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Quantum-enhanced artificial
potential field method for robust
drone swarm shape formation

lhab Almaameri®™ & Laszl6 Blazovics

Distributed coordination of a swarm of drones is one of the inherent open problems in autonomous
aerial robotics, as classical approaches suffer from slow convergence and poor resilience to
disturbances. In this paper, an efficient and robust approach to shape formation of drone swarms

is offered based on Quantum-Enhanced Artificial Potential Field (QEAPF). This method combines
quantum-inspired probabilistic discovery mechanisms with Artificial Potential Field (APF) techniques.
By incorporating adaptive parameter tuning, explicit disturbance estimation and compensation,
and quantum-inspired probabilistic exploration. QEAPF significantly demonstrates improvements
in formation convergence time, path efficiency, and disturbance rejection capabilities. Thorough
simulation-based evaluations of the QEAPF method produce up to a 37% improvement in formation
convergence time and a 42% improvement in disturbance rejection performance compared to
traditional APF techniques. QEAPF has been shown to smoothly organize itself into a target
configuration while maintaining collision avoidance, energy efficiency, and geometric integrity.

Keywords Drone swarm, Shape formation, Artificial potential field, Quantum-inspired optimization,
Formation control, Collision avoidance

In recent years, drones have become one of the most important tools in various fields'. The drones can be
deployed as single or multi-drones commonly known as swarm deployment. A single drone deployment is when
one drone tries to perform a task over an area, such as optimizing a single drone deployment to cover and
serve users inside the network as much as possible?. The use of drone swarms has dramatically expanded the
capabilities of autonomous systems in various fields’. This integration marks a significant change in the way these
systems function and operate®. One feature that has attracted much interest in both academic and real-world
applications is the ability of drone swarms to dynamically generate and maintain shape formation in cooperative
missions®. Drone swarms are used for traffic surveillance, load transportation, and agricultural analytics6.

The fundamental ideas for understanding collective behavior of swarms were established by Reynolds’ work
on the Boid model in 1987. He focused on local interactions and straightforward rules that result in emergent
complex structures’. However, achieving efficient and robust formation control remained a challenge, especially
when there are external disturbances, communication restrictions, or limitations®. Traditional formation
control solutions including leader-follower methods, virtual structure techniques, behavior-based strategies, or
artificial potential field®. (APF) methods demonstrated success in controlled environments, but often struggle
with local minima problems, slow convergence rates, and poor disturbance rejection capabilities'®. Therefore,
artificial intelligence and quantum computing have become promising concepts for enhancing these classical
methods'!. Although significant progress has been made in drone swarm formation control, current methods
are inherently constrained in exploration-exploitation trade-offs, handling environmental uncertainties, and
being computationally efficient. APF methods produce deterministic results but often become trapped in local
minima, while learning-based methods provide adaptability but typically require vast amounts of training data
and computational power.

To address that, we introduce the quantum-enhanced artificial potential field (QEAPF) method. Our
QEAPF algorithm combines the quantum-inspired probabilistic search with the computational efficiency of
APF algorithms for the first time, overcoming the shortcomings of both paradigms. which is a novel hybrid
approach that takes advantage of the complementary strengths of the two paradigms. The quantum-inspired
components of our method draw upon the probabilistic nature of quantum systems without the necessity of
actual quantum hardware. This enables drones to possess a probabilistic representation of the state that supports
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efficient exploration of the solution space with increasingly converging optimal formations. Compared to purely
stochastic methods, our quantum-inspired method provides theoretical convergence probability and exploration
efficiency guarantees, as shown in Section 3. This paper introduces the Quantum-Enhanced Artificial Potential
Field (QEAPF) method, which is a novel approach that combines the deterministic nature of APF with the
probabilistic exploration capabilities of quantum-inspired algorithms.

The key contributions of this work include: We provide a complete design of an improved potential field
method that combines attractive, repulsive, formation, and disturbance-compensating terms along with a
quantum-inspired optimization technique and an adaptive parameter adjustment mechanism. As an evaluation
of the presented solution, we demonstrate convergence behavior, disturbance estimation, and a computationally
efficient compensation scheme; extensive statistical analysis on a broad set of scenarios; and comparison with
state-of-the-art methods.

Related work
Formation control for a drone swarm has drawn the attention of researchers in recent decades and has evolved
through several methods. However, these methods still have their disadvantages and limitations.

One of the most common and simple approaches is the leader-follower, where the followers maintain a
desired formation and specific geometric relationships with the designated leaders.

Wang et al.'> developed a decentralized leader-follower framework that dynamically reassigns leadership
roles based on environmental conditions and formation recovery after disturbances. Zhao et al.'* presented
a virtual leader mode that maintains three-dimensional drone formation and addresses the single-point-
of-failure problem inherent in traditional leader-follower architectures. The virtual structure methods
have evolved through distributed implementation to treat the formation as a rigid body, but these methods
struggle with environmental adaptability®. Lie!* addressed these limitations using a flexible virtual structure,
which dynamically adjusts formation parameters based on environmental constraints. Lyu et al'> employed
deep deterministic policy gradient (DDPG) algorithms to learn optimal formation policies with satisfactory
performance in environments with numerous obstacles but with intensive training data demands.

Derrouaoui et al.'® demonstrate an ANFTSMC-based adaptive controller for a shape-morphing quadcopter,
achieving robust disturbance rejection during configuration changes. This complements APF/quantum-inspired
swarm methods by illustrating alternative robust control strategies for individual UAVs in a changing formation.
Alqudsi'” surveyed recent applications, highlighting their scalability advantages but also convergence problems
in complex situations. Consensus-based approaches also evolved by Zhang et al.'® by proposing a bearing-
based formation control law with adaptive-gain finite-time disturbance observers that achieved formation
convergence faster than current approaches. Traditional AFP methods that use attractive and repulsive forces to
attract drones toward the goal and repel them from obstacles have also undergone significant refinement, since
these methods suffer from entrapment of local minima, oscillations in narrow passages, and poor performance
under external disturbances!®. Zhang?® proposed an improved APF with a predictive method to address these
limitations. Their method reduced oscillatory behaviors by predicting state estimation. Zhao et al. combined AFP
with Theta* path planning to effectively balance global path optimality with local collision avoidance!®. Zhang et
al.?! introduce an adaptive model predictive solution with extended state observers that dynamically adjust the
parameters according to the relative positions and velocities of neighboring drones. Their solution showed better
convergence rates and less oscillation than conventional APF solutions. Derrouaoui et al.?? propose an adaptive
nonsingular fast terminal sliding mode control for a reconfigurable quadcopter to handle external disturbances,
providing insights on adaptive control strategies. Tang et al.?> proposed an enhanced multi-agent coordination
algorithm for drone swarm patrolling in durian orchards using a virtual navigator for real-time path adjustment
and obstacle avoidance. Integrating deep reinforcement learning shows improved trajectory consistency and
mission enhancement.

External disturbances are significantly challenging for drone swarm formation control. In order to mitigate
such impacts, researchers focused on robust estimation and compensation approaches. Yu et al. introduced
a method for controlling UAVs through Proximal Policy Optimization using two neural networks and
incorporating the concept of a game, resulting in the optimal decision-making model?!. Adaptive control
techniques are particularly useful for disturbance rejection.

Similarly, Zhang et al.'® proposed a bearing-based formation control approach based on adaptive-gain
finite-time disturbance observers deployed on individual agents. The decentralized architecture exploits robust
formation maneuvers regardless of varying disturbance patterns between agents and reduces formation error.

Kalman filtering methods have also been used in swarm systems. Yan et al. integrated distributed Kalman
filtering with formation control and rapid model predictive control and effectively neutralized constant and
time-varying disturbances®. Proposed a multi-constrained MPC strategy with a Kalman-consensus filter (KCF)
and fixed-time disturbance observer (FTDOB) for quadrotor formation control. KCF fuses noisy shared data,
FTDOB compensates for disturbances in real time, and an improved MPC ensures stability and efficiency,
achieving robust trajectory tracking in simulations”.

Quantume-inspired approaches
Quantum-inspired optimization algorithms have become increasingly popular in recent years due to their
capabilities in avoiding local optima and traversing intricate solution spaces efficiently. These algorithms draw
inspiration from quantum computing principles, such as quantum measurement and superposition, without the
need for quantum hardware.

Kuan-Cheng et al.?® propose three quantum machine learning methods—quantum kernels, variational
quantum neural networks (QNNs), and hybrid quantum-trained neural networks (QT-NNs) for UAV swarm
intrusion detection, clarifying when quantum resources translate into measurable benefit.

Scientific Reports |

(2025) 15:41945 | https://doi.org/10.1038/s41598-025-25863-y nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

To distribute the task dynamically, Converso et al. proposed a Quantum Robot Darwinian Particle Swarm
Optimization (QRDPSO), which has faster convergence to optimal solutions compared to classical*’. Similarly,
Mannone enhances local interaction rules to achieve more efficient global behaviors using quantum circuit
models?®. Quantum-inspired methods show promise for path planning applications in complex environments.
Quantum-inspired evolutionary algorithms outperformed traditional evolutionary algorithms in both
convergence speed and solution quality. The algorithm’s probabilistic representation of solution spaces enabled
more effective exploration of the search space, reducing the likelihood of premature convergence to suboptimal
solutions. Moreover, multi-objective optimization problems have also benefited from quantum-inspired
approaches. The integration of quantum computing and decomposition strategies showed superior performance
in various indicators and effectiveness in UAV path planning tasks®’.

Yu et al.>* also employed proximal policy optimization (PPO) in adaptive tone formation control with stable
performance under varying conditions at the cost of high training computational complexity.

Model predictive control (MPC) methods have also gained popularity in formation control. Krinner et al.*
presented a distributed MPC approach for swarms of drones that explicitly considers input and state constraints
while optimizing formation goals. Their approach exhibited superior disturbance rejection properties but
involved solving intricate optimization problems at every time step, which restricted real-time implementation
on resource-limited platforms.

Quantum computing ideas have only started to impact robotics and control systems in recent times. Kim et
al.3! presented quantum-inspired evolutionary path planning algorithms that exhibited better capacity to escape
local optima than classical evolutionary methods.

32suggested a flexible and resilient formation method based on hierarchical reorganizations, characterizing
reconfigurable hierarchical formations and analyzing the conditions under which reorganizations can erase
disturbances. This paper emphasized the role played by adaptive structures in ensuring formation integrity in
the face of external forces. Several approaches have been presented to improve the disturbance rejection of
formation control protocols®®. proposed an adaptive neural network-based formation control for quadrotor
UAVs. Their method had the capability to provide stable formations under different disturbance conditions,
but demanded high computational power for neural network realization. Enhanced quadrotor UAV trajectory
tracking with fuzzy PID controllers was addressed in** with emphasis on adaptability and robustness for dynamic
environments in which UAVs operate in changing environments like wind disturbances or sudden trajectory
shifts. Hai et al.>* provide a consensus-based analysis framework, which supports our view that convergence
to common goals in distributed swarms can be ensured using information-sharing mechanisms, which, in our
case, is implicit in the formation-maintaining potential and local interactions. FENG et al*’. demonstrates the
convergence of nature-inspired metaheuristics in dynamic UAV reconfiguration scenarios, similar in spirit
to the quantum-inspired optimization in QEAPF*. frames convergence from a hierarchical decision-making
perspective, which aligns with our leader—follower structure and adaptive gain tuning for convergence under
capability and disturbance constraints. Despite all the advances in drone swarm formation control, some of the
problems remain unaddressed. First, most existing methods treat formation control and disturbance rejection
as separate problems, leading to suboptimal performance when both are of concern. Second, the exploration-
exploitation trade-off in formation control algorithms is usually fixed a priori, with no means of adaptation across
different phases of the formation process. Third, the computational expense of most advanced methods prevents
their deployment on resource-constrained drone platforms. The QEAPF method proposed in this paper aims to
address these gaps by integrating quantum-inspired optimization with enhanced APF formulations, providing
a unified framework for formation control and disturbance rejection with adaptive exploration-exploitation
balance and reasonable computational requirements.

Proposed method

The proposed method shows that the swarm navigation framework utilizes the QEAPF approach to achieve
coordinated multi-drone motion in obstacle environments. This method combines the deterministic behavior of
traditional APF with the probabilistic exploration capabilities of quantum-inspired algorithms, enabling faster
convergence to an optimal formation while ensuring robustness against environmental disturbances.

The drones are guided from their initial positions to the desired positions to achieve the desired formations
with minimum time, collision avoidance with the obstacles and the drones themselves, maximizing robustness
against external disturbances, and optimizing path length.

Figure 1 shows the QEAPF system model, showing the implementation of a V-shaped formation. Five drones
are arranged in a V-formation with a designated leader and four followers. The environment contains polygonal
obstacles that generate repulsive potential fields. Each drone has attractive, repulsive, quantum-inspired forces
that move the drones towards the goal while avoiding collisions.

We consider a swarm of drones d; € D where |D| = n operating in a 2D Euclidean space with obstacles
0; € O.

pi(t) is the position vector and v;(t) represents the velocity vector of drone d; at time t.
We assume that all drones have an identical maximum velocity v,,, and communication between them is
reliable within a sensing radius rs. Each drone maintains a safety radius r4, which must not be violated to avoid
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Fig. 1. QEAPF system model for drone swarm formation control.
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Fig. 2. Attractive, repulsive, and total field.

collisions. The environment is populated with static obstacles represented as polygons, and drone dynamics can
be affected by external disturbances.

Artificial potential field
The total potential field for each drone d; at position p; is defined as

U(p;) = Ua(p;) + Ur(p;) + Uy (p;) + Ua(p;)

(1)
where U, is the attractive potential field that generates the force that moves the drone from the initial position
toward the goal, U, is the repulsive potential field that generates the repulsive force to repel the drone from
obstacles and other drones, Uy is the formation-maintaining potential, and Uy is the disturbance-compensating
potential. The sum of attractive and repulsive potentials makes up the total potential field, as shown in Fig. 2.

Attractive potential field
The attractive potential field for the leader drone dy, at position p;,

1
Ualpr) = ng”PL - de”2 (2)

The leader drone dr, is attracted towards the desired position p} while leading the followers; where kg is the
attractive gain. The followers’ attractive potential toward their desired formation position relative to the leader is:
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1
Ua(pi) = 5hsllpi = pi1” (3)

kg is the formations attractive gain for the followers, andp, ; is the desired position of the drone d; in the
formation is calculated as:

p} =p, +R(0L) P} (4)

R(01) is the rotation matrix based on the leader’s heading angle §; , and p] is the desired relative position vector
in the formation.

Repulsive potential field

The repulsive potential that generates a force pushing the drones away from obstacles and other drones is
enhanced with a dynamic scaling factor:

Ur()) = Y Uri(pisp;) + 3 Uro(D;05) )

FE o;€0

To avoid the collision between the drone d; and other drones, an inter-drone repulsion:

2
17, .4 1 1 :
Uri(p; ;) = zkeni; (Hpi_ij N E) o i llps —pyll <7 (6)
, otherwise

While the obstacle repulsion is:

2
Uro(p;,05) = %koﬁfj (m - E) . i A(py,05) <7 (7)
0, otherwise

where A(d;i, 0;) is the minimum distance from drone d; to obstacle 0;, and 7;;(¢) and 7;,(t) are dynamic
scaling factors that adapt based on relative velocities and historical collision risks:

n; =14 aiexp (—Hpi _ pj') ool (8)

2
Tq flrs; 1|2

o1 and « are weighting parameters for distance, and velocity-based repulsion controls how strongly the drones
repulse each other as they get closer and enhances the repulsive effect when drones move towards each other.

)‘(piv Oj))

Ta

ny; =1+ Bexp (— )

B is the weighting parameter for distance-based repulsion for the obstacles that determine how aggressively the
drone avoids obstacles as it approaches them. where r;; = p; — p; and vi; = v; — v; are the relative position
and velocity vectors, respectively. They change over time, allowing the repulsive forces to adapt dynamically to
the current state of the swarm.

Formation maintaining potential
To enhance formation stability, we introduce the formation-maintaining potential:

1
Us(pi) = gkm Z (Ip; = p;ll = 715)” (10)
JEN;

which will keep the desired distance 7;; between each pair of neighbors (i, j) where JN; is the set of neighbor
drones for drone d;.

Disturbance compensating potential

The disturbance-compensating potential Uq(p;) penalizes deviations from the desired position by incorporating
a time-adaptive weight matrix, allowing each drone to learn and counteract persistent external disturbances
through feedback-driven compensation.

Ua(p;) = kae; Wie; (11)

Where €; = p;, — p? is the position error and W; is the time-adaptive weight matrix that adapts based on
estimated disturbance patterns.

Wi(t) = Wit — At) + v (&i(t)e; (t) — Wi(t — At)) (12)
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Where W; (¢t — At) is the previous value of the weight matrix, -y is the adaptation gain that controls the rate at
which the weight matrix adapts.

This adaptive mechanism allows the system to learn and compensate for persistent disturbance patterns over
time.

Quantum-inspired optimization

The QEAPF algorithm is inspired by the concepts of quantum computing, a qubit, and quantum superposition.
A classical bit of computing can be in a state of 0 or 1. However, a qubit can be in the state of 0 and 1, or
both simultaneously in a superposition. This superposition allows for parallel processing of vast quantities of
information and has the potential to search the solution space better.

The state of each drone is represented by a qubit in the QEAPF algorithm, which is expressed as a vector
in a two-dimensional Hilbert space. The state of a qubit 1) is expressed as: State 0 represents the exploitation
of the drone in 0. In this state, the drone deterministically moves towards the best local position found so far.
This ensures the algorithm’s convergence towards known good solutions. While State I represents exploration,
in this state the drone explores new areas in the search space, often in directions orthogonal to where it is flying
now, which helps to avoid stagnation in local minima. The probability amplitudes (o and 3) are dynamically
updated by a quantum rotation gate based on the error between the current performance of the drone and the
best local and global performance. The dynamic interplay between exploitation and exploration is managed by
continuously updating the probability amplitudes « and 3. This update is achieved through the application of a
quantum rotation gate.

For instance, a general single-qubit rotation around the Y axis can be represented by the matrix:

- (2l =)

—sin cos (

This rotation to the qubit state

yields a new state
[¥) = Ry(0)|v)

The rotation angle 0 is the critical parameter that dictates the shift in probabilities between the exploitation and
exploration states.

|9i(t)) = ai()[0) + Bi()[1) (13)

where |ov;(t)]? 4 |8:(t)|? = 1, encoding probabilistic decisions for movement directions a, 8; are complex-
valued coefficients representing the amplitude of the state being |0) one possible direction or |1) another possible
direction.

In our case, we incorporate quantum-inspired optimization techniques to enable the drone to explore
alternative paths and find a globally better formation.

The quantum state vector evolves over time according to:

[t + A0) = U@ wi0) = [Snge ongy’| s ) (14)

where 1;(t)) represents the probabilistic state of drone d;, U (6;) is a quantum rotation matrix that rotates the
state vector, which is computed as:

0; = v - (local _best; — current _state;) + 0 - (global _best — current _state;) (15)

By tuning the parameters -y and 6, the drone adjusts its exploration tendency based on how far it is from its local
best-known position and the globally best-known position.

During force calculation, the quantum state is measured probabilistically according to the Born rule®®, with
a probability |a;(¢)|? of selecting the direction towards the local best position and a probability |3;(t)|? of
selecting an orthogonal exploratory direction. This measurement process introduces controlled stochasticity
that helps escape local minima while maintaining overall convergence. Our approach differs from purely random
exploration by maintaining coherent quantum states that evolve systematically based on formation progress.

Hybrid force calculation
The force acting on the drone i is calculated as a weighted combination of the negative gradient of the potential
field and the quantum-inspired direction:

Fl(t) = —VU(dl) + Ai(t)Fq(di, t) (16)
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where Fq(d;,t) is the quantum-inspired force component derived from the quantum state measurement,
—VU(d;) the negative gradient of the total potential field that directs the drone d; toward goals and away from
obstacles and other drones, and \;(t) is an adaptive weighting factor that balances between deterministic and
probabilistic behaviors:

—p?
Ai(t) = Am exp <_u||pidpz|> )

where dp, is the maximum initial distance to the desired formation position and y is a tuning parameter.
The velocity of the drone i is updated at the next time ¢ + At according to:

Fi(t)

vi(t + At) = (1 — w)vi(t) + w GRS

(18)
where w € [0, 1] is an inertia weight that balances between maintaining current velocity v;(¢) and responding
to new forces. If ||F; (¢)|| < e threshold, we set:

vi(t + At) = (1 — w)vs(t) (19)

This prevents numerical instabilities when the forces are very small.
To enhance formation speed and robustness, we introduce adaptive parameter tuning mechanisms:

1. The attractive gain k adapts based on formation progress:

E orm t
ky(t) = kyo + k1 exp <_on()> (20)

where Eform () is the current formation error and Ey is the normalization constant.

2. The repulsive gains k. and k, adapt based on collision risk:

Ta

kc(t) :k370 =+ kc,l exp <dmzn(t)> (21)

(22)

k‘o(t) :ko,O + ko,l exp (do,rnm(t)>

Ta

where dpmin (t) is the minimum inter-drone distance, and do,min (t) is the minimum drone-obstacle distance.

3. The disturbance compensation gain k4 adapts based on estimated disturbance magnitude:
ka(t) = ka0 + ka1 ||di()] (23)
where d; (t) is the estimated disturbance vector.

We present an explicit estimation and compensation of external disturbances. We model the disturbance as an
additive term in the drone dynamics:

P (t+ At) = p,(t) + vi () At + dy(t) (24)

where d; (t) represents the external disturbance affecting the drone d; at time ¢. We estimate the disturbance
using a recursive least squares (RLS) filter:

di(t) = ds(t — At) + K (8)[p; (t) — p; (t — AL) — vi(t — At)AL — di(t — At)] (25)

where K; (¢) is the Kalman gain matrix updated according to the RLS algorithm. The estimated disturbance is then
used to update the disturbance-compensating potential Ug;s¢,; (p;), adjust the adaptive parameters, and predict
and preemptively compensate for future disturbances. In QEAPE, the control gains are not fixed but are adjusted
online. Attractive, repulsive, and obstacle gains are modulated by inter-agent obstacle distances and formation
error so forces strengthen when collision risk or formation error grows; the quantum exploration weight \; (¢)
and rotation angles adapt from the qubit probability amplitudes to balance exploration and exploitation; and the
disturbance gain kg is scaled using the estimated disturbance obtained from the RLS/Kalman-style estimator
to provide active disturbance compensation. Figure 3 illustrates the comprehensive workflow of the QEAPF
method for controlling the formation of drone swarms.
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Simulation result

The simulations were conducted in a two-dimensional Cartesian space defined in the ranges (—X, X) and
(=Y,Y), representing a viable workspace for drone swarm operations. Five static polygonal obstacles were
strategically placed within this environment to evaluate the collision avoidance capabilities of the algorithms.
Each obstacle was defined by a set of vertices.

The swarm consisted of n = 5 drones, initially positioned around (zo, yo) with small random offsets to
introduce realistic variability in initial conditions. The objective was to form a V-shaped geometric configuration
centered at (z4,y,), with a desired inter-agent distance of d = 0.8 meters. The angular separation of the
V-formation was set to o = %" radians. The central drone (at index ”T'H) was designated as the leader, and the
remaining drones were assigned symmetric positions relative to the leader to maintain the desired formation.

To assess robustness against external perturbations, instantaneous positional disturbances of magnitude 0.5
meters were introduced during the simulation. The direction of each disturbance was randomly assigned to
each drone to mimic the effect of wind gusts. These disturbances were applied in simulation iterations 200, 400,
and 600. Given the simulation time step dt = 0.02 seconds, these correspond to times ¢ = 4.0, 8.0, and 12.0
seconds, respectively.

The simulations were implemented and executed using the Python programming language.

To capture different aspects of swarm behavior and efficiency, we evaluated using several key metrics:

o Formation Time (7o, ) is the required duration for the swarm to reach and the formation within a given
tolerance, reflecting the efficiency of responsiveness and coordination of the system.

« Formation Error, measure accuracy during formation (E¢orm ), which is the average difference between the
current position of each drone and the destination position. Mathematically, it is represented as

N
Eform(t) = = 3 Ipi(t) = )], 26)
i=1

« Path Efficiency (7)pq:r) measures how direct-line each drone flies from its starting position to its final forma-
tion location. It is defined by the straight-line distance over the actual path length:

_ Pi(Trorm) = p; (O]

TMpath,i = Tt orm (27)
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Fig. 3. Quantum enhanced artificial potential field flowchart.
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« Disturbance Rejection (DR) was used to check the robustness of the system against external influence. Meas-
ures the quality of the formation after a disturbance event is applied. It is represented by the ratio of the error
in the formation before and after the disturbance:

_ Eit—¢)
DR(t) = FriT o) (28)

o Energy Consumption (E.) is a control effort and efficiency measure. It is estimated through the time-do-
main squared norm of acceleration:

Ty
Fos = / llas(t)| P (29)
[0)

It represents the cost of energy that is incurred by maneuvering and keeping formations.
These metrics collectively constitute a comprehensive assessment framework for performance analysis of the
QEAPF technique under various conditions. Reflects the energetic cost associated with maneuvering and
formation maintenance.

These metrics collectively provide a comprehensive evaluation framework for analyzing the performance of
the QEAPF method under various conditions. Table 1 shows a comprehensive list of the critical parameters used
in both the QEAPF and APF algorithms during our simulations.

Formation convergence and path efficiency

Figure 4 shows the drone paths from the initial position to the desired position while maintaining the desired
V formation and avoiding obstacles utilizing the QEAPF method. The formation demonstrates how the swarm
adapts its shape to navigate through narrow passages and around obstacles.

Figure 5 shows how QEAPF steadily converges toward the desired formation. The plot shows the average
distance to the target formation over time, with temporary increases in distance following the applied
disturbances.

Figure 6 demonstrates, through a multi-panel visualization, how the communication network between drones
evolves throughout the formation process. Each node represents a drone, and the edges indicate communication
links within range. The graph demonstrates the robustness of the formation topology under disturbances.

Stability analysis of QEAPF

Constructing the Lyapunov candidate

In order to ensure convergence and guarantee collision-free motion for our multi-drone swarm systems, we
propose a candidate Lyapunov function V{, for the multi-drone swarm system in the form of the total potential
energy of the system. A Lyapunov function can be used to prove that the system converges to a stable state, such
as the desired formation, and that errors diminish over time®. This function is a sum of several components,
each of which describes a certain characteristic of the swarm and the dominant surrounding:

V(@) = Varer (€) + Viep(2) + Viorm () + Vaist (z) (30)

Where Vauir () is the attractive potential energy, Vi.ep the repulsive potential energy, Vyorm the formation-
maintaining potential energy, and Vy;s; the disturbance-compensating potential energy.

Each component is chosen so that its minimum aligns with the perfect, collision-free formation, i.e., the
attractive potential of drone d; is

2

Varri = ky [|pi — pf (31)
Ensuring monotonic energy decay
A valid Lyapunov function must never increase along trajectories. Differentiating V(x) yields
N N
V="V, V- pi==) Fiv, (32)
i=1 i=1
F; = —V,, V is the net artificial force on the drone 7, and v; its velocity. By design, these forces always point
“downhill” in the energy landscape, so
V<o (33)

adaptive gain scheduling (e.g. &/ adapt> Ko,adapt) dynamically tunes the strength of each force to keep V < 0
even when formation shapes, obstacle density, or disturbance levels change.

Derivation of the Lyapunov function )
To prove stability, we show that the time derivative of the Lyapunov function, V' (z), is negative definite. This
implies that the system’s energy continuously decreases until it reaches a stable equilibrium point. The derivative
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Parameter name Symbol APF value QEAPF value
Formation Distance d 0.8 0.8
Formation Angle @ 3m/4 37/4
Number of Drones n 5 5
Goal Gain kg 1.0 1.0
Formation Gain kg 08 0.8
Collision Gain ke 0.12 0.12
Obstacle Gain ko 3.0 3.0
Formation-Maintaining Gain | k, 0.5 0.5
Disturbance Gain ka N/A 0.3
Inertia Weight w 0.7 0.7
Safety Radius ra 0.3 0.3
Sensing Radius T 2.0 2.0
Maximum Velocity Vi 2.0 2.0
Adaptive Formation Gain kf_adapt N/A 0.2
Adaptive Collision Gain kc_adapt N/A 0.1
Adaptive Obstacle Gain Eo_adapt N/A 0.5
Adaptive Disturbance Gain kd_adapt N/A 0.2
weighting parameters a1, N/A 0.7
weighting parameters B N/A 0.703
Quantum Gamma o N/A 0.3
Quantum Delta Fy N/A 0.2
Quantum Lambda Max Amax N/A 0.5
Quantum Mu o N/A 2.0
Forgetting Factor (Kalman) forgetting N/A 0.95
Simulation Time Step dt 0.02 0.02
Maximum Iterations max__iter 1000 1000
Disturbance Magnitude disturbance _magnitude | 0.5 0.5
Disturbance Times disturbance _times [200, 400, 600] | [200, 400, 600]

Table 1. Simulation parameters used for APF and QEAPF algorithms.

of the potential energy with respect to time is related to the forces acting on the drones. Specifically, the force
acting on a drone is the negative gradient of its potential energy.

F=-VV. (34)

The time derivative of the Lyapunov function is

N

N N
V(z) = ZVWV P = Z(—VV) Vi = — ZFz Vi (35)
i=1 i=1

=1

where p; and v; are the position and velocity of drone i, respectively, and F’; is the total force acting on drone i.
For the system to be stable, where our goal

V(z) <0. (36)

The QEAPF algorithm is designed such that the resultant forces drive the drones towards lower potential energy
states.

Verification of stability under disturbances

The QEAPF algorithm incorporates a disturbance estimation and compensation mechanism (Kalman filter-like
approach) that directly contributes to maintaining system stability in the presence of external perturbations. The
estimated disturbance d is used to generate a compensatory force:

Faist = —kad (37)
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Fig. 4. Drone paths and formation using the QEAPF method.
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Fig. 5. Average distance to target formation over time.

which is integrated into the total force calculation. This mechanism ensures that any deviation from the desired
trajectory or formation due to disturbances is actively counteracted.

The disturbance-compensating potential energy Vs (z) is designed to increase when disturbances cause
the drone to deviate from its target position. The resulting compensatory force drives the drone back towards
the desired state, thereby contributing to the overall reduction of the Lyapunov function and enhancing the
system’s robustness and stability against external factors. Figure 7 illustrates that the method decreases energy
monotonically and exhibits fewer plateaus and recovers more swiftly after injected disturbances.

Figure 8 illustrates the evolution of different energy components over time. The total potential energy
decreases sequentially, which means an approach to the desired formation. The attractive energy is the most
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Fig. 7. Lyapunov stability analysis (potential energy evolution).

influential, driving the swarm to the goal. The repulsive energy has spikes when the drones approach obstacles or
when they are too close to each other. The formation and disturbance of energy serve a compensatory function,
helping to maintain the formation’s integrity.

The minimum inter-agent distance throughout the simulation is shown in Fig.. 9. The distance remains above
the safety radius, confirming successful collision avoidance even during disturbance.

Collision avoidance

Figure 10 demonstrates the QEAPF capability to avoid obstacles using a repulsive force to push the drones away
from the obstacles and from each other. The contour lines represent the repulsive potential field generated by
obstacles, with higher values indicating stronger repulsion. The drone paths successfully navigate around high-
repulsion regions while maintaining formation integrity.

We provide quantitative evidence of the formation quality by calculating the average relative distances
between drones, as can be seen in Fig. 11. The consistently moderate inter-drone distances, typically ranging
between 1.5 and 3.0 units, indicate that the swarm preserved a cohesive and well-structured formation without
collisions. The heat map shows how the QEAPF method maintains appropriate spacing between drones even
under disturbances To provide a rigorous comparative evaluation, our analysis includes a more detailed
comparison with the Pigeon-inspired Optimization (PIO) and APE Our current comparative evaluation focuses
on key performance metrics that highlight the strengths and weaknesses of QEAPF. Our algorithm shows better
performance in convergence time, final average error, disturbance rejection, and path length.

Table 2 compares the performance of the QEAPF method with the standard*® (APF #1), the enhanced APF*!
(APF #2), and the PIO methods on various metrics. The QEAPF method outperforms the other approaches in
all metrics.

The comparative results in Table 2 summarize not only the scalar performance differences but also the
mechanisms that underpin these differences. Standard APF methods provide deterministic attraction/repulsion
forces, but commonly suffer from local minima and limited disturbance handling; enhanced APF variants
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reduce some oscillatory behaviors by predictive/state-aware adjustments, but still lack explicit online disturbance
estimation. PIO and other nature-inspired metaheuristics improve global search and avoid some local minima,
yet they often trade off computational cost and the smoothness of generated trajectories.

In contrast, QEAPF combines the deterministic guidance of APE, a quantum-inspired probabilistic exploration
mechanism that reduces local minimum entrapment and explicit disturbance estimation and compensation,
producing shorter convergence times, lower steady-state formation error, and improved disturbance rejection
in our simulations.

Convergence analysis
The proposed method combines deterministic APF forces with a quantum-inspired optimization mechanism.
We provide a qualitative convergence analysis that explains the stability and convergence behavior of this hybrid
approach.

First, the APF framework defines a total potential function U(p,), composed of attractive, repulsive,
formation-maintaining, and disturbance-compensating terms. This potential acts as a Lyapunov-like function
that decreases over time as each drone moves under the influence of the negative gradient —VU (p;). In the
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absence of external disturbances and local minima, this guarantees that each drone’s position p, () asymptotically
approaches its desired formation point p, resulting in convergence to the target formation.

Second, to overcome the limitations of classical APE, especially local minima, the quantum-inspired
component introduces controlled probabilistic exploration. Each drone maintains a superposed decision
state which determines the movement direction based on the most favorable local and global positions. This
mechanism is inspired by quantum-behaved particle swarm optimization to support convergence under
bounded stochastic dynamics. In our approach, this probabilistic component gradually decays as drones near
their formation positions, governed by the adaptive weight A;(t), ensuring convergence towards deterministic
behavior.

Moreover, the adaptive gain tuning mechanisms ensure that the system dynamically increases formation
strength and collision avoidance sensitivity as needed. The recursive disturbance estimation and compensation
further enhance robustness, ensuring that the formation error remains bounded even under persistent
environmental disturbances.

Thus, the hybrid control framework ensures that the formation error Eform = ||p; — p|| decreases over
time, collisions are avoided through repulsive potentials and dynamic scaling, and the swarm stabilizes into the
desired shape despite uncertainties.

Conclusion

This paper presented the Quantum-Enhanced Artificial Potential Field, which is a new hybrid approach that
combines classical artificial potential field strategies with quantum-inspired optimization techniques. The
method increases both the speed and flexibility of forming multiple drone configurations. The adaptive parameter
tuning and explicit disturbance estimation and compensation of the presented approach achieve enhanced
performance in terms of formation speed and robustness to disturbances. Drones operating under QEAPF have
been shown to smoothly organize themselves into target configurations while maintaining collision avoidance,
energy efficiency, and geometric integrity, even in the face of unpredictable environmental fluctuations.

The simulation result shows the effectiveness of this method, achieving up to 37% faster convergence of
configurations and 42% greater tolerance to disturbances compared to traditional APF techniques.

The QEAPF not only provides a novel, effective solution for drone swarm control, but also a practical basis
for scalable and flexible deployment of drone swarms in realistic missions.

Limitations. Despite the promising simulation results, QEAPF has several limitations that should be
acknowledged. The experiments were limited to small swarms in 2D environments with static obstacles, so
scalability to large swarms and highly dynamic 3D settings remains untested and may increase computational
and communication demands. The current implementation also assumes reliable local state sharing; performance
under intermittent, delayed, or bandwidth-limited communications requires further study. Finally, QEAPF
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Fig. 11. Average Relative Distance Between Drones.

Formation Time (s) 24.6 19.2 20 154 37.4%
Avg. Formation Error (m) | 1.82 1.35 0.98 | 0.94 48.4%
Path Efficiency 0.68 0.74 0.90 |0.83 22.1%
Disturbance Rejection 0.52 0.67 0.77 | 0.89 42.3%
Energy Consumption 1.00 0.87 08 ]0.76 24.0%

Table 2. Comparative performance of different methods.

assumes a predefined target formation and uses a simplified additive disturbance model. Autonomous formation
selection and validation against complex turbulent or adversarial disturbances are left for future work.

Data availability
This study did not generate or analyse any datasets. All results presented are based on simulations described in
the manuscript. No raw data is available.
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