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Epstein–Barr virus (EBV) exacerbates inflammatory bowel disease (IBD) and is challenging to monitor 
with invasive or costly tests. We investigated whether explainable machine learning can predict 
EBV infection from routine clinical data in ulcerative colitis (UC) and Crohn’s disease (CD). In this 
retrospective study (June 2018–December 2022), EBV status was defined by EBV-DNA > 400 copies/
mL. After cleaning, the training cohort (2018–2019) included 174 patients (CD = 122, UC = 52) and the 
test cohort (2020–2022) included 100 patients. Twenty-one demographic, clinical, and laboratory 
variables were modeled with ten classifiers; the four best were stacked. Five-fold cross-validation 
and resampling addressed overfitting and class imbalance. Shapley Additive Explanations (SHAP) 
provided model interpretability. The ensemble model exhibited high predictive accuracy, achieving 
area under the ROC curve (AUC) values of 0.93 (overall), 0.97 (CD), and 0.88 (UC) in the training set. In 
the validation set, AUC values were 0.95 (overall), 0.89 (CD), and 0.97 (UC). SHAP analysis identified 
age, hemoglobin (HB), total bile acids (TBA), and platelet count (PLT) as significant predictors. Age 
increased predicted risk in the overall and CD cohorts but decreased risk in UC. TBA emerged as a 
critical predictor in UC, reflecting its role in bile acid metabolism, while PLT influenced risk across 
the total patient population, indicating its involvement in coagulation and immune responses. An 
explainable stacking model using routine biomarkers accurately predicts EBV infection in IBD and 
reveals subtype-specific determinants. Prospective, multi-center and time-aware validation, and 
integration into decision-support tools are warranted for clinical deployment.
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Crohn’s disease

Epstein–Barr virus (EBV) is a ubiquitous herpesvirus; lifetime infection exceeds 90%, and reported seroprevalence 
among adults ≥ 35 years ranges from 20% to 90%1,2. EBV has been linked to gastrointestinal malignancies, 
particularly in immunocompromised patients and those receiving immunosuppressants (e.g., thiopurines)3. 
Individuals with inflammatory bowel disease (IBD) face elevated risks of EBV-related complications, including 
primary intestinal lymphoma, and EBV may aggravate intestinal inflammation, contributing to treatment 
failure, relapse, and increased surgical need4–7. Although polymerase chain reaction (PCR) and EBV-encoded 
small RNA in situ hybridization (EBER-ISH) are effective for detection, their invasiveness and cost limit routine 
use; peripheral blood EBV-DNA offers a practical, noninvasive biomarker for monitoring EBV-associated 
complications in IBD8–11. Chronic active EBV infective enteritis, characterized by severe ulcers and overlapping 
features with IBD, remains diagnostically challenging, underscoring the need for improved diagnostic 
strategies12–15.

1School of Computer Science, Hunan First Normal University, Changsha 410205, China. 2Gastroenterology 
Department of Xiangya Hospital, Central South University, Changsha 410008, China. 3State Key Laboratory of 
Digestive Health, Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National 
Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing 100050, China. 4Hunan 
International Scientific and Technological Cooperation Base of Artificial Intelligence Computer Aided Diagnosis 
and Treatment for Digestive Disease, Changsha 410011, China. 5National Clinical Research Center for Geriatric 
Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China. 6These authors contributed equally: 
Yuhang Yang, Xueyi Tang and Yiqian Chen. email: w8614@hotmail.com; xiaoying111392@sina.com

OPEN

Scientific Reports |        (2025) 15:41919 1| https://doi.org/10.1038/s41598-025-25849-w

www.nature.com/scientificreports

http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-025-25849-w&domain=pdf&date_stamp=2025-10-27


Recent advances in epidemic and infection-dynamics modeling provide concepts directly relevant to viral 
risk prediction in IBD. Age-structured, delay-informed, and nonlocal diffusion frameworks clarify how host 
age, temporal effects, and spatial heterogeneity shape infection risk and spread16,17. Methods for inferring latent 
or asymptomatic infection support the use of peripheral biomarkers for EBV monitoring in clinical cohorts18,19. 
These models also highlight population heterogeneity and nonstationarity, motivating time-aware validation 
and multi-center generalization testing in predictive studies20,21. Because treatment timing can modify 
infection dynamics, prospective designs should capture detailed medication exposure and dosing histories22. 
Contemporary guidance on translational AI emphasizes interpretability, calibration, and decision-analytic 
evaluation—principles aligned with SHAP-based explanation and decision-curve analysis in this work23,24.

Regulatory frameworks such as the European Regulation on In Vitro Diagnostic Medical Devices (IVDR) 
underscore stringent validation, transparency, and performance documentation for AI-enabled diagnostics; 
in parallel, recent medical-imaging studies frequently deploy high-performing architectures (e.g., Vision 
Transformers, ResNet, MobileNet v2) for classification tasks25–29. Conventional endoscopic approaches have 
limitations for detecting EBV involvement, suggesting an opportunity for AI-augmented tools to improve 
diagnostic accuracy and management of EBV-related complications in IBD30–37. Prior gastrointestinal AI research 
demonstrates gains from heuristic feature selection, optimization-guided networks (e.g., CG-Net with dragonfly 
optimization), and multi-algorithm segmentation pipelines38–40. Additionally, explainable AI integrated with 
ensemble extreme learning machines, lightweight CNNs, and attention mechanisms has improved both accuracy 
and interpretability in GI applications41,42. Ensemble strategies (e.g., U-Net/VGG hybrids) and CNNs combined 
with empirical wavelet transforms further illustrate the promise of model ensembling and signal-aware feature 
extraction for distinguishing malignant from benign lesions43–46.

To our knowledge, no prior studies have applied artificial intelligence (AI) to EBV detection in ulcerative 
colitis or Crohn’s disease. We developed an interpretable machine-learning framework that links peripheral 
blood EBV-DNA levels with endoscopic findings, using a stacking ensemble with explainable AI to quantify 
feature contributions. This approach aims to improve detection accuracy and provide clinically actionable risk 
stratification for EBV-related complications in IBD.

Methods
This retrospective study was approved by the Xiangya Hospital Scientific Research Ethics Committee. All 
procedures complied with institutional and national guidelines. Informed consent was obtained when 
applicable; for cases where consent could not reasonably be obtained, the committee granted a waiver due to the 
retrospective design.

Data preparation
This retrospective study included patients with ulcerative colitis (UC) or Crohn’s disease (CD) diagnosed 
between June 2018 and December 2022. Clinical and biomarker data were systematically collected. EBV status 
was determined by real-time quantitative PCR (qPCR), with EBV-positive defined as EBV-DNA > 400 copies/
mL. Cohorts were time-split: patients from 2018 to 2019 formed the training set and those from 2020 to 2022 
formed the test set. Initially, 293 and 196 patients were enrolled in the training and test datasets, respectively. 
After removing outliers and excluding records with > 40% missing features, the final training set comprised 174 
patients (CD n = 122, UC n = 52) and the test set comprised 100 patients. Given the modest sample size and 
potential overfitting, we implemented five-fold cross-validation to assess stability and generalization. To mitigate 
unequal class sizes, we applied resampling procedures. All data collection and analyses adhered to institutional 
ethical standards, and informed consent was obtained from all participants.

Study diagram
The framework of this study, illustrated in Fig. 1, outlines a four-module framework: data preparation, model 
training, model integration, and model interpretability. In data preparation, raw data were preprocessed 
to promote robust feature learning and generalization. To reduce overfitting, Gaussian noise was added to 
continuous variables using their empirical mean and standard deviation, and discrete noise was applied to 
categorical variables. Mutual information was then used to rank and select informative features, enabling 
dimensionality reduction, lowering model complexity, and improving training efficiency and accuracy.

Subsequently, the prepared data was input into ten different models: Decision Tree Classifier (DTC), Gaussian 
Process Classifier (GPC), K-Nearest Neighbors (KNN), Linear Support Vector Machine (Linear SVM), Logistic 
Regression, Naive Bayes, Neural Network, Quadratic Discriminant Analysis (QDA), Random Forest Classifier 
(RFC), and Radial Basis Function Support Vector Machine (RBF-SVM). Hyperparameter tuning for each model 
was conducted through grid search, with the results visualized in a Sankey diagram. High-performing models 
are then selected for integration, and the optimal integrated model is identified by plotting its receiver operating 
characteristic (ROC) curve using five-fold cross-validation.

Shapley Additive Explanations (SHAP)38, attributes to each feature an additive contribution to an individual 
prediction, based on Shapley values from cooperative game theory47. Averaging absolute SHAP values across 
observations yields global importance scores that rank features by their influence on model outputs. Larger 
absolute SHAP values indicate greater predictive impact, enabling transparent instance- and cohort-level 
interpretation.

For individual predictions, the SHAP value offers a detailed explanation of each feature’s impact, including 
both the direction (positive or negative influence) and the magnitude of influence on the outcome. This is 
visually represented through tools such as the force plot, which illustrates how each feature contributes to the 
prediction for a specific instance. The SHAP value for feature i in a prediction f(x) can be expressed as:
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|N |! [f (S ∪ {i} − f(S))]� (1)

where S represents the subsets of features excluding i, and N is the set of all features. This equation calculates the 
SHAP value by averaging over all possible contributions of feature i to subsets of the model. By analyzing these 
values, SHAP provides insights into how each feature influences model predictions and ranks them accordingly, 
improving interpretability and transparency in model-driven decisions.

Performance evaluation
To evaluate the performance of classification models, we calculate the accuracy using True Positives (TP), 
False Positives (FP), False Negatives (FN), and True Negatives (TN). The calculation formulas for key metrics, 
including accuracy and components of the ROC curve, are as follows:

1. Accuracy:

	
Accuracy = T P + T N

T P + F P + F N + T N
� (2)

Accuracy represents the proportion of correct predictions (both positive and negative) out of the total number of 
predictions. A higher accuracy indicates that the model is reliable and can make correct classification decisions 
in most cases.

2. True Positive Rate (TPR) (also known as Sensitivity or Recall):

	
TPR = T P

T P + F N
� (3)

TPR measures the model’s ability to correctly identify positive samples.
3. False Positive Rate (FPR):

	
F P R = F P

F P + T N
� (4)

FPR measures the proportion of negative samples that are incorrectly classified as positive. The ROC curve is 
generated by plotting the True Positive Rate (TPR) against the False Positive Rate (FPR) at various threshold 
settings.

Statistical analysis
Group comparisons included the overall cohort versus the UC subset and the CD versus UC subsets. Continuous 
variables were tested for normality using the Shapiro–Wilk test; normally distributed variables were compared 
with two-sample t tests, and non-normal variables with Mann–Whitney U tests. Binary variables were analyzed 
with Fisher’s exact test, and multi-category variables with chi-square tests. For three-group comparisons 

Fig. 1.  Study diagram. Pipeline overview: data preprocessing → ensemble modeling → model interpretation.
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(overall, UC, CD), one-way ANOVA was applied. All tests were two-sided, with p < 0.05 considered statistically 
significant. Analyses were performed in R (version 4.4.1).

Results
Patient’s demographics
This study evaluated 21 demographic, clinical, and laboratory variables, including sex, age, disease duration, 
symptoms (abdominal pain, diarrhea, fever), and blood markers (white blood cell count [WBC], hemoglobin 
[HB], platelet count [PLT], and total bile acids [TBA]). Values outside reference ranges were labeled abnormal. 
Records with inconsistencies or > 40% missing data were excluded. CD predominated over UC, mainly in 
patients aged 0–30 years. Diarrhea and abdominal pain were common. Most laboratory results were within 
reference limits, though abnormalities in hemoglobin, neutrophil percentage, and C-reactive protein suggested 
inflammation or nutritional deficits. Most patients received medical rather than surgical treatment; normal 
levels of blood in stool (OB), WBC, and PLT were typically normal.

Comparative analysis (Table 1) showed age and onset differed significantly across the total cohort and UC/CD 
subsets (p < 0.05), indicating discriminative value. In UC, sex, age, onset, abdominal pain, diarrhea, fever, surgical 
history, OB, and ulcers differed from totals and CD (p < 0.05), consistent with mucosal disease of the rectum and 
colon. By contrast, the segmental, transmural pattern of CD explains distinct presentations. Assessed markers 
included HB, PLT, red blood cell percentage (RBC%), neutrophil percentage, WBC, erythrocyte sedimentation 
rate (ESR), CRP, albumin (ALB), total bilirubin (TB), direct bilirubin (DBIL), and TBA.

Ensemble model and performance evaluation
Following data preprocessing and augmentation, ten classical machine learning classifiers were systematically 
evaluated through grid search optimization. Among these, the RFC, KNN, GPC, and RBF-SVM emerged as the 
top-performing models, each achieving test accuracies surpassing 0.8 (Fig. 2a). To further optimize predictive 
performance, an ensemble stacking approach integrating these four classifiers was employed, effectively 
capitalizing on their complementary strengths. ROC curve analyses demonstrated that ensemble stacking 
significantly enhanced predictive accuracy compared to single classifiers, evidenced by the Area Under the 
Curve (AUC) improvements from 0.93 to 0.95 in the training dataset (Fig. 2b) and from 0.95 to 0.96 in the 
validation dataset (Fig. 2d). These results emphasize the ensemble model’s improved prediction capability and 
increased stability over individual classifiers.

Subgroup analysis further elucidated performance variability across distinct patient populations when 
utilizing the four-model ensemble. Specifically, the training dataset exhibited an overall AUC of 0.93, with 
subgroup AUCs of 0.97 for CD and 0.88 for UC (Fig. 2c). Similar trends were observed in the validation dataset, 

Indicator All (n = 174) CD (n = 122) UC (n = 52)

p value3

All CD UC CD vs.UC

Demographics (Mean[range])

Sex 0.68(0 ~ 1) 0.73(0 ~ 1) 0.58(0 ~ 1) 0.1412 1.0000 < 0.001 0.5391

Age 32.67 (13.00–77.00) 28.37 (13.00–77.00) 42.77 (16.00–71.00) < 0.001 < 0.001 < 0.001 < 0.001

Onset 5.36 (1.00–28.00) 6.34 (1.00–28.00) 3.04 (1.00–26.00) 0.0246 < 0.001 0.0015 < 0.001

Duration 23.32 (0.00–107.00) 21.81 (0.50–107.00) 26.85 (0.00–96.00) 0.4717 0.9336 0.4270 0.2668

Clinical features (Mean[range])

Celialgia 0.72(0 ~ 1) 0.75(0 ~ 1) 0.65(0 ~ 1) 0.4683 0.6554 < 0.001 0.7225

Diarrhea 0.72(0 ~ 1) 0.63(0 ~ 1) 0.92(0 ~ 1) < 0.001 0.3002 < 0.001 0.6171

Fever 0.34(0 ~ 1) 0.36(0 ~ 1) 0.31(0 ~ 1) 0.7989 0.5519 < 0.001 0.3400

Surgery 0.10(0 ~ 1) 0.13(0 ~ 1) 0.02(0 ~ 1) 0.0752 1.0000 0.0192 1.0000

OB 0.83(0 ~ 1) 0.77(0 ~ 1) 0.96(0 ~ 1) 0.0092 0.7800 < 0.001 1.0000

Ulcer 2.55(1 ~ 4) 2.57(1 ~ 4) 2.48(1 ~ 4) 0.8832 0.0064 < 0.001 0.0621

Laboratory biomarkers (Mean ± SD)

WBC (cells/L) 7.38 ± 0.18 7.27 ± 0.21 7.64 ± 0.35 0.6388 0.7369 0.5561 0.4233

HB (g/dL) 114.50 ± 1.58 113.99 ± 1.91 115.69 ± 2.86 0.8868 0.7238 0.7160 0.6219

PLT (cells/L) 352.28 ± 9.44 365.10 ± 11.33 322.21 ± 16.64 0.1156 0.3460 0.0987 0.0247

RBC% (%) 35.15 ± 0.43 35.24 ± 0.51 34.95 ± 0.83 0.9564 0.9439 0.9019 0.8668

N% (%) 69.15 ± 0.79 70.17 ± 0.89 66.74 ± 1.60 0.1409 0.0644 0.1814 0.0643

ESR (mm/hr) 61.25 ± 2.81 64.48 ± 3.37 53.69 ± 5.06 0.2155 0.4466 0.1825 0.0697

CRP (mg/L) 32.58 ± 2.37 33.59 ± 2.73 30.20 ± 4.77 0.8089 0.5958 0.3526 0.2061

ALB (g/L) 34.51 ± 0.45 34.27 ± 0.55 35.07 ± 0.80 0.7256 0.3481 0.5440 0.4133

TB (µmol/L) 6.68 ± 0.22 6.64 ± 0.25 7.39 ± 0.41 0.2865 0.5095 0.2478 0.1160

DBIL (µmol/L) 3.11 ± 0.10 3.05 ± 0.12 3.26 ± 0.19 0.6251 0.7012 0.5014 0.3605

TBA (µmol/L) 3.60 ± 0.17 3.67 ± 0.22 3.42 ± 0.27 0.7968 0.9175 0.8561 0.8052

Table 1.  Baseline characteristics by disease subtype (overall, CD, and UC).
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presenting an overall AUC of 0.95, with values of 0.97 for CD and 0.89 for UC (Fig. 2e). The relatively lower 
AUC observed within the UC subset may indicate greater heterogeneity in EBV infection patterns or sample size 
limitations, highlighting inherent disease-specific complexities. Conversely, the consistently high performance 
in the CD subset suggests more predictable EBV-associated features. The ensemble model’s improved validation 

Fig. 2.  Model performance overview. (a) Comparison across 10 classifiers. (b) ROC curves with AUCs for 
ensembles of 1–4 base models on the training and (d) validation sets. ROC curves for the four selected models 
on overall, UC, and CD cohorts in the training (c) and validation (e) sets.
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performance, particularly within the UC subgroup, signifies robust generalizability and potential clinical utility 
across both IBD subtypes; underscoring its suitability for accurate and reliable EBV infection risk prediction.

Variable importance in predictions
Machine-learning models can function as “black boxes,” limiting clinical adoption. To enhance transparency, we 
used SHAP to quantify feature contributions to EBV risk predictions. Positive SHAP values indicate increased 
predicted risk; negative values indicate decreased risk. Age was a prominent predictor in the total and CD 
cohorts, with SHAP values increasing with age (Fig. 3a). In contrast, age showed predominantly negative SHAP 
values in UC (r1 = − 0.5308; Fig. 3b), suggesting lower EBV risk with increasing age—consistent with reports of 
higher EBV susceptibility in younger UC patients and elevated risk among older CD patients due to diminished 
immune surveillance48. These subtype-specific patterns (Fig. 3c) support tailored EBV monitoring strategies in 
IBD.

SHAP provides global and patient-level interpretability; force plots visualize feature contributions to an 
individual prediction. In Fig. 4a (CD), the model predicts EBV positivity ($f(x) = 0.93$) driven primarily by 
hemoglobin (+ 0.724), albumin (+ 0.60), total bilirubin (+ 0.496), and age (+ 0.078), with modest attenuation 
from CRP (− 0.043) and ESR (− 0.299). In Fig.  4b (UC), EBV positivity is also predicted ($f(x) = 0.90$), 
dominated by total bile acids (+ 0.878), with added contributions from hemoglobin (+ 0.226), RBC% (+ 0.24), 
neutrophils (+ 0.203), and direct bilirubin (+ 0.053); WBC (− 0.537) and platelets (− 1.00) reduce the score but are 
outweighed. In Fig. 4c (overall), a high EBV-positive prediction ($f(x) = 0.90$) is chiefly influenced by platelets 
(+ 0.877), total bile acids (+ 0.765), neutrophils (+ 0.596), total bilirubin (+ 0.248), and direct bilirubin (+ 0.224), 
with minimal negative effects. Collectively, TBA is most salient in UC, platelets and neutrophils are influential 
overall, and hemoglobin/total bilirubin are prominent in CD, illustrating subtype-specific contributors to 
predicted EBV risk.

Fig. 3.  Model interpretation for CD (a), UC (b), and all patients (c). Left: Feature importance (mean |SHAP|). 
Middle: Feature effects (feature value vs. SHAP contribution). Right: SHAP vs. standardized age; 0 = EBV−, 
1 = EBV+. r0 and r1 are Pearson correlations between age and predicted EBV risk within categories 0 and 1.
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Nomogram analyses (Fig. 5) indicated lower odds of EBV positivity in UC versus CD (OR for UC vs. CD 
0.478, 95% CI 0.27–0.846) and an age-related increase in risk (OR 2.49, 95% CI 1.63–3.805). Hemoglobin (HB) 
was an influential predictor of EBV risk (odds ratio [OR] 1.198, 95% CI 0.231–6.202). In the UC cohort, total bile 
acids (TBA) was the dominant contributor (SHAP 0.878), alongside neutrophil percentage (N%), red blood cell 
percentage (RBC%), direct bilirubin (DBIL), and HB; TBA’s association was OR 0.914 (95% CI 0.671–1.246). In 
the overall cohort, total bilirubin (TB), TBA, N%, DBIL, and platelets (PLT) were primary predictors, with PLT 
contributing most (SHAP 0.877; OR 0.880, 95% CI 0.593–1.307). Findings highlight both shared and subtype-
specific mechanisms: HB/TB are prominent in CD, TBA in UC, and PLT and neutrophils are influential overall. 
These patterns support disease-specific risk stratification while motivating unified protocols targeting common 
predictors to optimize patient monitoring and management.

Fig. 5.  Nomogram for predicting the risk of EBV infection.

 

Fig. 4.  SHAP force plots for EBV risk prediction. (a) UC, (b) CD, (c) overall cohort (UC + CD); each plot 
shows feature contributions to the predicted EBV risk.
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Discussion
This study applied machine learning to predict EBV infection in IBD, analyzing UC and CD cohorts. A stacking 
ensemble of multiple classifiers was used, with SHAP providing model interpretability. Performance was 
strongest in CD (AUC > 0.9) and remained high in the combined cohort, while UC showed modestly lower 
accuracy (AUC < 0.9), likely reflecting greater variability and smaller sample size. SHAP identified key predictors 
of EBV risk across cohorts, supporting transparent, subtype-aware risk stratification.

Significant predictors of EBV infection were age, hemoglobin (HB), total bile acids (TBA), and platelets (PLT), 
aligning with evidence that immune status and hematologic indices shape EBV pathogenesis. Age correlated 
positively with EBV risk in the overall and CD cohorts, consistent with age-related immune senescence and 
impaired T-cell function in older adults49. By contrast, younger UC patients—who often exhibit more active 
intestinal inflammation—showed greater susceptibility, in line with reports of heightened immune activation in 
younger IBD populations50. Lower HB was associated with increased EBV risk, particularly in UC, supporting 
links among chronic inflammatory anemia, iron deficiency, and dysregulated antiviral immunity51. UC patients 
had higher overall EBV risk than CD patients, with TBA emerging as a key predictor; perturbations in bile acid 
metabolism—known to influence the microbiome and mucosal immunity—may therefore contribute to EBV 
susceptibility in IBD52. Elevated PLT in the overall dataset further implicates platelet-mediated inflammatory 
and coagulation pathways in EBV-related disease processes53.

This study demonstrates the value of interpretable machine learning for clarifying factors linked to EBV 
infection in IBD, separating shared from disease-specific risks. Clinically, these insights support targeted 
management for UC and CD while highlighting common markers that could inform unified diagnostic and 
preventive strategies.

Limitations
Several limitations warrant caution. The retrospective design limits causal inference and may introduce selection 
bias; prospective, real-time validation is needed. Generalizability is constrained by the lack of external, multi-
center testing; future work will include site-level validation with varied case-mix, assessing discrimination 
(AUC), calibration (intercept/slope, curves), and clinical utility (decision-curve analysis), with harmonization 
or recalibration as appropriate. The feature set did not include medication exposures, genetic profiles, or 
microbiome data; forthcoming multi-center studies will add these variables and quantify their incremental 
value (ΔAUC, NRI) alongside calibration and decision-curve metrics. Temporal differences between cohorts 
may affect transportability; planned efforts include time-aware validation, statistical monitoring of covariate 
and calibration drift, evaluation of explanation stability across periods, use of time indicators, and periodic 
model updating. Finally, model complexity may hinder bedside use. We will develop an EHR-integrated 
decision-support interface with uncertainty displays and actionable thresholds, and a simpler surrogate model, 
complemented by usability testing, transparent model cards, and exemplar reports to facilitate clinical adoption.

Conclusion
This study employed machine learning to predict Epstein-Barr Virus (EBV) infection in patients with IBD, 
specifically focusing on UC and CD. An ensemble model integrating multiple classifiers, and employing Shapley 
Additive Explanations (SHAP) for interpretability, demonstrated robust predictive accuracy. Within the training 
dataset, the highest performance was observed in the CD subgroup (AUC = 0.97), followed by the overall 
dataset (AUC = 0.93). The UC subgroup showed comparatively lower accuracy (AUC = 0.88). Conversely, in the 
validation dataset, the UC subgroup exhibited the highest performance (AUC = 0.97), followed by the overall 
dataset (AUC = 0.95). The CD subgroup demonstrating lower performance (AUC = 0.89). Critical predictors 
of EBV infection identified included age, hemoglobin (HB), total bile acids (TBA), and platelet count (PLT). 
These findings underscore both common and disease-specific risk factors, facilitating a tailored approach to 
EBV infection management in IBD and supporting personalized patient care through precise risk assessment.

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author on 
reasonable request.
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