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Intelligent prediction of air quality
index based on the transformer-
BiLSTM model

Xinni Liv%**, Kai Su®, Shubin Wang? & Kamarul Hawari Ghazali?

Air quality significantly impacts public health, industrial stability, and timely responses to
environmental hazards, all of which are essential for sustainable development. Accurate forecasting
of the Air Quality Index (AQl) is therefore crucial for effective environmental monitoring and
management. In this study, we develop a hybrid deep learning model that integrates a Transformer
encoder with a Bidirectional Long Short-Term Memory (BiLSTM) network. The model is trained and
validated using daily air quality data collected from Shijiazhuang, Beijing and Tianjin, spanning
November 2013 to February 2025. Experimental results demonstrate that the proposed Transformer-
BiLSTM model delivers stable and reliable predictive performance, with root mean squared error
(RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE) of 3.0012 ug/

m3, 1.7928 ug/m?, and 3.3646%, respectively. Compared with conventional baseline models, the
hybrid model improves accuracy and generalization capability. This approach offers a reliable and
interpretable tool for AQI forecasting and provides quantitative support for data-driven air pollution
control strategies.
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Background and significance

Air pollution has emerged as one of the most pressing global environmental challenges of the 21st century, with
far-reaching implications for public health, economic development, and ecological sustainability. The World
Health Organization (WHO) estimates that approximately 7 million premature deaths annually are attributable
to the combined effects of ambient and household air pollution, positioning air quality management as a critical
public health priority worldwide. The United Nations Environment Programme has consequently called upon
all nations to implement comprehensive strategies to reduce air pollution and improve air quality standards.

With the rapid advancement of urbanization and industrialization, the surge in energy consumption and the
continuous rise in motor vehicle ownership have led to a significant increase in the emission of air pollutants,
and the concentration of PM, , O, and other pollutants has exceeded the standard for a long period of time,
which is a serious threat to the health of the residents and restricts the sustainable development of the city'.
PM, ., as the core component of the haze, not only damages the respiratory system and cardiovascular function,
but also causes great social and economic losses by reducing visibility and affecting the traffic efficiency® Air
quality forecasting can be traced back to around the 1940s, when several developed countries began conducting
research on pollution trend prediction. Accurate air quality prediction is a key prerequisite for the development
of pollution prevention and control strategies and the assessment of health benefits, but the spatial and temporal
heterogeneity of pollutant concentrations, and the complex coupling effects of meteorological conditions and
regional transport make the traditional prediction models face serious challenges.

The Beijing-Tianjin-Hebei region, serving as the primary focus of this study, represents a particularly
compelling case for air quality research. According to the China Ecological Environment Status Bulletin
issued by the Ministry of Ecology and Environment, the annual average PM2.5 concentration in this region
frequently exceeded twice the National Ambient Air Quality Standard (35 p1g/m3) during the 2013-2020 period.
Epidemiological studies have consistently demonstrated that such elevated pollution exposure levels constitute a

1School of Information, Xi'an University of Finance and Economics (XAUFE), No.360 Changning Street,
Chang’an District, Xi'an 710100, China. ?School of Economics and Management, Xi'an University of Posts and
Telecommunications, Xi‘an 710061, China. 3Faculty of Electrical and Electronic Engineering Technology, Universiti
Malaysia Pahang Al-Sultan Abdullah, Pekan 26600, Malaysia. “Key Laboratory of Intelligent Finance Collaboration
and Trusted Computing, Shaanxi Provincial Institutions of Higher Education, Xi‘an 710100, China. *email:
Ixinni@xaufe.edu.cn

Scientific Reports|  (2025) 15:41838 | https://doi.org/10.1038/s41598-025-25865-w nature portfolio


http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-025-25865-w&domain=pdf&date_stamp=2025-10-26

www.nature.com/scientificreports/

significant environmental risk factor, contributing to increased incidence and severity of cardiovascular diseases,
respiratory disorders, and various other health complications.

Evolution of AQI prediction methodologies

The historical development of air quality prediction methodologies reveals a progressive evolution from
physically-based models to increasingly sophisticated data-driven approaches. Initial research efforts in the 1940s
primarily focused on numerical methods rooted in atmospheric dynamics and environmental chemistry, which
attempted to simulate pollutant dispersion and transformation processes through complex physicochemical
models. While theoretically comprehensive, these approaches often proved computationally intensive and
required detailed emission inventory data that limited their practical applicability.

Traditional statistical models
The limitations of purely physical models stimulated the development of statistical approaches that leveraged
historical air quality data to identify patterns and relationships. Mani et al.®> developed Multi Linear Regression
and ARIMA models to predict AQI in Chennai using pollutant data from CPCB sensors, demonstrating good
predictive accuracy. Zhao et al.* proposed a hybrid ARIMA model that integrates the Augmented Dickey-Fuller
test, improved grid search, and entropy-based seasonal decomposition to enhance PM, . prediction accuracy in
Beijing. Nevertheless, the proposed method is still predicated on linear modeling assumptions, which may limit
its ability to effectively characterize the complex nonlinear and dynamic structures inherent in PM, . time series
data. To address these limitations, Zhang et al.’ proposed a hybrid framework combining ARIMA with empirical
wavelet transform (EWT). Liu et al.’ used complex network theory to study AQI patterns in the Yangtze River
Delta, identifying key cities and regional structures.

Despite their theoretical elegance and interpretability, traditional statistical models faced inherent limitations
in capturing the complex, nonlinear dynamics characteristic of atmospheric processes, particularly under rapidly
changing meteorological conditions or unusual emission scenarios.

Machine learning approaches

The advent of machine learning methodologies marked a significant paradigm shift in AQI prediction, enabling
more flexible modeling of complex, nonlinear relationships in air quality data’. Gupta et al.® employed SVR,
RFR, and CatBoost to predict AQI in Indian cities and showed that (Synthetic Minority Over-sampling
Technique)SMOTE improves prediction accuracy. Kulkarni et al.” developed a multi-kernel SVM model that
integrates meteorological, traffic, and industrial emission data to predict urban concentrations, achieving
a 19.3% improvement in predictive accuracy compared to ARIMA. However, SVMs are limited in capturing
long-term temporal dependencies. To address this issue, Pan et al.!® proposed an adaptive feature selection
SVM model that utilizes a recursive feature elimination algorithm to dynamically identify key meteorological
variables, improving the coefficient of determination (R?) for ozone prediction from 0.72 to 0.81. Nevertheless,
machine learning models are constrained by their shallow architectures, which hinder their ability to effectively
extract deeply coupled features from multimodal data sources (e.g., satellite remote sensing and ground-based
monitoring). In addition, these models often exhibit a noticeable lag in responding to localized, sudden pollution
events'l.

While machine learning approaches demonstrated superior performance compared to traditional statistical
methods, they remained constrained by their relatively shallow architectures, which limited their capacity
to extract deeply coupled features from multimodal data sources and effectively model long-range temporal
dependencies.

Deep learning and hybrid frameworks

Recent years have witnessed remarkable advances in air quality prediction through the application of deep
learning techniques, which leverage hierarchical feature learning and end-to-end training paradigms'2. Hou et
al.’® proposed a hybrid model integrating Transformer and BiLSTM to identify parameters in nonlinear systems
driven by fractional Brownian motion, demonstrating enhanced accuracy and computational efficiency. Méndez
et al.' reviewed 155 studies on machine learning methods for air quality forecasting, emphasizing the growing
use of deep learning models. Gilik et al.'® developed a CNN-LSTM model for air quality prediction and achieved
improved accuracy across several pollutants and cities. However, they did not address data imbalance, which can
affect prediction performance. Bhardwaj and Ragiri'® employed a BILSTM model to fuse historical meteorological
series with pollutant data from adjacent monitoring stations. Cui et al.!” designed a spatiotemporal Transformer
model that leverages multi-head attention to extract global spatiotemporal dependencies, reducing the RMSE of
7-day long-range ozone prediction by 22.6%.

Building on these efforts, recent studies have further explored advanced hybrid and lightweight architectures
for AQI prediction. Sannasi et al.!® proposed a hybrid STGNN-TCN model combining spatio-temporal graph
neural networks with temporal convolutional networks to jointly capture spatial and temporal dependencies. In
a subsequent study, Sannasi et al.!® introduced an Iterative Skill Optimization recurrent network that leverages
iterative training strategies to enhance predictive accuracy. Periasamy et al.?* developed an intelligent air
quality monitoring system using quality indicators and a lightweight recurrent network with skip connections,
incorporating transfer learning to improve performance across different urban environments. These approaches
highlight the trend toward integrating global and local modeling, lightweight architectures, and transfer learning
strategies to achieve more accurate, interpretable, and generalizable AQI predictions.
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Research gaps and challenges

Despite these significant advancements, current AQI prediction approaches face several persistent challenges:
Most existing models excel in either capturing long-range dependencies or modeling local temporal patterns,
but rarely achieve both simultaneously in a unified framework. Many deep learning models exhibit reduced
performance when applied to cities with different geographical characteristics, industrial structures, or
meteorological conditions. The nature of complex deep learning models often limits their practical utility for
environmental decision-making, where understanding feature contributions is crucial. Many state-of-the-
art models require substantial computational resources, hindering their deployment in real-time monitoring
systems or resource-constrained environments. Effectively integrating heterogeneous data sources, including
meteorological information, satellite observations, and ground-based measurements, remains a significant
technical challenge.

Contributions and novelty

Building on these advancements in hybrid and lightweight architectures, we propose a Transformer-BiLSTM
model that simultaneously captures long-range dependencies via multi-head self-attention and short-term
bidirectional temporal dynamics. This framework addresses key limitations of existing approaches by enabling
unified global and local modeling, maintaining promising predictive performance across diverse cities, providing
interpretable feature contributions, and supporting efficient real-time deployment. The model achieves
predictive performance with RMSE = 3.0012, MAE = 1.7928, and R? = 0.9694, outperforming representative
recent studies, including ARIMA-CNN-LSTM (RMSE = 5.496, Duan et al.?'), CNN-LSTM (RMSE = 24.23,
Bekkar et al.?2), CBAM-CNN-BiLSTM (RMSE = 18.90, Li et al.?%), and EMD-Transformer (RMSE = 3.789, He
et al.>*) under comparable experimental settings. SHAP analysis identifies PM1o, PMa.5, and O3 as the most
influential features, while the lightweight model (14.537MB, 1.361ms inference) ensures practical deployment.

Paper organization

The remainder of this paper is structured as follows: Section “Models” provides a formal problem formulation
and detailed description of the proposed Transformer-BiLSTM methodology. Section “Experiments”
outlines the experimental design, including data sources, preprocessing procedures, and evaluation metrics.
Section “Results” presents comprehensive experimental results and comparative analyses with baseline models,
discusses the model’s generalization capability, feature importance patterns, and practical implications. Finally,
Section “Discussion” and Section “Conclusion’concludes the paper and suggests promising directions for future
research.

Models

Model framework

The Transformer-BiLSTM model effectively captures both long and short term dependencies in AQI by integrating
the global modeling capability of the Transformer with the bidirectional temporal modeling strength of BILSTM.
The Transformer component captures global long-range dependencies, while the BILSTM component, through
bidirectional processing, extracts local temporal features—together improving the accuracy and robustness of
AQI prediction. The overall process of using the Transformer-BiLSTM model, from data input to final AQI
prediction, is illustrated in Fig. 1.

Step 1: 'This study was conducted based on the daily average concentrations of six major atmospheric
pollutants and the daily AQI in Shijiazhuang, Beijing, and Tianjin from November 1, 2013, to February 28, 2025.
The six pollutants include PMa 5 (1g/m?®), PM1o (ng/m®), SO2 (ug/m?), NOs (ng/m?), CO (mg/m?), and
O3 (ug/m?). The first 75% of the pollutant concentration and AQI data were used as the training set, while the
remaining 25% were used as the test set.

Step 2: Data Processing: Due to the presence of missing values in the collected data and inconsistent
measurement units across indicators, the input features were normalized to the range [—1, 1]. Data filtering
and denoising (removal of high-frequency noise from the original AQI sequences while preserving major
trends), normalization (to improve neural network convergence and scale values to [—1, 1], and the sliding-
window method were employed to generate training and testing sequences for model training. The mathematical
formulations for filtering and denoising, normalization, and sliding-window sequence construction are defined
in Eqa. (1)-(3):

y+ = Butterworth(z¢; a, b), (1)

where, b and a denote the coefficients of a Butterworth filter, which are determined by the specified cutoff
frequency and filter order. y; denotes the filtered output, x; denotes the original input signal, and the equation
describes the filtering operation at time ¢.

x:’,orm _ Q(xt - xmin)

Tmax — Lmin

where, 27'°"™ denotes the normalized value at time f, mapping the original data to the interval [—1, 1]; 2¢
denotes the original unnormalized value, while 42 and Zmsn denotes the maximum and minimum values of
the input sequence.
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Fig. 1. The overall architecture for AQI prediction.
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where, (¥ denotes the input data sequence within the i-th sliding window, spanning from time ¢ to
t +w — 1 ,where w is the width of the sliding window. The corresponding target value y(*) refers to the AQI at
time ¢ + w, representing the next time step following the window.

Step 3: Model training: The proposed model is trained using mini-batch gradient descent. In each iteration,
forward propagation is performed to generate predictions, followed by the computation of the mean squared
error (MSE) loss. Subsequently, backpropagation is employed to update the model parameters. The AdamW
optimizer is adopted to iteratively update the network weights, and a learning rate scheduler is utilized to
gradually adjust the learning rate, thereby preventing convergence to local optima or unstable oscillations. The
mathematical formulation of the MSE loss function is defined in Eq. (4):

n

MSE = %Z(yz —3%)2, (4)

i=1

where, y; denotes the true AQI, ; denotes the predicted AQI, and # represents the number of samples.

Step 4: Model Prediction: The Transformer-BiLSTM model integrates the Transformer and BiLSTM
architectures to effectively model and forecast time series data. The overall architecture of the Transformer-
BiLSTM model is illustrated in Fig. 2. The model comprises four core components: a positional encoding
module (which injects position information into the sequence), a Transformer encoder layer (for capturing
global temporal dependencies), a BILSTM decoder layer (for learning local bidirectional patterns), and a fully
connected output layer (for generating the final AQI predictions). These components collectively form the four
main modules of the proposed model.

Step 5: Model Evaluation: The model performance was evaluated on both the validation and test datasets at
each training epoch. The predicted AQI values were inverse-transformed to their original scale before being
compared with the ground truth to calculate performance metrics, including the RMSE, MAE, MAPE, and
R?. To quantitatively assess the AQI prediction performance, this study employed RMSE, MAE, and MAPE as
the primary evaluation metrics. In addition, the predicted and actual AQI time series were plotted to provide
a visual assessment of the model’s fitting accuracy and its ability to capture temporal trends. The mathematical
formulations of RMSE, MAE, MAPE and R? are formally defined in Egs. (5)-(8):
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Fig. 2. Structure diagram of the transformer-BiLSTM.

Experimental environment | Specific settings

GPU None

CPU CPU Intel Core i7-13700K@ 3.40-5.40 GHz / RAM: 32 GB
Default hard disk System disk:20 GB/Data disk:50 GB

Additional hard disk None

Port mapping None

Network Upstream broadband:5 MB/s/Downstream broadband:5 MB/s

Table 1. Experimental environment configuration.
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where, y; and yl denote the observed and predicted AQI values, respectlvely, n is the total number of samples,
ZZ Ly — §:)? represents the residual sum of squares (RSS), and ZZ Ly — 7)? denotes the total sum of
squares (TSS)

Experiments

Experimental environment

All experiments were conducted on a workstation running Windows 11 (64-bit). The hardware was equipped
with an Intel Core i7-13700K CPU (8 P-cores + 16 E-cores). The neural network models were implemented
in Python 3.12 using the PyTorch 2.0.1 framework, while comparative models were constructed in MATLAB
R2023a. A detailed summary of the hardware configuration is provided in Table 1.
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Data sources and preprocessing

Data sources

The experimental data utilized in this study were collected from two publicly accessible sources: a historical
weather data website (http://www.tianqihoubao.com) and the official air quality monitoring and analysis
platform of the China National Environmental Monitoring Center (CNEMC) (https://www.cnemc.cn). Air
quality monitoring data were collected from the historical weather database at (http://www.tianqihoubao.com),
including daily average concentrations of PMZ'S(ug/mS) , PMlo(p.g/ms) , SOZ(p.g/mS) , NOZ(ug/m?’) , CO(n
g/m®) , and O,(ng/m®). The daily Air Quality Index (AQI) data for each city were obtained from the official
China National Environmental Monitoring Center (CNEMC) at (https://www.cnemc.cn). These data cover
Beijing, Tianjin, and Shijiazhuang for the period from November 1, 2013 to February 28, 2025. All modeling
and experimental analyses in this study were conducted based on this dataset. The data source is open-access
and publicly available without the need for registration. The study area includes the cities of Shijiazhuang,
Beijing, and Tianjin, with Shijiazhuang located in Hebei Province. Figure 3 shows the location of the study area
in China. The AQI provides a standardized measure of air pollution levels, helping to inform the public, guide
environmental management, and support health protection. Figure 4 illustrates the trend of AQI changes in
Beijing, Tianjin and Shijiazhuang in 2024, aiming to capture the fluctuation trends in air quality over the period.

Dataset 1—Beijing: From November 2013 to February 2025, Beijing’s PMa2.5, PM10, SO2, NO2, CO, O3, and
AQI data each had 18 missing values, with a mean AQI of 80.35. The dataset used in the experiments consisted
of 4143 observations, with 4143 values for each of the six major pollutants and the AQI. This data was used for
model development, with the first 75% of the pollutant concentration and AQI data serving as the training set,
and the remaining 25% as the test set.

Dataset 2—Tianjin: From November 2013 to February 2025, Tianjin's PMa2.5, PMio, SO2, NO2, CO,
O3, and AQI data each had 21 missing values, with a mean AQI of 85.71. The dataset used in the experiments
consisted of 4140 observations, with 4140 values for each of the six major pollutants and the AQI. This data was
used for model validation, with the first 75% of the pollutant concentration and AQI data serving as the training
set, and the remaining 25% as the test set.

Dataset 3—Shijiazhuang: From November 2013 to February 2025, Shijiazhuang’s PM2.5, PMio, SO,
NOg, CO, O3, and AQI data each had 27 missing values, with a mean AQI of 105.60. The dataset used in the
experiments consisted of 4134 observations, with 4,134 values for each of the six major pollutants and the AQI.
This data was used for model validation, with the first 75% of the pollutant concentration and AQI data serving
as the training set, and the remaining 25% as the test set. Figure 5 shows the trend of the monthly average AQI
values for Beijing, Tianjin and Shijiazhuang in 2024.
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Fig. 3. Study area location map.
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Fig. 5. Monthly average AQI in 2024.

Data preprocessing

The proportion of missing values in the original dataset was relatively small. Specifically, Beijing, Tianjin, and
Shijiazhuang contained 18, 21, and 27 missing daily records, corresponding to 0.43%, 0.51%, and 0.65% of the
total samples, respectively. As the missing values appeared in consecutive periods and were relatively sparse, they
were directly removed from the dataset to avoid interpolation bias. After removal, the effective dataset sizes were
4,143 samples for Beijing, 4,140 samples for Tianjin, and 4,134 samples for Shijiazhuang.

To reduce high-frequency noise, the raw time series were smoothed using a fifth-order Butterworth low-
pass filter with a cutoff frequency of 0.1 Hz. The denoising effect was evident: the average standard deviation
of pollutant concentration series decreased by 6.3% (Beijing), 5.9% (Tianjin), and 6.7% (Shijiazhuang), while
preserving the overall seasonal and trend characteristics of the data.
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The filtered data were then normalized using a MinMaxScaler to rescale the values into the range [—1,1],
which improved numerical stability and accelerated model convergence during training. The normalized series
was divided in chronological order into a training set (75%) and a test set (25%). Input-output sequences were
generated using a sliding window approach, with an input length of 2 days and an output length of 1 day, resulting
in 3107, 3105, and 3100 training samples for Beijing, Tianjin, and Shijiazhuang, respectively.

To enhance model generalization and robustness, data augmentation was applied during training. Gaussian
noise with o = 0.02 was added to 10% of the training sequences, and random masking with a probability of 0.1
was introduced. This augmentation strategy effectively increased the diversity of input patterns and reduced the
risk of overfitting.

Finally, all processed sequences were converted into PyTorch tensors for model computation. The
preprocessing workflow ensured that the dataset was clean, smoothed, normalized, and sufficiently diverse,
making it reproducible and suitable for deep learning model development. The quantitative results of the data
preprocessing procedures are summarized in Table 2.

Experimental design and hyperparameter optimization

Experimental framework

Figure 6 illustrates the comprehensive and systematic experimental framework adopted in this study to develop,
evaluate, and interpret the proposed Transformer-BiLSTM model for AQI prediction. The entire process is
structured into five cohesive phases, ensuring a rigorous and reproducible research methodology.

The framework commences with Data Collection and Preprocessing (Phase 1), where multi-source daily
air quality data is gathered from publicly accessible historical weather and official monitoring platforms for
three core cities: Beijing, Tianjin, and Shijiazhuang. A standardized preprocessing pipeline is then applied,
involving missing value handling, Butterworth filtering for noise reduction, Min-Max normalization, sequence
construction via a sliding window, and data augmentation techniques to enhance model robustness.

The preprocessed data feeds into the Model Development and Training (Phase 2), which is the core of our
approach. The novel Transformer-BiLSTM architecture is constructed, integrating a Transformer encoder for
capturing global, long-range dependencies and a BILSTM decoder for modeling local, bidirectional temporal
patterns. A rigorous two-phase hyperparameter optimization strategy, combining Bayesian search with grid
refinement, is employed to identify the optimal model configuration, which is then trained using the AdamW
optimizer.

Subsequently, a Comprehensive Evaluation (Phase 3) is conducted to objectively validate the models
performance. This involves a robust 5-fold time-series cross-validation protocol, a multi-metric assessment
(RMSE, MAE, MAPE, RQ), and extensive comparisons against a suite of baseline and state-of-the-art models.
Statistical significance tests are further performed to substantiate the performance improvements of our
proposed model.

To ensure transparency and gain deeper insights, an Explainable AI and Extension Analysis (Phase 4) is
undertaken. The SHAP framework is leveraged to quantify the contribution of each input pollutant, revealing
PMio, PMa2.5, and O3 as the most influential features and highlighting city-specific variations. The model’s
generalization capability and robustness are further scrutinized through tests across six additional Chinese cities
with diverse environments and under varying data split ratios.

Finally, the framework concludes with a Deployment Assessment (Phase 5), where the model’s practical
applicability is evaluated. Key operational metrics, including model size (14.537 MB), inference speed (1.361
ms), and memory usage (~ 554 MB), are analyzed, confirming that the model is computationally efficient and
sufficiently lightweight for potential deployment in real-world environmental monitoring systems. This end-to-
end framework guarantees a thorough validation of the model’s accuracy, interpretability, generalizability, and
practical utility.

Hyperparameter optimization strategy

We implemented a two-phase optimization procedure (Bayesian optimization followed by grid refinement)
rather than arbitrary manual tuning, ensuring scientific and reproducible parameter selection. All models were
optimized under identical computational resources and framework to guarantee fair comparison.

In the first phase, Bayesian optimization with the Optuna framework was applied to explore a predefined
search space that included key architectural parameters (encoder layers [1-3], model dimension [128-320],
attention heads [4-12], BiLSTM hidden size [2-32], and BiLSTM layers [1-3]) as well as training-related
parameters (learning rate, dropout rate, batch size, and input window length).

In the second phase, grid refinement was conducted to investigate the most promising regions identified in
the initial search. Model performance was evaluated using 5-fold time-series cross-validation, with RMSE as
the primary evaluation criterion, complemented by MAE, MAPE, and R? to provide a more comprehensive
assessment.

City Missing values | Missing rate | Std. reduction after filtering | Effective samples
Beijing 18 0.43% 6.3% 4143
Tianjin 21 0.51% 5.9% 4140
Shijiazhuang | 27 0.65% 6.7% 4134

Table 2. Quantitative results of data preprocessing for Beijing, Tianjin, and Shijiazhuang.

Scientific Reports |

(2025) 15:41838 | https://doi.org/10.1038/s41598-025-25865-w nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Data Sources

Offical Air Quality

Historical Weather Data Monitoring

Three Core Cities:
Beijing, Tianjin,
Shijiazhuang

Time Span:
Nov 2013 - Feb 2025

Preprocessing Pipeline

Butterworth Filtering

issi MinMax /S]idin Window Data Augmentation Train-Test Split
M Val g
li-sllalzlgdinague NI Normalization Construction Gaussian Noiset+Random 75% - 25%
0.1Hz cutoff _ Range:-1,1 /| input:2, output:1 Masking Chronological
Model Archiitecture & Training s . .
— N [ Comprehensive Evaluation \
WO ol AdamW Optimizer+Learning Rate Scheduling 5 Fold Time Seri
Hyperparameter [ -Fold Time Series J
Optimization Positional Encoding Cross-Validation

Bayesian+Grid Search ” S
\ / Transformer Encoder

Global Dependency
Modeling

BiLSTM Decoder
Bidirectional Temporal
Learning

/ Fully Connected Output

Multi-Metric Assessment
RMSE.MAE,MAPE

Baseline Model Comparison
Transformer, BILSTM, CNN-GRU,etc.

Statistical Significance Testing
t-test,p-value analysis

- »

/" XAI: SHAP Analysis

Feature Importance
Quantification

Pollutant Contribution Ranking
PM10,PM2.5,03 Dominant

City-Specific Pattern
Analysis

Model Decision

Extension Analysis

Multi-City Generalization Test
6 Representative Cities

Robustness Validation
Varying Data Split Ratios

Computational Efficiency
Assessment

Cross-Environmantal

- %

Interpretation Applicability

l

Deployment Readiness

/

Model Size:14.537MB|

r N

{ Inference Time:1.361ms

J

Memory Usage:554MBJ

\ Practical Monitoring Suitability }‘
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The final configuration consisting of one Transformer layer (dmodel = 250), 10 attention heads, a two-layer
BiLSTM with hidden size of 2, and training parameters including a learning rate of 0.001, batch size of 16,
dropout rate of 0.2, training epochs of 100 and input window length of 2.

Sensitivity analysis indicated that learning rate and BiLSTM hidden size had the most substantial impact
on model performance. The entire optimization process was conducted under controlled random seed
initialization to guarantee reproducibility. To ensure fair model evaluation and enhance predictive performance,
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the Transformer-BiLSTM model was optimized through a systematic hyperparameter search. Table 3 presents
the optimized values for key parameters, which were subsequently adopted in the experimental analysis.

Results

Overall model performance and statistical validation

Performance evidenced by cross-validation

We employed 5-fold time-series cross-validation to obtain robust performance estimates, avoiding randomness
from single data splits. A complementary set of evaluation metrics (RMSE, MAE, MAPE, R?) was used for
comprehensive assessment from multiple perspectives including error magnitude, percentage error, and
goodness-of-fit. The Transformer-BiLSTM model achieves consistently high R? values across folds (0.9324-
0.9694) and exhibits prediction errors concentrated near zero, indicating stable and accurate performance
compared with other models. Figure 7 shows the error distributions of the models in the five-fold cross-
validation. The performance of the Transformer-BiLSTM model is due to its complementary architecture: the
Transformer captures long-range dependencies in AQI time series through self-attention, while the BiLSTM
learns sequential patterns in both directions, enhancing the representation of temporal dynamics. In comparison,
BiLSTM captures sequential information but is less effective at long-range dependencies. CNN-GRU extracts
features via convolution, yet may not fully represent temporal relationships. Transformer-Linear lacks sequential
modeling, limiting its handling of AQI dynamics. Wavelet-BiLSTM incorporates preprocessing but may be less
effective than the Transformer-BiLSTM combination in capturing both long-range and sequential dependencies.

Statistical significance test

To verify whether the proposed model outperforms the baseline model, statistical analysis was conducted, and
the results are presented in Table 4. The results of the significance test indicate that the differences between the
proposed model and the baseline methods are statistically significant across all evaluation metrics. Specifically,
the t-statistics for B2, RMSE, MAE, and MAPE correspond to p-values that are substantially lower than the
0.05 threshold (all p < 0.001), thereby confirming that the proposed model achieves statistically significant
improvements in predictive performance compared with the baseline methods.

City-specific predictive performance

Performance in Beijing

To evaluate the performance of the Transformer-BiLSTM model for AQI prediction in Beijing, several baseline
models were compared, including single models (Transformer, BiLSTM) and hybrid models (Wavelet-BiLSTM,
Transformer-Linear). The performance comparison results of the models are summarized in Table 5. Model

Parameter ‘RMSE ‘MAE ‘MAPE (%) ‘Rz

Learning rate

0.1 40.5567 | 35.4188 | 8.4397% —-4.7100
0.01 34.9032 | 29.6495 | 7.1623 - 3.2300
0.001 5.3475 | 3.6833 | 7.7227 0.9007
0.0001 84.6039 | 81.3622 | 18.5172 —-23.8570
Batch size

8 3.4152 | 2.5205 | 5.0662 0.9595

16 3.1122 | 1.8026 | 3.3865 0.9664

32 53475 | 3.6833 |7.7227 0.9007

64 8.5698 | 6.2148 | 10.6895 0.7450

Dropout rate

0.1 3.7674 | 2.4779 | 4.6489 0.9507
0.2 3.6751 |2.3684 |4.4654 0.9531
0.3 4.4978 | 3.0577 |5.7145 0.9298
0.5 6.0808 | 3.8354 | 6.8147 0.8716

Input window size

1 7.8250 |5.1986 |9.3191 0.7874
2 3.1456 | 1.8657 | 3.3789 0.9656
3 3.6751 | 2.3684 |4.4654 0.9531
5 53369 |3.8175 |7.2976 0.9011

Training epochs

50 6.0394 | 4.0313 |8.9337 0.8733
100 3.0012 | 1.7928 | 3.3646 0.9687
150 5.5775 | 4.0507 | 8.4381 0.8920
200 6.5489 | 5.1587 | 9.6348 0.8511

Table 3. Hyperparameter optimization results of the transformer-BiLSTM model.
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Metrics | T-statistics | p-value Significance
R? 6.209 3.0216e-06 | Yes
RMSE | -6.960 3.4584e-07 | Yes
MAE -5.020 2.6988e-06 | Yes
MAPE | -3.215 1.0267e-05 | Yes

Table 4. Significance test.

Model | RMSE | MAE | MAPE(%) | R?
Beijing

Transformer 8.9041 |6.9254 | 12.7566 0.8745
BiLSTM 13.6209 | 9.3256 | 17.5432 0.5642
Transformer-linear 5.3521 |4.2995 | 8.2551 0.9063
Wavelet-BiLSTM 18.0088 | 14.4847 | 31.9316 0.4862
CNN-GRU 5.0145 |3.7263 |7.4568 0.9103
Transformer-BiLSTM | 3.0012 | 1.7928 | 3.3646 0.9694

Table 5. Performance comparison of different models in Beijing.
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performance was assessed using RMSE, MAE, and MAPE, where lower values indicate closer agreement with
observed AQI. Amon, 3g the baseline models compared, the Transformer-BiLSTM model achieved the lower

RMSE (3.0012 pg/m?),

MAE (1.7928 pg/m?),

), and MAPE (3.3646%). Compared with recent deep learning

model CNN-GRU, it reduced RMSE and MAE, reflecting improved predictive accuracy. As shown in Fig. 8,
the proposed Transformer-BiLSTM model exhibits a high degree of agreement with the observed values, and
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Fig. 8. Performance comparison of various models for AQI prediction in Beijing.

its predictive accuracy is higher than that of the other models. To further illustrate the training process and
convergence behavior of the proposed model, the evolution of the training and validation loss over epochs
is depicted in Fig. 9. As shown, the loss decreases steadily and converges after a certain number of epochs,
indicating stable and effective model training.

Performance in Tianjin and Shijiazhuang

The performance of the Transformer-BiLSTM model was evaluated for AQI prediction in Tianjin and
Shijiazhuang. The predictive performance for Tianjin and Shijiazhuang is shown in Fig. 10. The specific values of
each evaluation metric are presented in Table 6. In Tianjin, the model achieved an RMSE of 4.4785 j.g/m?*, MAE
of3.1614 rug/mg, MAPE 0f 4.6917%, and R? of 0.9621; in Shijiazhuang, it achieved an RMSE of 5.1646 pg/ms,
MAE of 3.4057 pg/m?>, MAPE of 5.2489%, and R? of 0.9324. Compared with baseline and recent deep learning
models, including BiLSTM, Transformer-Linear, Wavelet-BiLSTM, and CNN-GRU, the Transformer-BiLSTM
model demonstrates lower error metrics and higher R? values, indicating more accurate predictions.

Figure 11 presents the performance of the proposed model in terms of three evaluation metrics—RMSE,
MAE, and MAPE—in two cities, Tianjin and Shijiazhuang. In Tianjin, the RMSE values vary across different
models, with a peak of 17.06 and a low of 6.05; MAE ranges from 3.90 to 13.18; and MAPE shows a maximum
of 22.86 and a minimum of 6.43. In Shijiazhuang, RMSE reaches up to 23.06 and down to 7.02; MAE spans
from 3.41 to 18.21; and MAPE has a highest value of 28.51 and a lowest of 7.62. Overall, the proposed model
demonstrates varying predictive accuracy in the two cities, with performance fluctuations reflected by the
differences in these error metrics. Such variations may be attributed to differences in local data characteristics
or environmental factors.
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Model interpretability: SHAP analysis

Identification of dominant pollutants

To enhance the interpretability of the proposed Transformer-BiLSTM model and quantitatively assess the

contribution of each input feature to the AQI predictions, we employed SHapley Additive exPlanations (SHAP).

SHAP is a unified framework based on cooperative game theory that assigns each feature an importance value

for a particular prediction. The mathematical formulations of SHAP values are formally defined in Egs. (9)-(10).
The core idea of SHAP is to compute the Shapley value ¢; for each feature i, which represents the average

marginal contribution of that feature across all possible feature coalitions. For a given model fand instance x, the

SHAP explanation model is defined as:

M
9(z") = ¢o + Z biz;, (9)
i=1
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Tianjin

Transformer 9.1254 | 6.3631 | 10.0915 0.8745
BiLSTM 14.6984 | 10.4866 | 16.0346 0.5689
Transformer-linear 6.1444 | 4.5889 |7.8477 0.8896
Wavelet-BiLSTM 17.0621 | 13.1822 | 22.8632 0.4893
CNN-GRU 6.0456 | 3.8976 |6.4289 0.9106
Transformer-BiLSTM | 4.4785 | 3.1614 | 4.6917 0.9521
Shijiazhuang

Transformer 11.4043 | 9.2751 | 13.5534 0.6123
BiLSTM 17.9604 | 12.8228 | 17.5886 0.5063
Transformer-linear 7.2123 | 5.5523 | 7.7845 0.8574
Wavelet-BiLSTM 23.0582 | 18.2145 | 28.5098 0.4589
CNN-GRU 7.02456 | 5.1897 | 7.6246 0.8732
Transformer-BiLSTM | 5.1646 | 3.4057 | 5.2489 0.9424

Table 6. Performance comparison of different models in Tianjin and Shijiazhuang.
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Fig. 11. Error values of each model in Tianjin and Shijiazhuang.

where g is the explanation model, 2’ € {0, 1} represents the presence of simplified input features, M is the
maximum coalition size, and ¢; € R is the Shapley value for feature i. The Shapley value ¢; is calculated as:

oiirey = Y BRIy su ) - i) 10

SCN\{i}

where N is the set of all input features, S is a subset of features excluding i, and f,(.S) denotes the model
prediction for instance x using only the feature subset S.

The SHAP analysis results are illustrated in Fig. 12. The Transformer module primarily captures long-range
temporal dependencies, enabling the model to account for sequential pollutant patterns, while the BiLSTM
module effectively models short-term temporal variations and interactions among pollutants. Panels (a) and
(b) correspond to Beijing, panels (c) and (d) to Tianjin, and panels (e) and (f) to Shijiazhuang. The SHAP
summary plot illustrates the distribution of feature impacts on the model’s output, while the mean SHAP plot
ranks features by their average contribution to predictions. When analyzing AQI prediction for Beijing, Tianjin,
and Shijiazhuang using the Transformer-BiLSTM model, PM19, PM2 5, and O3 emerge as the most influential
pollutants. Specifically, in Beijing, their mean |SHAP| values are approximately 0.52-0.56; in Tianjin, PM 5
ranks highest with 0.72, followed by Oz (0.61) and PMig (0.53); in Shijiazhuang, PM¢ exhibits the largest
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Fig. 12. AQI prediction feature contribution.

contribution (0.85), followed by PM> 5 (0.67) and O3 (0.58). SHAP analysis of the Transformer-BiLSTM model
for AQI prediction in these three cities reveals subtle differences in the most influential features.

City-specific feature importance patterns

For Beijing, PM1o, PMa2.5, and O3 emerged as the dominant factors. As a megacity characterized by dense
traffic emissions and extensive residential heating, Beijing experiences substantial releases of PM 19 and PMa 5.
Moreover, complex meteorological conditions, such as temperature inversions, hinder the dispersion of these
particles and further influence O3 formation, thereby underscoring the critical role of these three pollutants
in shaping AQI. In Tianjin, PMa2.5, O3, and PMio were identified as the key contributors. The city’s strong
industrial base and busy port activities generate substantial industrial emissions, elevating the concentrations
of PMa.s and PMio. Furthermore, its coastal-industrial environment modulates chemical reactions and
pollutant dispersion, leading to a pronounced influence of Os. Together, these factors play a decisive role in
determining the AQI of Tianjin. For Shijiazhuang, PMig, PMa.5, and O3 were also the primary drivers. Intense
local industrial emissions, particularly from heavy industries, release large quantities of PM1o and PMa 5. The
basin-like topography of the region favors pollutant accumulation, while strong solar radiation and temperature
conditions enhance photochemical reactions, thereby amplifying the role of Os.

Across the three cities, PM10, PM2.5, and O3 consistently emerge as critical features. However, differences
in their relative importance reflect variations in local emission sources (traffic, residential, and industrial),
meteorological phenomena (e.g., temperature inversions), and geographic settings (coastal-industrial
environment, basin topography). These findings underscore the necessity of developing city-specific air quality
management strategies tailored to local conditions.

Generalization capability and robustness

Cross-city generalization

Cross-City Generalization experiments are necessary to evaluate whether a model trained in one region can
reliably predict air quality in other regions with different emission sources, climatic conditions, and urban
characteristics, which is critical for real-world deployment in regional air quality monitoring and early-warning
systems. The model effectively learns the core determinants of AQI through its Transformer encoder, which
captures long-range dependencies and recurring multi-day accumulation and dispersal patterns, and the BILSTM
decoder, which models short-term, bidirectional interactions among pollutants, such as the diurnal cycle of Os.
The generalization experiments conducted across six geographically and climatically diverse Chinese cities—
Chengdu, Xian, Shenyang, Wulumugqi, Shanghai, and Guangzhou demonstrate that the Transformer-BiLSTM
model maintains promising predictive performance (R? > 0.92 in five out of six cities). The locations of the six
regions in China are shown in Fig. 13. This robust performance reflects the model’s intrinsic ability to capture
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Dataset Start time | AQI Mean (ug/ms) AQImax | AQI count | RMSE | MAE | MAPE(%) | p2

Chengdu 2014-1-1 82.35 402 4207 3.0014 | 2.2036 | 5.4621 0.9610
Xian 2014-1-1 86.73 396 4262 2.9687 | 2.1790 | 5.4057 0.9615
Shenyang 2019-12-1 | 105.60 478 2148 7.1658 | 4.5291 | 11.2365 0.8687
Wulumugi | 2017-1-1 92.36 423 3114 3.7401 | 2.7442 | 6.8178 0.9280
Shanghai 2014-1-1 104.63 354 4230 2.2003 | 1.6155 | 4.0154 0.9750
Guangzhou | 2014-1-1 96.57 500 4221 2.9906 | 2.1963 | 5.4426 0.9608

Table 7. Model generalization experimental results.

universal temporal dynamics of key pollutants (PM2.5, PMig, Os, etc.) across regions with varying emission
sources and meteorological conditions.

Its generalization is further supported by a focus on relative temporal patterns rather than absolute
concentration values. The per-dataset normalization of input features to the range [—1,1] removes scale
differences between cities, allowing the model to recognize critical temporal signatures, such as rapid increases
in PM3 5, regardless of the baseline concentration.

Overall, these experiments confirm that the Transformer-BiLSTM model possesses strong out-of-the-box
generalizability, effectively capturing transferable and normalizable temporal representations of air pollution
dynamics across diverse geographical and climatic contexts. Detailed descriptions of the datasets and evaluation
metrics are provided in Table 7, with city-specific predictive performance illustrated in Fig. 14.

Shenyang, with the smallest dataset (2148 samples) and a harsh winter climate, exhibited slightly lower
performance (R* = 0.8687), reflecting the challenges posed by extreme environmental conditions and limited
data. For the region with the largest dataset, the Transformer-BiLSTM model demonstrates the best prediction
results (AQI Count = 4262, R? = 0.9651). This observation aligns with the fundamental principle in machine
learning that sufficient data can provide more comprehensive information about the target phenomenon (AQI
variation in this case). Larger datasets enable the model to learn more nuanced patterns and relationships within
the data, thereby enhancing its performance. This indicates that, while the Transformer-BiLSTM model has
shown reasonable generalization ability, increasing data volume can still contribute to further improving its
predictive performance, which is a valuable insight for future model optimization and application.

Robustness to data partitioning

In terms of robustness, particularly the stability of the model’s performance under changes in data split ratios,
Fig. 15 provides direct evidence: when the split ratio between the training set and test set is adjusted (e.g., the
proportion of the training set varies between 65 and 85%, and the corresponding proportion of the test set
changes between 35 and 15%), the core prediction metrics (RMSE, MAE, MAPE) of the Transformer-BiLSTM
model always remain within a narrow fluctuation range without significant performance fluctuations. This
indicates that the model has low sensitivity to data partitioning strategies; even when the partition boundary
between the training and test data is adjusted, it can still maintain stable prediction accuracy.

Scientific Reports |

(2025) 15:41838 | https://doi.org/10.1038/s41598-025-25865-w nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Chengdu Xian
180 —— Prediction —— Prediction
160 — Truth 250 — Truth
140
200
120
Q100 g150
80
100
60
40 50
20
0 200 400 600 800 1000 0 200 400 600 800 1000
Datetime Datetime
Shenyang Wulumugqi
200
120 —— Prediction —— Prediction
—— Truth 175 —— Truth
100 150
_ 80 _ 125
o o
< <100
60
75
40 50
20 25
0 100 200 300 400 500 0 100 200 300 400 500 600 700 800
Datetime Datetime
Shanghai Guangzhou
—— Prediction ——  Prediction
120 —— Truth 120 —— Truth
100 100
— 80 — 80
o o
< <
60 60
40 40
20 20
0 200 400 600 800 1000 0 200 400 600 800 1000
Datetime Datetime

Fig. 14. The performance of the transformer-BiLSTM in different regions.
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Deployment feasibility

Computational efficiency for practical applications

The model’s operational characteristics confirm its suitability for real-world deployment. The Transformer-
BiLSTM model has a size of 14.537 MB, with an average inference time of 1.361 ms and memory usage of
approximately 554 MB, indicating that the model is relatively lightweight and efficient for deployment. Besides,
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the model maintains good performance across different data partitions, with moderate variability, and can be
deployed with low computational overhead.

Discussion

In-depth discussion on model superiority and mechanisms

The experimental results consistently demonstrate that the proposed Transformer-BiLSTM model outperforms
all baseline models across multiple cities and evaluation metrics. This superior performance can be attributed to
the model’s unique architectural design, which effectively addresses the inherent challenges in AQI time series
forecasting.

Comparative analysis of model architectures

The AQI sequence is characterized by complex temporal dependencies, including both long-range global trends
(e.g., seasonal patterns, multi-day pollution cycles) and short-term local fluctuations(e.g., diurnal variations,
sudden emission changes). Traditional models and single-architecture deep learning models often fail to capture
this multi-scale nature simultaneously.

BiLSTM: The BiLSTM model captures bidirectional short-term dependencies effectively. However, its
sequential processing nature and tendency to forget information over very long sequences limit its ability to
model prolonged, global trends. This explains its higher RMSE and MAE compared to our hybrid model.

Transformer: The Transformer encoder excels at capturing long-range dependencies through its self-attention
mechanism, which allows any position in the sequence to directly attend to any other position. However, the
standard Transformer architecture is less adept at modeling the precise sequential order and short-term, point-
to-point relationships due to its position encoding, which can be insufficient for highly auto-regressive series
like AQIL.

CNN-GRU and Wavelet-BiLSTM: While CNN-GRU utilizes convolutional layers for feature extraction, it
may not fully leverage global context. The Wavelet-BiLSTM model incorporates frequency-domain analysis but
might suffer from information loss during the decomposition and reconstruction phases, and its fixed wavelet
basis may not be optimal for the non-stationary AQI data.

Synergistic module contribution in transformer-BiLSTM
The proposed hybrid model overcomes these limitations through a synergistic combination where each module
plays a distinct and complementary role:

Transformer Encoder as the Global Context Extractor: The Transformer encoder layer acts as a powerful
global context extractor. By computing attention weights across the entire input sequence, it identifies which
historical time steps (e.g., from 3 days ago, 1 week ago) are most relevant for predicting the future AQI value.
This is crucial for capturing phenomena such as the cumulative effect of sustained pollutant emissions or the
influence of a large-scale, multi-day meteorological event. The multi-head attention mechanism (with 10 heads
in our final configuration) allows the model to jointly attend to information from different representation
subspaces, potentially correlating different pollutants’ long-term behaviors.

BiLSTM Decoder as the Local Temporal Dynamics Model: The BiLSTM decoder layer serves as a refined
local temporal dynamics model. It processes the sequence enriched with global context from the Transformer.
Its bidirectional nature enables it to incorporate contextual information from both past and future within a
local window, refining the predictions by understanding the immediate rising or falling trends. Furthermore,
the LSTM’s gating mechanisms (input, forget, and output gates) are highly effective at learning the short-term,
sequential patterns and abrupt changes that are common in AQI data, such as a sudden drop in pollution after
a heavy rain.

Complementary Integration: The key to the model’s success lies in this complementary integration. The
Transformer encoder first distills the long-range, global dependencies from the raw input sequence, producing
a sequence of feature vectors that are globally aware. This sequence is then fed into the BiLSTM decoder, which
acts on this enriched representation to model the fine-grained, local temporal dynamics leading to the final
prediction. This pipeline allows each component to focus on its strength: the Transformer on “what” long-term
events are important, and the BILSTM on “how” the immediate sequence of events unfolds to reach the target
value. This division of labor mitigates the BILSTM’s long-range dependency problem and compensates for the
Transformer’s potential weakness in local sequential modeling.

The performance gain of the Transformer-BiLSTM model is not accidental but is a direct consequence of
its principled architectural design. The empirical evidence strongly suggests that the Transformer module is
primarily responsible for capturing long-range, global dependencies, while the BILSTM module enhances the
prediction by modeling precise short-term, bidirectional temporal patterns. Their sequential integration creates
a more comprehensive temporal representation than any single model can achieve, thereby providing a robust
and accurate solution for AQI forecasting.

Conclusion

This study proposed a hybrid Transformer-BiLSTM model for AQI prediction, aiming to capture both long-
range dependencies and short-term temporal dynamics. Extensive experiments using data from Beijing, Tianjin,
and Shijiazhuang demonstrated that the proposed model outperformed other approaches. As shown in Table 8,
the proposed Transformer-BiLSTM model achieves the lowest RMSE of 3.0012 among representative recent
works, substantially outperforming ARIMA-CNN-LSTM (5.496), CNN-LSTM (24.23), CBAM-CNN-BiLSTM
(18.90), and EMD-Transformer (3.789). These results demonstrate the promising predictive accuracy of our
hybrid model for AQI forecasting across multiple urban environments.

Scientific Reports |

(2025) 15:41838 | https://doi.org/10.1038/s41598-025-25865-w nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Model (reported works) RMSE
ARIMA-CNN-LSTM 5.496
CNN-LSTM 24.23
CBAM-CNN-BiLSTM 18.90
EMD-Transformer 3.789
Proposed transformer-BiLSTM | 3.0012

Table 8. RMSE comparative analysis with other reported works.

Despite these promising results, this work has several limitations. The AQI data were collected from
fixed monitoring stations, which may not fully represent the spatial heterogeneity of pollutant distributions.
In addition, only pollutant concentration data were considered, while other potentially important sources of
information such as meteorological forecasts, traffic emissions, and satellite-based remote sensing were not
incorporated.

Future research will address these limitations by: (i) integrating multi-source heterogeneous data
(meteorological, remote sensing, and socio-economic factors) to further enhance predictive accuracy and
generalization; (ii) improving computational efficiency and model compression to enable real-time deployment
in large-scale monitoring systems; (iii) extending explainability analysis, such as causal inference and
interpretable attention mechanisms, to provide actionable insights for environmental policy; and (iv) validating
the framework across broader spatial scales, including cross-regional and cross-country scenarios, to assess its
universality.

These directions will help establish the Transformer-BiLSTM model as a more powerful, interpretable, and
deployable tool for intelligent air quality prediction and management.

Enhanced quantitative results

Compared with the best baseline model (CNN-GRU), the proposed Transformer-BiLSTM reduced RMSE by
40.2% in Beijing, 25.9% in Tianjin, and 26.5% in Shijiazhuang. Furthermore, in the generalization experiments
across six additional representative Chinese cities, the proposed model consistently achieved R > 0.86,
highlighting its robustness and applicability in diverse environments. The results of the statistical significance
test (all p < 0.01) further confirm the superiority of our method over baseline approaches. These quantitative
improvements strengthen the validity and generalization capability of the proposed framework.

Data availability

The experimental data utilized in this study were collected from two publicly accessible sources: a historical
weather data website (http://www.tiangihoubao.com) and the official air quality monitoring and analysis platf
orm of the China National Environmental Monitoring Center (CNEMC) (https://www.cnemc.cn). The dataset
comprises daily air quality records, including corresponding AQI values, for the cities of Shijiazhuang, Beijing,
and Tianjin, covering the period from November 1, 2013, to February 28, 2025.
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