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We present a novel multi-objective optimization algorithm, Archived Multi-Objective Simulated 
Annealing (AMOSA), based on simulated annealing for transient electromagnetic (TEM) one-
dimensional inversion. The data misfit and model-constraint are treated as two objectives rather than 
being assembled into a single objective function in this method to reduce uncertainties. We obtain a 
set of satisfactory solutions rather than a single ‘global optimum’ with Multi-Objective Optimization 
(MOO). Archive and Pareto domination are used for discontinuous fronts and to determine the 
acceptance of a new model with Pareto-optimal solutions. Temperature based on the Quasi-Cauchy 
distribution instead of the Gibbs distribution is selected to accelerate the inversion and stabilize model 
perturbation. We test the method using several 1D layered-earth models with noise and noise-free 
data. All synthetic model inversion results are in good agreement with true models. Finally, we test the 
method using a coincident loop TEM field data. The inverted profile shows a reasonable three layers of 
subsurface geology. A nearby well water table verifies the interpreted aquifer layer and the estimated 
aquifer’s top surface.
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As an efficient geophysical exploration method, TEM method is widely used in mining exploration and 
monitoring1, metallic ore exploration2, and advanced detection of tunnels3. Inversion plays a crucial role in the 
interpretation of TEM data. Compared to imaging techniques, inversion can provide more accurate subsurface 
numerical information. Traditional gradient-based inversion methods operate by searching solely along 
the negative gradient direction of the objective function. This implies that such algorithms are only capable 
of descending toward lower fitting errors. However, for inverse problems that involve multiple local minima, 
an inappropriate initial model may lead these methods to converge to a local minimum. Consequently, their 
success is heavily reliant on the initial model. To circumvent this limitation, global optimization methods—
such as Simulated Annealing (SA), Genetic Algorithms (GA), and Particle Swarm Optimization (PSO)—have 
been developed. Among these methods, SA exhibits strong global search capabilities and demonstrates excellent 
adaptability to diverse problem types. The algorithm utilizes the criterion of statistical mechanics in finding 
globally optimal solutions associated with the lowest energy4. In the process of optimization, it applies the 
heuristic Metropolis principles5 to reduce the mobility of solutions with the system energy state decreases6. Since 
its introduction in optimization problems, SA has been applied successfully in many areas, such as traveling 
salesman problems4,7, integrated circuits designing problems8. As an outstanding nonlinear optimization 
algorithm, SA is also used in geophysical inversion problems, such as seismic data interpretation9, gravity 
inversion10, airborne electromagnetic data processing11, transient electromagnetic inversion12, controlled-source 
audio-frequency magnetotelluric6, and marine electromagnetic inversions13. Geophysical inverse problems are 
inherently ill-posed; without appropriate regularization, solutions often become non-unique and unstable. Even 
though simulated annealing is capable of escaping local minima, it does not always yield satisfactory inversion 
results because of its probabilistic nature and the high dimensionality and strong parameterization of geophysical 
models14. Regularization can help stabilize the inversion and mitigate these issues, but within the commonly 
used single-objective framework, it is difficult to determine appropriate weighting factors for regularization 
terms in advance15–17. Moreover, SA or its constrained variants still optimize a single objective function and 
therefore produce only one optimal solution, leaving the problems of non-uniqueness and instability unresolved.
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Under these circumstances, it is appropriate to use Multi-Objective Optimization (MOO) to separate the 
model-fitting and model-constraint into two independent objective-functions in the optimization without 
choosing the weight between them. Unlike single-objective optimization that yields a singular global optimum, 
MOO generates a Pareto-optimal set—a collection of mutually non-dominated solutions forming the Pareto 
front (PO front) in objective space. These solutions correspond to different trade-offs between the objective 
functions; improving one objective typically degrades another, so each point on the Pareto front represents 
a different compromise between the competing goals. While this requires an additional step to analyze and 
interpret the resulting models, it also provides richer information about the range of acceptable solutions and 
the associated uncertainties. Over the past decade, studies on MOO problems mostly use the evolutionary 
algorithms (EAs) due to their population-based nature and ability to find multiple optima simultaneously18,19. In 
geophysics, for example, parallel multi-objective genetic algorithms (PMOGA) have been successfully applied to 
inversion problems by Akca (2013)20 and Bijani et al. (2017)21. However, there have been only a few attempts in 
extending SA to MOO primarily because of its search-from-a-point nature. Early studies on Multi-Objective SA 
(MOSA) were mostly aggregating approaches, which combine the different objectives into one using a weighted 
sum approach22–24. It is similar to constraint SA inversion, but selecting proper or adaptive weights during 
the annealing process to converge to the true PO front remains challenging even for MOO problems25,26. In 
addition, there are only very few techniques that incorporate the concept of Pareto-dominance for splitting sum 
objectives into multiple independent objective functions. Such as Suman (2005)27 and Smith et al. (2004)28 use 
Pareto-domination-based acceptance principle in MOSA. Suman & Kumar (2006) reviewed of several MOSA 
methods and their performance and suggested to consider constraints which may give promising results in term 
of saving in computation cost and quality of solution29. However, the acceptance criterion between current and 
a new state in MOSA is still only considered the difference in the number of solutions that they dominate as 
Pareto-domination-based MOSA developed so far.

In 2008, Bandyopadhyay et al. developed the Archived Multi-Objective Simulated Annealing 
(AMOSA) algorithm based on MOSA. This method incorporates the concept of an archive to provide a trade-
off among the new solution, current solution, and archived solutions. The acceptance criterion follows the 
domination status of the new state with the current state, as well as solutions in the archive. The performance of 
AMOSA is generally superior to the other two well-known MOEA methods proposed before, which are Non-
dominated Sorting Genetic Algorithm II (NSGA-Ⅱ)30 and Pareto Archived Evolution Strategy (PAES)31, due to 
its ability to maintain a well-distributed Pareto front and its annealing-based search that helps avoid premature 
convergence. The main trade-offs of AMOSA are its higher computational cost and its sensitivity to annealing 
parameters compared with population-based methods. Nevertheless, its strength lies in effectively balancing 
exploration and exploitation, making it particularly robust for complex multi-objective problems where 
maintaining solution diversity is critical. As an advanced multi-objective optimization algorithm, AMOSA has 
been applied in many fields, such as computer science32,33, civil engineering34, and machine layout design35, but 
not reported in geophysical inversions.

In this paper, we develop the AMOSA algorithm for TEM inversion. We treat the data misfit and model 
structure as two separate objective functions to form a basic MOO. The results are archived as PO front instead 
of a single solution according to AMOSA characteristics. The non-uniqueness and instability can be significantly 
mitigated.

Methodology
Multi-objective function
To reduce the tendency toward overly smooth inversion results and to increase robustness to outliers, we use the 
L1​ norm for the data misfit term (Eq. 1) rather than the conventional L2​ norm, which emphasizes squared errors 
and can excessively smooth the recovered model.

	
|| F fitting||1 =

∑ n

i=1
|dreal (i) − dinv (i)

dreal (i) |� (1)

where n is the total number of data, dreal (i) and dinv (i) are the observed and predicted data, respectively, in 
the ith time gate, and Ffitting  is the data misfit.

Model-constraint is another objective function in MOO. This term characterizes the model structure during 
inversion. Different model-constraint will have different influences on the solutions. Portniaguine & Zhdanov 
(1999; 2009)36,37summarized the expressions of some common model-constraints and their constraint effects on 
models. Following their work, we employ the focus measurement of model structure (Eq. 2) because it favors 
compact, high-contrast features and therefore helps to recover models with sharp boundaries.

	

Fconstraint =
ˆ

v

∇m · ∇m

∇m · ∇m + β2 dv� (2)

where v represents the entire model domain in the inversion. m denotes the resistivity model to be recovered, and 
∇ m represents its spatial gradient. β is a parameter that controls the intensity of focusing and is 0.4 in our study 
based on experiences, and Fconstraint is the model constraint result. Due to the formulation of the focusing 
measure of model structure, its minimum value is a non-zero constant. This property enhances the ability of 
the constraint to emphasize compact, high-contrast features and to suppress overly smooth models. Although 
the residual value may complicate model updating and interpretation, it does not affect the performance of our 
algorithm and will be discussed in a later section.
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Archived multi objective simulated annealing
AMOSA is an extension of SA. SA iteratively explores the model space through a temperature-controlled 
stochastic process. At each iteration, a new model is generated by perturbing the current model, and its 
acceptance probability is determined by the Metropolis criterion:

	 p = exp(−∆ E/kT )� (3)

where ∆ E is the energy difference between the new and current states, T is the temperature, and k is the 
Boltzmann constant. In this procedure, the lower energy state updating is bound to be accepted, while it has 
a probability of accepting higher energy state updates. That means SA has the ability to jump out of the local 
optimum and keep moving toward the global optimum until achieved. The standard simulated annealing 
algorithm escapes local optima by probabilistically accepting worse solutions according to the acceptance 
probability defined in Eq. (4). In our AMOSA implementation, we extend this criterion to incorporate Pareto 
dominance relationships that simultaneously consider the new solution, the current solution, and the archived 
non-dominated solutions. The complete set of acceptance probability calculations for all possible dominance 
scenarios between these three solution sets will be presented in subsequent Sect. 

	
prob = 1

1 + e
−(E(current,T )−E(new,T ))

T

� (4)

where E(current, T) and E(new, T) are energy states of the current and new model, respectively.
In AMOSA, we maintain an archive that stores all non-dominated solutions found at the time of their 

discovery. Once a solution has been stored in the archive, it is never removed, even if it later becomes dominated 
by subsequent solutions. We adopt an unlimited archive size to preserve the diversity of solutions throughout the 
inversion. Although this may increase the number of solutions stored, it does not hinder convergence because 
the acceptance probability is still governed by the dominance relationships and the cooling schedule. As the 
temperature decreases, the search gradually focuses near the Pareto-optimal front while the archive provides a 
rich set of candidate solutions. Of course, a limited archive size can also be used depending on computational 
requirements. Using a limited archive reduces memory and computational cost because the archive is pruned 
to retain only representative non-dominated solutions. However, this may sacrifice some solution diversity. 
In contrast, an unlimited archive retains all non-dominated solutions, which improves diversity at the cost of 
additional storage. In Fig. 1, we give a general structure and the pseudocode of the AMOSA inversion for TEM 
data.

Archive initialization
The initialization can be a complicated process. Bandyopadhyay et al. (2008)38used a simple hill-climbing 
technique to obtain a set of non-dominated solutions, accepting a new solution only if it dominates the previous 
one. And they used a cluster analysis for reducing the number of solutions to the limited archive size. However, 
in our algorithm, the initialization is simplified to the random selection of 5 models in the model space since we 
adopt an unlimited archive.

Model perturbations: Quasi-Cauchy distribution based on temperature
To accelerate the inversion and stabilize the model perturbations, we use the Quasi-Cauchy algorithm to perturb 
models instead of Gibbs algorithm. As the temperature decreases in the Quasi-Cauchy scheme, the perturbations 
become more stable and less intense, which helps reduce the likelihood of skipping over promising regions of 
the search space. However, it should be noted that simulated annealing—and any stochastic global optimization 
algorithm—cannot guarantee convergence to the true global minimum. Although such approaches often find 
high-quality solutions, their performance depends on the complexity of the problem and the choice of initial 
models.

	 xk+1
i = xk

i + yi

(
xmax

i − xmin
i

)
, i = 1, 2, . . . . . . , 2N − 1� (5a)

	
yi = sign

(
ui − 1

2

)
T k

i

[(
1 + 1

T k
i

)|2ui−1|

− 1

]
� (5b)

where xk+1
i  is the ith model parameter in the kth iteration, xmax

i  and xmin
i  are, respectively, the lower and 

upper limits of the ith model parameter, ui is a random number for the ith parameter drawn from the uniform 
distribution in the range [0, 1]. Wang et al. (2012)6 provided an updated Eq. (5c) to replace (5b) in order to 
obtain efficient SA inversion results in controlled-source audio-frequency magnetotellurics (CSAMT).

	
yi =

sign
(
ui − 1

2

)
T k

i

[(
1 + 1

T k
i

)|2ui−1|
− 1

]

10 + 0.5T k
i

� (5c)

We also use Eqs. (5a) and (5c) for model-perturbation in this paper.
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Fig. 1.  Pseudocode of AMOSA algorithm for TEM inversion (after Bandyopadhyay et al., 2008). The algorithm 
initializes an archive of candidate models and iteratively perturbs the current model to generate new solutions. 
Each new model is evaluated based on dominance relationships with existing models in the archive and the 
current solution. Depending on its performance, the new model may replace the current model or update the 
archive using probabilistic acceptance rules. The process continues until a convergence criterion is met. Finally, 
all archive solutions are post-processed to determine the optimal model using a weighting function.
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Definition and amount of domination
The MOO problems can be considered as minimizing the vector composed of multi-objective functions, as 
shown in Eq. (6).

	 Minimise y = f (x) ≡ (f1 (x) , · · · · · · , fD (x)) i = 1, · · · · · · , D.� (6)

Domination is the central concept in MOO optimization. Suppose there are two solutions, a and b, the solution 
b dominates a if ∀ i ∈ 1, · · · · · · , D, fi (a) ≤ fi (b) and ∃ i ∈ 1, · · · · · · , D, such that fi (a) < fi (b), 
writing as a < b. Apparently, a non-dominates b means there is no such relationship between the two solutions. 
In the concept of dominance, the set of non-dominated solutions in the entire model space forms the globally 
PO front. We introduce the model fitting and model constraints as objective functions; hence the inversion 
process is

	 Minimise y = F (x) ≡ (Ffitting (x) , Fconstraint (x))� (7)

where Ffitting (x) and Fconstraint (x) represent the data fitting function and the constraint objective function, 
respectively.

By introducing the dominance concept, the difference compared with conventional SA is the amount of 
domination, which is used in computing the acceptance probability of a new solution. For two given solutions—
the current model and the new model, the amount of domination is defined as

	
∆ domcurrent, new =

∏ M

i=1, F i(current) ̸= Fi(new)
(|Fi (current) − Fi (new)| /Ri)� (8)

where M is the number of objective functions (M = 2 in this study), Ri is the range of the ith objectives in the 
current iteration. The concept of ∆ domcurrent, new  is illustrated intuitively in Fig. 2. ∆ dom is used only in 
computing the acceptance probability of a new perturbed solution.

Model updating
In the model perturbation and updating phase, we select one solution randomly from the archive as the initial 
model, i.e., the current model. After perturbing the current model, a new state is generated called new model. 
AMOSA also incorporates the property that can accept a worse solution which is inherited from the inversion 

Fig. 2.  Diagram of the domination for the two objectives, model fitting and model constraint, respectively 
(after Bandyopadhyay et al., 2008). The two axes correspond to the constraint objective function and the data 
fitting function. The black dot represents the current model state. Rfitting  and Rconstraint are the changing 
range of model-fitting and model-constraint, respectively. Model update may generate one good or bad new 
model (as shown with hollow dots). If assuming ∆ dom as the amount of domination between current and 
new state in computing the acceptance probability of a new solution, it can be easily calculated by the area 
division, one shaded rectangle area between the black dot and one hollow dot divides by the big rectangle area 
constructed by the Rfitting  and Rconstraint.
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process. Based on the dominance status among the new model, the current model, and the archived solutions, 
three different cases arise and are enumerated as follows.

Case 1: The current model dominates the new model  This means that the new model may be worse than the 
current model. In SA algorithm, such inferior states are still accepted with a certain probability to prevent the 
algorithm from getting trapped in a local minimum. Hence, the probability in AMOSA is calculated with Eq. (9) 
based on the amount of domination. The new model is then determined to be accepted as the current model by 
the calculated probability.

	

∆domavg =

(∑k

j=1 ∆dom mod el−j, new− mod el

)
+ ∆domcurrent− mod el, new− mod el

k + 1

prob = 1
1 + exp (∆domavg/t_0)

� (9)

where k is solutions amount number dominating the new model in archive, t_0 is the temperature of the current 
iteration.

As k increasing, the new model is further away from the PO front. Because there will be more points 
dominating the new model. In addition, the temperature decreases as the inversion proceeds. And the acceptance 
probability becomes smaller to avoid jumping to a poor solution in later inversion steps.

Case 2: The current model and the new model are non-dominating to each other  In this case, the current 
model and the new model are non-dominating to each other. There are three situations based on the domination 
status between the new model and solutions in the Archive.

	a)	 The new model is dominated by k (k ≥ 1) members in the Archive. The acceptance probability of the new 
model is determined by the following equations:

	
∆ domavg =

(∑ k

j=1∆ dommodel−j, new−model

)

k
prob = 1

1 + exp(∆ domavg/t_0)
� (10)

In this situation, the current model may or may not be in the Archive.

	b)	 The new model is non-dominating with all models in the archive. It means the new model is also on the 
archival front, as well as current model. Therefore, the new model is added to the Archive and selected as the 
current model.

	c)	 k (k ≥ 1) points of the Archive are dominated by the new model. In this case, we update the current model 
with the new model and add the new model to the Archive. The k dominated models remain stored in the 
Archive but are flagged as dominated. The current model may or may not be on the PO front. However, the 
k dominated models are absolutely not on the PO front.

Case 3: The new model dominates the current model  Similar to Case 2, there are three situations based on the 
domination status between the new model and the archived solutions.

	a)	 The new model is dominated by k (k ≥ 1) models in the archive. This situation may occur only if the current 
model is not in the archive. Here, we compute the minimum of domination amounts between the new model 
and k dominated solutions, denoted as ∆ dommin. Then we accept the model in the Archive corresponding 
to ∆ dommin as the current model with a probability as follows.

	
prob = 1

1 + exp (−∆ dommin) � (11)

Otherwise, the new model is accepted as the current model. Actually, in traditional SA, the new model is 
accepted 100% in this situation. However, due to the use of archive in AMOSA, there exist better solutions than 
the new model. Thus, we do not accept it directly but make a competition for acceptance between the new model 
and the closest dominating points in the Archive (corresponding to ∆ dommin). This is a reseeding process in 
the current iteration if the Archive point is accepted.

	b)	 The new model is non-dominating with all archived solutions. The new model is on the archival front in this 
situation. Thus, the new model is added to the archive and accept as the current model. The current model 
will be updated if it is already in the archive.

	c)	 The new model dominates k (k ≥ 1) other models in the archive. We accept the new model as current model 
and replace all dominated points in the archive. And, the current model maybe on or not on the archival 
front in this situation.

The above process may repeat for 20 times at a given temperature. The temperature of current iteration is α times 
that of the last iteration according to the hyperbolic cooling schemes T = T0α n, and α is selected as 0.93 in 
this paper based on experience. A smaller α means a faster cooling. However, we may not obtain good inversion 
results if α is too small.
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De-duplicate the archive and output the result
As a result of the operations above, the archive contains many duplicate points, which affect the probability of 
random model selection in the next iteration. The models with more repetitions will have a higher probability of 
being selected. This is unfair and incorrect to the total inversion. In this study, we de-duplicate the archive and 
record the repetition times of each solution after every iteration. These repetition counts are then used only when 
computing the averaged model, so that solutions with more repetitions contribute more to the averaged model, 
while the selection probabilities remain fair.

Theoretically, all solutions in the archive are good enough to meet our requirements after inversion. However, 
not all models are equally satisfactory, since the model-constraint objective function rarely converges to zero. 
Nevertheless, the diversity of solutions stored on the Pareto front and in the archive allows us to select several 
models that still meet the requirements even under these circumstances. In addition, although multi-objective 
optimization produces a set of trade-off solutions, in practical geophysical applications a single representative 
model is usually required for subsequent geological interpretation and decision-making. Therefore, it is 
necessary to select one final model from the Pareto-optimal set. In this study, choosing a good result from the 
Archive is a key issue. In noise-free synthetic tests, the value of this objective can ideally reach zero, whereas in 
real or noisy data applications, the minimum value will be greater than zero. Although other objectives, such as 
regularization, play an important role during the inversion process to stabilize the search and ensure geologically 
reasonable models, the final output stage gives priority to the data-fitting objective. Specifically, we rank the 
models on the Pareto front by their data misfit and select the three with the smallest misfit values. Instead of 
presenting only a single model, we take the average of these three models as a representative solution (Eq. 12) in 
order to reduce non-uniqueness and produce a more stable result.

This does not mean the constraint may not have effects in inversion: during the multi-objective inversion, 
the model-constraint objectives shape the search space. If the inversion were driven by the data misfit alone, 
the search would behave like a random walk, require much more computation time, and would be unlikely to 
converge to a geologically meaningful model within a reasonable time.

	
Modeloutput =

∑ 3

i

Modeli

3
� (12)

This kind of operation represents a compromise strategy. When a very strong smoothing constraint is applied, 
the value of the constraint objective function can approach zero because the model becomes nearly flat. However, 
such excessive smoothing will blur important geological structures. Therefore, an important topic for future 
research is to develop constraint terms that can preserve structural details while providing stability, so that the 
inversion produces geologically realistic results without relying too much on manual parameter tuning.

In summary, the above describes the complete workflow of the AMOSA algorithm. The flowchart of the 
AMOSA algorithm is shown in Fig. 3.

Synthetic examples
To test and verify the effectiveness of AMOSA in TEM inversion, we selected two three-layered models and a 
five-layered model as a numerical test. As listed in Table 1, Model #1 consists of three layers with a conductive 
layer in the middle, while Model #2 has three layers with a resistive layer in the middle. Model #3 is a five-layered 
model with two conductive layers inside. The inversion parameters in our study include both the resistivities 
and the layer thicknesses. The parameters used in the AMOSA inversion test are also given in Table 1, including 
the resistivity constraints and the initial temperature in SA. Prompted by Occam’s multi-layer inversion, 
we discretize the model into eight horizontal layers. The thickness of each of the first seven layers is set as 
an inversion parameter with allowed variation between 20 and 40 m, while the eighth layer represents a half-
infinite bottom layer. To ensure consistency, we use the same parameter ranges and initial temperature for all 
inversion cases. Although the number of layers is fixed as a discretization choice, this constitutes a minimal prior 
assumption. Both resistivity and thickness parameters are inverted within predefined bounds to simulate limited 
prior information. In our implementation, one “iteration” corresponds to an outer loop at a given annealing 
temperature, and within each iteration we perform 20 random perturbations (“steps”) of the model parameters. 
After completing all steps at a given temperature, the temperature is updated according to the cooling schedule.
The program automatically terminates when the data misfit drops below the predefined threshold of ε = 0.01, 
without requiring a manually set number of iterations. In the Archive initialization, 5 initial models are randomly 
generated. We use a 200 × 200 m square transmitter loop with a central receiver and 1 A transmitting current.

The AMOSA inversion result for Model #1 is shown in Fig. 4. The inversion pushes the PO front towards 
the optimal directions of the two objective functions. In Fig. 4b, the solid black dots represent the final non-
dominated solutions, namely the current Pareto front, obtained in the last iteration, while the hollow dots 
correspond to archived solutions that were previously on the Pareto front but have since been dominated by 
newer solutions. The current Pareto front solutions dominate these older archived ones. Although all the non-
dominated solutions on the Pareto front are theoretically optimal in terms of the objective functions, not all of 
them are equally plausible in real geophysical applications. Some solutions, while mathematically optimal, may 
correspond to unrealistic or geologically implausible resistivity structures. Therefore, in practical interpretation, 
additional criteria such as smoothness or prior geological knowledge are often required to select the most 
reasonable solution from the Pareto front.

As shown in Fig. 4b, we select the three solutions closest to the vertical axis, which correspond to the smallest 
model fitting errors among the Pareto-optimal solutions. Although some solutions further away on the front 
exhibit higher model smoothness, indicating stronger regularization, they provide poorer data fit and are 
therefore not selected for interpretation. This uneven distribution of solutions along the Pareto front is partly 
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due to the stochastic nature of AMOSA and its tendency to converge toward better-fitting models. However, 
since all archived solutions are preserved, we retain a diverse set of models that can be further examined 
using additional geological or geophysical constraints. This helps mitigate the non-uniqueness and instability 
commonly observed in single-objective SA inversion.

Fig. 3.  Flowchart of the AMOSA algorithm for 1-D TEM inversion. The process starts from reading the 
observed TEM data, followed by the initialization of temperature, definition of objective functions (model 
fitting and model-constraint), generation of initial models, and archive initialization. Perturbation sampling 
based on the temperature-dependent Quasi-Cauchy distribution is used to produce new models. For each 
new model, 1-D TEM forward modeling is performed and both objectives are evaluated. The dominance 
relationship between the new and current models determines the acceptance strategy: deterministic acceptance 
when the new model dominates, probabilistic acceptance when dominated, and conditional acceptance when 
non-dominated but dominating at least one archived model. The archive is updated accordingly. Iterations 
continue with temperature reduction until the fitting error is below a predefined threshold. The final inversion 
result is obtained by averaging the top three Pareto-optimal models with the smallest data misfit.
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To quantitatively evaluate the accuracy of the inversion results, we adopt the Average Weighted Error (AWE) 
as the metric, which is defined as:

Fig. 4.  (a) Inversion result and (b) the distribution of Archived points’ set for Model #1, a three-layered model 
with low resistivity in the middle. The model and inversion parameters are listed in Table 1. In (b), the solid 
dots correspond to the In-PO front while the hollow dots are the Non-PO front but once archived. In (a), the 
dot line is the average inversion result of three best solutions with minimum model fitting errors on the PO 
front. The inverted result shows good agreement with the true model in solid line, including the resistivity 
value and the layer position.

 

# Parameter True value Constrains  (min, max) Initial temperature

Model #1

ρ 1  (ohm-m) 300

10, 400 10ρ 2  (ohm-m) 50

ρ 3  (ohm-m) 250

h1  (m) 100
20, 40 10

h2  (m) 50

Model #2

ρ 1  (ohm-m) 100

10, 400 10ρ 2  (ohm-m) 350

ρ 3  (ohm-m) 200

h1  (m) 100
20, 40 10

h2  (m) 80

Model #3

ρ 1  (ohm-m) 300

10, 400 10

ρ 2  (ohm-m) 50

ρ 3  (ohm-m) 300

ρ 4  (ohm-m) 50

ρ 5  (ohm-m) 300

h1  (m) 100

40, 60 10
h2  (m) 100

h3  (m) 100

h4  (m) 100

Table 1.  Synthetic model and AMOSA inversion Parameters.
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∣∣∣ρ inv
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ρ true
i
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N
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where denotes the number of layers in the inversion model, ρ inv
i  and ρ true

i are the inverted and true 
resistivities of the th layer respectively, and wi is the thickness of the th layer. To ensure accurate layer-by-layer 
correspondence, the true resistivity model is discretized into the same number of layers as the inversion model. 
Specifically, for each inversion layer, the midpoint depth is mapped into the true model, and the true resistivity 
is obtained by thickness-weighted averaging over the overlapping region. This approach guarantees spatial 
consistency between the inversion and true models, thereby ensuring the rationality and scientific validity of 
the error calculation. The computed AWE is 6.02%, indicating a low average relative error between the inversion 
results and the true model, which demonstrates the high accuracy of the AMOSA algorithm.

To test the stability of the AMOSA, we take three runs for Model #1, with the results shown results in 
Fig. 4a. The computed Average Weighted Errors (AWE) for these runs are approximately 7.06%, 19.28%, and 
11.73%, respectively. While the second run exhibits a somewhat higher error, all three inversion results generally 
demonstrate reasonable consistency with the true model. All three inversion solutions demonstrate decent 
consistency with the true model. And the archived solutions for each run are shown in Fig. 5b and c, and 4d. 
While these results show minor variations compared to those in Fig. 3a, such discrepancies are expected given 
the fundamentally stochastic nature of the AMOSA. As a probabilistic optimization method, AMOSA inherently 
produces slightly different solutions in each inversion, a characteristic that is clearly manifested in the distinct 
distributions of archive members across the three realizations.

Figure 6 presents the inversion results for Model #2, demonstrating that AMOSA remains effective even for 
resistive target layers. As shown in Fig. 6a, the inverted model exhibits excellent agreement with the true model. 
The PO front is listed in Fig. 6b. The AWE is approximately 4.78%, quantitatively confirming the accuracy of the 
inversion.

For further validation, we apply the method to Model #3, a more complex five-layer model containing two 
embedded conductive layers. The results of the model tests are given in Fig. 7. While the inversion successfully 
captures the essential characteristics of the true model, some discrepancies emerge in the deeper layers, which 
may be attributed to the decreasing sensitivity of surface measurements with depth. These results collectively 
demonstrate the robustness of our approach across different geological scenarios.

For relatively simple geological scenarios (Models #1 and #2), where parameter variations are moderate, 
AMOSA demonstrates robust inversion capability, consistently producing solutions with excellent data fits. 
Model #3 presents greater complexity due to its increased parameter variations. While transient electromagnetic 
(TEM) methods exhibit strong sensitivity to low-resistivity anomalies, their resolution decreases significantly 
at later time gates corresponding to greater depths. Nevertheless, through careful analysis of the PO front 
characteristics, we can extract geologically meaningful solutions even for these more challenging cases.

After that, we re-invert Model #1 with 5% Gaussian noise added to the data. We use the Gaussian normal 
distribution method36 to add noise to the simulated data. The inversion results are shown in Fig. 8. After adding 
Gaussian noise, the AWE increases to approximately 19.0%, indicating that noise has a certain impact on the 
inversion accuracy. However, the overall data fitting precision remains within an acceptable range. Compared 
with the noise-free inversion, the model exhibits more pronounced variations near the layer interfaces, reflecting 
the inherent uncertainty introduced by noise. However, since our method employs a multi-objective framework 
balancing data misfit and model constraint, the inversion process is more robust to noise. The model constraint 
acts as a regularization that prevents overfitting noisy data, thus maintaining model stability and geological 
plausibility. Consequently, despite the presence of noise, AMOSA produces consistent and geologically 
reasonable models, which is essential for practical applications where data noise is inevitable. Selecting high 
signal-to-noise ratio data further enhances inversion reliability.

Field data example
While synthetic examples are valuable for controlled evaluation, applying AMOSA to TEM field data provides 
an opportunity to assess its practical applicability under real-world noise, survey geometry, and subsurface 
complexity that cannot be fully replicated synthetically. We take the TEM survey in a farm near Mencun Village, 
Pingdu, Qingdao, China, as location is shown in Fig. 9. The used survey line has 16 stations and the station 
spacing is 2.5 m. There is a pump well with a diameter of ~ 1 m at about 9 m away from the 1st observation point. 
The water table is about 15 m from the surface with a tape measurement. This well is for irrigating farmland. 
We use a coincident loop configuration, and the transmitter has a transmitting area of 100m2. The motivation 
of the survey is to detect underground aquifer. We use AMOSA to do the inversion. We first discretize the 
underground using 8 horizontal layers and each layer has a resistivity constraint from 10 to 500 ohm-m. The 
thickness of each layer is set to in the range from 20 to 40 m and the initial temperature is set to10. In order to 
completely perturb the model space, we run about 1500 iterations with 20 random steps in each iteration, and 5 
initial models are randomly selected in the Archive initialization procedure.

The AMOSA 1D inversion results (Fig. 10a) reveal a three-layer resistivity structure, with the corresponding 
geological interpretation shown in Fig. 10b. The middle layer is conductive, with resistivity ranging from 30 
to 100 ohm·m, while the upper and lower layers have resistivity values exceeding 300 ohm·m. Based on these 
results, we interpret the subsurface geology as consisting of Quaternary overburden in the upper layer, a ~ 40 m 
thick aquifer in the middle layer, and bedrock in the lower layer. The interpreted top of the middle aquifer, when 
projected towards the known well location, coincides with the measured water table depth of approximately 
15  m. Although direct verification through drilling or resistivity logging was not available, this agreement, 
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together with the consistency of the recovered resistivity structure with the known regional hydrogeological 
framework, provides strong indirect support for the plausibility of our interpretation. This demonstrates the 
practical applicability of AMOSA to real TEM field data under realistic survey constraints.

Conclusions and discussions
We extend the classical SA into a multi-objective optimization framework by implementing the AMOSA 
algorithm for 1D TEM inversion. By substituting the Gibbs distribution in SA perturbations with the temperature-
dependent Quasi-Cauchy distribution, AMOSA better accommodates the specific inversion characteristics of 
TEM data. Unlike traditional single-objective optimization methods, AMOSA produces a diverse set of Pareto-
optimal solutions, effectively addressing the intrinsic non-uniqueness and instability of TEM inversion. The final 
solution set obtained in the last iteration resides on the Pareto front, yet not all solutions fully satisfy practical 

Fig. 5.  AMOSA inversion stability test results for Model-1. Model and inversion parameters are listed in 
Table 1. (a) displays the inverted results in three runs and the true model. (b), (c), and (d) demonstrate the 
distribution of all archived points in the inversion of the three runs, respectively. The solid dots correspond to 
the In-PO front while the hollow dots are the Non-PO front which once archived. The inverted results with 
three runs are all in good agreement with the true model in the solid line.
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Fig. 7.  (a) Inversion result and (b) the distribution of archived points’ set for Model #3, a five-layered model 
with two low resistivity layers in the middle. Model details and inversion parameters are listed in Table 1. In 
(b), the solid dots correspond to the PO front while the hollow dots are Non-PO front but once archived. In 
(a), the dot line is the average inversion result of three best solutions with minimum model-fitting errors on 
PO front. The inverted result is in good agreement with the true model in solid line. The inversion is a little bit 
bad than that of Model #1 and Model #2 due to the complexity of model design. Both two low resistivity layers 
are demonstrated in the inversion result.

 

Fig. 6.  (a) Inversion result and (b) the distribution of archived points’ set for Model #2, a three-layered model 
with high resistivity in the middle. Model details and inversion parameters are listed in Table 1. In (b), the solid 
dots correspond to the PO front while the hollow dots are Non-PO front but once archived. In (a), the dot 
line is the average inversion result of three best solutions with minimum model-fitting errors in PO front. The 
inverted result is in good agreement with the true model in solid line.
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requirements due to excessive model constraints in certain archived points, which leads to variability among 
inversion results. Our experiments on both synthetic and field TEM datasets demonstrate that AMOSA achieves 
stable and reliable inversion outcomes, indicating promising potential for practical applications.

This method is based on several key assumptions: (1) the subsurface is modeled as a horizontally layered 
1D structure, which limits accuracy in the presence of pronounced 2D or 3D geological heterogeneities; (2) 
observational noise is moderate and approximately uniform—higher levels or structured noise can broaden the 
Pareto front and reduce inversion reliability; (3) the focusing constraint parameter is fixed, and inappropriate 
values may bias the balance between resolution and stability; (4) the Archive size is not explicitly constrained, 

Fig. 8.  AMOSA test with noise data for Model-1, a three-layered model with low resistivity in the middle. (a) 
inversion result, (b) the distribution of Archived points’ set in the inversion progress, and (c) curves of TEM 
data with or without noise and 5% Gaussian noise data used. The model and inversion parameters are listed 
in Table 1. In (b), the solid dots correspond to the PO front while the hollow dots are Non-PO front but once 
archived. In (a), the inversion result with or without noise is the average inversion result of three best solutions 
with minimum model fitting errors on PO front. The inverted results are in good agreement with the true 
model in solid line as well, even with noisy data. Also in (c), the decay data of inversion result with noise fits 
well with the real model data.
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Fig. 10.  AMOSA inversion resistivity profile (a) for the acquired TEM field data and the estimation of 
underground geological strata and aquifer distribution (b). The pumping well is also located in the figure 
demonstrating the water table. The middle aquifer layer surface is estimated to the well with the dashed line 
and fits well with the pumping well water table.

 

Fig. 9.  The field site location is close to Mencun, a small village in Qingdao, Shandong Province, China. The 
survey line is on farmland with a pumping well nearby. The well diameter is about 1 m and we can see the 
water surface. The water table in the well is about 15 m from the wellhead, with a tape measure. The pump 
well is about 9 m from the survey line start point. A total of 16 sites was measured on the survey line with 
an interval of 2.5 m to obtain the subsurface geological distribution. Since the survey area is all flat ground 
without any buildings or roads, the signal-to-noise ratio of acquired data is pretty good.
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which enhances solution diversity but increases computational cost for large datasets. Each assumption 
inherently restricts the method’s applicability under certain conditions. In this study, the selection of optimal 
solutions is based on identifying the three solutions with the lowest data misfit within the Pareto front. This 
criterion may be affected by noisy data, necessitating future work to develop more robust selection standards 
under noisy conditions. Furthermore, potential improvements include incorporating noise-robust objective 
functions, adopting adaptive weighting strategies for model constraints, and applying clustering techniques to 
maintain a balanced Archive. These represent important directions for our ongoing research.

Theoretically, our work confirms that AMOSA can be effectively adapted to 1D inversion problems even 
when objective functions depend on the model, overcoming limitations common to traditional Pareto-based 
approaches. Practically, it is particularly well-suited for TEM surveys in resource exploration and environmental 
monitoring, especially where non-uniqueness is prominent and preservation of geological boundaries is critical. 
However, caution is advised when applying this method in environments characterized by strong 2D/3D effects 
or high noise levels, as these conditions may impair inversion accuracy.

Data availability
The datasets generated and analysed during the current study are not publicly available due confidential but are 
available from the corresponding author on reasonable request.
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