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Risk assessment plays a crucial role in ensuring the safety of process units. Artificial intelligence has 
become increasingly prevalent in risk assessment and prediction, offering the potential for more 
precise outcomes when integrated with other techniques. This study is both descriptive and analytical 
in nature. The dataset utilized comprises 160 deviations identified through the HAZOP technique. 
A variety of evaluation algorithms were employed in this study, ranging from ensemble methods 
like Random Forest, Hist Gradient Boosting, XGBoost, and CatBoost, to traditional methods such as 
Logistic Regression, K-Nearest Neighbors (KNN), Support Vector Machine (SVM), and Convolutional 
Neural Network (CNN). This broad array of algorithms enabled a comprehensive comparison of diverse 
modeling approaches, encompassing conventional statistical methods and cutting-edge machine-
learning techniques. Among the algorithms tested, Random Forest, XGBoost, and CatBoost exhibited 
exceptional performance on the training and test datasets, achieving near-perfect AUC scores and 
accuracy values of 1.0000. In the fusion of Bayesian networks and Multi-Criteria Decision Making 
(MCDM), the options “Corrosion in Electrolysis Cells” and “Damage and Explosion of Cells” were 
given higher priority over other options. The findings from this study suggest that machine learning 
techniques, along with the amalgamation of Bayesian networks and MCDM, can serve as effective 
tools for risk assessment and the prioritization of risk options. By leveraging these methodologies, 
suitable control and preventive measures can be implemented to mitigate risks effectively.
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In recent decades, the widespread adoption of new technologies across industries has significantly enhanced 
human welfare. However, this progress has also introduced a new dilemma: workplace accidents, which have 
led to substantial human casualties1. According to the International Labour Organization (ILO) statistics, more 
than 2.78 million people lose their lives each year due to occupational accidents2. Occupational accidents cost 
the global economy $1.25 billion annually and lead to the death of 2 million people per year3. The rate of fatal 
occupational accidents is four times higher in developing countries compared to industrialized countries, and 
Iran is not an exception to this rule, with approximately 14,000 occupational incidents occurring annually4.
Therefore, the need for prevention of accidents is considered a necessity for the survival of organizations. This 
requires identifying the causes of accidents before they occur, which today has been addressed in the form of 
a risk assessment and management approach5,6. The power industry is one of the high-risk industries among 
various sectors, as personnel working in power generation, transmission, and distribution are exposed to a range 
of occupational health hazards7. power plants are one of the most important factors and necessities for the 
growth and development of any country. They are a collection of industrial facilities used for the production 
of electrical energy8. Nuclear power plant One of the most efficient types of power plants is the combined 
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cycle power plant, where optimal design can lead to reduced fuel costs9. In many power plants in Iran, due to 
geographical location and climatic conditions, the once-through cooling system, such as Heller towers and air-
cooled condenser (ACC) systems, is used, which is the most suitable option for power plants located near the sea 
or rivers10. The chemical reactions in the chlorination unit of combined cycle power plants with a once-through 
cooling system result in the production of sodium hypochlorite and hydrogen gas11,12. Therefore, considering 
the risk of fire and explosion caused by hydrogen gas leakage, the evaluation of HSE risks in the chlorination unit 
of combined cycle power plants is essential. The significance of addressing these risks is not merely academic; 
it is of paramount importance for the sustainability and operational continuity of power plants13. The Hazard 
and Operability Study (HAZOP) technique is widely used for identifying system hazards and operational issues 
in industries like chemicals and power generation. This systematic method involves expert teams examining 
potential process deviations and their consequences based on operational parameters such as temperature and 
pressure14. Analyzing such large datasets requires advanced resources and techniques for data classification and 
pattern identification that cannot be achieved through traditional analytical tools15. With the development of 
artificial intelligence and the emergence of the era of big data, many researchers have utilized machine learning 
methods to conduct extensive research on risk assessment16,17.

Organizational risk management plays a crucial role in the sustainable performance of financial institutions 
domestically and internationally. Older assessment methods are no longer able to meet the needs of processing 
various types of data, handling a large number of users, and achieving high-risk prediction accuracy18,19. 
Many researchers employ machine learning methods20. Predictive models for occupational accidents can be 
based on statistical learning or machine learning (ML). Given the vast amount of available data, ML replaces 
traditional statistical counterparts in predicting future events and has been widely used in various fields such 
as engineering, medical sciences, and finance, providing highly valuable results21. Machine learning (ML) is a 
subset of artificial intelligence that enables systems to learn patterns and make predictions from data without 
explicit programming22. In this study, ML techniques are applied to predict risks by analyzing historical data and 
identifying relationships between critical variables. Ensemble algorithms, such as Random Forest, XGBoost, and 
CatBoost, are utilized to enhance predictive accuracy and robustness. These algorithms combine predictions 
from multiple models to create a stronger overall prediction23. Ensemble methods are particularly effective in 
handling classification tasks, managing imbalanced datasets, and reducing the impact of noise, making them 
suitable for risk assessment in complex systems24.

However, existing research indicates that machine-learning techniques have been limitedly used in 
occupational accident analysis25. In recent years, machine learning-based risk assessment models have emerged 
and proven to be more effective than traditional risk assessment methods26–29. Commonly used modern machine 
learning techniques include Backpropagation Neural Networks (BP), K-Nearest Neighbors (KNN), and Support 
Vector Machines (SVM)30. Additionally, tree-based machine learning methods are widely employed in risk 
assessment, such as basic decision tree models and more advanced ensemble approaches like Random Forest 
(RF), Gradient Boosting Decision Trees (GBDT), XGBoost, and LightGBM31.

The focus of this research lies in the dynamic risk assessment of a combined cycle power plant, where risks 
are continuously evolving due to varying operational conditions. A dynamic risk assessment involves updating 
the primary risk number based on various factors such as the control system’s performance, safety barriers, 
maintenance and inspection activities, human factors, and operational procedures. This method was developed 
to address limitations seen in other approaches like bow-tie32. Research on dynamic risk assessment in process 
facilities is ongoing33.

The Bayesian belief network is a widely used method in dynamic risk assessment due to its ability to handle 
uncertainty and belief updating. This approach is effective in addressing complex issues by combining robust 
probabilistic methods with graphical representations. Bayesian networks can pinpoint components that are 
most likely to contribute to system risk34. When objective data is lacking and expert opinion is necessary, the 
Bayesian belief network offers a natural framework for understanding relationships between model components. 
It also offers a way to manage uncertainty, unpredictability, and complexity in decision support systems. The 
graphical and easily updatable nature of Bayesian Networks has made them increasingly popular in the process 
industry35,36.

This study was conducted in a combined cycle power plant with a capacity of 968 megawatts. Seawater is 
used for cooling operations in this power plant. It consists of 162 units in the gas phase and 1 unit in the steam 
phase. One of the areas examined in this research is the chlorination unit, which is responsible for producing the 
required hypochlorite for chlorination purposes. Considering that this unit is one of the critical and hazardous 
units in the power plant, it was the focus of this study. Therefore, this study aimed to develop a method for risk 
assessment using machine learning and a Bayesian decision network based on multi criteria decision making37.

It should be noted that obtaining reliable data is often challenging, resulting in difficulties when eliciting 
conditional probability tables (CPTs) for each node in a Bayesian network (BN). In such cases, CPTs are typically 
derived from expert opinions. However, it is important to acknowledge that human judgment is subjective and 
ambiguous, leading to inherent uncertainty in probability analysis38. To address the fuzziness and uncertainty 
associated with vague decision-making, the fuzzy analytical hierarchy process (fuzzy AHP) is employed. Fuzzy 
AHP utilizes fuzzy sets, membership functions, and fuzzy numbers to more effectively handle subjective 
evaluations and convert linguistic variables into probability values39,40. Therefore, in this study, fuzzy AHP is 
utilized to calculate the CPTs of the BN.

By employing expert elicitation and fuzzy theory to determine probabilities, FBN utilizes the same reasoning 
and inference algorithms as conventional BN for predictive analysis and probability updating. this study 
compares the results of fuzzy Bayesian networks (FBN) with traditional Bayesian networks, showing that FBN 
offers more detailed, transparent, and realistic insights, particularly when analyzing critical risk factors41.
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Literature review
The increasing complexity of industrial operations and the growing focus on safety management have driven 
significant advancements in risk assessment methodologies42. While traditional techniques remain valuable, 
they often encounter challenges in addressing uncertainties, evolving risk factors, and the intricate, nonlinear 
interactions between various contributing elements43. To overcome these limitations, researchers have 
introduced advanced computational approaches such as fuzzy logic, Bayesian networks, machine learning (ML) 
to improve risk prediction and decision-making in occupational and process safety44.

These approaches have contributed to a more systematic, data-driven evaluation of risks, allowing for 
improved hazard identification, mitigation strategies, and decision-making processes within industrial safety 
management frameworks. Table 1 presents a comparative analysis of methodologies and key findings in risk 
assessment and process safety.

Method
This study is applied research aimed at identifying and evaluating the risk of a power plant’s chlorine unit using 
machine learning, combining Bayesian networks and the fuzzy AHP method. Figure 1 illustrates the steps of 
implementing this method.

Data collection of the examined process
The text describes the methodology used for gathering necessary information through technical review, 
document analysis, and interviews with employees and experts. In this regard, initially, the relevant company’s 
available resources and technical documents, as well as the chlorination unit’s equipment and related 
diagrams, were studied. Subsequently, the Process Flow Diagram (PFD) and the Overall Equipment Layout, 

Row Author(s) Study focus Methodology/techniques Key findings & contributions

1 Alauddin et 
al.45

HAZOP & ANN for Dust Explosion 
Testing

HAZOP study combined with ANN for 
predicting explosion parameters

ANN models accurately predict explosion severity, and HAZOP 
enhances reliability in modeling

2 Contessotto46 Phenomena-Based HAZOP Support
Graph-based modeling and automation 
using Python for HAZOP deviation 
analysis

Utomates deviation tracking, reduces human error, and improves 
efficiency in HAZOP studies

3 Bozorgi et al.47 Risk assessment and management of 
agricultural water systems

(FDBN) for multi-hazard risk 
assessment, incorporating fuzzy 
theory(WASPAS, TOPSIS, MultiMoora, 
and Copeland approach)

Provides a structured approach to handle uncertainties, supporting 
sustainable decision-making in water resource management

4 Li et al.48 Chlorination process safety 
management Complex system modeling Emphasized the interconnection of workers, equipment, materials, 

environment, and energy in safety modeling

5 Bassey et al.49 Loss of containment (LOC) incidents 
prediction Machine learning (ML), CatBoost model Achieved 95% accuracy in predicting LOC severity in offshore oil & 

gas facilities

6 Paltrinieri20 Risk assessment in Oil & Gas drilling Deep Neural Network (DNN) Showed high accuracy in risk prediction and potential for improving 
risk assessment

7 Li et al.50 Dynamic risk assessment of process 
operations Bayesian Network (BN) + BRANN Improved prediction accuracy by capturing nonlinear accident 

escalation scenarios

8 Wu et al.51 Hydrogen sulfide leakage risk Bayesian Network Identified critical vulnerable factors and estimated leakage probabilities

9 Meel and 
Seider33

Dynamic risk assessment in process 
facilities Probability Estimation Provided a dynamic methodology for accident probability estimation

10 Wang et al.52 HAZOP (Hazard and Operability) 
risk prediction Data Mining, Naïve Bayes Algorithm Improved accuracy and efficiency in hazard identification

11 Ekrampooya 
et al.53

Recommendation prediction from 
accident causes/consequences NLP + Machine Learning (ML) Achieved 93.7% accuracy (causes-based) and 89.5% accuracy 

(consequences-based) for safety recommendations

12 Single et al.54 Hazard inference in process safety Ontologies, AI, Case-Based Reasoning, 
Support Vector Machine

Introduced structured hazard identification with AI-driven ontological 
reasoning

13 Pirbalouti et 
al.55 Safety–critical equipment modeling HAZOP, Bow-tie Model, Bayesian 

Network
Improved system reliability and reduced maintenance costs through 
probabilistic analysis

14 Guo et al.56 Uncertainty assessment in risk 
analysis

Fuzzy Dynamic Bayesian Network 
(FDBN)

Demonstrated higher resilience and reliability than traditional 
Bayesian models

15 Liu et al.57 Dynamic risk assessment in 
deepwater drilling Fault Tree Analysis, Bayesian Network Provided a modular model for blowout risk evaluation and updates 

with new data

16 Li et al.58 Explosion accident risk (molten 
aluminum & water) Fuzzy Bayesian Network (FBN) Assessed explosion risks probabilistically to enhance safety 

management

17 Li et al.59 Mine ignition source risk Fuzzy Bayesian Network (FBN), Fuzzy 
Analytic Hierarchy Process (FAHP)

Used expert decision-making with FAHP-based expert weight 
determination to improve model credibility

18 Xue et al.60 Multi-attribute decision-making 
(MADM) in risk assessment Fuzzy Bayesian Network (FBN) Developed a robust MADM model for complex decision-making 

under uncertainty

19 Zarei et al.41 Uncertainty management Fuzzy Bayesian Network (FBN), Delphi 
Method

Integrated expert knowledge via the Delphi method for more reliable 
uncertainty modeling

20 Gul et al.61 Occupational risk assessment in 
production facilities

Stratified Bayesian Decision-Making, 
TOPSIS-Sort

Developed a structured Bayesian model for evaluating hazards and 
prioritizing risks in production environments

Table 1.  A comparative review of methodologies and findings in risk assessment and process safety.
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communication lines, instrumentation, control systems, and Interlock (P&ID) diagrams of the chlorination unit 
were prepared by the risk assessment team members. The risk assessment team, composed of the head of the 
power plant’s chemical unit, the operator in charge of the chlorination unit, the shift supervisor, the technician 
responsible for instrument repairs, the technician responsible for electrical repairs, the technician responsible 

Fig. 1.  Phases of study implementation process.
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for mechanical repairs, and the power plant’s HSE specialist, was formed to conduct the study on operations and 
hazards (HAZOP).

HAZOP study
HAZOP study is a practical and systematic technique for identifying hazards and operational problems in 
a system and determining their effects62. This technique is based on the principle that a system is safe when 
all its operational parameters, such as temperature, pressure, etc., are within normal and acceptable ranges. 
In this method, a team of experts examines potential process deviations from standard conditions and their 
potential effects using a set of keywords63. HAZOP analysis considers the entire system and examines each part 
to discover disturbances and deviations from the design objectives and evaluate their causes and consequences64. 
Subsequently, a structured approach is followed, which includes a well-defined set of terms for precise 
communication of analysis elements and documentation of results.

In this phase, the expert group divided the chlorination unit into 7 nodes based on the type of work involved. 
These nodes include the rectifier section, MV electrolyzer feeders, acid tanks, profit storage tanks, brine skids, 
brine water filters, net pit, forward osmosis pits, and chlorine storage tanks. The operational parameters studied 
in this research included water flow rate, current, voltage, oil temperature, fluid pressure in pipelines, pH of 
incoming water, and salt concentration of incoming water. Therefore, the individual effects of malfunctioning in 
each component and ultimately the impact on the normal operation of the unit due to various reasons such as 
equipment defects and human errors by the team members were examined, and the risk level was determined.

Machine learning
After gathering relevant information on risk assessment using Machine Learning (ML) methods, it was utilized 
to improve and enhance the Hazard and Operability (HAZOP) approach. Based on the assigned risk level, the 
probability, severity, and detection probability for each hazard were calculated, and the associated risk was 
categorized as high, medium, or low.

Table 2 presents comprehensive statistics of the data used in this study, including minimums, maximums, 
means, standard deviations, quantiles, kurtosis, and skewness, to aid in understanding the process.

Data processing
Data exploratory analysis is an approach to analyzing a dataset to understand its main features, which can be 
accompanied by visualization methods. Data cleansing is performed to manage missing values and noise. If 
the data is collected from different sources with different formats and structures, data integration is necessary. 
To reduce computational and processing costs, if there is no need to use all available data, a portion of the 
surplus data is set aside in the data reduction section. Data transformation includes tasks such as normalization, 
numerical variable handling, and encoding categorical variables. The algorithms used in this study are selected 
based on the type of problem, which is supervised machine learning. To eliminate the scale of numerical data, all 
numerical features will be normalized. Non-normalization of data may disrupt the training process of algorithms 
due to differences in input data scales. Statistical normalization method according to Eq. 1 will be used for data 
normalization.

	
Xnorm = x − µx

∂x
� (1)

In this regard, x represents the input data, μx represents the mean of feature x, and ∂x represents the standard 
deviation of feature x. The nominal data values will also be encoded with numerical values of 0 and 1. After 
performing initial checks and data preparation, the mentioned algorithms will be applied to the dataset.

In this study, two sets of data, which are independent and dependent, were assigned to two different data 
frames, namely “X” and “y”, for further processing. Additionally, the data was divided into training and testing 
data for model development. An 80% test size was considered, meaning that 80% of the total data was used for 
training and the remaining 20% for model testing.

Probability Severity Detection Risk

Mean 3.3000 6.3125 2.6500 57.3062

Std 1.3909 1.9593 1.2142 42.2234

Min 2.0000 1.0000 1.0000 2.0000

25% 2.0000 5.0000 1.0000 24.0000

50% 4.0000 7.0000 3.0000 42.0000

75% 4.0000 8.0000 3.0000 84.0000

Max 8.0000 9.0000 5.0000 180.0000

Kurtosis 0.2638 0.3883 -0.6560 0.0801

Skewness 0.8115 -0.7613 0.0604 0.9157

Table 2.  Dataset descriptive statistics.
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Model construction and performance evaluation
For this research project, we utilized Python software version 3.11.4 for both preprocessing and constructing our 
model. Our dataset was divided into two parts: 128 inputs were allocated for training and testing purposes, while 
the remaining 32 inputs were reserved for model evaluation.

The process of analyzing the dataset involved a systematic approach that aimed to preprocess the data and 
evaluate the performance of predictive models. Initially, we created a new column called ‘Risk_binary’, which 
transformed the ‘Risk’ values into a simpler binary classification format, making the subsequent analysis easier. 
By categorizing instances as either 1 or 0, we represented a risk level below 100 or 100 or higher, respectively. This 
made the dataset more amenable to classification algorithms.

In addition, it was deemed necessary to exclude the ‘Risk’ column from further calculations due to its strong 
correlation with the target variable, ‘Risk_binary.’ This precautionary measure was taken to address any potential 
issues of multicollinearity that could skew model predictions. By applying both the OneHotEncoder and 
LabelEncoder methods to the categorical data in the ‘Category’ column, we were able to effectively transform 
these variables into numerical formats, which are crucial for the proper implementation of machine learning 
algorithms.

In machine learning, selecting optimal parameter settings for algorithms is crucial as it directly influences 
the model’s performance and predictive accuracy. One effective method for parameter tuning involves utilizing 
insights from the dataset’s correlation matrix. The correlation matrix provides a comprehensive overview of the 
relationships between different features within the dataset. By examining the correlation coefficients between 
each pair of features, one can discern the degree and direction of their linear relationship. This information is 
invaluable for parameter selection as it helps identify relevant features and potential multicollinearity issues.

The values in this matrix range between [− 1, 1], and the closer these values are to 1, the stronger the positive 
correlation between the two variables. In other words, an increase in one variable is accompanied by an increase 
in the other variable. Negative values in the correlation matrix indicate a negative or inverse correlation between 
two variables, meaning that an increase in one is accompanied by a decrease in the other. A value of zero in 
this matrix indicates that there is no linear correlation between the two variables. Analyzing the values of the 
correlation matrix helps us identify patterns and relationships in the data, which can be useful in decision-
making and modeling.

To improve the reliability of our model evaluations, we incorporated a cross-validation technique with 5 
folds. This procedure entailed systematically splitting the dataset into training and testing subsets, resulting 
in a thorough evaluation of the model’s performance across different data subsets. This helped to minimize 
overfitting and enabled us to obtain more precise assessments of the model’s effectiveness, thereby ensuring 
increased dependability.

To obtain the best possible results from the algorithms considered in the analysis, the GridsearchCV 
method was employed. This method systematically explored a range of hyperparameter values, allowing for 
the identification of the optimal hyperparameters for each algorithm. By fine-tuning the models in this way, 
their predictive capabilities and generalization performance were significantly improved. Overall, this approach 
helped to ensure that the results obtained were as accurate and reliable as possible.

A wide range of evaluation algorithms were used, including various ensemble methods such as Random 
Forest, Hist Gradient Boosting, XGBoost, and CatBoost, as well as other methods like Logistic Regression, 
K-Nearest Neighbors (KNN), Support Vector Machine (SVM), and Convolutional Neural Network (CNN). 
This diverse selection of algorithms facilitated an extensive comparison of different modeling approaches, 
incorporating traditional statistical methods and cutting-edge machine-learning techniques.

The performance evaluation of the model was carried out utilizing the roc_auc_score, accuracy, and F1 score 
metrics.

Let, TP be the number of true positives (correctly predicted positive instances), FN be the number of false 
negatives (incorrectly predicted negative instances), FP be the number of false positives (incorrectly predicted 
positive instances), and TN be the number of true negatives (correctly predicted negative instances). In addition, 
let TPR represent the True Positive Rate (Sensitivity) and FPR represent the False Positive Rate (1—Specificity), 
calculated as:

	
T P R = T P

T P + F N
� (2)

	
F P R = F P

F P + T N
� (3)

The ROC curve is then plotted by varying the threshold for classifying instances as positive or negative and 
calculating (T P R) and (F P R) for each threshold value. The area under this curve is computed to obtain the 
ROC AUC score.

The ROC AUC score ranges from 0 to 1, where a score of 1 indicates perfect classifier performance (i.e., the 
classifier achieves a true positive rate of 1 and a false positive rate of 0), while a score of 0.5 suggests random 
performance (i.e., the classifier is no better than random guessing).

For accuracy and F1 score, we have the following relations, respectively:

	
Accuracy = T P + T N

T P + T N + F P + F N
� (4)
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The F1 score is the harmonic mean of precision and recall, providing a balance between these two metrics. It is 
calculated using the Eq. (4):

	
F 1Score = 2 × P recision × Recall

P recision + Recall
� (5)

where:
Precision is the ratio of true positives to the total number of predicted positives and is calculated as:

	
P recision = T P

T P + F P
� (6)

Recall (also known as sensitivity or true positive rate) is the ratio of true positives to the total number of actual 
positives and is calculated as:

	
Recall = T P

T P + F N
� (7)

The F1 score ranges from 0 to 1, with 1 indicating perfect precision and recall, and 0 indicating the worst possible 
model performance. It is a useful metric for imbalanced datasets where the number of instances in one class is 
much larger than the other.

BN-FAHP
The Bayesian network is a hierarchical structure consisting of a set of objectives, options, criteria, and sub-
criteria for decision-making. In this study, three types of nodes were chosen, including the probabilistic group, 
desirability node, and decision node, which are used in the BN structure. The decision nodes represent a set 
of options, the desirability node represents a set of objectives (decision priorities), and the probabilistic nodes 
consist of a set of criteria and sub-criteria. These criteria may be related to each other and can also be influenced 
by multiple factors. Figure 2 illustrates the hierarchical structure of BN networks in this study. Netica software 
was used for BN modeling in this study.

In the hierarchical fuzzy AHP method, a hierarchical structure is used to describe and analyze various criteria. 
This method allows for the modeling of different criteria in decision-making and risk assessment processes in a 
fuzzy manner using fuzzy logic. By considering the existing uncertainty and ambiguity, better decisions can be 
made regarding the evaluation of factors affecting risk. This method also identifies risk options. The main risk 
options used in the BN method are also utilized in the hierarchical structure of the MCDM method.

After establishing a hierarchical structure, the next step is to evaluate elements through pairwise comparison. 
Pairwise comparison is a process for comparing the importance, preference, or correctness of two elements 
relative to a higher-level element. The comparisons of risk options were conducted in the form of pairwise 
comparison matrices. In the first row, comparing the probability of occurrence and the intensity of effects 
relative to the objective as criteria for effective risk options, these two factors, as the main components of risk, 
have equal importance and each receives a priority of 1 and a weight of 0.5.

Fig. 2.  Illustrates the hierarchical structure in Bayesian networks.
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The pairwise comparison tables of options related to factors influencing risk were also completed based on 
expert judgments and the complete process unit characteristics. Then, the weight of each indicator relative to 
higher-level indicators (relative weight) was calculated using the eigenvector method, and by combining them, 
the final weight for each option of factors influencing risk was determined.

The BN method based on the hierarchical structure of MCDM, considering the relationships between 
variables and adjusting uncertainties, provides persuasive and acceptable results and offers a proper prioritization 
for developing suitable strategies to reduce risk. After prioritizing the factors influencing the risk, solutions are 
presented for reducing and managing the risks of power plants and dealing with them, along with the utilization 
of appropriate measures before the occurrence of hazards.

Results
Hazop study
To identify and evaluate the risks of the target unit, a team consisting of process, safety, instrumentation, 
mechanical, and safety experts was formed. Table 3 shows a sample risk assessment conducted at the node 
related to the electrolyzer. The results of the hazop study for the selected nodes are presented in Table 3, based 
on the number of deviations in each node. As seen in Table 4, the highest number of deviations is related to the 
acid tank with 54 deviations, and the lowest number of deviations is related to the water storage tank with 2 
deviations.

Machine learning
As previously mentioned, we determined risk levels based on other factors such as Probability, Severity, and 
Detection. Figure 3 illustrates the risk behavior for all samples. As observed, the risk values fluctuate between 2 
and 180 within the range.

For parameter setting, the correlation matrix is used based on the Risk feature. Figure 4 denotes the correlation 
matrix between features. Based on this figure there are strong relationship between Risk and Detection, Severity 
and Probability, and a moderate relationship between Risk and Electrolyzer and Rectifier.

Number of identified deviations Equipment name

3 Sea Water Forwarding Pumps

15 Saltwater Reservoir

2 Water Storage Tank

4 Saltwater Storage Tank

3 Saltwater Filter

3 Salt Transfer System

17 Electrolyzer

25 Rectifier

3 MV Leaders

10 Chlorine Storage Tank

54 Acid Storage Tank

5 Profit Injection Pumps for Net Profit

16 Net profit

Table 4.  Number of identified deviations in the studied nodes using the HAZOP.

 

Row Keyword Cause Consequence Current Protection
Primary 
Risk

Decision 
criterion

1–1
Increase 
in output 
pressure

The closure of the Vanet hydrogen valve 
path mpus20/21aa286 is due to the 
deposition inside the cells

Increased pressure in the hydrogen vent path and the 
possibility of explosion due to severe leakage from the 
cells, as well as the potential for PVC piping rupture 
in the electrolyzer and its connected lines

The installation of a 
pressure gauge at the outlet 
of the MPUS21/20CP502 
electrolyzer is lacking 
protective measures for 
pressure control

108 Unacceptable

2–1 Increased 
pressure

Excessive sedimentation in sewers, closed 
outlet valves, abnormal increase in ampere 
value, and high levels of chlorine reservoir 
are the issues at hand

The potential for PVC pipe cracking, leakage from 
sewers, and the risk of explosion due to hydrogen 
accumulation and increased pressure are the concerns

The location is 
mpus21/20cp502 108 Unacceptable

3–1 Pressure 
decrease

There is a leakage in the electrolyzer, and 
the input valve of MPUS20/21AA252 is 
closed

Regarding the flow switch mpus21/20cf001 Installation of Flow Switch in 
MPUS21/20CF001 Output 24 Acceptable

4–1 Flow 
reduction

Over time, an increase in sedimentation 
occurred, requiring sufficient time for acid 
leaching

Reducing the concentration of chlorine production 
can cause long-term damage to cells, increase output 
pressure, and potentially lead to hydrogen vent 
blockage

The installed pressure gauge, 
MPUS21/20CP502, indicates 
a local deposit inside the cells

96
Acceptable, 
but in need 
of revision

Table 3.  An example of a risk assessment worksheet for the Electrolyzer unit using the HAZOP.
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A summary was compiled to provide a concise overview of the analysis results, outlining the algorithms 
utilized and their respective outputs. Table 5 serves as a valuable point of reference for evaluating and contrasting 
the performance of various models, aiding in selecting the optimal algorithm for the given task.

The table presents performance metrics for several machine learning models, each evaluated using different 
algorithms. The evaluation criteria focus on the models’ ability to accurately classify or predict outcomes, as 
indicated by the corresponding evaluation scores. Additionally, the confusion matrix (Table 6) was computed for 
all methods, providing the following results for each approach:

Table 6 illustrates the confusion matrix, summarizing classification results for 32 outcomes derived from 
the test dataset. These outcomes include True Positives (TP), True Negatives (TN), False Positives (FP), and 
False Negatives (FN). For instance, TP cases correctly identify high-risk scenarios like hydrogen gas leakage, 
while TN cases represent correctly classified low-risk scenarios. Conversely, FP outcomes overestimate risks 
(e.g., mislabeling minor deviations as high-risk), and FN outcomes miss significant risks (e.g., failing to detect 
potential equipment failure).

BN-FAHP
In this study, a total of 30 nodes were used in Bayesian networks, and the specifications of these nodes are 
shown in Table 7. These nodes include the node name, the level of the node in the hierarchical structure, the 
state of the node, and its type in the BN structure. This evaluation includes one decision node with a set of 
risk options and a utility node as the main objective (risk assessment), and 28 potential nodes in the network 
structure. The criteria, sub-criteria, and other factors are potential nodes. In this structure, two main risk 
indicators (probability of occurrence and severity of effects) are the main criteria, and each of these criteria can 
be influenced by sub-criteria such as physical environment, organizational environment, and socio-economic 
environment. Quantitative relationships between variables are modeled through CPTs associated with each 
of these nodes. The probability values in these tables are expressed as percentages based on expert opinions 
in the tables. To complete the probability of occurrence for each scenario in the tables and to achieve better 
coordination, the probability values entered in the variable CPTs were taken from Table 8.

By forming the BN structure and completing the CPT for each node, the probability distribution of decision 
node options was also determined. Figure 5 illustrates the Bayesian network for evaluating the risk of the studied 
unit Based on Nitica-V7.01 software, Corrosion in Electrolysis Cells (CEC), and Damage and Explosion of Cells 
(DEC) are the most significant risks with values of 0.252 and 0.222, respectively. Explosion in Cells due to High 
Voltage (ECHV) and Explosion in cells due to High Current Flow (EHCF) were lower priority risks with values 
of 0.115 and 0.122, respectively.

To compare the results obtained from the Bayesian network, common methods such as MCDM were also 
used. The main risk options employed in the BN method were also utilized in a hierarchical structure. Figure 6 
illustrates the hierarchical diagram of the studied unit.

The weights of each indicator relative to the higher level were calculated using the FAHP method, and the 
final weights for each risk option were determined. Based on the results obtained in this method, Corrosion in 
Electrolysis Cells (CEC) and Damage and Explosion of Cells (DEC) were assigned the first and second priorities, 

Fig. 3.  Risk behavior.
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respectively, with final weights of 0.238 and 0.217. Figure  7 illustrates the prioritization of the options’ final 
weights using the FAHP method.

The above text illustrates the prioritization of risk options using two methods, FAHP and Bayesian Networks, 
as shown in Table 9. In both approaches, the options “Damage and Explosion of Cells (DEC)” and “Corrosion in 
Electrolysis Cells (CEC)” are assigned higher priority relative to the other risk options.

Algorithm Best hyperparameters Train best AUC Test best AUC Accuracy

Random Forest max_depth = 10, n_estimators = 100 0.9933 1.00 1.0000

Hist Gradient Boosting Learning rate = 0.01, max_iter = 200 0.9710 0.96 0.9375

XGBoost learning rate = 0.2, n_estimators = 200 0.9940 1.00 1.0000

CatBoost Iterations = 500, learning rate = 0.01 0.9929 1.00 1.0000

Logistic Regression C = 10 0.9826 0.76 0.8750

K-Nearest Neighbors metric = Euclidean, n_neighbors = 7, weights = distance 0.9976 1.0000 1.0000

Support Vector Machine C = 0.1, gamma = scale, kernel = linear 1.0000 0.9630 0.9375

Table 5.  The performance results of various machine learning models to predict risk acceptance.

 

Fig. 4.  Correlation matrix.
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Node name
The level of a node in a hierarchical 
structure Node states

Node 
type

Utility Goal – Demand

Severity of Hazard Criterion Low, Moderate, High Likely

Probability of Hazard Criterion Low, Moderate, High Likely

Physical environment Sub-criterion Level 1 Low, Moderate, High Likely

Organizational environment Sub-criterion Level 1 Low, Moderate, High Likely

Economic and social environment Sub-criterion Level 1 Low, Moderate, High Likely

Closure of the Hydrogen valve Sub-criterion Level 2 Completely closed, partially closed Likely

The liquid level inside the tank Sub-criterion Level 2 Low, High Likely

Stress in cells Sub-criterion Level 2 Low, Moderate, High Likely

Electrolyzer pressure Sub-criterion Level 2 Low, Moderate, High Likely

Current fluctuation Sub-criterion Level 2 Yes, No Likely

Voltage fluctuation Sub-criterion Level 2 Yes, No Likely

Acid transfer Sub-criterion Level 2 Low, Moderate, High Likely

Reduction in seawater current Sub-criterion Level 2 Low, Very Low Likely

Rectifier operation Sub-criterion Level 2 Suitable, Unsuitable Likely

Reduction in salt content Sub-criterion Level 2 Low, Very Low Likely

Startup Checklist Sub-criterion Level 3 Accept, non-Accept Likely

Functioning of a Flow Switch Sub-criterion Level 3 Work, Fail Likely

Transmitters Sub-criterion Level 3 Work, Fail Likely

On-site Pressure Gauges Sub-criterion Level 3 Work, Fail Likely

Production Guidelines Sub-criterion Level 3 Accept, non-Accept Likely

Process Log Sheets Sub-criterion Level 3 Accept, non-Accept Likely

Rectifier Control Panel Sub-criterion Level 3 Suitable, Unsuitable Likely

Conductivity Meter Sub-criterion Level 3 Work, Fail Likely

On-site level gauge Sub-criterion Level 3 Work, Fail Likely

Manufacturer’s guidelines Sub-criterion Level 3 Suitable, Unsuitable Likely

Human Error Sub-criterion Level 3
An Accidental error, Capture Error, Identification Error, Misperception 
Error, Lack of Knowledge, Mindset, Over Under Motivation Error, 
Reasoning Error

Likely

Inadequate Training Sub-criterion Level 4 Low, Moderate, High Likely

Incompatibility between Person and Role Sub-criterion Level 4 Accept, non-Accept Likely

Risk Objects Objects

Cracking in PVC Pipe(CPP)

Decision

Hydrogen Explosion(HE)

Explosion in cells due to High Current Flow(EHCF)

Explosion in Cells due to High Voltage(ECHV)

Corrosion in Electrolysis Cells(CEC)

Damage and Explosion of Cells(DEC)

Table 7.  Specifies the characteristics of nodes in Bayesian network structures.

 

Algorithm Confusion matrix

Random Forest [[5 0]
[0 27]]

Hist Gradient Boosting [[5 0]
[2 25]]

XGBoost [[5 0]
[0 27]]

CatBoost [[5 0]
[0 27]]

Logistic Regression [[3 2]
[2 25]]

K-Nearest Neighbors [[5 0]
[0 27]]

Support Vector Machine [[5 0]
[2 25]]

Table 6.  The confusion matrix for all methods.
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Fig. 6.  Depicts the hierarchical structure of risk assessment for the studied unit.

 

Fig. 5.  Bayesian network structure for risk assessment of the study unit based on ​n​i​t​i​c​a​-​V​7​.​0​1​(​​​h​t​t​p​s​:​/​/​w​w​w​.​n​o​
r​s​y​s​.​c​o​m​​​​​)​.​​​​

 

Dissection Probabilistic values

The probability of a combined outcome for the parent nodes is very high 80–100

The result indicates a high probability of combining the states of the parent nodes 60–80

The result suggests an average probability of combining the states of the parent nodes 40–60

The result indicates a low probability of combining the states of the parent nodes 20–40

The result suggests a very low probability of combining the states of the parent nodes  < 20

Table 8.  Methods for determining probabilistic values in CPT.
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Discussion
In the realm of risk assessment, machine learning serves as a potent tool within the domain of artificial 
intelligence and data analysis. When it comes to safety, identifying and predicting risks and hazards within 
work and industrial environments are crucial tasks. Machine learning systems, possessing high processing 
capabilities and analytical prowess, excel at uncovering intricate patterns and relationships in risk-related data. 
This capability aids in the identification and prediction of influential risk factors. By leveraging machine learning 
algorithms and drawing insights from historical data and relevant factors, it becomes possible to forecast the 
types of incidents and risks associated with a particular unit, thereby enabling the implementation of appropriate 
safety measures and preventive actions.

During this study, a thorough examination of the data characteristics was conducted, and their statistical 
properties were analyzed. This exploratory phase was instrumental in preparing and refining the dataset for 
predictive modeling. The significance of this initial exploration lies not only in feature identification but also in 
the discovery of latent patterns, laying the groundwork for a more in-depth analysis.

At the heart of this research was the implementation and comparative evaluation of various predictive 
models. These models, employing diverse algorithms and assumptions, were rigorously tested and juxtaposed 
against each other, offering a comprehensive insight into their respective strengths and weaknesses. The 
spectrum of models ranged from traditional machine-learning techniques to advanced ensemble methods. Their 
performance was assessed using multiple metrics to ensure a robust model selection process.

Based on the results obtained from the hyperparameter tuning and model evaluation process, it is evident 
that several machine learning algorithms have performed exceptionally well in classifying the data based on 
the given features. Among the algorithms tested, Random Forest, XGBoost, and CatBoost have demonstrated 
outstanding performance on the training and test datasets, achieving near-perfect AUC scores and accuracy 
values of 1.0000. These algorithms have been effectively tuned with appropriate hyperparameters, such as max_
depth, n_estimators, learning rate, and iterations, leading to robust and highly accurate models.

Furthermore, K-Nearest Neighbors (KNN) and Support Vector Machine (SVM) have also exhibited 
commendable performance, achieving AUC scores and accuracy values close to 1.0000 on the test dataset. KNN 
has been optimized with hyperparameters including the choice of metric (Euclidean), number of neighbors7, 
and weights (distance), while SVM has been fine-tuned with parameters such as C (0.1), gamma (scale), and 
kernel (linear). These results highlight the effectiveness of these algorithms in capturing complex patterns in the 
data and making accurate predictions.

However, it is worth noting that Hist Gradient Boosting and Logistic Regression have shown comparatively 
lower performance compared to the other algorithms. Despite achieving reasonably high AUC scores on 

Risk options
Probabilistic values of the 
Bayesian method Prioritization

Final weights of options in 
the MCDM method Prioritization

Cracking in PVC Pipe(CPP) 0.155 3 0.19 3

Hydrogen Explosion(HE) 0.133 4 0.142 4

Explosion in cells due to High Current Flow(EHCF) 0.122 5 0.11 5

Explosion in Cells due to High Voltage(ECHV) 0.115 6 0.102 6

Corrosion in Electrolysis Cells(CEC) 0.222 2 0.238 1

Damage and Explosion of Cells(DEC) 0.252 1 0.217 2

Table 9.  Comparison of prioritization results for risk assessment in FAHP and BN.

 

Fig. 7.  Final prioritization of options in the FAHP method.
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the training dataset, their performance on the test dataset is relatively lower, indicating potential issues with 
overfitting or suboptimal hyperparameter tuning.

The results of the current study underscore the significant effectiveness of machine learning techniques in 
the realm of risk prediction and assessment. All techniques evaluated in this study demonstrated the ability 
to classify and forecast risks with a high level of accuracy. This notable level of accuracy suggests that these 
techniques could be valuable additions to the risk assessment and prediction toolkit for process units. Given the 
relative ease of implementation of machine learning techniques, the abundance of risk evaluation data, and the 
computational capabilities of modern computers, it is recommended to develop an operational system utilizing 
artificial intelligence, specifically machine learning techniques, for risk prediction and assessment within process 
units. One limitation encountered in this study was the availability of limited data, which could potentially lead 
to suboptimal performance of trained algorithms in risk classification for certain features.

In discussing the capabilities of machine learning in risk classification, a comparison can be drawn with 
the results obtained by Heo et al. in their study on fall injury risk prediction. All machine learning-based 
models exhibited superior performance compared to logistic regression. However, the performance differences 
among the five models were marginal (AUROC values of 0.700, 0.700, 0.699, 0.699, and 0.698 for CatBoost, 
LightGBM, XGBoost, Random Forest, and logistic regression, respectively)65. In the study conducted by Bassey, 
the CatBoost model emerged as the top performer with 95% accuracy. This was attributed to its innate ability to 
effectively handle categorical variables and missing data, along with its strength in preventing overfitting. These 
characteristics equipped CatBoost with exceptional performance, particularly essential for accurate severity 
predictions of hydrocarbon releases. These findings align closely with the outcomes observed in our own study49.

An essential benefit of machine learning techniques lies in the abundance of powerful software tools available 
for their implementation. The presence of robust libraries in various programming languages has significantly 
simplified the application and adoption of machine learning principles. For those seeking a practical approach to 
automating the risk prediction process, the optimal choice would be to leverage machine learning techniques66.

In a study conducted by RK Mazumder, the mean accuracy of various machine learning models after fivefold 
cross-validation was reported as follows: KNN (77%), Decision Tree (80%), Random Forest (85%), Naive Bayes 
(78%), AdaBoost (70%), XGBoost (84%), LGBoost (84%), and CatBoost (78%). Among these algorithms, 
Random Forest (RF) exhibited the highest accuracy in prediction67.

The accuracy of these machine-learning algorithms was assessed using the confusion matrix, a method 
also employed in previous studies such as those by Mangalathu et al.68 and Robles-Velasco et al.69. In the 
context of a confusion matrix, accuracy represents the overall percentage of correct predictions. However, in 
cases of imbalanced datasets, accuracy alone might be misleading. Therefore, considering additional metrics 
from the confusion matrix, such as recall and precision, can be valuable in assessing algorithm performance. 
Recall indicates the percentage of correct predictions for ‘true positive’ instances, while precision signifies the 
percentage of correct predictions for ‘true negative’ instances. The presence of False Positives (FP) and False 
Negatives (FN) in prediction results carries critical implications. FP outcomes, while increasing operational 
costs due to unnecessary safety measures, are less harmful than FN outcomes, which can result in undetected 
high-risk scenarios and potential incidents. In high-risk environments like power plants, prioritizing recall to 
minimize FN is paramount, even at the expense of a slightly higher FP rate. This approach ensures a proactive 
safety-first methodology.

MCDM methods are widely used today for their ease of implementation and execution in various decision-
making domains. However, in complex issues such as risk assessment, they sometimes suffer from uncertainty. 
Bayesian networks are one of the methods that can reduce uncertainty. This method has advantages such as 
considering relationships between variables and uncertainties, integrating information from different formats 
with data and expert opinions, organizing scattered thoughts and opinions on a subject visually and simply, and 
allowing updates with the addition of variables or new data. These features make Bayesian networks flexible 
models with high capabilities in risk assessment70.

To achieve a comprehensive solution for examining issues such as the assessment of risks in process units, 
integrating multi-criteria decision-making methods with Bayesian networks can be more effective compared to 
other approaches. Based on the results of Bayesian networks and prioritization of risk options, it can be stated 
that the options “Corrosion in Electrolysis Cells” and “Damage and Explosion of Cells” have a higher priority 
compared to other options. The BN method, based on a hierarchical structure considering relationships between 
variables and mitigating uncertainties, provides logical and acceptable results and offers a proper prioritization 
for developing suitable strategies to reduce process risks.

One of the main challenges of this research is the limited access to sufficient and high-quality data. The 
dataset, which includes 160 deviations identified through the HAZOP technique, may not be adequate to 
cover the full range of hazards and risks associated with the chlorination unit. This limitation can lead to issues 
such as overfitting of the model and a lack of generalizability to other process units. To address this issue, it is 
recommended to collaborate with various industries to collect more data and to use simulations to generate 
synthetic data related to different operational scenarios.

Incorporating contextual and behavioral factors into risk assessment can provide a better understanding of 
operational dynamics. To this end, collecting qualitative data through expert interviews and surveys, as well as 
considering operator behavior and their decision-making patterns in the model, can be beneficial.

This study shows that combined approaches based on machine learning and Bayesian networks can effectively 
be used to identify and assess risks in process units. However, to improve the accuracy and generalizability of the 
model, attention must be paid to data limitations, data quality, and contextual factors. By adopting the proposed 
approaches in future research, it is possible to develop stronger and more accurate models for risk assessment, 
ultimately contributing to improved safety and efficiency in industrial operations.
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To improve risk assessment in process units, several promising directions can be explored. One critical step 
is broadening the range of data sources. Collaborating with diverse industries and utilizing publicly available 
databases can provide a richer dataset, enabling a more comprehensive understanding of potential risks. Another 
priority is the adoption of advanced data analytics. Techniques such as machine learning and real-time data 
monitoring systems offer significant potential for more dynamic and precise risk assessment.

Addressing uncertainty in risk models is another essential focus area. Developing Bayesian models that 
account for uncertainty and performing sensitivity analyses can help identify and prioritize the most critical 
factors influencing risk. Human factors also demand attention; understanding how human behavior impacts 
risk outcomes and designing tailored training programs can enhance operators’ decision-making and response 
capabilities in high-stakes situations.

Emerging technologies offer exciting opportunities for innovation. The Internet of Things (IoT) can facilitate 
real-time data collection, while artificial intelligence tools can enable predictive analytics and proactive risk 
management strategies. Additionally, cross-industry benchmarking is valuable for identifying best practices and 
working towards standardized methodologies that can be applied across various sectors.

Finally, fostering collaboration with regulatory bodies is essential. Aligning research efforts with industry 
standards and contributing to the development of policies that promote safety and efficiency can ensure that new 
methodologies have practical, real-world impact. By pursuing these avenues, researchers can make significant 
strides in enhancing the safety, reliability, and operational performance of process units.

Conclusion
In the realm of risk assessment, machine learning serves as a potent tool within the domain of artificial 
intelligence and data analysis. When it comes to safety, identifying and predicting risks and hazards within work 
and industrial environments are crucial tasks. Machine learning systems, possessing high processing capabilities 
and analytical prowess, excel at uncovering intricate patterns and relationships in risk-related data.

The findings of this study suggest that ensemble methods such as Random Forest, XGBoost, and CatBoost, 
along with KNN and SVM, are well-suited for the classification task at hand, offering high accuracy and robust 
performance. Further experimentation and fine-tuning may be required for algorithms that have shown 
relatively lower performance, aiming to improve their generalization capabilities and overall effectiveness in 
real-world applications.

By combining Bayesian networks and multi-criteria decision-making methods, it is determined that the 
options “Corrosion in Electrolysis Cells” and “Damage and Explosion of Cells” have a higher priority compared 
to other options. Using this model, appropriate measures can be taken to control and reduce risk in the studied 
unit. Furthermore, the approach presented in this model can be utilized for prioritizing and evaluating risk 
options in other process units as well.

Data availability
Te datasets used and/or analyzed during the current study are available from the corresponding author upon 
reasonable request.
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