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Additive Manufacturing (AM) techniques, especially Fused Deposition Modelling (FDM), have 
generated much interest recently for their capabilities for manufacturing complex geometries using 
a variety of materials. In this work, a regression model has been developed for the FDM process 
performance enhancement and to control PETG processing. This study systematically analysed the 
effect of critical FDM parameters on key performance criteria such as printing time, dimensional 
deviation, and surface finish, including nozzle temperature, printing speed, and infill density. 
Experiments were carried out following a defined design of experiments to gather data which were 
then used to develop regression models for the prediction of printing results. A statistical treatment 
was done on the relationships among process variables with its impact on performance metrics. 
The predictive model developed showed a high level of accuracy, thus allowing for the identification 
of optimal levels for parameter settings conducive to PETG component efficiency, surface quality, 
and dimensional accuracy. Thus, the study acts as a practical guide for manufacturers willing to 
upgrade their additive manufacturing processes relating to process optimization, quality control, and 
production planning. By tying experimental inquiry with predictive modeling, this work delves deep 
into the dynamics of the FDM process and provides valuable insights for the mass use of PETG-based 
FDM in automotive, aerospace, biomedical, and other industry sectors.
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3D printing is an Additive Manufacturing (AM) method which uses the 3-dimensional model data for creating 
a wider range of shapes and complicated designs. The technology consists of continuous deposition of numerous 
layers of material, which are stacked on top of one another. ‘AM’ exhibits attraction in various applications such 
as building, prototypes and biomechanics. Even though ‘AM’ has numerous benefits such as reduced waste, 
design versatility and automation, the implementation of these concepts is considerably slow and limited. 
Continuous improvements in materials and ‘AM’ methods are consistently contributing to the development of 
innovative applications. The augmented approachability of this production method can most probably enable 
the manufacturers to develop and form an innovative 3D printing equipment.

Architects and designers have mostly utilized 3D printing to create visually pleasing and practical prototypes, 
capitalizing on its cost-efficient and effective prototyping capabilities. 3D printing has decreased the additional 
expenses linked to product development. In recent years, there has been a substantial rise in the use of 3D 
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printing in several industries, including both prototype development and the manufacturing of finished goods. 
Manufacturers encountered difficulties in customizing products for clients due to the exorbitant expenses 
associated with developing personalized items. However, Additive Manufacturing may utilize 3D printing 
technology to produce limited quantities of customized products at a very affordable price. This is particularly 
beneficial in the field of biomedicine, where there is always a need for distinct goods customized for each patient. 
ASTM standard classification of the additive manufacturing (AM) processes is orderly into seven main types; 
namely, binder jetting (BJT), directed energy deposition (DED), material extrusion (MEX), material jetting 
(MJT), powder bed fusion (PBF), sheet lamination (SHL), and vat photopolymerization (VPP)1–7.

  
The Fused Deposition Modelling (FDM) method utilizes a filament composed of thermoplastic polymer 

to fabricate parts layer by layer during the 3D printing process, as shown in Fig. 1. The filament is heated at 
the nozzle until it reaches a semi-liquid state, after which it is extruded onto the build platform or on top of 
previously deposited layers. The thermoplastic nature of the filament is critical, as it enables successive layers to 
fuse together during printing and solidify at room temperature upon completion. The mechanical properties of 
FDM-printed components are primarily influenced by factors such as layer thickness, filament width, alignment, 
and the presence of air gaps within or between layers8. Inter-layer distortion has been identified as a primary 
cause of mechanical brittleness in printed components.

FDM offers several advantages, including affordability, rapid prototyping capability, and ease of use. However, 
it also has limitations such as reduced mechanical performance, occasional defects in printed parts, and a 
restricted range of usable thermoplastic materials9. The incorporation of fiber-reinforced composites in FDM 
has improved the properties of printed components. Key challenges in composite printing include ensuring 
proper fiber alignment, achieving strong fiber-matrix bonding, and avoiding void formation10–12. FDM-
produced components find applications across industries such as automotive, aerospace, medical, electronics, 
and consumer goods. Nevertheless, the broader industrial use of FDM parts is often constrained by suboptimal 
mechanical performance.

Optimizing build parameters is crucial to achieving desired mechanical performance. Careful selection of 
nozzle temperature, printing speed, and infill density significantly influences the properties of the printed part13. 
Numerous studies have explored correlations between FDM parameters and output characteristics to enhance 
performance. Among optimization approaches, the Taguchi technique is highly effective for improving FDM 
process variables and quality. Design of Experiments (DoE) is fundamental in AM for systematically studying 
parameter effects, modeling nonlinear relationships, and identifying optimal settings. Taguchi Orthogonal Array 
(OA) methodology reduces experimental effort while maintaining statistical validity and is particularly valuable 
for multi-response optimization, where multiple quality characteristics must be improved simultaneously14–19.

Polyethylene Terephthalate Glycol (PETG) exhibits a wide range of favorable mechanical properties, 
including high tensile strength and moderate flexural characteristics, making it suitable for various technical 
and biomedical applications. Compared to other thermoplastic polymers of similar nature, PETG demonstrates 
improved flexibility, durability, and heat resistance relative to polylactic acid (PLA)20–22. Common thermoplastic 
materials used in Fused Deposition Modelling (FDM), such as polycarbonate (PC), acrylonitrile butadiene 
styrene (ABS), and PLA, are often selected due to their comparatively lower melting points. However, PETG 
enables effective processing while maintaining structural stability, making it compatible with FDM as well as 
thermoforming and extrusion processes. This material is widely applied in manufacturing bottles, containers, 
packaging materials, and medical implants due to its superior malleability, long-term durability, chemical 
resistance, low moisture absorption, non-slippery surface, recyclability, and overall sustainability23–26.

Multiple regression analysis is a commonly employed statistical technique for modeling the relationship 
between process input variables and performance metrics. In the context of FDM, regression analysis is used 
to optimize process parameters and enhance part quality and efficiency. This approach effectively predicts 

Fig. 1.  Schematic of FDM12.
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outcomes, identifies optimal parameter settings, and strengthens the understanding of the FDM process, 
enabling manufacturers to produce high-quality PETG components with improved surface finish, dimensional 
accuracy, and overall performance27–29.

Based on the earlier literature shows that various intelligence methods have been adopted for optimizing and 
model FDM process to enhance the quality of component. Various approaches were adopted predominantly 
to improve the quality of the surface and accuracy in dimension during the FDM process. There is a lack of 
exploration done on improving the mechanical behaviour of printed parts and regression modelling for printing 
variables. The inspiration of this exploration is to enhance the performance metrics by considering independent 
variables infill density, nozzle temperature and printing speed. Printing time, surface quality and dimensional 
deviation are opted as performance metrics. An explorative study has been undertaken to create a Taguchi grey-
based regression model which can foretell the desired performance measures accurately.

Materials and methods
The Snapmaker 2.0 is a multipurpose and flexible device intended predominantly to meet the various desires 
of engineering uses. The Snapmaker 2.0 uses the Fused Deposition Modelling (FDM) technique as its main 
mechanism for 3D printing. This technique permits consumers to make objects by consecutively placing layers 
of thermoplastic materials. Polyethene Terephthalate Glycol (PETG) is a type of polyester thermoplastic which 
is derived from Polyethene Terephthalate (PET). It is commonly engaged in profitable applications, including 
the making of bottles, containers, packing materials, and medical implants. PETG has exceptional characteristics 
like exceptional ductility, durability, chemical resistance, and a lower temperature requirement for making the 
desired parts. Accordingly, it is most appropriate for use in various engineering applications such as FDM. The 
foremost features of this material are its capability to sustain temperature fluctuations, lower moisture absorption, 
a non-slippery surface, reusability, and sustainability. These features make this material appropriate for structural 
and architectural plans situated in interior situations. PETG is a multipurpose material that is compatible for use 
in the industry, necessitating just modest printing requirements. Figure 2 portrays the configuration engaged for 
FDM and parts printed.

The parameters selected in this work-infill density, nozzle temperature, and printing speed-indeed have 
a significant impact on part quality and performance in FDM when the application medium is PETG. Such 
previous studies provide evidence that it is the nozzle temperature at which flow melt occurs, adhesion between 
layers, and surface quality, with poor combination causing under-extrusion or thermal degradation of the 
filament. Infill density impacts directly structural integrity, part weight, and consequently, print time-where 
higher infill densities resulted in increased mechanical strength increases in material consumption and cycle 
time. Further, printing speed critically affects the deposition uniformity, thermal gradients, and dimensional 
accuracy, whereas slower print speeds promote better layer bonding at the expense of increased process time, 
with high print speeds risking low-quality surface fusion and surface irregularities. The levels chosen for each 
parameter from literature and filament datasheets include the lower, medium, and upper possible ranges; 
thus, providing a practical operating window within which these parameters would be operated. This allows 
a systematic evaluation of the parameters on their individual and interactive effect on multiple responses for 
complete optimization through the Taguchi-Grey approach.

The Taguchi Design of Experiments (DOE) approach is a highly effective approach that effectively enhances 
the designs of both products and processes. The Taguchi Decision-making process systematically manipulates 
the input elements at various levels to analyze the effect of these factors on the output response. The main 

Fig. 2.  Setup used for experimentation and printed components.
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objective is to determine the most effective combination of input elements that will reduce variability and 
improve performance, while also taking into account the potential influence of noise components on the process. 
The present investigation examines nozzle temperature, infill density, and printing speed as distinct process 
variables. The examined output parameters include the surface roughness, dimensional deviation, and printing 
duration. Table 1 depicts the experimental trials with input variables and attained Grey Relational Grade (GRG). 
The choice has been taken to utilize an L27 orthogonal array for carrying out the experiments, considering 
the specific factors and levels involved. In compliance with the L27 orthogonal array, experimental testing was 
performed on three identical specimens for each of the conditions set. The values being tested for every response 
variable were taken to be averaged out of the three readings for greater data consistency and reliability.

Development of multiple regression model
The multiple regression technique is employed to ascertain the correlation between the process factors. 
Regression equations comprise several models, including linear, quadratic, interaction, and full models. These 
models are characterised by Eqs. (1–4) while considering three independent variables.

Linear equation:

	 y = β 0 + β 1X1 + β 2X2 + β 3X3� (1)

Quadratic equation:

	 y = β 0 + β 1X1 + β 2X2 + β 3X3 + β 4(X1)2 + β 5(X2)2 + β 6(X3)2� (2)

Interaction equation:

	 y = β 0 + β 1X1 + β 2X2 + β 3X3 + β 4 X1X2 + β 5X1X3 + β 6X2 X3� (3)

Second order equation (Full model):

	 y = β 0 + β 1X1 + β 2X2 + β 3X3 + β 4(X1)2 + β 5(X2)2 + β 6(X3)2 + β 7X1X2 + β 8X1X3 + β 9X2X3� (4)

Ex. No

Input Variables

GRGNozzle Temp - (A) (°C) Infill Density – (B) (%) Printing Speed – (C) (mm/sec)

1 210 25 20 0.6993

2 210 25 30 0.6478

3 210 25 40 0.4623

4 210 50 20 0.5850

5 210 50 30 0.6286

6 210 50 40 0.5974

7 210 75 20 0.5302

8 210 75 30 0.5773

9 210 75 40 0.5856

10 220 25 20 0.6988

11 220 25 30 0.5425

12 220 25 40 0.6977

13 220 50 20 0.6491

14 220 50 30 0.6530

15 220 50 40 0.6539

16 220 75 20 0.5633

17 220 75 30 0.5569

18 220 75 40 0.5585

19 230 25 20 0.7806

20 230 25 30 0.8547

21 230 25 40 0.7980

22 230 50 20 0.7734

23 230 50 30 0.7478

24 230 50 40 0.7563

25 230 75 20 0.5532

26 230 75 30 0.5663

27 230 75 40 0.5601

Table 1.  Input variable and attained GRG.

 

Scientific Reports |        (2025) 15:41831 4| https://doi.org/10.1038/s41598-025-25883-8

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Where ‘y’ is criterion variable and ‘X1’, ‘X2’ and ‘X3’ are predictor variables.
‘β1’, ‘β2’, ‘β3’…… ‘βn’ are regression coefficients.
The correlation amongst the independent variables and the performance metrics is ascertained by multiple 

regression analysis. Regression equations are adopted to envisage performance metrics in the FDM method. 
Regression equations are made applying three independent factors to envisage the essential performance 
measures and asses the prognostic accurateness of the evolved models.

Result and discussion
An L27 orthogonal array (OA) has been to perform the experiments, pointing to explore the influence of various 
independent factors on the experimentation setup for FDM of PETG parts. The exploration was predominantly 
inspired by the aspiration to comprehend the influence of these variables on the making of PETG parts. The 
preliminary inspiration of this study was to ascertain the supreme settings for these variables to improve the 
usefulness of the FDM approach. Enhanced precision in metrics such as Surface Roughness (SR), Printing Time 
(PT), and Dimensional Deviation (DD) designates grander performance.

Optimization of factors on printing time (PT)
The PETG material was exposed to FDM process, and Fig. 3 exhibits the response plot for the Printing Time 
(PT). The offered figure demonstrates a favorable correlation between Printing Time (PT), Nozzle Temperature 
(NT), and Printing Speed (PS). Infill Density (ID) is a crucial component that influences PT. To decrease 
printing time when the nozzle tip size increases, one can increase the discharge of material from the nozzle tip 
by widening the NT ranges.

To enhance the effectiveness of PT, it is advisable to utilize the A3B1C3 configuration of process variables. 
The study results presented by Taguchi, as illustrated in Table 2, highlight this tendency. In order to enhance 
performance, it is possible to adjust the parameters “Nozzle Temperature (ºC)” to 230 °C, “Infill Density (%)” 
to 25%, and “Printing Speed” to 40 mm/s as depicted in Table 2. The most important variable is “Infill Density”, 
followed by “Nozzle Temperature” and “Printing Speed”.

Levels

Means of PT

A B C

1 35.09 23.99 33.27

2 35.01 31.46 32.35

3 27.31 41.95 31.78

Delta 7.78 17.96 1.49

Rank 2 1 3

Table 2.  Taguchi’s analysis for printing time (PT) – FDM of PETG.

 

Fig. 3.  Main effect plot for printing time.
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Optimization of factors on SR
Figure 4 illustrates the graph displaying the variation in Surface Roughness (SR) of the PETG material when 
exposed to the FDM technique. The given figure illustrates a negative association between the Surface Roughness 
(SR) and both the Nozzle Temperature (NT) and Infill Density (ID). The variable denoted as Printing Speed (PS) 
exerts a substantial impact on SR. Increasing the ‘ID’ ranges can reduce the surface roughness (SR) of the printed 
object by adding more material, resulting in a higher number of surface flaws.

In order to optimize ‘SR’, it is recommended to employ the A3B1C1 arrangement of process variables. 
Taguchi’s research findings, as demonstrated in Table 3, exemplify this inclination. To optimize performance, 
one can alter the parameters “Nozzle Temperature (ºC)” (230  °C), “Infill Density (%)” (25%), and “Printing 
Speed” (20 mm/s) as depicted in Table 3. The variable of utmost significance is “Infill Density”, with “Nozzle 
Temperature” and “Printing Speed” following closely after.

Optimization of factors on dimensional deviation
The analysis of the response to dimensional deviation for FDM of PETG components is depicted in the graph 
displayed in Fig. 5. It is acknowledged that an increase in ‘NT’ and ‘PS’ values are linked to a decrease in the 
amount of deviation where as an increase in the value of infill density results in an increasing values. Increasing 
the temperature of the nozzle while maintaining a high printing speed can lead to more pronounced problems 
related to excessive material deposition and reduced accuracy, as it becomes more challenging to precisely 
regulate the flow of material. Using a high infill density and a higher nozzle temperature might result in elevated 
internal tensions and possible warping, which can negatively affect the dimensional accuracy. Increased velocity 
combined with a higher infill density might worsen problems associated with vibrations and thermal expansion, 
resulting in less precise prints.

In order to optimize ‘DD’, it is recommended to employ the A3B1C3 arrangement of process variables. 
Taguchi’s research findings, as demonstrated in Table 4, exemplify this inclination. To optimize performance, 
one can alter the parameters “Nozzle Temperature (ºC)” (230  °C), “Infill Density (%)” (25%), and “Printing 
Speed” (40 mm/s) as depicted in Table 4. The variable of utmost significance is “Infill Density”, with “Nozzle 
Temperature” and “Printing Speed” following closely after.

Levels

Means of SR

A B C

1 1.865 2.934 1.176

2 1.633 1.062 1.725

3 1.555 1.055 2.151

Delta 0.31 1.879 0.975

Rank 3 1 2

Table 3.  Taguchi’s analysis for surface roughness – FDM of PETG.

 

Fig. 4.  Main effect plot for surface roughness.

 

Scientific Reports |        (2025) 15:41831 6| https://doi.org/10.1038/s41598-025-25883-8

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Contour analysis for chosen performance metrics
A contour plot is a graphical depiction of three variables on a two-dimensional plot. Using 2D graphical 
illustration can be beneficial for demonstrating the interaction between two factors and their impact on desired 
performance measurements.

Contour analysis for printing time and dimensional deviation
Figure 6(a) shows the contour plots for printing time against temperature of the nozzle and infill density which 
are deemed in this present exploration. It is obvious from the illustration that the minimized printing time 
is attained during the combinations of minimum ‘ID’ and maximum nozzle temperature. This shows that 
maximized thermal energy, delivered via increased temperature of the nozzle in conjunction with decreased 
material deposition, makes the printing process by decreasing reducing layer deposition time and material 
handling. Similarly the combinations of higher levels of printing speed and nozzle temperature produces the 
parts with minimum time as depicted in Fig. 6(b). It is obvious that increasing printing speeds while paring 
with increased temperatures, predominantly reduces the overall printing time. This increase in speed reduces 
the duration of layer deposition when increased nozzle temperature assures efficient material flow and adhesion, 
optimizing the thermal and mechanical dynamics of the FDM process. Also, the amalgamations of lower levels 
of infill density and higher levels of printing speed produces the components with minimized printing time as 
illustrated in Fig. 6(c). The lower ‘ID’ needs fewer passes of the nozzle when the increased speed furthermore 
improves the rate of deposition collectively leading to reduced printing time.

Figure 6(d) shows the contour plots for dimensional variation against temperature of the nozzle and infill 
density which are deemed in this present exploration. It is obvious from the illustration that the minimized 
deviation is attained during the combinations of minimum infill density and maximum nozzle temperature. 
This proposes that the higher nozzle temperature enhances the material flow and bonding, ensuring improved 
accuracy in dimension while lower ‘ID’ minimizes the buildup of material reducing thermal distortion and 
shrinkage. Similarly the combinations of higher levels of printing speed and nozzle temperature produces the 
parts with decreased deviation in dimension as depicted in Fig. 6(e). It shows that the increased printing speed 
along with increased nozzle temperatures consequences to decreased deviations in dimension. The combined 

Levels

Means of DD

A B C

1 14.17 14.04 14.17

2 14.15 14.13 14.14

3 14.13 14.27 14.14

Delta 0.03 0.22 0.03

Rank 3 1 2

Table 4.  Taguchi’s analysis for dimensional deviation – FDM of PETG.

 

Fig. 5.  Main effect plot for dimensional deviation.
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effect of maximum speed and optimal thermal input ensures consistent material deposition decreasing warping 
and dimensional inaccuracies. Also, the amalgamations of lower levels of infill density and higher levels of 
printing speed produces the components with minimized dimensional deviation as illustrated in Fig.  6(f). 
Lower ‘ID’ and higher printing speed consequences in reduced dimensional deviation. Lower ‘ID’ decreases the 
thermal mass and internal stresses, when higher printing speed reduces the time spent per layer, decreasing the 
likelihood dimensional deviation because of prolonged heat exposure.

Contour analysis for surface roughness and GRG
Figure 7(a) shows the contour plots for surface roughness against temperature of the nozzle and infill density 
which are deemed in this present exploration. It is obvious from the illustration that the higher values of infill 
density and nozzle temperature produces parts with minimized roughness. It proposes that increased ‘ID” 
consequences to better material compaction and surface uniformity, when higher nozzle temperature improves 
flow of the material and layer adhesion, contributing to a smoother surface finish.

Similarly the combinations of lower levels of printing speed and higher levels of nozzle temperature produces 
the parts with better surface finish as depicted in Fig. 7(b). Reducing printing speed let more duration to each 

Fig. 6.  Contour plots for printing time and dimensional deviation vs. input factors.
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layer for bonding effectively while the improved nozzle temperature ensures better flow and layer cohesion 
decreasing surface imperfections such as ridges or gaps. Also, the amalgamations of higher levels of infill density 
and printing speed produces the components with minimized roughness as illustrated in Fig. 7(c). An increased 
‘ID’ consequences in denser internal structure decreasing surface irregularities. Similarly, improved printing 
speed maintain a consistent deposition rate, preventing defects caused by prolonged exposure for heating or 
over-deposition, thereby contributing to a smoother surface.

Figure 7(d) shows the contour plots for ‘GRG’ against temperature of the nozzle and infill density which 
are deemed in this present exploration. It is obvious from the illustration that the improved performance in 
FDM process is attained during the combinations of higher levels of infill density and nozzle temperature. This 
amalgamation like optimizes the flow of material, bonding and structural integrity, consequences to an enhanced 
mechanical characteristics and dimensional accuracy across the printed part. Similarly the combinations of 
higher levels of printing speed and lower levels of nozzle temperature produces the improved FDM process as 
depicted in Fig. 7(e). The increased printing speed decreases the time production time while maintaining enough 
level of material deposition and the lower nozzle temperatures prevents excessive heat buildup which could leads 
to thermal distortion or warping, optimizing the overall efficiency of the process. Also, the amalgamations of 

Fig. 7.  Contour plots for printing time and dimensional deviation vs. input factors.
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higher levels of infill density and printing speed produces with better performance as illustrated in Fig. 7(f). 
Increased ‘ID’ enhances the mechanical strength and stability of printed component, while increased printing 
speed reduces the production time without convincing the quality of the surface or accuracy of the part produced.

In the analysis of the main effects, it was found that nozzle temperature, printing speed, and infill density 
greatly affect the surface roughness, dimensional deviation, and printing time of the PETG components. The 
optimized parameters-namely, higher nozzle temperature, moderate printing speed, and increased infill density-
produced better surface finish with less dimensional deviation [24] and the trends reported further corroborate 
that an elevated nozzle temperature and heightened infill density positively affect the overall part quality and 
mechanical performance in polymer additive manufacturing. Such alignment validates the robustness of the 
present Taguchi optimization and the reliability of the established process–performance correlations.

Regression models for performance metrics
A regression analysis is conducted to determine the relationship between the ‘GRG’ and the input factors. The 
analysis also presents the connection between the target performance metrics and the input variables. The linear, 
quadratic, interaction, and second order full model equations are denoted as (5, 6, 7, 8) correspondingly.

Performance 
Metrics Model Empirical Relations Developed

Eq. 
No

GRG

Linear −0.523702 + 0.00598377 A − 0.00251199 B − 0.000907005 C 5

Quadratic 14.2493–0.130142 A + 0.00509355 B + 0.000656686 C + 0.000309376 A*A − 7.60554e-005 B*B 
− 2.60615e-005 C*C 6

Interaction −1.75132 + 0.0121958 A + 0.0414384 B − 0.0378709 C 
− 0.000212412 A*B + 0.000146955 A*C + 9.26788e-005 B*C 7

Second 
Order Full 
Model

13.0217–0.12393 A + 0.0490439 B − 0.0363073 C + 0.000309376 A*A 
− 0.000212412 A*B + 0.000146955 A*C − 7.60554e-005 B*B + 9.26788e-005 B*C − 2.60615e-005 C*C 8

 

Comparative study on actual and predicted model and performance analysis
The aim of this study is to develop regression models that can accurately forecast the GRG by establishing 
empirical relationships. The regression model was used to predict the outcomes of this experimental analysis. 
The study’s conclusions have been compared with the results acquired from the conducted experiment. A 
stronger correlation has been observed between the expected and actual outcome, as indicated in Fig. 8; Table 5. 
The data suggest a robust link between the anticipated and evaluated values of the GRG. The regression model 
clearly demonstrates a high level of accuracy in predicting the required performance metric with minimal error. 
The analytical results exhibit a significant correlation with both the planned and actual outcomes of the FDM of 
PETG, as mentioned.

Fig. 8.  Comparison of Actual and Predicted GRG.
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Analysis on the evolved regression model
Prediction error refers to a numerical measure that arises when the values generated by a model differ from the 
values obtained from the experiment. The accuracy of this claim is confirmed by calculating the error using 
Eq. (7) and presenting the results in Table 6:

	
Mean absolute percentage error (MAPE) (%) = 1

n

∑
n
i=1

EV − PV

EV
*100� (7)

The correlation coefficient and the Root Mean Square Error (RMSE) are utilized to assess the predictive model, 
which may be obtained from the formulae (8, 9):

	
RMSE =

√
1
n

∑ n

i=1
(Ev − Pv)2� (8)

	
R2 = 1 −

∑ n
m=1(Pv − Ev)2

∑ n
m=1(Ev)2 � (9)

The experimental values, denoted as ‘EV’, and the predicted values, denoted as ‘PV’, are gathered for a total of ‘n’ 
observations in the model.

Error Regression model

MAPE 1.4290

RMSE 0.0118

Correlational Coefficient Value 0.9996

Table 6.  Performance analysis of predictive models.

 

Ex. No

Input variables

GRG REG GRGNozzle Temp (°C) Infill Density (%) Printing Speed (mm/sec)

1 210 25 20 0.6993 0.6889

2 210 25 30 0.6478 0.6396

3 210 25 40 0.4623 0.4635

4 210 50 20 0.5850 0.5756

5 210 50 30 0.6286 0.6238

6 210 50 40 0.5974 0.5794

7 210 75 20 0.5302 0.5406

8 210 75 30 0.5773 0.5665

9 210 75 40 0.5856 0.5759

10 220 25 20 0.6988 0.6976

11 220 25 30 0.5425 0.5536

12 220 25 40 0.6977 0.6889

13 220 50 20 0.6491 0.6591

14 220 50 30 0.6530 0.6527

15 220 50 40 0.6539 0.641

16 220 75 20 0.5633 0.5536

17 220 75 30 0.5569 0.5423

18 220 75 40 0.5585 0.5538

19 230 25 20 0.7806 0.7773

20 230 25 30 0.8547 0.8365

21 230 25 40 0.7980 0.7917

22 230 50 20 0.7734 0.7352

23 230 50 30 0.7478 0.7434

24 230 50 40 0.7563 0.7465

25 230 75 20 0.5532 0.5503

26 230 75 30 0.5663 0.5663

27 230 75 40 0.5601 0.5703

Table 5.  Comparison of GRG values.
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Conclusions
An inclusive examination was done to investigate the FDM approach with PETG material. The aspiration was to 
determine an accurate forecast model for assessing the GRG. By means of the attained information, innovative 
forecast methods like regression models were established to envisage the essential performance measures.

•	 The performance measures of FDM process has been attained by using L27 OA. The process factors have 
been adopted for optimizing the printing effectiveness. The ‘ID’ has the foremost impact on the performance 
measures which are deemed.

•	 The grey approach was used to assess the multiple performance index of FDM approach. Also, it is ascertained 
that the regression approach has the capability to predominantly reduce the data uncertainty and improve the 
forecast capability of the model.

•	 The study determined that the optimal FDM process parameters for PETG are a nozzle temperature of 230 °C, 
infill density of 25%, and printing speed of 40 mm/s, which resulted in a maximum Grey Relational Grade 
(GRG) of 0.8547. The regression model predicted a GRG value of 0.8365, demonstrating a strong correlation 
between experimental and predicted results.

•	 The information attained by GRA behaves as the basis for foretelling the regression GRG values. This demon-
strates the competitiveness of improved model in developing accurate forecasts, hence enhancing various 
industrial applications.

•	 Indeed, the optimized process parameters proposed by this study do not just improve surface finishes, dimen-
sional accuracy, and printing efficiency of PETG parts, but they would also, in a larger sense, provide a basis 
for industrial applications in automotive, aerospace, and biomedical sectors.

•	 The regression-based predictive model makes it possible for manufacturers to forecast the performance out-
come for different process conditions, thus contributing to more enhanced process planning and quality con-
trol.

•	 Limitations are restricted to only one printer and type of material; future works might consider multiple FDM 
platforms, other polymers, and mechanical testing, thus extending further on generalization.

•	 Future research can expand to other thermoplastic materials, different 3D printing platforms, and additional 
process variables. Integration with AI-based predictive models and hybrid optimization techniques could 
further improve the quality and reliability of FDM-manufactured components.

•	 As a summary, the regression approach is proven to be an attractive tool for various manufacturing processes. 
This method can be adopted to accomplish various aspects in numerous engineering applications.

Data availability
The necessary data used in the manuscript are already present.
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