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Lactate metabolism-related
differentially expressed genes
reveal biological mechanisms
underlying sarcopenia

Yan Li%3 & Zhenbin Xu23*

Sarcopenia (SARC), a progressive degenerative disorder associated with aging, is characterized by

a gradual loss of muscle mass and strength and imposes major burdens on individuals and society.
Current diagnostic and therapeutic methods for SARC remain limited, highlighting the urgent need for
novel biomarkers. The present research was designed to investigate the role of lactate metabolism-
related differentially expressed genes (LMRDEGs) in SARC, identify key genes and pathways, and
develop a diagnostic model for the disease. Differentially expressed genes (DEGs) were identified
using data from the Gene Expression Omnibus database. Gene set enrichment analysis was used to
determine signaling pathways associated with the DEGs. Pearson’s correlation analysis was used

to quantify the strength of linear relationships between coding genes and DEGs. Protein—protein
interaction networks of DEGs were constructed using the STRING database. Functional annotation
of DEGs was conducted using comprehensive enrichment analyses based on Gene Ontology (GO)
terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways to elucidate their biological
relevance. Seventeen LMRDEGs were found to be significantly upregulated or downregulated in
SARC, underscoring their pivotal roles in disease pathogenesis. GO and KEGG pathway enrichment
analyses revealed that these DEGs were primarily involved in metabolic energy regulation and
intracellular signal transduction, suggesting their functional importance in SARC development.
Immune infiltration analysis suggested substantial variations in immune cell abundance among SARC
samples, emphasizing the immune system’s potential contribution to disease progression. This study
demonstrates the importance of LMRDEGs in SARC and the need for further investigation into their
roles as potential therapeutic targets.

Keywords Sarcopenia, Lactate metabolism, Differentially expressed genes, Gene ontology, Pathway
enrichment

Sarcopenia (SARC), defined as age-related degenerative decline in muscle mass and functional capacity, presents
a major public health challenge that primarily affects elderly individuals. It is associated with substantial
deterioration in physical health and imposes a considerable economic burden on healthcare systems'. Current
treatment options for SARC are limited, mainly involving physical exercise and nutritional interventions.
Although these approaches offer benefits, their effectiveness can vary markedly among individuals, highlighting
the urgent need for innovative biomarkers and diagnostic tools to facilitate early detection and targeted treatment
of SARC.

SARC exhibits a multifaceted etiology, encompassing factors such as aging, chronic inflammation, and
hormonal imbalances?. Moreover, emerging evidence has revolutionized our understanding of lactate’s
contribution, shifting its perceived role from a metabolic byproduct to a key regulator of muscle function and
disease processes®. Previous research has demonstrated that lactate metabolism is critical for muscle regulation,
suggesting that lactate may act as a signaling molecule influencing muscle regeneration and adaptation®. Notably,
disruptions in lactate metabolism have been associated with muscle atrophy and SARC>, prompting further
investigation into lactate metabolism-related differentially expressed genes (LMRDEGs) and their role in
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SARC’. However, the heterogeneity of SARC makes it difficult to define its association with lactate metabolism®.
Lactate not only functions as a byproduct of energy metabolism but also as a vital signaling molecule’. The
expression patterns of its synthesis (LDHA), transport (MCT1/4), and utilization (LDHB) genes may vary across
tissues'’, complicating the identification of key targets in bioinformatics analyses. Moreover, current databases
predominantly focus on inflammatory or apoptotic pathways in the omics data of patients with SARC, with
limited coordinated annotation of lactate metabolism genes'!. Constructing reliable coexpression networks
from limited samples and validating the regulatory importance of lactate-related genes pose methodological
challenges.

This study aimed to identify genes and molecular pathways contributing to SARC development and clarify
the relationship between LMRDEGs and SARC. By developing a diagnostic model based on the identified
biomarkers, we seek to improve early detection and therapeutic strategies for SARC.

Materials and methods

Data download

The SARC datasets GSE8479'2 and GSE1428'3 were downloaded from the Gene Expression Omnibus (GEO)
database!* (https://www.ncbi.nlm.nih.gov/geo/) using the R package GEOquery'> (version 2.70.0). Samples of
human (Homo sapiens) skeletal muscle tissue (vastus lateralis) were derived from both GSE8479 and GSE1428.
The GSE8479 and GSE1428 datasets were generated usingGPL2700 and GPL96 microarray platforms, as shown
in Table 1. The present study incorporated gene expression data from two independent datasets: GSE8479,
including 25 SARC specimens and 26 matched controls, and GSE1428, containing 12 SARC cases and 10 control
samples. All SARC and control groups were included in the analysis.

Lactic acid metabolism-related genes (LMRGs) were collected using the GeneCards database'¢ (https://w
ww.genecards.org/), which offers extensive genomic annotations of human genes. Using “Lactate Metabolism”
as the main search term and applying a minimum relevance score exceeding zero for protein-coding genes,
we identified 56 LMRGs. In addition, a PubMed search (https://pubmed.ncbi.nlm.nih.gov/) using the same
keyword led to the identification of 22 additional LMRGs from previously published studies!”. Following data
integration and elimination of redundant entries from the datasets, 73 unique LMRGs were identified (Table S1).

Batch effect correction across microarray datasets (GSE8479, GSE1428, and the merged GEO dataset) was
conducted using the sva package (v3.50.0)!® in R. The final dataset comprised 37 SARC specimens and 36
matched controls. Preprocessing of the merged GEO dataset, including probe annotation, data standardization,
and normalization, was performed using the limma package (v3.58.1)". To evaluate the effectiveness of
batch effect correction, principal component analysis (PCA) was applied to gene expression data before and
after adjustment. PCA is a multivariate statistical method that reduces high-dimensional data into a lower-
dimensional feature space using orthogonal eigenvectors, facilitating visualization of complex biological data in
two- or three-dimensional coordinate systems while preserving maximal variance.

Differentially expressed genes (DEGs) related to lactate metabolism in SARC

The study cohort from the integrated GEO dataset was systematically stratified into two groups: SARC cases and
matched healthy controls. To identify DEGs across groups, we employed the limma package (version 3.58.1) in
R. DEGs were defined as those with an absolute log2 fold change (logFC) of > 0 and a false discovery rate (FDR)-
adjusted p value of < 0.05. Genes with positive logFC values (logFC > 0) and significant adjusted p-values (adj.
p < 0.05) were classified as significantly upregulated. Conversely, genes with negative logFC values (logFC < 0)
meeting the same significance threshold were categorized as downregulated. P value correction was conducted
using the Benjamini-Hochberg (BH) method. Results were visualized as volcano plots generated using the
ggplot2 package (version 3.4.4). To identify LMRDEGs associated with SARC, we conducted an intersection
analysis between the DEGs from the combined GEO dataset (filtered by |log2FC]| > 0 and adj. p < 0.05) and the
previously identified LMRGs. The overlapping gene set was visualized using a Venn diagram. The visualization
of gene expression patterns was performed using the pheatmap tool (version 1.2.2) implemented in R statistical
software, and chromosomal localization was illustrated via the RCircos package (version 1.2.2)%.

To assess correlations among LMRDEGs, we applied the Spearman algorithm to analyze their expression
patterns in the integrated GEO dataset. The correlation analysis results were displayed as a heatmap generated
using the ggplot2 package (version 3.3.6). To further examine the differential expression of LMRDEGs between
the SARC and control groups, we constructed a comparative expression plot based on their expression levels in
the combined GEO dataset.

GSE8479 GSE1428
Platform GPL2700 GPL96
Species Homo sapiens Homo sapiens
Tissue Vastus lateralis Vastus lateralis
Samples in SARC group | 25 12
Samples in control group | 26 10
Reference PMID: 17,520,024 | PMID: 15,687,482

Table 1. GEO microarray chip Information. GEO, Gene expression omnibus; SARC, Sarcopenia
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Gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathway
analyses

GO analysis is a fundamental bioinformatics approach for functionally annotating gene sets by categorizing
gene products into three domains: biological processes (BPs) characterizing molecular activities, cellular
components (CCs) describing subcellular locations, and molecular functions (MFs) defining biochemical
interactions. KEGG?? is a widely used bioinformatics resource that integrates data on genomic sequences,
metabolic and signaling pathways, disease mechanisms, and pharmacological compounds. GO and KEGG
enrichment analyses for LMRDEGs were performed using the clusterProfiler package (version 4.10.0)* in R.
These analyses were executed under stringent statistical criteria, including adj. p < 0.05 and FDR (q-value) < 0.05
as significance thresholds. Multiple testing correction was applied using the BH method.

Gene set enrichment analysis (GSEA)

GSEA?* is a computational method used to determine whether predefined gene sets show statistically significant,
coordinated differences between two biological states. In the present study, all genes from the merged GEO
dataset were first ranked based on their logFC values by comparing SARC samples with control specimens. This
ranked gene list was then analyzed via GSEA using the clusterProfiler package (version 4.10.0) in R, which enabled
a systematic evaluation of pathway-level expression changes across the integrated datasets. Furthermore, this
approach enabled a comprehensive assessment of coordinated gene expression patterns potentially contributing
to observed phenotypic differences.

Next, SARC samples from the integrated GEO dataset were stratified into HighRisk and LowRisk groups
based on the median least absolute shrinkage and selection operator (LASSO) RiskScore. Differential expression
analysis was conducted utilizing the limma package (version 3.58.1) in R. Differential expression results were
visualized through the utilization of the R package ggplot2 (version 3.3.6), and heatmaps were created with
pheatmap package (version 1.0.12). For GSEA, genes from the SARC samples were again ranked by logFC values
between the HighRisk and LowRisk groups. The ranked gene list was analyzed using clusterProfiler (version
4.10.0).

GSEA parameters included seed=2022, minimum gene set size=10, and maximum gene set size=500.
The Molecular Signatures Database (MSigDB) was used to access the c2 gene set (Cp. All.v2022.1.Hs). For
statistical significance, we required an adj. p value of < 0.05 and an FDR of <0.05. Multiple testing correction was
implemented using the BH method to control type I errors.

Gene set variation analysis (GSVA)

GSVA? is a nonparametric, unsupervised method that converts sample-specific gene expression profiles into
pathway-level enrichment scores, enabling the evaluation of pathway enrichment differences between groups.
The h.all.v7.4.symbols.gmt gene set was acquired from MSigDB*. Subsequently, we conducted GSVA on the
merged GEO dataset using the GSVA package (version 1.50.5) in R. This analytical approach enabled the
quantification of differences in pathway activity between the SARC and control groups. We then applied the
same gene signature on the integrated GEO dataset for functional enrichment analysis, comparing patients in
the HighRisk and LowRisk groups. This comparison aimed to elucidate differential pathway activation patterns.
Statistical significance was determined using a threshold of p < 0.05 for gene set enrichment.

Construction of a diagnostic model for SARC

Logistic regression analysis was conducted to identify LMRDEGs and construct a diagnostic model for SARC
based on the combined GEO dataset. When the dependent variable was binary (SARC vs. control), we analyzed
the relationship between independent variables and the dependent variable using p<0.05 as a significance
threshold. A logistic regression framework was implemented to model these associations. Expression patterns of
genes included in the regression model were visualized using forest plots.

Next, the support vector machine recursive feature elimination (SVM-RFE) algorithm?” was applied using the
R package €1071 (v1.7.14) to screen potential biomarkers from the LMRDEGs identified via logistic regression.
This algorithm iteratively removes the least informative features to improve classification performance.

Finally, we applied the LASSO method using the glmnet package (version 4.1.8) in R statistical software?s,
with parameters set to seed = 500) and family =“binomial” based on the LMRDEGs identified using the SVM-
RFE algorithm. LASSO regression analysis, which applies a penalty term (A x |B|), was employed to reduce
model overfitting and improve generalizability. LASSO regression outcomes were graphically represented using
diagnostic model plots and coefficient path plots. LASSO regression yielded a predictive model for diagnosing
SARC, incorporating selected LMRDEGs. A LASSO risk score (RiskScore) was computed from the regression
coefficients as follows:

riskScore = Z iCoef ficient (gene;) x mRNA Ezpression (gene;)

Validation of the SARC diagnostic model

A nomogram® is a visual tool that represents functional relationships among predictor variables using scaled
line segments in a coordinate framework. According to the results of logistic regression analysis, a nomogram
was developed using the rms package (version 6.7.1) in R to visualize associations among model genes. The
predictive capability of the SARC diagnostic model was evaluated through a calibration plot constructed with
LASSO regression, which enabled a quantitative evaluation of model accuracy and discriminative ability. To
assess the clinical utility of the model, decision curve analysis (DCA) was performed using the ggDCA package®
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(version 1.1) in R. This analysis provided a comprehensive evaluation of the models clinical utility in the
integrated GEO dataset, focusing on the performance characteristics of the selected gene signatures.

Subsequently, receiver operating characteristic (ROC) curves were generated using the R package pROC?!
(version 1.18.5), and area under the curve (AUC) values were calculated to assess the diagnostic performance
of the LASSO-derived RiskScore. SARC samples were divided into HighRisk and LowRisk groups based on the
median RiskScore from the diagnostic model. To explore gene expression differences between these groups,
comparative expression profiles were generated. Finally, ROC curves were plotted, and AUC values were
calculated for each individual model gene using the pROC package (version 1.18.5). AUC values range from 0.5
to 1.0, where 0.5-0.7 indicates low diagnostic accuracy, 0.7-0.9 suggests moderate accuracy, and > 0.9 reflects
high accuracy. Thus, the closer the AUC is to 1, the better the model’s predictive performance.

Protein—protein interaction (PPI) network

PPI networks represent complex systems of molecular interactions that regulate critical cellular processes, such
as signal transduction, transcriptional regulation, metabolism, and cell cycle progression. Investigating these
networks provides fundamental insights into protein function, disease-associated molecular pathways, and
the intricate relationships between biomolecules within cellular systems. To establish a PPI network for the
model genes, we utilized the STRING database® (https://cn.string-db.org/) with a high-confidence interaction
score threshold of 0.900. Highly interconnected modules within the PPI network were considered indicative
of functionally relevant protein complexes. Genes showing significant interactions in the PPI network were
identified as hub genes for further analysis.

To investigate the functional associations of hub genes, we used the GeneMANIA platform* (https://gen
emania.org/), a bioinformatics resource applied to perform gene function predictions, gene list analysis, and
candidate gene prioritization for subsequent experimental validation. The platform integrates multiple genomic
and proteomic data sources to predict functionally related genes. This approach employs a weighted scoring
system to prioritize datasets according to its relevance and infers gene functions through interaction patterns.
The functional associations of hub genes were determined using GeneMANIA to construct an expanded PPI
network incorporating genes with similar biological functions.

Immune infiltration analysis of high and low risk groups

To characterize immune cell populations, we applied the single-sample GSEA (ssGSEA) method. This method
included profiling multiple human immune cell subpopulations, such as activated CD8" T cells, activated
dendritic cells, y§ T cells, natural killer (NK) cells, and immunosuppressive regulatory T cells. Enrichment scores
from ssGSEA were used to construct an immune cell infiltration profile that quantitatively characterized the
distribution patterns of various immune cell populations in SARC samples obtained from the integrated GEO
dataset. The ggplot2 package (version 3.4.4) in R was then used to visualize differences in immune cell expression
between the LowRisk and HighRisk groups in the SARC samples. Significantly differentially expressed immune
cells were identified for subsequent analyses.

Spearman’s rank correlation was used to evaluate relationships among immune cells, with results visualized
via heatmaps constructed using pheatmap (version 1.0.12). In addition, correlations between hub genes and
immune cells were analyzed using Spearmans method and displayed as bubble plots generated via ggplot2
(version 3.4.4).

Construction of a regulatory network

Transcription factors (TFs) play a pivotal role in modulating gene expression through interacting with hub
genes in post-transcriptional processes. The ChIPBase database® (http://rna.sysu.edu.cn/chipbase/) was used to
identify TFs associated with hub genes. A TF-mRNA regulatory network was then constructed and visualized
using Cytoscape™®.

Micro RNAs (miRNAs) are crucial molecular regulators that govern fundamental BPs during development
and evolutionary adaptation. They modulate multiple target genes, and individual genes may be targeted by
several miRNAs. To explore potential regulatory interactions between hub genes and miRNAs, we used the
StarBase v3.0 platform®® (https://starbase.sysu.edu.cn/) and subsequently constructed a gene-miRNA interaction
network using Cytoscape.

RNA-binding proteins (RBPs)*” play essential roles in gene expression regulation, including transcriptional
processing, differential splicing, post-transcriptional modifications, intracellular RNA trafficking, and protein
synthesis. Using the StarBase v3.0 database®® (https://starbase.sysu.edu.cn/), we predicted RBPs targeting hub
genes. Subsequently, Cytoscape software was utilized to construct and visualize the mRNA-RBP interaction
network.

Finally, direct and indirect pharmacological targets associated with hub genes were identified using the
Comparative Toxicogenomics Database (CTD)*® (https://ctdbase.org/). These drug-gene interactions were
integrated into a comprehensive mRNA-drug regulatory framework, which was subsequently graphically
represented through Cytoscape visualization software.

Statistical analysis

All statistical analyses were conducted using R software (version 4.3.3). For continuous variables with normal
distribution, independent two-sample t-tests were used. When analyzing non-normally distributed datasets,
we utilized the Wilcoxon rank-sum test (also known as the Mann-Whitney U test) for two-group comparisons.
For experimental designs involving multiple groups (three or more), the Kruskal-Wallis nonparametric test
was applied. To evaluate potential relationships between molecular variables, we performed correlation analysis
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using Spearman’s rank correlation coefficient. Unless explicitly stated, all p-values were two-tailed, and statistical
significance was defined as p <0.05.

Results

Technology roadmap

This study employed well-established bioinformatics tools and parameters (such as limma, sva, and ComBat) for
data preprocessing, differential expression analysis, feature selection, and model construction (Fig. 1), ensuring
that the results were scientifically valid and reproducible.

Merging SARC datasets

To construct an integrated dataset for SARC analysis, batch effects between the GSE8479 and GSE8479 datasets
were removed using the sva package (version 3.50.0) in R, which yielded an integrated GEO dataset. Comparative
analysis of expression profiles was performed through distribution boxplots (Fig. 2A, B), which illustrated the
effectiveness of batch effect normalization. PCA was then employed to assess the spatial distribution of samples
in reduced dimensions, with corresponding plots (Fig. 2C, D) illustrating the dataset structure before and after
batch correction.

DEGs related to lactate metabolism in SARC
The integrated GEO dataset was categorized into SARC and control cohorts, and comparative transcriptomic
profiling was conducted using the limma package in R to identify DEGs. Based on the significance threshold
(|logFC| > 0 and adj. p<0.05), 2,160 significant DEGs were identified, including 1,119 upregulated genes and
1,041 downregulated genes. The differential expression landscape was visualized in a volcano plot (Fig. 3A).
To detect LMRDEGs, we conducted a comprehensive intersection analysis between all significant DEGs and
previously documented LMRGs. The results, shown in a Venn diagram (Fig. 3B), revealed 17 LMRDEGs:
FOXO03, IGFBP6, ADRB2, PER2, PIK3C2A, HTT, STAT3, SLC25A12, PPARGCIA, DNMIL, LDHA, CS, MRS2,
GSR, BSG, LDHB, and GCKR. The expression patterns of these LMRDEGs among different sample groups were
analyzed in the integrated GEO dataset, with results presented in a heatmap generated via pheatmap (Fig. 3C).
Chromosomal localization analysis, which was performed using RCircos (Fig. 3D), demonstrated that several
LMRDEGs were clustered on chromosomes 12 (CS, IGFBP6, DNMIL, and LDHB) and 2 (GCKR, SLC25A12,
and PER2).

Statistical analysis revealed significant intergenic correlations among the 17 LMRDEGs, as illustrated in
a correlation heatmap (Fig. 3E). Most DEGs exhibited strong positive correlations, suggesting their potential
functional relationships or coregulatory mechanisms. To further characterize the transcriptional profiles of
LMRDEGs, we conducted a comparative analysis (Fig. 3F) to identify distinct expression patterns between
SARC and control samples. In total, 13 LMRDEGs exhibited significant differential expression (p<0.001):
FOXO3, IGFBP6, ADRB2, PER2, PIK3C2A, SLC25A12, PPARGCIA, DNMI1L, LDHA, CS, MRS2, GSR, and
BSG. Furthermore, the LMRDEGs HTT, GCKR, LDHB, and STAT3 showed significant differential expression
(p<0.01).

GO and KEGG pathway enrichment analyses

To investigate the biological significance of the 17 LMRDEGs in SARC, we conducted GO and KEGG pathway
enrichment analyses by integrating logFC values. These analyses enabled us to explore potential BPs, CCs, MFs,
and associated signaling pathways. As demonstrated in Table 2, these LMRDEGs were enriched in BPs such as
generation of precursor metabolites and energy, regulation of autophagy, and expression of genes involved in
ATP metabolic process, cellular carbohydrate metabolic process, and response to peptide. For MFs, these genes
were notably enriched in chromatin DNA binding. KEGG pathway analysis revealed enrichment in glucagon
signaling pathway, HIF-1 signaling pathway, propanoate metabolism, pyruvate metabolism, and cysteine and
methionine metabolism (Fig. 4A). The overall results, combined with logFC values, were further visualized
using a bubble plot (Fig. 4B) and chord diagram (Fig. 4C). Network diagrams were also constructed to illustrate
relationships among BPs, MFs, and KEGG pathways (Fig. 4D-F), where node size represented the number of
associated molecules and connecting lines indicated specific molecular associations.

GSEA

To investigate the influence of transcriptional profiles obtained from the combined GEO dataset on SARC
development, GSEA was performed using the logFC values of all genes, comparing SARC samples with controls.
This approach allowed systematic exploration of associations between genome-wide expression signatures
and corresponding biological pathways, cellular structures, and molecular mechanisms (Fig. 5A). Results are
presented in Table 3.

GSEA revealed significant enrichment of genes from the integrated GEO dataset in several key pathways:
interleukin-4 and interleukin-13 signaling (Fig. 5B), kynurenine pathway and links to cell senescence (Fig. 5C),
NAD metabolism in oncogene-induced senescence and mitochondrial dysfunction-associated senescence (Fig.
5D), and pyruvate metabolism and citric acid TCA cycle (Fig. 5E), among other biologically relevant pathways
and cellular functions.

GSVA

To examine differences in the h.all.v7.4.symbols.gmt gene sets between the SARC and control groups, we
conducted GSVA using the integrated GEO dataset (Table 4). Statistically significant pathways (p<0.05)
were systematically categorized according to their log2FC magnitude. The 20 most differentially expressed
pathways (10 upregulated and 10 downregulated) were selected for further analysis. The differential expression
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Fig. 1. Flow chart for the comprehensive analysis of LMRDEGs. SARC, Sarcopenia; DEGs, Differentially
Expressed Genes; LMRGs, Lactate Metabolism-Related Genes; LMRDEGs, Lactate Metabolism-Related
Differentially Expressed Genes; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes;
GSEA, Gene Set Enrichment Analysis; GSVA, Gene Set Variation Analysis; PP, Protein-Protein Interaction;
TE, Transcription Factor; RBP, RNA—Binding Protein.
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Fig. 2. Batch Effects Removal of GSE8479 and GSE1428. (A) Box plot of Combined GEO Datasets distribution
before batch processing. (B) Post-batch integrated GEO Datasets (Combined Datasets) distribution boxplots.
(C) PCA plot of the datasets before debatching. (D) PCA plot of the Combined GEO Datasets following

batch processing. PCA, Principal Component Analysis; SARC, Sarcopenia. The SARC dataset GSE8479 is
represented in blue, while the SARC dataset GSE1428 is shown in yellow.

patterns of these signaling cascades were analyzed and contrasted between the SARC and control groups,
with the results graphically represented through a heatmap visualization (Fig. 6A). Statistical significance
was confirmed through the Mann-Whitney U test, with the comparative analysis results visually presented in
(Fig. 6B). GSVA identified multiple pathways with significant differential activity (p<0.05) in SARC samples:
OXIDATIVE PHOSPHORYLATION, FATTY ACID METABOLISM, ADIPOGENESIS, PEROXISOME, BILE
ACID METABOLISM, NOTCH SIGNALING, PI3K AKT MTOR SIGNALING, MTORC1 SIGNALING,
SPERMATOGENESIS, PANCREAS BETA CELLS, APICAL JUNCTION, INFLAMMATORY RESPONSE,
CHOLESTEROL HOMEOSTASIS, KRAS SIGNALING UP, ANDROGEN RESPONSE, COAGULATION,
EPITHELIAL MESENCHYMAL TRANSITION, P53 PATHWAY, TNFA SIGNALING VIA NFKB, APOPTOSIS.

Construction of a diagnostic model for SARC

To assess the diagnostic value of 17 LMRDEGs in SARC, we performed logistic regression analysis, with
results visualized as a forest plot (Fig. 7A). All 17 LMRDEGs showed statistically significant associations
(p<0.05) within the regression model. Next, we applied the SVM-RFE algorithm with 3-fold cross-validation
to the 17 LMRDEGs. Through iterative feature selection, we ranked genes and identified the optimal subset
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that minimized classification error (Fig. 7B) while maximizing predictive performance (Fig. 7C). The results
indicated that the SVM model achieved peak accuracy when the following five genes, which consistently ranked
highest, were incorporated: PPARGCIA, PIK3C2A, FOXO3, HTT, and GSR. We developed a LASSO regression—
based diagnostic model for SARC incorporating these five LMRDEGs. Model performance was illustrated via
regression coeflicient plots (Fig. 7D) and variable selection trajectories (Fig. 7E). All five genes were confirmed

as significant molecular markers contributing to the model’s diagnostic accuracy.

Validation of the SARC di

To assess the SARC model’s diagnostic value, we constructed a predictive nomogram incorporating the five
model genes to visualize their interrelationships in the combined GEO dataset (Fig. 8A). Among the genes,
PPARGCIA exerted the strongest influence, whereas GSR had the lowest impact on diagnostic scoring. The

agnostic model
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«Fig. 3. Differential Gene Expression Analysis. (A) Volcano plot of differentially expressed gene analysis

between the SARC group and the Control group in the Combined GEO Datasets. (B) Venn diagram of DEGs
and LMRGs in integrated GEO Datasets (Combined Datasets). (C) Heat map of LMRDEGs in the integrated
GEO Datasets (Combined Datasets). (D) Chromosomal mapping of LMRDEGs. (E) Correlation heat map of
LMRDEGs in Combined GEO Datasets. (F) Group comparison map of LMRDEGs in SARC and Control of
integrated GEO Datasets (Combined Datasets). ** stands for p-value <0.01, highly statistically significant; ***
represents p-value <0.001 and highly statistically significant. SARC, Sarcopenia; DEGs, Differentially Expressed
Genes; LMRGs, Lactate Metabolism-Related Genes; LMRDEGs, Lactate Metabolism-Related Differentially
Expressed Genes. In the heat map, the yellow color represents the SARC group, while blue denotes the Control
group. Red indicates high expression levels, whereas blue signifies low expression levels. For the correlation
heat map, red illustrates positive correlations, blue demonstrates negative correlations, and color intensity
reflects the correlation strength.

ONTOLOGY | ID Description Generatio | Bgratio p-value adj.p q-value

BP GO:0006091 | generation of precursor metabolites and energy | 7/17 494/18,800 | 1.28333E-07 | 6.20492E-05 | 3.40421E-05
BP GO:0010506 | regulation of autophagy 6/17 336/18,800 | 3.26719E-07 | 0.000105313 | 5.77778E-05
BP GO:0046034 | ATP metabolic process 5/17 273/18,800 | 3.33899E-06 | 0.000645761 | 0.000354285
BP GO:0044262 | cellular carbohydrate metabolic process 5/17 287/18,800 | 4.26318E-06 | 0.000687082 | 0.000376955
BP GO0:1,901,652 | response to peptide 5/17 491/18,800 | 5.68035E-05 | 0.002762887 | 0.001515806
ME GO:0031490 | chromatin DNA binding 3/17 105/18,410 | 0.000115663 | 0.01110367 | 0.006452791
KEGG hsa04922 Glucagon signaling pathway 3/12 107/8164 0.000441873 | 0.017963539 | 0.013015278
KEGG hsa04066 HIF-1 signaling pathway 3/12 109/8164 0.000466585 | 0.017963539 | 0.013015278
KEGG hsa00640 Propanoate metabolism 2/12 32/8164 0.000958646 | 0.024605247 | 0.017827452
KEGG hsa00620 Pyruvate metabolism 2/12 47/8164 0.002063865 | 0.03346945 | 0.024249909
KEGG hsa00270 Cysteine and methionine metabolism 2/12 51/8164 0.002426315 | 0.03346945 | 0.024249909

Table 2. Results of GO and KEGG enrichment analysis for LMRDEGs. GO, Gene ontology; BP, Biological
process; CC, Cellular component; ME, Molecular function; KEGG, Kyoto encyclopedia of genes and genomes;
LMRDEGs, Lactate metabolism-related differentially expressed genes

predictive accuracy and classification performance of the SARC model were assessed through calibration curve
analysis, as illustrated in (Fig. 8B). Using the calibration curve, the concordance between observed event rates and
model-predicted probabilities was analyzed across conditions. The calibration curve exhibited slight deviations
from the perfect diagonal, yet maintained excellent overall agreement. DCA was used to quantify the clinical
applicability of the SARC diagnostic model (Fig. 8C), demonstrating consistently higher net benefit across a
range of thresholds compared with the “all-positive” and “all-negative” reference lines and thereby indicating
superior clinical effectiveness.

Using the median RiskScore, patients were categorized into HighRisk and LowRisk groups. A statistical
comparative of model gene expression between groups (Fig. 14D) revealed that PPARGCIA exhibited the most
pronounced variation (p <0.001). Finally, ROC curves were conducted using pROC to evaluate the diagnostic
accuracy of each model gene (Fig. 14E-H). Results indicated moderate-to-high diagnostic performance for
PPARGCIA, with AUC values between 0.7 and 0.9 across various comparisons.

GSEA for highrisk and lowrisk groups

To analyze differences among SARC samples, we stratified the integrated GEO dataset into HighRisk and LowRisk
cohorts according to the median LASSO RiskScore. The limma-based differential expression analysis revealed
1,031 DEGs (absolute logFC> 0 with p-value <0.05), comprising 521 genes showing increased expression and
510 downregulated genes. Results were visualized via a volcano plot (Fig. 9A) and pheatmap-generated heatmap
(Fig. 9B).

To evaluate global gene expression impacts on SARC pathogenesis, we computed logFC values for all genes
between risk groups. GSEA was conducted to investigate associations between gene expression patterns and BPs,
with results visualized in a mountain plot (Fig. 9C) and summarized in Table 5. Significantly enriched pathways
included IL12_2 pathway (Fig. 9D), kynurenine pathway (Fig. 9E), pyruvate metabolism and citric acid TCA
cycle (Fig. 9F), and pyruvate metabolism (Fig. 9G).

GSVA in highrisk and lowrisk groups

To explore pathway-level differences between the HighRisk and LowRisk SARC groups, GSVA was performed
on all genes using the h.all.v7.4.symbols.gmt gene set (Table 6). Six significantly altered pathways (p <0.05) were
identified based on descending absolute logFC values (Fig. 10A). The results were further validated using the
Mann-Whitney U test and visualized in a comparative group plot (Fig. 10B). The following pathways exhibited
statistically significant differences between the HighRisk and LowRisk groups: ADIPOGENESIS, FATTY_
ACID_METABOLISM, MTORC1_SIGNALING, OXIDATIVE_PHOSPHORYLATION, and PEROXISOME.
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Fig. 4. GO and KEGG Enrichment Analysis for LMRDEGs B. Bar graph of GO and KEGG enrichment
analysis results of LMRDEGs: BP, MF and KEGG. B. Bubble plot of GO and KEGG enrichment analysis results
of LMRDEGs. C. String diagram of GO and KEGG enrichment analysis results of LMRDEGs. D-E GO and
KEGG enrichment analysis results of LMRDEGs network diagram: BP (D), MF (E) and KEGG (F). Yellow
nodes represent items, blue nodes represent molecules, and the connecting lines illustrate the relationships
between items and molecules. LMRDEGs, Lactate Metabolism-Related Differentially Expressed Genes; GO,
Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; BP, Biological Process; ME, Molecular
Function. The screening criteria for GO and KEGG pathway enrichment analyses were an adjusted p-value <
0.05 and a FDR value (q-value) < 0.05, with the p-value correction method being BH.
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Fig. 5. GSEA for combined datasets A. Mountain map presentation of 4 biological functions from GSEA of
Combined GEO Datasets. B-E. GSEA showed that the Combined GEO Datasets were significantly enriched
in INTERLEUKIN-4 AND INTERLEUKIN-13 SIGNALING (B), KYNURENINE PATHWAY AND LINKS
TO CELL SENESCENCE (C), NAD METABOLISM IN ONCOGENEINDUCED SENESCENCE AND
MITOCHONDRIAL DYSFUNCTIONASSOCIATED SENESCENCE (D), PYRUVATE METABOLISM AND
CITRIC ACID TCA CYCLE (E). The screening criteria of GSEA were adj.p < 0.05 and FDR value (q-value) <
0.05, and the p-value correction method was BH.

PPl interaction network

To investigate PPIs involving the five candidate genes, we established a PPI network using the STRING database
(Fig. 11A), which revealed that PPARGCIA, FOXO3, and HTT were interconnected as hub genes. Further
analysis using GeneMANIA extended the network to include these hub genes and 20 functionally associated
proteins (Fig. 11B). Interaction types, including coexpression and shared protein domains, have been depicted
using color-coded edges.

Immune infiltration analysis (ssGSEA) of highrisk and lowrisk groups

To evaluate the infiltration characteristics of immune cells in SARC samples obtained from the combined
GEO dataset, we employed ssGSEA to systematically measure the proportional representation of 28 immune
cell types. Comparative analysis examining intergroup variations in immune infiltration levels (Fig. 12A)
revealed significant differences in immune infiltration (p<0.05), particularly among macrophages and NK
cells. Correlation heatmaps illustrated interrelationships among all immune cell types (Fig. 12B, C). We also
investigated correlations between hub gene expression and immune cell infiltration, with findings shown in
bubble plots (Fig. 12D, E). Notably, HT T was positively correlated with NK cells in the LowRisk group (r=0.55,
p<0.05; Fig. 12D), whereas FOXO3 showed a positive correlation with plasmacytoid dendritic cells in the
HighRisk group (r=0.54, p<0.05; Fig. 12E).

Construction of the regulatory network

To elucidate the regulatory mechanisms of hub genes, we analyzed their interactions with various biomolecules.
Initially, TFs potentially binding to hub genes were predicted through the ChIPBase database, after which an
mRNA-TF regulatory network was constructed using Cytoscape (Fig. 13A), with this network incorporating 2
hub genes and 26 TFs (Table S2). Subsequent analysis focused on microRNA-mediated regulation, identifying
miRNAs potentially targeting hub genes via the StarBase database. The resulting mRNA-miRNA interaction
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Set | Enrichment

ID size | score NES p-value adj.p q-value

INTERLEUKIN_4_AND_INTERLEUKIN_13_SIGNALING 102 0.530085438 | 2.013374534 | 0.000383877 | 0.017083693 | 0.015159772
KYNURENINE_PATHWAY_AND_LINKS_TO_CELL_SENESCENCE 18 0.709298332 1.90075194 | 0.001184366 | 0.030378064 | 0.026956965
COMPLEMENT_CASCADE 50 0.540009721 1.834070292 | 0.000763942 | 0.024393624 | 0.021646478
TYROBP_CAUSAL_NETWORK_IN_MICROGLIA 47 0.54834946 1.832609194 | 0.000762777 | 0.024393624 | 0.021646478
g%ié‘ggg;%fgﬁ—PATHWAY—IN—PRIMARY—ENDOMETRIAL—STROMAL—CELL— 12 0.755431385 1.83013082 | 0.001965409 | 0.038915094 | 0.034532578
FOXO_MEDIATED_TRANSCRIPTION_OF_CELL_DEATH_GENES 15 0.712423322 1.829252239 | 0.001564333 | 0.033485186 | 0.029714172
SMAD2_3NUCLEAR_PATHWAY 73 0.498472522 1.809851227 | 0.000754432 | 0.024393624 | 0.021646478
BIOCARTA_ETS_PATHWAY 14 0.716864789 1.808177328 | 0.002372479 | 0.045096085 | 0.040017481
NOTCH_PATHWAY 49 0.533667006 1.80222822 | 0.000762486 | 0.024393624 | 0.021646478
SA_G1_AND_S_PHASES 14 0.711158262 1.793783522 | 0.002372479 | 0.045096085 | 0.040017481
P53_TRANSCRIPTIONAL_GENE_NETWORK 77 0.487174073 1.785012916 | 0.000752445 | 0.024393624 | 0.021646478
HAIR_FOLLICLE_DEVELOPMENT_CYTODIFFERENTIATION_PART_3_OF_3 71 0.490986156 1.774873697 | 0.001126549 | 0.030378064 | 0.026956965

OVERLAP_BETWEEN_SIGNAL_TRANSDUCTION_PATHWAYS_CONTRIBUTING_
TO_LMNA_LAMINOPATHIES

NAD_METABOLISM_IN_ONCOGENEINDUCED_SENESCENCE_AND_
MITOCHONDRIAL_DYSFUNCTIONASSOCIATED_SENESCENCE

PYRUVATE_METABOLISM_AND_CITRIC_ACID_TCA_CYCLE 49 | -0.777456953 | —2.643079404 | 0.000420345 | 0.017083693 | 0.015159772

51 0.518803976 | 1.768155155 | 0.001526718 | 0.033485186 | 0.029714172

23 | -0.74306012 | —2.142357039 | 0.000412541 | 0.017083693 | 0.015159772

Table 3. Results of GSEA for combined datasets. GSEA, Gene set enrichment analysis

ID logFC Aveexpr |t p-value | adj.p B
OXIDATIVE_PHOSPHORYLATION 0.532667 | —0.000126 | 12.55144 | 0.000000 | 0.000000 | 36.77376
FATTY_ACID_METABOLISM 0.225002 | 0.006251 6.875144 | 0.000000 | 0.000000 | 11.31207
ADIPOGENESIS 0.188855 0.003316 6.236834 | 0.000000 | 0.000000 8.544764
PEROXISOME 0.173997 | 0.002921 5.791768 | 0.000000 | 0.000001 6.671987
BILE_ACID_METABOLISM 0.160146 | —0.000200 | 6.676084 | 0.000000 | 0.000000 | 10.44030
NOTCH_SIGNALING 0.143962 | 0.013383 | 3.067677 | 0.002921 | 0.009737 | -3.019175
PI3K_AKT_MTOR_SIGNALING 0.102818 | 0.001248 | 4.397415 | 0.000033 | 0.000181 1.245634
MTORCI_SIGNALING 0.084117 | 0.012006 | 2.632941 | 0.010111 | 0.024073 | —4.156346
SPERMATOGENESIS 0.083731 | -0.005312 | 3.006287 | 0.003507 | 0.010950 | —3.188285
PANCREAS_BETA_CELLS 0.076525 | —0.000974 | 2.301519 | 0.023895 | 0.049781 | —4.924273
APICAL_JUNCTION —0.084432 | —-0.001772 | -2.270450 | 0.025798 | 0.051596 | —4.991651
INFLAMMATORY_RESPONSE —0.090485 | —0.002681 | -3.077619 | 0.002835 | 0.009737 | —2.991531
CHOLESTEROL_HOMEOSTASIS —0.101881 | 0.001687 | -2.853857 | 0.005465 | 0.014380 | —3.596243
KRAS_SIGNALING_UP —0.113939 | 0.000589 | -3.927990 | 0.000178 | 0.000888 | —0.381275
ANDROGEN_RESPONSE —0.115459 | 0.004598 | —3.643640 | 0.000470 | 0.002134 | —1.305700
COAGULATION —0.119480 | —0.003428 | —2.889433 | 0.004934 | 0.013706 | —3.502572
EPITHELIAL_MESENCHYMAL_TRANSITION | —0.121374 | 0.005798 | -2.430391 | 0.017260 | 0.037522 | —4.636254
P53_PATHWAY —0.151852 | —-0.001811 | -6.133916 | 0.000000 | 0.000000 | 8.107029
TNFA_SIGNALING_VIA_NFKB —0.154492 | 0.000404 | -4.611362 | 0.000015 | 0.000091 2.024977
APOPTOSIS —0.180046 | —0.002865 | —5.787750 | 0.000000 | 0.000001 | 6.655333

Table 4. Results of GSVA for combined datasets. GSVA, Gene set variation analysis

network (Fig. 13B) revealed 2 hub genes potentially regulated by 41 distinct miRNAs (Table S3). For post-
transcriptional regulation analysis, RBPs interacting with hub genes were also predicted using StarBase.
The mRNA-RBP regulatory network (Fig. 13C) revealed interactions between 3 hub genes and 31 RBPs,
with molecular details provided in Table S4. Finally, we queried the CTD to identify 32 drug compounds
targeting 2 hub genes, forming an mRNA-drug interaction network (Fig. 13D) comprising the hub genes and
pharmacologically active compounds (Table S5).

Discussion

SARC is a degenerative condition characterized by the progressive loss of muscle mass and function. This age-
associated pathology has emerged as a major public health concern, particularly affecting the elderly. Despite
its growing public health impact, early diagnostic tools remain lacking®, underscoring the need for reliable
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Fig. 6. GSVA B-B. Heat map (A) and group comparison map (B) of GSVA results between SARC and
Control groups of Combined GEO Datasets. SARC, Sarcopenia; GSVA, Gene Set Variation Analysis. *
represents p-value < 0.05, statistically significant; ** represents p-value < 0.01, highly statistically significant;
*** represents p-value < 0.001 and highly statistically significant. Yellow represents the SARC group and blue
represents the Control group. The screening criterion for GSVA was a p-value < 0.05. Blue represents low
enrichment and red represents high enrichment in the heat map.
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Fig. 7. Diagnostic model of SARCA. Forest Plot of 17 LMRDEGs included in the Logistic regression model in
the diagnostic model of sarcopenia. B-C. The number of genes with the lowest error rate (B) and the number
of genes with the highest accuracy (C) obtained by SVM-RFE algorithm are visualized. D-E. Diagnostic model
plot (D) and variable trajectory plot (E) of LASSO regression model. SARC, Sarcopenia; LMRDEGs, Lactate
Metabolism-Related Differentially Expressed Genes; SVM, Support Vector Machine; LASSO, Least Absolute
Shrinkage and Selection Operator.

biomarkers and therapeutic targets. Our findings suggest that LMRDEGs significantly contribute to SARC
progression, warranting further exploration.

We identified 17 LMRDEGs that were differentially expressed between SARC and control samples. These
genes may regulate lactate metabolism and offer insights into SARC’s pathophysiology. Their involvement in
related metabolic disorders and potential as therapeutic targets merit further study.

FOXO3, as a transcription factor, serves multiple biological functions®. It can promote the degradation
of muscle proteins and atrophy by regulating pathways such as Atrogin-1/MAFbx and MuRF1%!, while also
upregulating antioxidant enzymes such as superoxide dismutase to protect against oxidative damage®?.
In this study, the upregulation of FOXO3 likely reflects the complex stress and regulatory dynamics during
the progression of sarcopenia®’, rather than exerting a singular protective or damaging effect. Regarding the
upregulation of oxidative phosphorylation-related genes, although sarcopenia is typically accompanied
by mitochondrial dysfunction, this study found that related genes were upregulated. This may represent a
compensatory response of muscle cells to impaired energy metabolism. However, this interpretation remains
speculative, as direct mechanistic evidence is lacking. Further research, including longitudinal population
studies, cellular experiments, and animal models, is required to confirm these findings. Future research should
focus on the dynamic regulatory roles of key genes in sarcopenia progression and their molecular mechanisms,
with the aim of providing a stronger theoretical basis for diagnosis and therapeutic intervention.
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Fig. 8. Diagnostic and validation analysis of SARC (A). Diagnostic nomograms of model genes in combined
GEO datasets for SARC. B-C. Calibration curve (B) and decision curve analysis (C) of model genes in
integrated GEO datasets (combined datasets) for SARC diagnosis. (D). Group comparison plots of Model
Genes in HighRisk and LowRisk of SARC. E-H. ROC curves of model genes PPARGCIA (E), PIK3C2A

(F), FOX03 (G), and HTT/GSR (H) in SARC. The DCA ordinate shows net benefit, while the abscissa
represents threshold probability. SARC, Sarcopenia; DCA, Decision Curve Analysis; ROC, Receiver Operating
Characteristic; AUC, Area Under the Curve; TPR, True Positive Rate; FPR, False Positive Rate. *** represents
a p-value < 0.001 and highly statistically significant. When AUC > 0.5, it indicates that the expression of the
molecule is a trend to promote the occurrence of the event, and the closer the AUC is to 1, the better the
diagnostic effect. The AUC had some accuracy in the range of 0.7 to 0.9. Yellow represents HighRisk and blue
represents LowRisk.

This study highlights DEGs related to lactate metabolism and systematically analyzes their association with
abnormal molecular pathways in sarcopenia. Enrichment analysis revealed that LMRDEGs are involved not only
in energy generation and utilization pathways, such as pyruvate metabolism and oxidative phosphorylation,
but also in key signaling pathways, including HIF-1 and mTOR. Lactate, as a signaling molecule, can directly
upregulate HIF-1 activity, enabling muscle cells to adapt to hypoxia and metabolic stress*4. Conversely, imbalances
in lactate metabolism can disrupt energy-sensing pathways such as mTOR and AMPK, thereby altering the
balance between protein synthesis and degradation’’. Key LMRDEGs such as LDHA and LDHB are central
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Fig. 9. Differential Gene Expression Analysis and GSEA for SARC Sample B. Volcano plot (A) and heat map
(B) of differentially expressed genes analysis in the HighRisk and LowRisk groups of SARC samples from the
integrated GEO dataset. (C). GSEA of 4 biological function bubble plots of SARC samples. D-G. GSEA showed
that the SARC samples from the integrated GEO dataset were significantly enriched in IL12 2pathway (D).
Kynurenine Pathway and Links To Cell Senescence (E), Pyruvate Metabolism and Citric Acid Tca Cycle (F),
Pyruvate Metabolism (G). SARC, Sarcopenia; GSEA, Gene Set Enrichment Analysis. Yellow represents the
high-risk (HighRisk) group while blue represents the low-risk (LowRisk) group. In the heatmap, red indicates
high expression and blue indicates low expression. The screening criteria for GSEA were adj.p < 0.05 and FDR,
q-value < 0.05, with using the BH correction method.

to lactate production and utilization®¢, while PPARGC1A and FOXO3 regulate mitochondrial function and
oxidative stress?. Abnormal expression of these molecular nodes can lead to muscle wasting and dysfunction
by disrupting energy metabolism and redox balance?”*$. In summary, lactate metabolic abnormalities may serve
as a molecular link in the development of sarcopenia through the regulation of energy metabolism, oxidative
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ID Set Size | Enrichment score | NES p-value adj.p q-value
PYRUVATE_METABOLISM_AND_CITRIC_ACID_TCA_CYCLE 49 —-0.621170043 —2.270049704 | 0.000367647 | 0.023645085 | 0.020961286
IL12_2PATHWAY 58 0.566247533 2.224086836 | 0.000442087 | 0.023645085 | 0.020961286
RACHIDONIC_ACID_METABOLISM 47 0.562425618 2.108191635 | 0.000437445 | 0.023645085 | 0.020961286
NONALCOHOLIC_FATTY_LIVER_DISEASE 129 —0.48440995 —2.101148722 | 0.000345423 | 0.023645085 | 0.020961286
OXIDATIVE_PHOSPHORYLATION 81 —0.489045571 —1.969498032 | 0.000358166 | 0.023645085 | 0.020961286
GLYCOLYSIS_AND_GLUCONEOGENESIS 44 —0.549955605 —1.960900456 | 0.00036914 | 0.023645085 | 0.020961286
KYNURENINE_PATHWAY_AND_LINKS_TO_CELL_SENESCENCE | 18 0.663958378 1.957003611 | 0.000424268 | 0.023645085 | 0.020961286
PYRUVATE_METABOLISM 32 —0.585914054 —1.94601643 | 0.000372439 | 0.023645085 | 0.020961286
INTERLEUKIN_4_AND_INTERLEUKIN_13_SIGNALING 102 0.44468144 1.91839675 | 0.000467727 | 0.023645085 | 0.020961286
BIOCARTA_NO2IL12_PATHWAY 15 0.67762405 1.901194623 | 0.00041876 | 0.023645085 | 0.020961286
NEUTROPHIL_DEGRANULATION 384 0.37840427 1946475313 | 0.000543183 | 0.026338835 | 0.023349287
METABOLIC_REPROGRAMMING_IN_COLON_CANCER 39 —0.538718599 —1.874240335 | 0.00073828 | 0.032774674 | 0.029054635
AMINO_ACID_METABOLISM 77 —0.432453124 —1.725839834 | 0.000723066 | 0.032774674 | 0.029054635
VITAMIN_B12_METABOLISM 40 0.523782582 1.894773095 | 0.00087146 | 0.034152407 | 0.03027599
ARACHIDONIC_ACID_METABOLISM 45 0.506506142 1.877756036 | 0.00087604 | 0.034152407 | 0.03027599

Table 5. Results of GSEA for risk group. GSEA, Gene set enrichment analysis

ID logFC Aveexpr |t p-value | adj.p B

PEROXISOME —0.112077 | 0.005078 | —2.374395 | 0.021950 | 0.253951 | -3.395191
ADIPOGENESIS —-0.117102 | 0.017172 | -2.313087 | 0.025395 | 0.253951 | —-3.515193
FATTY_ACID_METABOLISM —0.120356 | 0.009235 | —2.463940 | 0.017671 | 0.253951 | —3.215681
PROTEIN_SECRETION —0.142890 | 0.028487 | -2.156539 | 0.036479 | 0.303995 | -3.810525
MTORCI_SIGNALING —0.145698 | 0.016058 | —3.226169 | 0.002354 | 0.117692 | —1.505522
OXIDATIVE_PHOSPHORYLATION | -0.191631 | 0.015229 | —2.403147 | 0.020484 | 0.253951 | —3.338097
PEROXISOME1 -0.112077 | 0.005078 | -2.374395 | 0.021950 | 0.253951 | -3.395191
ADIPOGENESIS1 —-0.117102 | 0.017172 | —=2.313087 | 0.025395 | 0.253951 | —3.515193
FATTY_ACID_METABOLISM1 —0.120356 | 0.009235 | —2.463940 | 0.017671 | 0.253951 | —3.215681
PROTEIN_SECRETION1 —0.142890 | 0.028487 | —2.156539 | 0.036479 | 0.303995 | —3.810525
MTORCI_SIGNALING1 —0.145698 | 0.016058 | —3.226169 | 0.002354 | 0.117692 | —1.505522
OXIDATIVE_PHOSPHORYLATION1 | -0.191631 | 0.015229 | —2.403147 | 0.020484 | 0.253951 | —3.338097

Table 6. Results of GSVA for risk group. GSVA, Gene set variation analysis

stress, and signaling pathways. This study provides a theoretical framework for understanding the role of lactate
metabolism in sarcopenia and identifying potential targets for intervention.

Immune infiltration analysis via ssGSEA, assessing 28 immune cell types in SARC, revealed distinct
patterns of macrophage and NK cell infiltration between risk groups, consistent with immune dysregulation
in muscle wasting?. Differential macrophage infiltration aligns with findings in age-related SARC, where
polarized macrophages regulate muscle regeneration through IL-10/STAT3 signaling™. The observed NK cell
enrichment in the LowRisk group supports their protective roles in murine models of muscle injury®!, suggesting
conserved mechanisms warranting validation. Notably, the FOXO3-plasmacytoid dendritic cell association
extends FOXO3’s known immunomodulatory roles in aging, strengthening the concept of immune-metabolic
crosstalk in SARC pathogenesis®2. These immune features suggest promising therapeutic targets, particularly in
macrophage polarization, an area under preclinical exploration for related myopathies®.

Using LASSO regression, we developed a diagnostic model incorporating five LMRGs (PPARGCIA,
PIK3C2A, FOXO3, HTT, and GSR), achieving AUCs of 0.7-0.9. Inclusion of FOXO3 and PPARGCI1A supports
their established roles in muscle metabolism®*, whereas the involvement of HTT aligns with its emerging role in
Huntington’s disease-related myopathy®. The model mirrors current trends in lactate-focused diagnostics, such
as in cancer cachexia®; however, it has some limitations. Clinical variables, such as gait speed and grip strength,
which have been shown to improve diagnostic validity in the FNIH SARC Project®’, should be integrated.
Environmental modulation of LMRDEGsS also deserves attention, particularly given the effectiveness of lifestyle
interventions observed in the SPRINTT trial®®.

The present study had several limitations. The small sample size may affect external validity, warranting future
validation in larger cohorts. In addition, the lack of experimental validation limits mechanistic insights into the
identified LMRDEGs, and potential batch effects from dataset integration should be addressed. Nevertheless, our
identification of 17 LMRDEGs offers valuable insights into the molecular mechanisms of SARC and highlights
potential targets for intervention.
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Fig. 10. GSVA for SARC sample A-B. Heat map (A) and group comparison map (B) of GSVA results between
HighRisk and LowRisk groups of SARC samples from the integrated GEO dataset. SARC, Sarcopenia; GSVA,
Gene Set Variation Analysis. ns stands for p-value > 0.05, not statistically significant; * represents p-value <
0.05, statistically significant; ** represents p-value < 0.01, highly statistically significant; *** represents p-value
< 0.001 and highly statistically significant. Yellow indicates the HighRisk group, while purple denotes the
LowRisk group. The screening threshold for GSVA was set at P < 0.05. In the heatmap, blue signifies low
enrichment and red represents high enrichment.
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Conclusion

In summary, this study reveals the potential role of LMRDEGs in SARC pathogenesis. Through integrative
bioinformatics analyses, we identified key genes and pathways warranting further exploration. Overall, our
findings provide a foundation for future research into diagnosing SARC, developing further diagnostic models,
and establishing therapeutic strategies. However, further verification through extensive independent cohorts
and experimental studies remains imperative to confirm the robustness of the results.
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Fig. 12. Risk group immune infiltration analysis by ssGSEA algorithm A. comparison of the grouping of
immune cells in the lowrisk group and highrisk group of SARC samples. B-C. Results of correlation analysis of
immune cell infiltration abundance in the LowRisk (B) and HighRisk (C) groups of SARC samples are shown.
D-E. Bubble plot of correlation between immune cell infiltration abundance and hub genes in the LowRisk
(D) and HighRisk (E) groups of SARC samples. ssGSEA, single-sample Gene-Set Enrichment Analysis; SARC,
Sarcopenia. ns stands for p-value > 0.05, not statistically significant; * represents p-value < 0.05, statistically
significant; ** represents p-value < 0.01 and highly statistically significant. The absolute value of correlation
coefficient (r value) below 0.3 was weak or no correlation, between 0.3 and 0.5 was weak correlation, and
between 0.5 and 0.8 was moderate correlation. Blue is the LowRisk group, and yellow is the HighRisk group.
Yellow is a positive correlation, blue is a negative correlation, and the depth of the color represents the strength

of the correlation.
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