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Distributed coordination of a swarm of drones is one of the inherent open problems in autonomous 
aerial robotics, as classical approaches suffer from slow convergence and poor resilience to 
disturbances. In this paper, an efficient and robust approach to shape formation of drone swarms 
is offered based on Quantum-Enhanced Artificial Potential Field (QEAPF). This method combines 
quantum-inspired probabilistic discovery mechanisms with Artificial Potential Field (APF) techniques. 
By incorporating adaptive parameter tuning, explicit disturbance estimation and compensation, 
and quantum-inspired probabilistic exploration. QEAPF significantly demonstrates improvements 
in formation convergence time, path efficiency, and disturbance rejection capabilities. Thorough 
simulation-based evaluations of the QEAPF method produce up to a 37% improvement in formation 
convergence time and a 42% improvement in disturbance rejection performance compared to 
traditional APF techniques. QEAPF has been shown to smoothly organize itself into a target 
configuration while maintaining collision avoidance, energy efficiency, and geometric integrity.

Keywords  Drone swarm, Shape formation, Artificial potential field, Quantum-inspired optimization, 
Formation control, Collision avoidance

In recent years, drones have become one of the most important tools in various fields1. The drones can be 
deployed as single or multi-drones commonly known as swarm deployment. A single drone deployment is when 
one drone tries to perform a task over an area, such as optimizing a single drone deployment to cover and 
serve users inside the network as much as possible2. The use of drone swarms has dramatically expanded the 
capabilities of autonomous systems in various fields3. This integration marks a significant change in the way these 
systems function and operate4. One feature that has attracted much interest in both academic and real-world 
applications is the ability of drone swarms to dynamically generate and maintain shape formation in cooperative 
missions5. Drone swarms are used for traffic surveillance, load transportation, and agricultural analytics6.

The fundamental ideas for understanding collective behavior of swarms were established by Reynolds’ work 
on the Boid model in 1987. He focused on local interactions and straightforward rules that result in emergent 
complex structures7. However, achieving efficient and robust formation control remained a challenge, especially 
when there are external disturbances, communication restrictions, or limitations8. Traditional formation 
control solutions including leader-follower methods, virtual structure techniques, behavior-based strategies, or 
artificial potential field9. (APF) methods demonstrated success in controlled environments, but often struggle 
with local minima problems, slow convergence rates, and poor disturbance rejection capabilities10. Therefore, 
artificial intelligence and quantum computing have become promising concepts for enhancing these classical 
methods11. Although significant progress has been made in drone swarm formation control, current methods 
are inherently constrained in exploration-exploitation trade-offs, handling environmental uncertainties, and 
being computationally efficient. APF methods produce deterministic results but often become trapped in local 
minima, while learning-based methods provide adaptability but typically require vast amounts of training data 
and computational power.

To address that, we introduce the quantum-enhanced artificial potential field (QEAPF) method. Our 
QEAPF algorithm combines the quantum-inspired probabilistic search with the computational efficiency of 
APF algorithms for the first time, overcoming the shortcomings of both paradigms. which is a novel hybrid 
approach that takes advantage of the complementary strengths of the two paradigms. The quantum-inspired 
components of our method draw upon the probabilistic nature of quantum systems without the necessity of 
actual quantum hardware. This enables drones to possess a probabilistic representation of the state that supports 
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efficient exploration of the solution space with increasingly converging optimal formations. Compared to purely 
stochastic methods, our quantum-inspired method provides theoretical convergence probability and exploration 
efficiency guarantees, as shown in Section 3. This paper introduces the Quantum-Enhanced Artificial Potential 
Field (QEAPF) method, which is a novel approach that combines the deterministic nature of APF with the 
probabilistic exploration capabilities of quantum-inspired algorithms.

The key contributions of this work include: We provide a complete design of an improved potential field 
method that combines attractive, repulsive, formation, and disturbance-compensating terms along with a 
quantum-inspired optimization technique and an adaptive parameter adjustment mechanism. As an evaluation 
of the presented solution, we demonstrate convergence behavior, disturbance estimation, and a computationally 
efficient compensation scheme; extensive statistical analysis on a broad set of scenarios; and comparison with 
state-of-the-art methods.

Related work
Formation control for a drone swarm has drawn the attention of researchers in recent decades and has evolved 
through several methods. However, these methods still have their disadvantages and limitations.

One of the most common and simple approaches is the leader-follower, where the followers maintain a 
desired formation and specific geometric relationships with the designated leaders.

Wang et al.12 developed a decentralized leader-follower framework that dynamically reassigns leadership 
roles based on environmental conditions and formation recovery after disturbances. Zhao et al.13 presented 
a virtual leader mode that maintains three-dimensional drone formation and addresses the single-point-
of-failure problem inherent in traditional leader-follower architectures. The virtual structure methods 
have evolved through distributed implementation to treat the formation as a rigid body, but these methods 
struggle with environmental adaptability9. Lie14 addressed these limitations using a flexible virtual structure, 
which dynamically adjusts formation parameters based on environmental constraints. Lyu et al15 employed 
deep deterministic policy gradient (DDPG) algorithms to learn optimal formation policies with satisfactory 
performance in environments with numerous obstacles but with intensive training data demands.

Derrouaoui et al.16 demonstrate an ANFTSMC-based adaptive controller for a shape-morphing quadcopter, 
achieving robust disturbance rejection during configuration changes. This complements APF/quantum-inspired 
swarm methods by illustrating alternative robust control strategies for individual UAVs in a changing formation. 
Alqudsi17 surveyed recent applications, highlighting their scalability advantages but also convergence problems 
in complex situations. Consensus-based approaches also evolved by Zhang et al.18 by proposing a bearing-
based formation control law with adaptive-gain finite-time disturbance observers that achieved formation 
convergence faster than current approaches. Traditional AFP methods that use attractive and repulsive forces to 
attract drones toward the goal and repel them from obstacles have also undergone significant refinement, since 
these methods suffer from entrapment of local minima, oscillations in narrow passages, and poor performance 
under external disturbances19. Zhang20 proposed an improved APF with a predictive method to address these 
limitations. Their method reduced oscillatory behaviors by predicting state estimation. Zhao et al. combined AFP 
with Theta* path planning to effectively balance global path optimality with local collision avoidance13. Zhang et 
al.21 introduce an adaptive model predictive solution with extended state observers that dynamically adjust the 
parameters according to the relative positions and velocities of neighboring drones. Their solution showed better 
convergence rates and less oscillation than conventional APF solutions. Derrouaoui et al.22 propose an adaptive 
nonsingular fast terminal sliding mode control for a reconfigurable quadcopter to handle external disturbances, 
providing insights on adaptive control strategies. Tang et al.23 proposed an enhanced multi-agent coordination 
algorithm for drone swarm patrolling in durian orchards using a virtual navigator for real-time path adjustment 
and obstacle avoidance. Integrating deep reinforcement learning shows improved trajectory consistency and 
mission enhancement.

External disturbances are significantly challenging for drone swarm formation control. In order to mitigate 
such impacts, researchers focused on robust estimation and compensation approaches. Yu et al. introduced 
a method for controlling UAVs through Proximal Policy Optimization using two neural networks and 
incorporating the concept of a game, resulting in the optimal decision-making model24. Adaptive control 
techniques are particularly useful for disturbance rejection.

Similarly, Zhang et al.18 proposed a bearing-based formation control approach based on adaptive-gain 
finite-time disturbance observers deployed on individual agents. The decentralized architecture exploits robust 
formation maneuvers regardless of varying disturbance patterns between agents and reduces formation error.

Kalman filtering methods have also been used in swarm systems. Yan et al. integrated distributed Kalman 
filtering with formation control and rapid model predictive control and effectively neutralized constant and 
time-varying disturbances25. Proposed a multi-constrained MPC strategy with a Kalman-consensus filter (KCF) 
and fixed-time disturbance observer (FTDOB) for quadrotor formation control. KCF fuses noisy shared data, 
FTDOB compensates for disturbances in real time, and an improved MPC ensures stability and efficiency, 
achieving robust trajectory tracking in simulations17.

Quantum-inspired approaches
Quantum-inspired optimization algorithms have become increasingly popular in recent years due to their 
capabilities in avoiding local optima and traversing intricate solution spaces efficiently. These algorithms draw 
inspiration from quantum computing principles, such as quantum measurement and superposition, without the 
need for quantum hardware.

Kuan-Cheng et al.26 propose three quantum machine learning methods—quantum kernels, variational 
quantum neural networks (QNNs), and hybrid quantum-trained neural networks (QT-NNs) for UAV swarm 
intrusion detection, clarifying when quantum resources translate into measurable benefit.
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To distribute the task dynamically, Converso et al. proposed a Quantum Robot Darwinian Particle Swarm 
Optimization (QRDPSO), which has faster convergence to optimal solutions compared to classical27. Similarly, 
Mannone enhances local interaction rules to achieve more efficient global behaviors using quantum circuit 
models28. Quantum-inspired methods show promise for path planning applications in complex environments. 
Quantum-inspired evolutionary algorithms outperformed traditional evolutionary algorithms in both 
convergence speed and solution quality. The algorithm’s probabilistic representation of solution spaces enabled 
more effective exploration of the search space, reducing the likelihood of premature convergence to suboptimal 
solutions. Moreover, multi-objective optimization problems have also benefited from quantum-inspired 
approaches. The integration of quantum computing and decomposition strategies showed superior performance 
in various indicators and effectiveness in UAV path planning tasks29.

Yu et al.24 also employed proximal policy optimization (PPO) in adaptive tone formation control with stable 
performance under varying conditions at the cost of high training computational complexity.

Model predictive control (MPC) methods have also gained popularity in formation control. Krinner et al.30 
presented a distributed MPC approach for swarms of drones that explicitly considers input and state constraints 
while optimizing formation goals. Their approach exhibited superior disturbance rejection properties but 
involved solving intricate optimization problems at every time step, which restricted real-time implementation 
on resource-limited platforms.

Quantum computing ideas have only started to impact robotics and control systems in recent times. Kim et 
al.31 presented quantum-inspired evolutionary path planning algorithms that exhibited better capacity to escape 
local optima than classical evolutionary methods.

32suggested a flexible and resilient formation method based on hierarchical reorganizations, characterizing 
reconfigurable hierarchical formations and analyzing the conditions under which reorganizations can erase 
disturbances. This paper emphasized the role played by adaptive structures in ensuring formation integrity in 
the face of external forces. Several approaches have been presented to improve the disturbance rejection of 
formation control protocols33. proposed an adaptive neural network-based formation control for quadrotor 
UAVs. Their method had the capability to provide stable formations under different disturbance conditions, 
but demanded high computational power for neural network realization. Enhanced quadrotor UAV trajectory 
tracking with fuzzy PID controllers was addressed in34 with emphasis on adaptability and robustness for dynamic 
environments in which UAVs operate in changing environments like wind disturbances or sudden trajectory 
shifts. Hai et al.35 provide a consensus-based analysis framework, which supports our view that convergence 
to common goals in distributed swarms can be ensured using information-sharing mechanisms, which, in our 
case, is implicit in the formation-maintaining potential and local interactions. FENG et al36. demonstrates the 
convergence of nature-inspired metaheuristics in dynamic UAV reconfiguration scenarios, similar in spirit 
to the quantum-inspired optimization in QEAPF37. frames convergence from a hierarchical decision-making 
perspective, which aligns with our leader–follower structure and adaptive gain tuning for convergence under 
capability and disturbance constraints. Despite all the advances in drone swarm formation control, some of the 
problems remain unaddressed. First, most existing methods treat formation control and disturbance rejection 
as separate problems, leading to suboptimal performance when both are of concern. Second, the exploration-
exploitation trade-off in formation control algorithms is usually fixed a priori, with no means of adaptation across 
different phases of the formation process. Third, the computational expense of most advanced methods prevents 
their deployment on resource-constrained drone platforms. The QEAPF method proposed in this paper aims to 
address these gaps by integrating quantum-inspired optimization with enhanced APF formulations, providing 
a unified framework for formation control and disturbance rejection with adaptive exploration-exploitation 
balance and reasonable computational requirements.

Proposed method
The proposed method shows that the swarm navigation framework utilizes the QEAPF approach to achieve 
coordinated multi-drone motion in obstacle environments. This method combines the deterministic behavior of 
traditional APF with the probabilistic exploration capabilities of quantum-inspired algorithms, enabling faster 
convergence to an optimal formation while ensuring robustness against environmental disturbances.

The drones are guided from their initial positions to the desired positions to achieve the desired formations 
with minimum time, collision avoidance with the obstacles and the drones themselves, maximizing robustness 
against external disturbances, and optimizing path length.

Figure 1 shows the QEAPF system model, showing the implementation of a V-shaped formation. Five drones 
are arranged in a V-formation with a designated leader and four followers. The environment contains polygonal 
obstacles that generate repulsive potential fields. Each drone has attractive, repulsive, quantum-inspired forces 
that move the drones towards the goal while avoiding collisions.

We consider a swarm of drones di ∈ D where |D| = n operating in a 2D Euclidean space with obstacles 
oi ∈ O.

	

pi(t) =
[
xi(t)
yi(t)

]
∈ R2

vi(t) =
[
ẋi(t)
ẏi(t)

]
∈ R2

pi(t) is the position vector and vi(t) represents the velocity vector of drone di at time t.
We assume that all drones have an identical maximum velocity vm, and communication between them is 

reliable within a sensing radius rs. Each drone maintains a safety radius ra, which must not be violated to avoid 
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collisions. The environment is populated with static obstacles represented as polygons, and drone dynamics can 
be affected by external disturbances.

Artificial potential field
The total potential field for each drone di at position pi is defined as

	 U(pi) = Ua(pi) + Ur(pi) + Uf (pi) + Ud(pi)� (1)

where Ua is the attractive potential field that generates the force that moves the drone from the initial position 
toward the goal, Ur  is the repulsive potential field that generates the repulsive force to repel the drone from 
obstacles and other drones, Uf  is the formation-maintaining potential, and Ud is the disturbance-compensating 
potential. The sum of attractive and repulsive potentials makes up the total potential field, as shown in Fig. 2.

Attractive potential field
The attractive potential field for the leader drone dL at position pL

	
Ua(pL) = 1

2kg∥pL − pd
L∥2� (2)

The leader drone dL is attracted towards the desired position pd
L while leading the followers; where kg  is the 

attractive gain. The followers’ attractive potential toward their desired formation position relative to the leader is:

Fig. 2.  Attractive, repulsive, and total field.

 

Fig. 1.  QEAPF system model for drone swarm formation control.
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Ua(pi) = 1

2kf ∥pi − pd
i ∥2� (3)

kf  is the formation’s attractive gain for the followers, andpd,i is the desired position of the drone di in the 
formation is calculated as:

	 pd
i = pL + R(θL) · pr

i � (4)

R(θL) is the rotation matrix based on the leader’s heading angle θL, and pr
i  is the desired relative position vector 

in the formation.

Repulsive potential field
The repulsive potential that generates a force pushing the drones away from obstacles and other drones is 
enhanced with a dynamic scaling factor:

	

Ur(pi) =
∑
j ̸=i

Uri(pi, pj) +
∑

oj∈O

Uro(pi, oj)� (5)

To avoid the collision between the drone di and other drones, an inter-drone repulsion:

	
Uri(pi, pj) =

{
1
2 kcηi

ij

(
1

∥pi−pj ∥ − 1
rs

)2
, if ∥pi − pj∥ < rs

0, otherwise
� (6)

While the obstacle repulsion is:

	
Uro(pi, oj) =

{
1
2 koηo

ij

(
1

λ(pi,oj ) − 1
rs

)2
, if λ(pi, oj) < rs

0, otherwise
� (7)

where λ(di, oj) is the minimum distance from drone di to obstacle oj , and ηij(t) and ηio(t) are dynamic 
scaling factors that adapt based on relative velocities and historical collision risks:

	
ηi

ij = 1 + α1 exp
(

−
∥pi − pj∥

ra

)
+ α2

vij · rij

∥rij∥2 � (8)

α1 and α2 are weighting parameters for distance, and velocity-based repulsion controls how strongly the drones 
repulse each other as they get closer and enhances the repulsive effect when drones move towards each other.

	
ηo

ij = 1 + β exp
(

−λ(pi, oj)
ra

)
� (9)

β is the weighting parameter for distance-based repulsion for the obstacles that determine how aggressively the 
drone avoids obstacles as it approaches them. where rij = pi − pj  and vij = vi − vj  are the relative position 
and velocity vectors, respectively. They change over time, allowing the repulsive forces to adapt dynamically to 
the current state of the swarm.

Formation maintaining potential
To enhance formation stability, we introduce the formation-maintaining potential:

	
Uf (pi) = 1

2km

∑
j∈Ni

(
∥pi − pj∥ − γi,j

)2
� (10)

which will keep the desired distance γij  between each pair of neighbors (i, j) where Ni is the set of neighbor 
drones for drone di.

Disturbance compensating potential
The disturbance-compensating potential Ud(pi) penalizes deviations from the desired position by incorporating 
a time-adaptive weight matrix, allowing each drone to learn and counteract persistent external disturbances 
through feedback-driven compensation.

	 Ud(pi) = kdϵT
i Wiϵi� (11)

Where ϵi = pi − pd
i  is the position error and Wi is the time-adaptive weight matrix that adapts based on 

estimated disturbance patterns.

	 Wi(t) = Wi(t − ∆t) + γ
(
ϵi(t)ϵT

i (t) − Wi(t − ∆t)
)

� (12)
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Where Wi(t − ∆t) is the previous value of the weight matrix, γ is the adaptation gain that controls the rate at 
which the weight matrix adapts.

This adaptive mechanism allows the system to learn and compensate for persistent disturbance patterns over 
time.

Quantum-inspired optimization
The QEAPF algorithm is inspired by the concepts of quantum computing, a qubit, and quantum superposition. 
A classical bit of computing can be in a state of 0 or 1. However, a qubit can be in the state of 0 and 1, or 
both simultaneously in a superposition. This superposition allows for parallel processing of vast quantities of 
information and has the potential to search the solution space better.

The state of each drone is represented by a qubit in the QEAPF algorithm, which is expressed as a vector 
in a two-dimensional Hilbert space. The state of a qubit ψ is expressed as: State 0 represents the exploitation 
of the drone in 0. In this state, the drone deterministically moves towards the best local position found so far. 
This ensures the algorithm’s convergence towards known good solutions. While State 1 represents exploration, 
in this state the drone explores new areas in the search space, often in directions orthogonal to where it is flying 
now, which helps to avoid stagnation in local minima. The probability amplitudes (α and β) are dynamically 
updated by a quantum rotation gate based on the error between the current performance of the drone and the 
best local and global performance. The dynamic interplay between exploitation and exploration is managed by 
continuously updating the probability amplitudes α and β. This update is achieved through the application of a 
quantum rotation gate.

For instance, a general single-qubit rotation around the Y axis can be represented by the matrix:

	
Ry(θ) =

(
cos

(
θ
2

)
sin

(
θ
2

)
− sin

(
θ
2

)
cos

(
θ
2

)
)

This rotation to the qubit state

	
|ψ⟩ =

(
α
β

)

yields a new state

	 |ψ′⟩ = Ry(θ)|ψ⟩

The rotation angle θ is the critical parameter that dictates the shift in probabilities between the exploitation and 
exploration states.

	 |ψi(t)⟩ = αi(t)|0⟩ + βi(t)|1⟩� (13)

where |αi(t)|2 + |βi(t)|2 = 1, encoding probabilistic decisions for movement directions αi, βi are complex-
valued coefficients representing the amplitude of the state being |0⟩ one possible direction or |1⟩ another possible 
direction.

In our case, we incorporate quantum-inspired optimization techniques to enable the drone to explore 
alternative paths and find a globally better formation.

The quantum state vector evolves over time according to:

	
|ψi(t + ∆t)⟩ = U(θi)|ψi(t)⟩ =

[cos θi − sin θi

sin θi cos θi

]
|ψi(t)⟩� (14)

where ψi(t)⟩ represents the probabilistic state of drone di, U(θi) is a quantum rotation matrix that rotates the 
state vector, which is computed as:

	 θi = γ · (local_besti − current_statei) + δ · (global_best − current_statei)� (15)

By tuning the parameters γ and δ, the drone adjusts its exploration tendency based on how far it is from its local 
best-known position and the globally best-known position.

During force calculation, the quantum state is measured probabilistically according to the Born rule38, with 
a probability |αi(t)|2 of selecting the direction towards the local best position and a probability |βi(t)|2 of 
selecting an orthogonal exploratory direction. This measurement process introduces controlled stochasticity 
that helps escape local minima while maintaining overall convergence. Our approach differs from purely random 
exploration by maintaining coherent quantum states that evolve systematically based on formation progress.

Hybrid force calculation
The force acting on the drone i is calculated as a weighted combination of the negative gradient of the potential 
field and the quantum-inspired direction:

	 Fi(t) = −∇U(di) + λi(t)Fq(di, t)� (16)
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where Fq(di, t) is the quantum-inspired force component derived from the quantum state measurement, 
−∇U(di) the negative gradient of the total potential field that directs the drone di toward goals and away from 
obstacles and other drones, and λi(t) is an adaptive weighting factor that balances between deterministic and 
probabilistic behaviors:

	
λi(t) = λm exp

(
−µ

∥pi − pd
i ∥

dm

)
� (17)

where dm is the maximum initial distance to the desired formation position and µ is a tuning parameter.
The velocity of the drone i is updated at the next time t + ∆t according to:

	
vi(t + ∆t) = (1 − ω)vi(t) + ω

Fi(t)
∥Fi(t)∥

vm� (18)

where ω ∈ [0, 1] is an inertia weight that balances between maintaining current velocity vi(t) and responding 
to new forces. If ∥Fi(t)∥ < ϵ threshold, we set:

	 vi(t + ∆t) = (1 − ω)vi(t)� (19)

This prevents numerical instabilities when the forces are very small.
To enhance formation speed and robustness, we introduce adaptive parameter tuning mechanisms: 

	1.	 The attractive gain kf  adapts based on formation progress: 

	
kf (t) = kf,0 + kf,1 exp

(
−Eform(t)

E0

)
� (20)

	 where Eform(t) is the current formation error and E0 is the normalization constant.

	2.	 The repulsive gains kc and ko adapt based on collision risk: 

	
kc(t) =kc,0 + kc,1 exp

(
−dmin(t)

ra

)
� (21)

	
ko(t) =ko,0 + ko,1 exp

(
−do,min(t)

ra

)
� (22)

	 where dmin(t) is the minimum inter-drone distance, and do,min(t) is the minimum drone-obstacle distance.

	3.	 The disturbance compensation gain kd adapts based on estimated disturbance magnitude: 

	 kd(t) = kd,0 + kd,1∥d̂i(t)∥� (23)

	 where d̂i(t) is the estimated disturbance vector.

We present an explicit estimation and compensation of external disturbances. We model the disturbance as an 
additive term in the drone dynamics:

	 pi(t + ∆t) = pi(t) + vi(t)∆t + d̂i(t)� (24)

where d̂i(t) represents the external disturbance affecting the drone di at time t. We estimate the disturbance 
using a recursive least squares (RLS) filter:

	 d̂i(t) = d̂i(t − ∆t) + Ki(t)[pi(t) − pi(t − ∆t) − vi(t − ∆t)∆t − d̂i(t − ∆t)]� (25)

where Ki(t) is the Kalman gain matrix updated according to the RLS algorithm. The estimated disturbance is then 
used to update the disturbance-compensating potential Udist,i(pi), adjust the adaptive parameters, and predict 
and preemptively compensate for future disturbances. In QEAPF, the control gains are not fixed but are adjusted 
online. Attractive, repulsive, and obstacle gains are modulated by inter-agent obstacle distances and formation 
error so forces strengthen when collision risk or formation error grows; the quantum exploration weight λi(t) 
and rotation angles adapt from the qubit probability amplitudes to balance exploration and exploitation; and the 
disturbance gain kd is scaled using the estimated disturbance obtained from the RLS/Kalman-style estimator 
to provide active disturbance compensation. Figure 3 illustrates the comprehensive workflow of the QEAPF 
method for controlling the formation of drone swarms.
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Simulation result
The simulations were conducted in a two-dimensional Cartesian space defined in the ranges (−X, X) and 
(−Y, Y ), representing a viable workspace for drone swarm operations. Five static polygonal obstacles were 
strategically placed within this environment to evaluate the collision avoidance capabilities of the algorithms. 
Each obstacle was defined by a set of vertices.

The swarm consisted of n = 5 drones, initially positioned around (x0, y0) with small random offsets to 
introduce realistic variability in initial conditions. The objective was to form a V-shaped geometric configuration 
centered at (xg, yg), with a desired inter-agent distance of d = 0.8 meters. The angular separation of the 
V-formation was set to α = 3π

4  radians. The central drone (at index n+1
2 ) was designated as the leader, and the 

remaining drones were assigned symmetric positions relative to the leader to maintain the desired formation.
To assess robustness against external perturbations, instantaneous positional disturbances of magnitude 0.5 

meters were introduced during the simulation. The direction of each disturbance was randomly assigned to 
each drone to mimic the effect of wind gusts. These disturbances were applied in simulation iterations 200, 400, 
and 600. Given the simulation time step dt = 0.02 seconds, these correspond to times t = 4.0, 8.0, and 12.0 
seconds, respectively.

The simulations were implemented and executed using the Python programming language.
To capture different aspects of swarm behavior and efficiency, we evaluated using several key metrics:

•	 Formation Time (Tform) is the required duration for the swarm to reach and the formation within a given 
tolerance, reflecting the efficiency of responsiveness and coordination of the system.

•	 Formation Error, measure accuracy during formation (Eform), which is the average difference between the 
current position of each drone and the destination position. Mathematically, it is represented as 

	
Eform(t) = 1

N

N∑
i=1

∥pi(t) − pd
i (t)∥,� (26)

•	 Path Efficiency (ηpath) measures how direct-line each drone flies from its starting position to its final forma-
tion location. It is defined by the straight-line distance over the actual path length: 

	
ηpath,i = ||pi(Tform) − pi(0)||´ Tform

0 ||vi(t)||dt
.� (27)

Fig. 3.  Quantum enhanced artificial potential field flowchart.
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•	 Disturbance Rejection (DR) was used to check the robustness of the system against external influence. Meas-
ures the quality of the formation after a disturbance event is applied. It is represented by the ratio of the error 
in the formation before and after the disturbance: 

	
DR(t) = Ef (t − ϵ)

Ef (t + ϵ) ,� (28)

•	 Energy Consumption (Ec) is a control effort and efficiency measure. It is estimated through the time-do-
main squared norm of acceleration: 

	
Ec,i =

ˆ Tf

0
||ai(t)||2dt.� (29)

 It represents the cost of energy that is incurred by maneuvering and keeping formations.
These metrics collectively constitute a comprehensive assessment framework for performance analysis of the 
QEAPF technique under various conditions. Reflects the energetic cost associated with maneuvering and 
formation maintenance.

These metrics collectively provide a comprehensive evaluation framework for analyzing the performance of 
the QEAPF method under various conditions. Table 1 shows a comprehensive list of the critical parameters used 
in both the QEAPF and APF algorithms during our simulations.

Formation convergence and path efficiency
Figure 4 shows the drone paths from the initial position to the desired position while maintaining the desired 
V formation and avoiding obstacles utilizing the QEAPF method. The formation demonstrates how the swarm 
adapts its shape to navigate through narrow passages and around obstacles.

Figure 5 shows how QEAPF steadily converges toward the desired formation. The plot shows the average 
distance to the target formation over time, with temporary increases in distance following the applied 
disturbances.

Figure 6 demonstrates, through a multi-panel visualization, how the communication network between drones 
evolves throughout the formation process. Each node represents a drone, and the edges indicate communication 
links within range. The graph demonstrates the robustness of the formation topology under disturbances.

Stability analysis of QEAPF
Constructing the Lyapunov candidate
In order to ensure convergence and guarantee collision-free motion for our multi-drone swarm systems, we 
propose a candidate Lyapunov function V(x) for the multi-drone swarm system in the form of the total potential 
energy of the system. A Lyapunov function can be used to prove that the system converges to a stable state, such 
as the desired formation, and that errors diminish over time39. This function is a sum of several components, 
each of which describes a certain characteristic of the swarm and the dominant surrounding:

	 V (x) = Vattr(x) + Vrep(x) + Vform(x) + Vdist(x)� (30)

Where Vattr(x) is the attractive potential energy, Vrep the repulsive potential energy, Vform the formation-
maintaining potential energy, and Vdist the disturbance-compensating potential energy.

Each component is chosen so that its minimum aligns with the perfect, collision-free formation, i.e., the 
attractive potential of drone di is

	 Vattr,i = kf

∥∥pi − pd
i

∥∥2� (31)

Ensuring monotonic energy decay
A valid Lyapunov function must never increase along trajectories. Differentiating V(x) yields

	
V̇ =

N∑
i=1

∇pi V · ṗi = −
N∑

i=1

Fi · vi,� (32)

Fi = −∇pi V  is the net artificial force on the drone i, and vi its velocity. By design, these forces always point 
“downhill” in the energy landscape, so

	 V̇ ≤ 0� (33)

adaptive gain scheduling (e.g. kf,adapt, ko,adapt) dynamically tunes the strength of each force to keep V̇ ≤ 0 
even when formation shapes, obstacle density, or disturbance levels change.

Derivation of the Lyapunov function
To prove stability, we show that the time derivative of the Lyapunov function, V̇ (x), is negative definite. This 
implies that the system’s energy continuously decreases until it reaches a stable equilibrium point. The derivative 
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of the potential energy with respect to time is related to the forces acting on the drones. Specifically, the force 
acting on a drone is the negative gradient of its potential energy.

	 F = −∇V.� (34)

The time derivative of the Lyapunov function is

	
V̇ (x) =

N∑
i=1

∇pi V · ṗi =
N∑

i=1

(−∇V ) · vi = −
N∑

i=1

Fi · vi� (35)

where pi and vi are the position and velocity of drone i, respectively, and Fi is the total force acting on drone i. 
For the system to be stable, where our goal

	 V̇ (x) ≤ 0.� (36)

The QEAPF algorithm is designed such that the resultant forces drive the drones towards lower potential energy 
states.

Verification of stability under disturbances
The QEAPF algorithm incorporates a disturbance estimation and compensation mechanism (Kalman filter-like 
approach) that directly contributes to maintaining system stability in the presence of external perturbations. The 
estimated disturbance d̂ is used to generate a compensatory force:

	 Fdist = −kdd̂� (37)

Parameter name Symbol APF value QEAPF value

Formation Distance d 0.8 0.8

Formation Angle α 3π/4 3π/4

Number of Drones n 5 5

Goal Gain kg 1.0 1.0

Formation Gain kf 0.8 0.8

Collision Gain kc 0.12 0.12

Obstacle Gain ko 3.0 3.0

Formation-Maintaining Gain km 0.5 0.5

Disturbance Gain kd N/A 0.3

Inertia Weight ω 0.7 0.7

Safety Radius ra 0.3 0.3

Sensing Radius rs 2.0 2.0

Maximum Velocity vm 2.0 2.0

Adaptive Formation Gain kf_adapt N/A 0.2

Adaptive Collision Gain kc_adapt N/A 0.1

Adaptive Obstacle Gain ko_adapt N/A 0.5

Adaptive Disturbance Gain kd_adapt N/A 0.2

weighting parameters α1 ,α2 N/A 0.7

weighting parameters β N/A 0.703

Quantum Gamma γ N/A 0.3

Quantum Delta δ N/A 0.2

Quantum Lambda Max λmax N/A 0.5

Quantum Mu µ N/A 2.0

Forgetting Factor (Kalman) forgetting N/A 0.95

Simulation Time Step dt 0.02 0.02

Maximum Iterations max_iter 1000 1000

Disturbance Magnitude disturbance_magnitude 0.5 0.5

Disturbance Times disturbance_times [200, 400, 600] [200, 400, 600]

Table 1.  Simulation parameters used for APF and QEAPF algorithms.
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which is integrated into the total force calculation. This mechanism ensures that any deviation from the desired 
trajectory or formation due to disturbances is actively counteracted.

The disturbance-compensating potential energy Vdist(x) is designed to increase when disturbances cause 
the drone to deviate from its target position. The resulting compensatory force drives the drone back towards 
the desired state, thereby contributing to the overall reduction of the Lyapunov function and enhancing the 
system’s robustness and stability against external factors. Figure 7 illustrates that the method decreases energy 
monotonically and exhibits fewer plateaus and recovers more swiftly after injected disturbances.

Figure 8 illustrates the evolution of different energy components over time. The total potential energy 
decreases sequentially, which means an approach to the desired formation. The attractive energy is the most 

Fig. 5.  Average distance to target formation over time.

 

Fig. 4.  Drone paths and formation using the QEAPF method.
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influential, driving the swarm to the goal. The repulsive energy has spikes when the drones approach obstacles or 
when they are too close to each other. The formation and disturbance of energy serve a compensatory function, 
helping to maintain the formation’s integrity.

The minimum inter-agent distance throughout the simulation is shown in Fig.. 9. The distance remains above 
the safety radius, confirming successful collision avoidance even during disturbance.

Collision avoidance
Figure 10 demonstrates the QEAPF capability to avoid obstacles using a repulsive force to push the drones away 
from the obstacles and from each other. The contour lines represent the repulsive potential field generated by 
obstacles, with higher values indicating stronger repulsion. The drone paths successfully navigate around high-
repulsion regions while maintaining formation integrity.

We provide quantitative evidence of the formation quality by calculating the average relative distances 
between drones, as can be seen in Fig. 11. The consistently moderate inter-drone distances, typically ranging 
between 1.5 and 3.0 units, indicate that the swarm preserved a cohesive and well-structured formation without 
collisions. The heat map shows how the QEAPF method maintains appropriate spacing between drones even 
under disturbances To provide a rigorous comparative evaluation, our analysis includes a more detailed 
comparison with the Pigeon-inspired Optimization (PIO) and APF. Our current comparative evaluation focuses 
on key performance metrics that highlight the strengths and weaknesses of QEAPF. Our algorithm shows better 
performance in convergence time, final average error, disturbance rejection, and path length.

Table 2 compares the performance of the QEAPF method with the standard40 (APF #1), the enhanced APF41 
(APF #2), and the PIO methods on various metrics. The QEAPF method outperforms the other approaches in 
all metrics.

The comparative results in Table 2 summarize not only the scalar performance differences but also the 
mechanisms that underpin these differences. Standard APF methods provide deterministic attraction/repulsion 
forces, but commonly suffer from local minima and limited disturbance handling; enhanced APF variants 

Fig. 7.  Lyapunov stability analysis (potential energy evolution).

 

Fig. 6.  Formation connectivity graph evolution.
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reduce some oscillatory behaviors by predictive/state-aware adjustments, but still lack explicit online disturbance 
estimation. PIO and other nature-inspired metaheuristics improve global search and avoid some local minima, 
yet they often trade off computational cost and the smoothness of generated trajectories.

In contrast, QEAPF combines the deterministic guidance of APF, a quantum-inspired probabilistic exploration 
mechanism that reduces local minimum entrapment and explicit disturbance estimation and compensation, 
producing shorter convergence times, lower steady-state formation error, and improved disturbance rejection 
in our simulations.

Convergence analysis
The proposed method combines deterministic APF forces with a quantum-inspired optimization mechanism. 
We provide a qualitative convergence analysis that explains the stability and convergence behavior of this hybrid 
approach.

First, the APF framework defines a total potential function U(pi), composed of attractive, repulsive, 
formation-maintaining, and disturbance-compensating terms. This potential acts as a Lyapunov-like function 
that decreases over time as each drone moves under the influence of the negative gradient −∇U(pi). In the 

Fig. 9.  Minimum inter-agent distance over time.

 

Fig. 8.  Evolution of potential energy components over time.

 

Scientific Reports |        (2025) 15:41945 13| https://doi.org/10.1038/s41598-025-25863-y

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


absence of external disturbances and local minima, this guarantees that each drone’s position pi(t) asymptotically 
approaches its desired formation point pd

i , resulting in convergence to the target formation.
Second, to overcome the limitations of classical APF, especially local minima, the quantum-inspired 

component introduces controlled probabilistic exploration. Each drone maintains a superposed decision 
state which determines the movement direction based on the most favorable local and global positions. This 
mechanism is inspired by quantum-behaved particle swarm optimization to support convergence under 
bounded stochastic dynamics. In our approach, this probabilistic component gradually decays as drones near 
their formation positions, governed by the adaptive weight λi(t), ensuring convergence towards deterministic 
behavior.

Moreover, the adaptive gain tuning mechanisms ensure that the system dynamically increases formation 
strength and collision avoidance sensitivity as needed. The recursive disturbance estimation and compensation 
further enhance robustness, ensuring that the formation error remains bounded even under persistent 
environmental disturbances.

Thus, the hybrid control framework ensures that the formation error Eform = ∥pi − pd
i ∥ decreases over 

time, collisions are avoided through repulsive potentials and dynamic scaling, and the swarm stabilizes into the 
desired shape despite uncertainties.

Conclusion
This paper presented the Quantum-Enhanced Artificial Potential Field, which is a new hybrid approach that 
combines classical artificial potential field strategies with quantum-inspired optimization techniques. The 
method increases both the speed and flexibility of forming multiple drone configurations. The adaptive parameter 
tuning and explicit disturbance estimation and compensation of the presented approach achieve enhanced 
performance in terms of formation speed and robustness to disturbances. Drones operating under QEAPF have 
been shown to smoothly organize themselves into target configurations while maintaining collision avoidance, 
energy efficiency, and geometric integrity, even in the face of unpredictable environmental fluctuations.

The simulation result shows the effectiveness of this method, achieving up to 37% faster convergence of 
configurations and 42% greater tolerance to disturbances compared to traditional APF techniques.

The QEAPF not only provides a novel, effective solution for drone swarm control, but also a practical basis 
for scalable and flexible deployment of drone swarms in realistic missions.

Limitations. Despite the promising simulation results, QEAPF has several limitations that should be 
acknowledged. The experiments were limited to small swarms in 2D environments with static obstacles, so 
scalability to large swarms and highly dynamic 3D settings remains untested and may increase computational 
and communication demands. The current implementation also assumes reliable local state sharing; performance 
under intermittent, delayed, or bandwidth-limited communications requires further study. Finally, QEAPF 

Fig. 10.  Obstacle avoidance visualization with repulsive field contours.
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assumes a predefined target formation and uses a simplified additive disturbance model. Autonomous formation 
selection and validation against complex turbulent or adversarial disturbances are left for future work.

Data availability
This study did not generate or analyse any datasets. All results presented are based on simulations described in 
the manuscript. No raw data is available.
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