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Explainable ensemble learning for
Epstein-Barr virus risk prediction
In ulcerative colitis and Crohn’s
disease using routine biomarkers
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Ying Xiao245>¢

Epstein—Barr virus (EBV) exacerbates inflammatory bowel disease (IBD) and is challenging to monitor
with invasive or costly tests. We investigated whether explainable machine learning can predict

EBV infection from routine clinical data in ulcerative colitis (UC) and Crohn’s disease (CD). In this
retrospective study (June 2018-December 2022), EBV status was defined by EBV-DNA > 400 copies/
mL. After cleaning, the training cohort (2018-2019) included 174 patients (CD =122, UC=52) and the
test cohort (2020-2022) included 100 patients. Twenty-one demographic, clinical, and laboratory
variables were modeled with ten classifiers; the four best were stacked. Five-fold cross-validation
and resampling addressed overfitting and class imbalance. Shapley Additive Explanations (SHAP)
provided model interpretability. The ensemble model exhibited high predictive accuracy, achieving
area under the ROC curve (AUC) values of 0.93 (overall), 0.97 (CD), and 0.88 (UC) in the training set. In
the validation set, AUC values were 0.95 (overall), 0.89 (CD), and 0.97 (UC). SHAP analysis identified
age, hemoglobin (HB), total bile acids (TBA), and platelet count (PLT) as significant predictors. Age
increased predicted risk in the overall and CD cohorts but decreased risk in UC. TBA emerged as a
critical predictor in UG, reflecting its role in bile acid metabolism, while PLT influenced risk across

the total patient population, indicating its involvement in coagulation and immune responses. An
explainable stacking model using routine biomarkers accurately predicts EBV infection in IBD and
reveals subtype-specific determinants. Prospective, multi-center and time-aware validation, and
integration into decision-support tools are warranted for clinical deployment.

Keywords Inflammatory bowel disease, Epstein-Barr virus, Explainable machine learning, Ulcerative colitis,
Crohn’s disease

Epstein-Barr virus (EBV) isa ubiquitous herpesvirus; lifetime infection exceeds 90%, and reported seroprevalence
among adults > 35 years ranges from 20% to 90%"2. EBV has been linked to gastrointestinal malignancies,
particularly in immunocompromised patients and those receiving immunosuppressants (e.g., thiopurines)>.
Individuals with inflammatory bowel disease (IBD) face elevated risks of EBV-related complications, including
primary intestinal lymphoma, and EBV may aggravate intestinal inflammation, contributing to treatment
failure, relapse, and increased surgical need*~’. Although polymerase chain reaction (PCR) and EBV-encoded
small RNA in situ hybridization (EBER-ISH) are effective for detection, their invasiveness and cost limit routine
use; peripheral blood EBV-DNA offers a practical, noninvasive biomarker for monitoring EBV-associated
complications in IBD3-!1. Chronic active EBV infective enteritis, characterized by severe ulcers and overlapping
features with IBD, remains diagnostically challenging, underscoring the need for improved diagnostic
strategies'"1°.
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Recent advances in epidemic and infection-dynamics modeling provide concepts directly relevant to viral
risk prediction in IBD. Age-structured, delay-informed, and nonlocal diffusion frameworks clarify how host
age, temporal effects, and spatial heterogeneity shape infection risk and spread'®!”. Methods for inferring latent
or asymptomatic infection support the use of peripheral biomarkers for EBV monitoring in clinical cohorts!'®1°.
These models also highlight population heterogeneity and nonstationarity, motivating time-aware validation
and multi-center generalization testing in predictive studies?®?!. Because treatment timing can modify
infection dynamics, prospective designs should capture detailed medication exposure and dosing histories?.
Contemporary guidance on translational AI emphasizes interpretability, calibration, and decision-analytic
evaluation—principles aligned with SHAP-based explanation and decision-curve analysis in this work?*24,

Regulatory frameworks such as the European Regulation on In Vitro Diagnostic Medical Devices (IVDR)
underscore stringent validation, transparency, and performance documentation for Al-enabled diagnostics;
in parallel, recent medical-imaging studies frequently deploy high-performing architectures (e.g., Vision
Transformers, ResNet, MobileNet v2) for classification tasks*>~2°. Conventional endoscopic approaches have
limitations for detecting EBV involvement, suggesting an opportunity for Al-augmented tools to improve
diagnostic accuracy and management of EBV-related complications in IBD**-¥’. Prior gastrointestinal Al research
demonstrates gains from heuristic feature selection, optimization-guided networks (e.g., CG-Net with dragonfly
optimization), and multi-algorithm segmentation pipelines®*~*°. Additionally, explainable AI integrated with
ensemble extreme learning machines, lightweight CNNs, and attention mechanisms has improved both accuracy
and interpretability in GI applications**2. Ensemble strategies (e.g., U-Net/VGG hybrids) and CNNs combined
with empirical wavelet transforms further illustrate the promise of model ensembling and signal-aware feature
extraction for distinguishing malignant from benign lesions*>~*°.

To our knowledge, no prior studies have applied artificial intelligence (AI) to EBV detection in ulcerative
colitis or Crohn’s disease. We developed an interpretable machine-learning framework that links peripheral
blood EBV-DNA levels with endoscopic findings, using a stacking ensemble with explainable AI to quantify
feature contributions. This approach aims to improve detection accuracy and provide clinically actionable risk
stratification for EBV-related complications in IBD.

Methods

This retrospective study was approved by the Xiangya Hospital Scientific Research Ethics Committee. All
procedures complied with institutional and national guidelines. Informed consent was obtained when
applicable; for cases where consent could not reasonably be obtained, the committee granted a waiver due to the
retrospective design.

Data preparation

This retrospective study included patients with ulcerative colitis (UC) or Crohn’s disease (CD) diagnosed
between June 2018 and December 2022. Clinical and biomarker data were systematically collected. EBV status
was determined by real-time quantitative PCR (qPCR), with EBV-positive defined as EBV-DNA >400 copies/
mL. Cohorts were time-split: patients from 2018 to 2019 formed the training set and those from 2020 to 2022
formed the test set. Initially, 293 and 196 patients were enrolled in the training and test datasets, respectively.
After removing outliers and excluding records with >40% missing features, the final training set comprised 174
patients (CD n=122, UC n=52) and the test set comprised 100 patients. Given the modest sample size and
potential overfitting, we implemented five-fold cross-validation to assess stability and generalization. To mitigate
unequal class sizes, we applied resampling procedures. All data collection and analyses adhered to institutional
ethical standards, and informed consent was obtained from all participants.

Study diagram

The framework of this study, illustrated in Fig. 1, outlines a four-module framework: data preparation, model
training, model integration, and model interpretability. In data preparation, raw data were preprocessed
to promote robust feature learning and generalization. To reduce overfitting, Gaussian noise was added to
continuous variables using their empirical mean and standard deviation, and discrete noise was applied to
categorical variables. Mutual information was then used to rank and select informative features, enabling
dimensionality reduction, lowering model complexity, and improving training efficiency and accuracy.

Subsequently, the prepared data was input into ten different models: Decision Tree Classifier (DTC), Gaussian
Process Classifier (GPC), K-Nearest Neighbors (KNN), Linear Support Vector Machine (Linear SVM), Logistic
Regression, Naive Bayes, Neural Network, Quadratic Discriminant Analysis (QDA), Random Forest Classifier
(REC), and Radial Basis Function Support Vector Machine (RBF-SVM). Hyperparameter tuning for each model
was conducted through grid search, with the results visualized in a Sankey diagram. High-performing models
are then selected for integration, and the optimal integrated model is identified by plotting its receiver operating
characteristic (ROC) curve using five-fold cross-validation.

Shapley Additive Explanations (SHAP)3®, attributes to each feature an additive contribution to an individual
prediction, based on Shapley values from cooperative game theory?’. Averaging absolute SHAP values across
observations yields global importance scores that rank features by their influence on model outputs. Larger
absolute SHAP values indicate greater predictive impact, enabling transparent instance- and cohort-level
interpretation.

For individual predictions, the SHAP value offers a detailed explanation of each feature’s impact, including
both the direction (positive or negative influence) and the magnitude of influence on the outcome. This is
visually represented through tools such as the force plot, which illustrates how each feature contributes to the
prediction for a specific instance. The SHAP value for feature i in a prediction f(x) can be expressed as:
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Fig. 1. Study diagram. Pipeline overview: data preprocessing - ensemble modeling > model interpretation.

_ |SIL(N] - |S] = 1)! .
i = SCNZW} i [F(SU{i} = F(9))] 0

where S represents the subsets of features excluding i, and N is the set of all features. This equation calculates the
SHAP value by averaging over all possible contributions of feature i to subsets of the model. By analyzing these
values, SHAP provides insights into how each feature influences model predictions and ranks them accordingly,
improving interpretability and transparency in model-driven decisions.

Performance evaluation
To evaluate the performance of classification models, we calculate the accuracy using True Positives (TP),
False Positives (FP), False Negatives (FN), and True Negatives (TN). The calculation formulas for key metrics,
including accuracy and components of the ROC curve, are as follows:

1. Accuracy:

Accuracy = TP+TN (2)
YT TPYFPYFN+TN

Accuracy represents the proportion of correct predictions (both positive and negative) out of the total number of
predictions. A higher accuracy indicates that the model is reliable and can make correct classification decisions
in most cases.

2. True Positive Rate (TPR) (also known as Sensitivity or Recall):

TP
TPR= rpFN 3)

TPR measures the model’s ability to correctly identify positive samples.
3. False Positive Rate (FPR):

FP
FPR = FPTTN (4)

FPR measures the proportion of negative samples that are incorrectly classified as positive. The ROC curve is
generated by plotting the True Positive Rate (TPR) against the False Positive Rate (FPR) at various threshold
settings.

Statistical analysis

Group comparisons included the overall cohort versus the UC subset and the CD versus UC subsets. Continuous
variables were tested for normality using the Shapiro-Wilk test; normally distributed variables were compared
with two-sample t tests, and non-normal variables with Mann-Whitney U tests. Binary variables were analyzed
with Fisher’s exact test, and multi-category variables with chi-square tests. For three-group comparisons
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(overall, UC, CD), one-way ANOVA was applied. All tests were two-sided, with p <0.05 considered statistically
significant. Analyses were performed in R (version 4.4.1).

Results

Patient’s demographics

This study evaluated 21 demographic, clinical, and laboratory variables, including sex, age, disease duration,
symptoms (abdominal pain, diarrhea, fever), and blood markers (white blood cell count [WBC], hemoglobin
[HB], platelet count [PLT], and total bile acids [TBA]). Values outside reference ranges were labeled abnormal.
Records with inconsistencies or >40% missing data were excluded. CD predominated over UC, mainly in
patients aged 0-30 years. Diarrhea and abdominal pain were common. Most laboratory results were within
reference limits, though abnormalities in hemoglobin, neutrophil percentage, and C-reactive protein suggested
inflammation or nutritional deficits. Most patients received medical rather than surgical treatment; normal
levels of blood in stool (OB), WBC, and PLT were typically normal.

Comparative analysis (Table 1) showed age and onset differed significantly across the total cohort and UC/CD
subsets (p <0.05), indicating discriminative value. In UC, sex, age, onset, abdominal pain, diarrhea, fever, surgical
history, OB, and ulcers differed from totals and CD (p < 0.05), consistent with mucosal disease of the rectum and
colon. By contrast, the segmental, transmural pattern of CD explains distinct presentations. Assessed markers
included HB, PLT, red blood cell percentage (RBC%), neutrophil percentage, WBC, erythrocyte sedimentation
rate (ESR), CRP, albumin (ALB), total bilirubin (TB), direct bilirubin (DBIL), and TBA.

Ensemble model and performance evaluation
Following data preprocessing and augmentation, ten classical machine learning classifiers were systematically
evaluated through grid search optimization. Among these, the RFC, KNN, GPC, and RBF-SVM emerged as the
top-performing models, each achieving test accuracies surpassing 0.8 (Fig. 2a). To further optimize predictive
performance, an ensemble stacking approach integrating these four classifiers was employed, effectively
capitalizing on their complementary strengths. ROC curve analyses demonstrated that ensemble stacking
significantly enhanced predictive accuracy compared to single classifiers, evidenced by the Area Under the
Curve (AUC) improvements from 0.93 to 0.95 in the training dataset (Fig. 2b) and from 0.95 to 0.96 in the
validation dataset (Fig. 2d). These results emphasize the ensemble model’s improved prediction capability and
increased stability over individual classifiers.

Subgroup analysis further elucidated performance variability across distinct patient populations when
utilizing the four-model ensemble. Specifically, the training dataset exhibited an overall AUC of 0.93, with
subgroup AUCs of 0.97 for CD and 0.88 for UC (Fig. 2¢). Similar trends were observed in the validation dataset,

pvalue’
Indicator All (n=174) CD (n=122) UC (n=52) All \ CcD \ uC \ CD vs.UC
Demographics (Mean[range])
Sex 0.68(0~1) 0.73(0~1) 0.58(0~1) 0.1412 | 1.0000 | <0.001 | 0.5391
Age 32.67 (13.00-77.00) | 28.37 (13.00-77.00) | 42.77 (16.00-71.00) | <0.001 | <0.001 | <0.001 | <0.001
Onset 5.36 (1.00-28.00) 6.34 (1.00-28.00) 3.04 (1.00-26.00) 0.0246 | <0.001 | 0.0015 | <0.001
Duration 23.32 (0.00-107.00) | 21.81 (0.50-107.00) | 26.85 (0.00-96.00) | 0.4717 | 0.9336 | 0.4270 | 0.2668
Clinical features (Mean[range])
Celialgia 0.72(0~1) 0.75(0~1) 0.65(0~1) 0.4683 | 0.6554 | <0.001 | 0.7225
Diarrhea 0.72(0~1) 0.63(0~1) 0.92(0~1) <0.001 | 0.3002 | <0.001 | 0.6171
Fever 0.34(0~1) 0.36(0~1) 0.31(0~1) 0.7989 | 0.5519 | <0.001 | 0.3400
Surgery 0.10(0~1) 0.13(0~1) 0.02(0~1) 0.0752 | 1.0000 | 0.0192 | 1.0000
OB 0.83(0~1) 0.77(0~1) 0.96(0~1) 0.0092 | 0.7800 | <0.001 | 1.0000
Ulcer 2.55(1~4) 2.57(1~4) 2.48(1~4) 0.8832 | 0.0064 | <0.001 | 0.0621
Laboratory biomarkers (Mean + SD)
WBC (cells/L) | 7.38+0.18 7.27+0.21 7.64+0.35 0.6388 | 0.7369 | 0.5561 | 0.4233
HB (g/dL) 114.50+1.58 113.99+£1.91 115.69+2.86 0.8868 |0.7238 | 0.7160 | 0.6219
PLT (cells/L) 352.28+9.44 365.10+11.33 322.21+16.64 0.1156 | 0.3460 | 0.0987 | 0.0247
RBC% (%) 35.15+£0.43 35.24+0.51 34.95+0.83 0.9564 | 0.9439 | 0.9019 | 0.8668
N% (%) 69.15+£0.79 70.17+0.89 66.74+1.60 0.1409 | 0.0644 | 0.1814 | 0.0643
ESR (mm/hr) 61.25+£2.81 64.48 £3.37 53.69+5.06 0.2155 | 0.4466 | 0.1825 | 0.0697
CRP (mg/L) 32.58+2.37 33.59+2.73 30.20+4.77 0.8089 | 0.5958 | 0.3526 | 0.2061
ALB (g/L) 34.51+£0.45 34.27+0.55 35.07+0.80 0.7256 | 0.3481 | 0.5440 | 0.4133
TB (umol/L) 6.68+0.22 6.64+0.25 7.39+0.41 0.2865 | 0.5095 | 0.2478 | 0.1160
DBIL (umol/L) | 3.11+0.10 3.05+0.12 3.26+0.19 0.6251 | 0.7012 | 0.5014 | 0.3605
TBA (umol/L) | 3.60+0.17 3.67+0.22 3.42+0.27 0.7968 | 0.9175 | 0.8561 | 0.8052

Table 1. Baseline characteristics by disease subtype (overall, CD, and UC).
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Fig. 2. Model performance overview. (a) Comparison across 10 classifiers. (b) ROC curves with AUCs for

ensembles of 1-4 base models on the training and (d) validation sets. ROC curves for the four selected models

on overall, UC, and CD cohorts in the training (c) and validation (e) sets.

presenting an overall AUC of 0.95, with values of 0.97 for CD and 0.89 for UC (Fig. 2e). The relatively lower
AUC observed within the UC subset may indicate greater heterogeneity in EBV infection patterns or sample size
limitations, highlighting inherent disease-specific complexities. Conversely, the consistently high performance
in the CD subset suggests more predictable EBV-associated features. The ensemble model’s improved validation
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performance, particularly within the UC subgroup, signifies robust generalizability and potential clinical utility
across both IBD subtypes; underscoring its suitability for accurate and reliable EBV infection risk prediction.

Variable importance in predictions

Machine-learning models can function as “black boxes,” limiting clinical adoption. To enhance transparency, we
used SHAP to quantify feature contributions to EBV risk predictions. Positive SHAP values indicate increased
predicted risk; negative values indicate decreased risk. Age was a prominent predictor in the total and CD
cohorts, with SHAP values increasing with age (Fig. 3a). In contrast, age showed predominantly negative SHAP
values in UC (r1 = - 0.5308; Fig. 3b), suggesting lower EBV risk with increasing age—consistent with reports of
higher EBV susceptibility in younger UC patients and elevated risk among older CD patients due to diminished
immune surveillance*®. These subtype-specific patterns (Fig. 3c) support tailored EBV monitoring strategies in
IBD.

SHAP provides global and patient-level interpretability; force plots visualize feature contributions to an
individual prediction. In Fig. 4a (CD), the model predicts EBV positivity ($f(x) =0.93$) driven primarily by
hemoglobin (+0.724), albumin (+0.60), total bilirubin (+0.496), and age (+0.078), with modest attenuation
from CRP (-0.043) and ESR (-0.299). In Fig. 4b (UC), EBV positivity is also predicted ($f(x)=0.90$),
dominated by total bile acids (+0.878), with added contributions from hemoglobin (+0.226), RBC% (+0.24),
neutrophils (+0.203), and direct bilirubin (+0.053); WBC (- 0.537) and platelets (— 1.00) reduce the score but are
outweighed. In Fig. 4c (overall), a high EBV-positive prediction ($f(x) =0.908$) is chiefly influenced by platelets
(+0.877), total bile acids (+0.765), neutrophils (+0.596), total bilirubin (+0.248), and direct bilirubin (+0.224),
with minimal negative effects. Collectively, TBA is most salient in UC, platelets and neutrophils are influential
overall, and hemoglobin/total bilirubin are prominent in CD, illustrating subtype-specific contributors to
predicted EBV risk.
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Fig. 5. Nomogram for predicting the risk of EBV infection.

Nomogram analyses (Fig. 5) indicated lower odds of EBV positivity in UC versus CD (OR for UC vs. CD
0.478, 95% CI 0.27-0.846) and an age-related increase in risk (OR 2.49, 95% CI 1.63-3.805). Hemoglobin (HB)
was an influential predictor of EBV risk (odds ratio [OR] 1.198, 95% CI 0.231-6.202). In the UC cohort, total bile
acids (TBA) was the dominant contributor (SHAP 0.878), alongside neutrophil percentage (N%), red blood cell
percentage (RBC%), direct bilirubin (DBIL), and HB; TBA's association was OR 0.914 (95% CI 0.671-1.246). In
the overall cohort, total bilirubin (TB), TBA, N%, DBIL, and platelets (PLT) were primary predictors, with PLT
contributing most (SHAP 0.877; OR 0.880, 95% CI 0.593-1.307). Findings highlight both shared and subtype-
specific mechanisms: HB/TB are prominent in CD, TBA in UC, and PLT and neutrophils are influential overall.
These patterns support disease-specific risk stratification while motivating unified protocols targeting common

predictors to optimize patient monitoring and management.
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Discussion

This study applied machine learning to predict EBV infection in IBD, analyzing UC and CD cohorts. A stacking
ensemble of multiple classifiers was used, with SHAP providing model interpretability. Performance was
strongest in CD (AUC>0.9) and remained high in the combined cohort, while UC showed modestly lower
accuracy (AUC<0.9), likely reflecting greater variability and smaller sample size. SHAP identified key predictors
of EBV risk across cohorts, supporting transparent, subtype-aware risk stratification.

Significant predictors of EBV infection were age, hemoglobin (HB), total bile acids (TBA), and platelets (PLT),
aligning with evidence that immune status and hematologic indices shape EBV pathogenesis. Age correlated
positively with EBV risk in the overall and CD cohorts, consistent with age-related immune senescence and
impaired T-cell function in older adults*. By contrast, younger UC patients—who often exhibit more active
intestinal inflammation—showed greater susceptibility, in line with reports of heightened immune activation in
younger IBD populations™. Lower HB was associated with increased EBV risk, particularly in UC, supporting
links among chronic inflammatory anemia, iron deficiency, and dysregulated antiviral immunity®!. UC patients
had higher overall EBV risk than CD patients, with TBA emerging as a key predictor; perturbations in bile acid
metabolism—known to influence the microbiome and mucosal immunity—may therefore contribute to EBV
susceptibility in IBD>2 Elevated PLT in the overall dataset further implicates platelet-mediated inflammatory
and coagulation pathways in EBV-related disease processes®.

This study demonstrates the value of interpretable machine learning for clarifying factors linked to EBV
infection in IBD, separating shared from disease-specific risks. Clinically, these insights support targeted
management for UC and CD while highlighting common markers that could inform unified diagnostic and
preventive strategies.

Limitations

Several limitations warrant caution. The retrospective design limits causal inference and may introduce selection
bias; prospective, real-time validation is needed. Generalizability is constrained by the lack of external, multi-
center testing; future work will include site-level validation with varied case-mix, assessing discrimination
(AUCQ), calibration (intercept/slope, curves), and clinical utility (decision-curve analysis), with harmonization
or recalibration as appropriate. The feature set did not include medication exposures, genetic profiles, or
microbiome data; forthcoming multi-center studies will add these variables and quantify their incremental
value (AAUC, NRI) alongside calibration and decision-curve metrics. Temporal differences between cohorts
may affect transportability; planned efforts include time-aware validation, statistical monitoring of covariate
and calibration drift, evaluation of explanation stability across periods, use of time indicators, and periodic
model updating. Finally, model complexity may hinder bedside use. We will develop an EHR-integrated
decision-support interface with uncertainty displays and actionable thresholds, and a simpler surrogate model,
complemented by usability testing, transparent model cards, and exemplar reports to facilitate clinical adoption.

Conclusion

This study employed machine learning to predict Epstein-Barr Virus (EBV) infection in patients with IBD,
specifically focusing on UC and CD. An ensemble model integrating multiple classifiers, and employing Shapley
Additive Explanations (SHAP) for interpretability, demonstrated robust predictive accuracy. Within the training
dataset, the highest performance was observed in the CD subgroup (AUC=0.97), followed by the overall
dataset (AUC=0.93). The UC subgroup showed comparatively lower accuracy (AUC=0.88). Conversely, in the
validation dataset, the UC subgroup exhibited the highest performance (AUC=0.97), followed by the overall
dataset (AUC=0.95). The CD subgroup demonstrating lower performance (AUC=0.89). Critical predictors
of EBV infection identified included age, hemoglobin (HB), total bile acids (TBA), and platelet count (PLT).
These findings underscore both common and disease-specific risk factors, facilitating a tailored approach to
EBV infection management in IBD and supporting personalized patient care through precise risk assessment.

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author on
reasonable request.
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