE 18 0.663958378 1.957003611 0.000424268 0.023645085 0.020961286

PYRUVATE_METABOLISM 32 −0.585914054 −1.94601643 0.000372439 0.023645085 0.020961286

INTERLEUKIN_4_AND_INTERLEUKIN_13_SIGNALING 102 0.44468144 1.91839675 0.000467727 0.023645085 0.020961286

BIOCARTA_NO2IL12_PATHWAY 15 0.67762405 1.901194623 0.00041876 0.023645085 0.020961286

NEUTROPHIL_DEGRANULATION 384 0.37840427 1.946475313 0.000543183 0.026338835 0.023349287

METABOLIC_REPROGRAMMING_IN_COLON_CANCER 39 −0.538718599 −1.874240335 0.00073828 0.032774674 0.029054635

AMINO_ACID_METABOLISM 77 −0.432453124 −1.725839834 0.000723066 0.032774674 0.029054635

VITAMIN_B12_METABOLISM 40 0.523782582 1.894773095 0.00087146 0.034152407 0.03027599

ARACHIDONIC_ACID_METABOLISM 45 0.506506142 1.877756036 0.00087604 0.034152407 0.03027599

Table 5.  Results of GSEA for risk group. GSEA, Gene set enrichment analysis
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Fig. 10.  GSVA for SARC sample A-B. Heat map (A) and group comparison map (B) of GSVA results between 
HighRisk and LowRisk groups of SARC samples from the integrated GEO dataset. SARC, Sarcopenia; GSVA, 
Gene Set Variation Analysis. ns stands for p-value ≥ 0.05, not statistically significant; * represents p-value < 
0.05, statistically significant; ** represents p-value < 0.01, highly statistically significant; *** represents p-value 
< 0.001 and highly statistically significant. Yellow indicates the HighRisk group, while purple denotes the 
LowRisk group. The screening threshold for GSVA was set at P < 0.05. In the heatmap, blue signifies low 
enrichment and red represents high enrichment.
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Conclusion
In summary, this study reveals the potential role of LMRDEGs in SARC pathogenesis. Through integrative 
bioinformatics analyses, we identified key genes and pathways warranting further exploration. Overall, our 
findings provide a foundation for future research into diagnosing SARC, developing further diagnostic models, 
and establishing therapeutic strategies. However, further verification through extensive independent cohorts 
and experimental studies remains imperative to confirm the robustness of the results.

Fig. 11.  PPI network analysisA. PPI of model genes generated by STRING database. B. Functional interaction 
network of hub genes and their functionally similar counterparts predicted by GeneMANIA. In the figure, 
circles represent hub genes and their functionally related counterparts, while the colored connecting lines 
indicate different interaction types. PPI, protein-protein interaction network.
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Fig. 12.  Risk group immune infiltration analysis by ssGSEA algorithm A. comparison of the grouping of 
immune cells in the lowrisk group and highrisk group of SARC samples. B-C. Results of correlation analysis of 
immune cell infiltration abundance in the LowRisk (B) and HighRisk (C) groups of SARC samples are shown. 
D-E. Bubble plot of correlation between immune cell infiltration abundance and hub genes in the LowRisk 
(D) and HighRisk (E) groups of SARC samples. ssGSEA, single-sample Gene-Set Enrichment Analysis; SARC, 
Sarcopenia. ns stands for p-value ≥ 0.05, not statistically significant; * represents p-value < 0.05, statistically 
significant; ** represents p-value < 0.01 and highly statistically significant. The absolute value of correlation 
coefficient (r value) below 0.3 was weak or no correlation, between 0.3 and 0.5 was weak correlation, and 
between 0.5 and 0.8 was moderate correlation. Blue is the LowRisk group, and yellow is the HighRisk group. 
Yellow is a positive correlation, blue is a negative correlation, and the depth of the color represents the strength 
of the correlation.
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