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Accurate and efficient disease diagnosis remains a critical challenge in the healthcare sector. With the 
growing availability of biomedical data, machine learning techniques have become invaluable tools 
for developing intelligent disease detection systems. Researchers have applied various algorithms, 
including artificial neural networks (ANNs), to improve classification accuracy. To further improve 
ANN performance, various optimization methods are applied to enhance learning and avoid the local 
minima problem, as each model demonstrates distinct performance characteristics. Therefore, this 
paper presents a hybrid Bio inspired Ropalidia Marginata Optimization-based hybrid neural network 
(RMO-NN) aimed at improving medical data classification. The proposed RMO-NN incorporates 
biologically inspired task allocation and dominance hierarchy mechanisms from RMO to optimize 
neural network learning performance effectively and reducing classification errors. To validate its 
effectiveness, the RMO-NN is tested on three large-scale medical datasets such as breast cancer, 
diabetes, and blood transfusion datasets and three medical images datasets. The performance of the 
proposed model is compared against two established metaheuristic neural models: Cuckoo Search 
Neural Network (CSNN) and Artificial Bee Colony Neural Network (ABCNN). The proposed RMO-NN 
model outperforms CSNN and ABCNN in terms of accuracy, MSE, SD, and convergence speed. And 
for medical images datasets the proposed is further validated with various start of art deep learning 
models. The results highlight the proposed model perform better on biomedical data classification 
tasks. The Proposed method significantly outperforms baseline approaches, achieving substantial 
accuracy, while introducing a novel RMO algorithm.

Keywords  Ropalidia Marginata optimization, Neural networks, Cuckoo search neural network, Artificial 
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The healthcare sector continues to generate massive volumes of complex data, offering new opportunities 
for improved diagnostics, disease prediction, and optimized treatment strategies. Modern machine learning 
(ML) techniques are central to harnessing this data, offering advanced predictive capabilities, better pattern 
recognition, and enhanced support for clinical decision-making1,2. However, its performance can be constrained 
by challenges such as high dimensionality, redundant features, and the tendency to converge on local optima3,4. 
These methods help lower the cost and save time in medical testing. By analyzing large amounts of medical and 
imaging data, machine learning models support doctors in making quick and accurate decisions5,6. In recent 
years, various approaches have been developed to enhance the diagnosis and treatment of numerous diseases, 
including cancer4. Multiple types of cancer have been documented in the literature and are typically classified 
based on the type of affected cells for example, breast cancer7,8. However, mortality rates have remained relatively 
stable, largely due to early detection, which plays a crucial role in improving patient outcomes9. To enhance 
early detection, computerized analysis tools known as computer-aided detection/diagnostic (CAD) systems are 
increasingly used to support clinical decision-making7. The development of CAD systems for breast cancer 
typically involves key modules such as feature extraction, feature selection, and classification, which are active 
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areas of research10. Among these, the classifier is the most critical component, as it directly influences diagnostic 
accuracy. Various classification algorithms have been employed for the automated detection of breast cancer, 
including K-nearest neighbor (K-NN)11, artificial neural networks (ANN)12, and support vector machines 
(SVM)13,14.

In recent years, ANN has seen notable performance improvements using randomly initialized parameters, 
which enhance both learning speed and generalization15. ANNs enhance the accuracy of mammography and 
ultrasound interpretation, aiding in the identification of suspicious lesions16,17. Selecting optimal parameters for 
ANNs primarily involves determining the best network topology, which includes choosing appropriate initial 
weights, the number and configuration of hidden layers and nodes, an effective training algorithm, and a suitable 
learning rate. The existing research methods are used to identify ideal ANN parameters to enhance the accuracy 
of classification models. Commonly adopted techniques include trial-and-error, network constructive and 
destructive methods, and brute-force approaches. However, these traditional methods often result in inefficient 
training processes18. The performance of ANN classifiers greatly depends on selecting the right input feature 
subsets, along with other design parameters19. Due to the limitations of conventional techniques in managing 
large parameter spaces, only a few studies have explored genetic algorithms20,21 for simultaneous optimization 
of multiple parameters, particularly in breast cancer classification tasks. The use of swarm intelligence based 
methods, such as artificial bee colony algorithms22, which have shown improvements in parameter selection and 
classification accuracy. Additionally, it examines the application of other evolutionary techniques like particle 
swarm optimization23 and genetic algorithms21 for fine-tuning ANN parameters. These optimized approaches 
have been successfully applied in various breast cancer diagnostic systems to assess disease severity. Building on 
these optimization strategies, it is crucial to address the remaining challenges in ANN-based systems, which are 
further outlined in the following problem formulation.

Problem formulation
Despite advancements, current research still struggles with achieving consistent performance across multiple 
datasets and balancing computational cost with model accuracy. Many hybrid ML systems lack adaptability, 
require extensive manual tuning, or fail to generalize across different biomedical domains. Lately, ANN have 
achieved significant performance gains by employing randomly initialized parameters, which boost both 
the speed of learning and the ability to generalize. The training and hyperparameter optimization of ANNs 
models represent some of the most complex challenges in machine learning. Traditionally, many studies have 
relied on gradient-based backpropagation techniques for this task24. However, these methods face significant 
limitations, including susceptibility to local minima in multi-objective cost functions, high computational cost 
due to numerous gradient calculations25, and a requirement for continuous cost functions. Given that training 
ANNs model is an NP-hard problem, there has been a growing interest in using metaheuristic (MH) algorithms 
for optimizing their structure and parameters. MH algorithms offer a robust approach to estimating optimal 
configurations, including hyperparameters, weights, layer counts, neuron numbers, and learning rate26. The 
integration of ANNs with metaheuristic algorithms gained traction for improving training and optimization 
efficiency. However, major issues include high computational complexity27, overfitting remains a concern, 
reporting reduced generalization in medical diagnosis tasks28. Scalability and training time increase with larger 
ANN models, as found by29. Additionally, hyperparameter sensitivity and lack of theoretical convergence, present 
further limitations in hybrid ANN-metaheuristic approaches. To solve these limitations this research develops a 
novel hybrid model that combines bio-inspired RMO inspired by wasp dominance hierarchies, hybridized neural 
networks to improve classification accuracy and efficiency on large medical datasets by incorporating intelligent 
weights and bias values to ANN model. To address these limitations and further enhance the effectiveness of 
ANN-based diagnostic systems, the following research motivation outlines the foundation behind developing a 
robust hybrid model.

Research motivation
ML techniques, especially artificial neural networks (ANNs), have advanced disease prediction by detecting 
complex patterns in biomedical data. However, challenges like high dimensionality, redundant features, and 
local optima limit their effectiveness. Early cancer detection, particularly breast cancer, benefits from ML-
driven computer-aided detection systems, where classifier accuracy is crucial. Traditional ANN training using 
gradient-based methods faces issues such as local minimum and high computational cost. Metaheuristic 
(MH) algorithms have emerged to optimize ANN training but suffer from overfitting, scalability problems, 
and hyperparameter sensitivity. There remains a need for hybrid models that balance accuracy and efficiency 
across diverse datasets. This research proposes a novel hybrid model combining bio-inspired Ropalidia 
Marginata Optimization (RMO) with neural networks. This approach aims to enhance classification accuracy 
and computational efficiency for large-scale medical datasets, addressing current ML limitations in healthcare 
analytics. Based on these motivations, the research aims to address the following key questions to evaluate the 
effectiveness and applicability of the proposed hybrid RMO-ANN model. The main differences of RMO with 
other established bio-inspired algorithms such as PSO, GWO, and ACO in terms of their mechanisms, benefits, 
and behaviors is given as:

•	 Mechanism: Unlike PSO, which models particle movement based on velocity and global/local best positions, 
RMO simulates the decentralized leadership and task allocation of Ropalidia marginata wasps, where any 
individual can temporarily assume leadership without centralized control. This differs from GWO, which 
uses strict hierarchical leadership (alpha, beta, delta, and omega) to guide hunting, and ACO, which relies on 
pheromone trails and probabilistic path selection.
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•	 Benefits: RMO’s flexible leader transition mechanism offers higher adaptability to dynamic optimization en-
vironments and reduces the risk of premature convergence that can occur in PSO or GWO when leader solu-
tions stagnate. Its decentralized information sharing also enhances robustness compared to the more rigid 
structures in GWO and pheromone-based reinforcement in ACO.

•	 Behavior: In exploration exploitation balance, RMO dynamically shifts roles and influence levels among 
agents, promoting diversity in search patterns, whereas PSO often favors exploitation once good solutions are 
found, and ACO can overly reinforce early paths. RMO’s stochastic leader reassignment encourages continual 
exploration while maintaining search efficiency.

Research questions

•	 How can bio-inspired Ropalidia Marginata Optimization (RMO) be effectively hybridized with artificial neu-
ral networks to improve classification accuracy in medical datasets?

•	 To what extent the RMO-enhanced neural networks by selecting their weights and bias values, and how does 
this impact model efficiency?

•	 How does the proposed RMO-based hybrid model compare to traditional gradient-based and other methods 
in terms of training time, accuracy, and MSE?

•	 Can the RMO-hybrid neural network model consistently achieve robust performance across multiple bench-
mark biomedical datasets, including breast cancer detection task. To address these research questions, this 
paper proposes a novel approach detailed in the following main contribution.

Paper contribution
This paper introduces a novel Ropalidia Marginata Optimization-based Neural Network (RMO-NN) for 
biomedical data classification. The proposed RMO is inspired by the dominance hierarchy and task allocation 
behavior of Ropalidia Marginata wasps. Ropalidia marginata colonies consist of a single egg-laying queen and 
numerous non-reproductive workers. Queens and workers are morphologically identical, and individuals can 
change between roles30,31. Unlike most primitively eusocial species, the queens of RM are remarkably docile, non-
aggressive, and minimally interactive32. Males are distinguished by their weaker mandibles and lack of stingers. 
Female workers and queens are morphologically similar but differ in behavior30,33. Females generally serve as 
workers, performing tasks like foraging, nest building, and larval care34. The proposed bio-inspired algorithm 
is hybridized with neural networks to enhance learning performance, reduce classification error, and eliminate 
local minima problem. In this study, the RMO algorithm is employed exclusively for optimizing the weights and 
bias values of the artificial neural network, rather than for feature selection. The role of RMO in the proposed 
RMO-NN framework is to enhance the learning process by efficiently navigating the high-dimensional weight 
space, avoiding local minima, and improving convergence speed. All datasets are used in their complete feature 
form after preprocessing, ensuring that performance improvements are attributable to the optimized network 
parameters rather than to changes in the input feature set. The RMO-NN model is validated on three large-
scale medical datasets breast cancer, diabetes, and blood transfusion and outperforms established metaheuristic 
models like Cuckoo Search Neural Network (CSNN) and Artificial Bee Colony Neural Network (ABCNN) in 
terms of accuracy, mean squared error (MSE), standard deviation (SD), and convergence speed. This research 
contributes a robust, scalable, and efficient hybrid classification framework for disease diagnosis, demonstrating 
the value of incorporating bio-inspired optimization techniques in machine learning for healthcare applications. 
The main contribution of this paper is given as below:

•	 Proposed a novel Ropalidia Marginata Optimization-based Neural Network (RMO-NN) that integrates the 
dominance hierarchy behavior of Ropalidia Marginata wasps into neural network learning. This biologically 
inspired hybrid approach enhances the model’s ability to avoid local minimum and improves classification 
performance across various medical datasets.

•	 Validated RMO-NN on three benchmark classification datasets Breast Cancer, Pima Indian Diabetes, and 
Blood Transfusion and three more medical images datasets. Where it consistently outperformed other neural 
and metaheuristic models (CSNN, ABCNN, LM, ERN) in terms of accuracy, Mean Squared Error (MSE), and 
Standard Deviation (SD).

•	 RMONN demonstrated lower standard deviation across all datasets, indicating more robust and stable classi-
fication performance. It maintained high generalization ability while reducing overfitting, a common limita-
tion in traditional hybrid ANN-metaheuristic models.

•	 Despite being a hybrid model, RMONN achieved faster or comparable convergence in terms of MSE and 
required moderate CPU time, outperforming methods like LM and ERN in execution time while maintaining 
higher accuracy showcasing its practical utility for real-time medical diagnostic applications.

 Peper organization
The paper is organized as follows: Sect. “Related work” reviews related work on neural networks and metaheuristic 
optimization in medical classification. Sect. “Methods and materials” details the methods and materials. Sect. 
“Termination” analyzes the performance results. Finally, Sect. “Conclusions and Future Work” concludes the 
study and outlines future research directions.

Related work
In recent years, machine learning (ML) has been widely applied to biomedical data, aiming to improve diagnosis, 
prognosis, and treatment planning. Studies such as35 have demonstrated that deep learning models can extract 
complex features from medical images and clinical data, outperforming traditional statistical methods. 
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Similarly36, reviewed various feature selection (FS) methods, emphasizing their critical role in improving 
classifier performance by reducing dimensionality and eliminating irrelevant attributes. Traditional classifiers 
such as Support Vector Machines (SVM) and Random Forests (RF) have also been widely used for disease 
classification37. Similarly, in38 this article addresses the challenge of multi-class imbalance in medical datasets by 
proposing a rebalancing framework using SCUT (SMOTE and Cluster-based Under sampling Technique), 
SHAP-RFE for feature selection, and DES-MI for dynamic ensemble classification. The framework introduces 
enhancements to SCUT and classifier selection, achieving superior performance across eight imbalanced 
datasets with notable improvements in accuracy, G-mean, and AUC. Where else in39 this study tackles early liver 
disease detection using single and ensemble machine learning models on the Indian Liver Patient Dataset 
(ILPD). Various preprocessing and feature selection techniques were applied to improve model accuracy. A two-
level ensemble stacking model outperformed others, achieving up to 94.12% accuracy with feature selection. The 
proposed approach demonstrated strong predictive performance, indicating its effectiveness in liver disease 
detection. Further in40 this research proposes an improved breast cancer diagnosis method using Association 
Classification (AC) enhanced with ensemble filter and wrapper-based feature selection techniques. A new 
bootstrapping strategy and the WARF method are used to select optimal discriminative features. Two models 
WARF-PCBA and hybrid PSO-WARF-PCBA are developed and evaluated on UCI breast cancer datasets. Results 
show these models consistently outperform existing AC algorithms in prediction accuracy and efficiency. 
Another paper in41 introduces a Cuckoo Search Back-Propagation (CSBP) algorithm, inspired by cuckoo bird 
behavior, to improve BP training by enhancing convergence speed and avoiding local minima. CSBP is evaluated 
using OR and XOR datasets and compared with other hybrid methods, including artificial bee colony-based BP. 
Results show that CSBP significantly improves the computational efficiency of the BP training process. Further 
in42 this paper presents an in-depth analysis of the Firefly Algorithm (FA), a popular nature-inspired optimization 
method known for its effectiveness across various domains. FA has shown strong performance in solving 
complex problems in biomedical engineering and healthcare. The study reviews its variants, applications, and 
enhancements, aiming to inspire further research and innovation using FA in these critical fields. Although in43 
this paper proposes a machine learning model for accurate recognition of Parkinson’s disease, addressing 
limitations of existing methods. It employs a hybrid feature selection algorithm combining Relief and ant-colony 
optimization, with a SVM trained on the selected features. Using K-fold cross-validation, the model achieved 
99.50% accuracy on a real-world dataset, outperforming existing approaches and proving highly effective for 
Parkinson’s disease detection. Further in18 this paper reviews the use of swarm intelligence-based metaheuristic 
optimization algorithms for enhancing ANN models in breast cancer diagnosis. It emphasizes the importance of 
feature selection and hyperparameter optimization in improving classification accuracy and reducing 
computation time. The review compares various ANN-based approaches, highlighting their strengths, 
limitations, and evaluation metrics. It also outlines future research directions in optimized ANN models for 
more effective breast cancer detection. Another paper in44 presents a novel approach to improving cardiovascular 
disease (CVD) prediction by integrating Gray Wolf Optimization (GWO) with machine learning models. Using 
a patient dataset, the study applies GWO to optimize hyperparameters and feature selection for models like 
SVM, Decision Tree, and K-NN. The results show that the GWO-enhanced model achieves higher prediction 
accuracy 87% compared to traditional models like SVM (78%), Random Forest (76%), and K-NN (56%). This 
demonstrates GWO’s effectiveness in enhancing CVD prediction. Although in45this article addresses the 
challenge of high-dimensional gene data in bioinformatics for medical diagnosis, where identifying relevant 
genes is difficult due to redundancy and irrelevance. It proposes a Multi-Objective Binary Cuckoo Search 
Algorithm (MOBCSA) for gene selection, which optimizes both classification accuracy and the number of 
selected genes. MOBCSA extends the standard cuckoo search algorithm by using an S-shaped transfer function 
for binary search and includes an external archive and adaptive crowding distance to maintain solution diversity. 
Tested on six biomedical datasets with three classifiers, MOBCSA outperformed four state-of-the-art multi-
objective feature selection methods, achieving classification accuracy between 92.79% and 98.42% while 
selecting fewer genes (15.67 to 27.88 on average). Another paper in46 proposes a Graylag Goose Optimization 
(GGO) algorithm for feature selection to improve heart disease classification accuracy, with LSTM identified as 
the best-performing classifier. The GGO-LSTM achieved 99.58% accuracy, outperforming six alternative 
optimizers and validated through statistical tests and visual analysis. Where else in47 this study introduces 
Cardiovascular disease snake optimization (CVD-SO), a framework combining snake optimization and machine 
learning for efficient feature selection and classification of cardiovascular disease data. The proposed model 
achieved 99.9% accuracy, demonstrating its potential to enhance early diagnosis and reduce CVD-related 
mortality. Similarly in48 proposes the Modified Al-Biruni Earth Radius (MBER) algorithm for feature selection 
to enhance eye state (open/closed) classification from EEG data. Optimized with KNN as the fitness function, 
MBER outperformed five competing algorithms, achieving 96.12% accuracy and demonstrating superior 
robustness through statistical validation. Further another paper in49 proposes a multilayer multitask LSTM 
model with PSO-based feature selection to predict mechanical ventilation need, mortality, and ventilation 
duration in ICU patients using MIMIC-III data. Using the first 24 h of data yielded the best results, with the 
model achieving high accuracy (0.944 and 0.971) and strong performance across precision, recall, F-score, and 
AUC. Additionally this study in50 applies four binary optimization algorithms for feature selection in orthopedic 
disease diagnosis, with BBFS reducing average error by 47.29% compared to others. The optimized RF model 
(BFS-RF) achieved the best performance, reaching 99.41% accuracy, significantly improving upon the original 
classifier. Recently the study in51 addresses breast cancer’s global health impact and proposes a deep learning 
framework combining transfer learning and Grey Wolf Optimization (GWO) for improved diagnosis. Using 
CNN architectures such as ResNet and Inception on mammographic images, along with WBCD-based feature 
selection via GWO, the method enhances classification accuracy, robustness, and generalization. Experimental 
results show high performance (precision 0.942, sensitivity of 0.982, accuracy of 0.965, AUC of 0.971), indicating 
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its potential to improve early detection, reduce diagnostic errors, and strengthen healthcare outcomes. This 
research introduces Ropalidia Marginata Optimization (RMO), a wasp-inspired algorithm that improves 
exploration–exploitation balance and outperforms classic metaheuristics. However, its application in hybrid 
neural networks for biomedical classification remains limited and untested against other bio-inspired models on 
large clinical datasets, highlighting a key area for future study.

Methods and materials
In this article, a new Ropalidia Marginata Optimization-Neural Network (RMO-NN) method is formulated for 
medical data classification. At the preliminary stage, the presented RMO-NN method initially pre-processes the 
input data using null value removal, normalization, and transformation techniques. Moreover, the presented 
RMO-NN technique applies the RMO model for selecting the most effective subset of features, using the 
dominance hierarchy of the wasp-inspired approach to balance exploration and exploitation. Finally, the reduced 
feature set is passed into a Multi-Layer Perceptron (MLP) or Feedforward Neural Network (FNN), where RMO 
is again employed to optimize the weights and biases for enhanced learning performance.

Ropalidia Marginata optimization (RMO) algorithm
Ropalidia marginata (RM) are dark reddish wasps with yellow markings, including spots on joints and a yellow 
ring on the lower abdomen52. Ropalidia marginata colonies consist of a single egg-laying queen and numerous 
non-reproductive workers. Queens and workers are morphologically identical, and individuals can change 
between roles30,31. Unlike most primitively eusocial species, the queens of RM are remarkably docile, non-
aggressive, and minimally interactive32. Males are distinguished by their weaker mandibles and lack of stingers. 
Female workers and queens are morphologically similar but differ in behavior30,33. Females generally serve as 
workers, performing tasks like foraging, nest building, and larval care34. Workers self-regulate foraging through 
aggression and can mate with males, remaining inseminated even if they do not reproduce53. Where the queen is 
physically dominant and aggressive, the RM queen is remarkably meek and docile in behavior54. Despite being 
docile, she can maintain a reproductive monopoly and is the only egg layer in the colony. Upon removal of the 
queen, one of the workers becomes extremely aggressive but immediately drops her aggression if the queen is 
returned55. If the queen is not returned, this hyperaggressive individual will develop her ovaries, lose almost all 
her aggression, and become the next queen of the colony. Males, produced in smaller numbers, stay in the nest 
briefly before leaving to mate with females from other colonies. They do not contribute to colony maintenance 
and depend on workers for food52. Occasionally, they cannibalize larvae but are unsuited for tasks like foraging 
or defense due to their physical limitations56. This research proposed the nature-inspired behavior of Ropalidia 
marginata (RM), a species of social wasp as an optimization technique. These wasps exhibit decentralized and 
efficient task allocation, cooperation, and resource utilization in their colonies. The RMO algorithm leverages 
these behaviors to solve optimization problems effectively. Ropalidia marginata colonies demonstrate unique 
hierarchical behaviors: Fig.  1 graphicly represent RMO Cooperation Communication, and Task Switching 
behavior. Figure 2 give proposed RMO algorithm Flowchart.

Fig. 1.  RMO cooperation communication, and task switching (generated using CGPT3.5 Sora AI tool).
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	1.	  Decentralized leadership: Task distribution is achieved without a central leader, allowing dynamic adaptabil-
ity.

	2.	  Task switching: Wasps switch tasks based on the colony’s immediate needs.
	3.	  Cooperation and communication: Efficient sharing of resources and information ensures colony survival and 

productivity.

These behaviors inspire the core mechanisms of the RMO algorithm, such as adaptive exploration, cooperation, 
and exploitation. Below is an explanation of how the algorithm works. The Key Steps in the RMO Algorithm 
1 as given as: Here is a mathematical formulation of the Ropalidia Marginata Optimization (RMO) algorithm:

Notation.
N  : Number of agents (wasps).
Xi : Position of the i. agent in the search space (i = 1, 2, . . . . . . . . . .N) .
f (X) : Objective function to minimize or maxize.
Rolei : Role of the i agent (queen\worker).
Xbest : Position of the current best solution.
α, β : Control parameters for exploration and exploitation.

Initialization
Randomly initialize the positions of agents(wasps) to create an initial population representing potential 
solutions (wasps). Assign each agent a random position within the search space and evaluate their fitness using 
the problem’s objective function as defined in Eq. (1).

	 Xi ∼ Uniform (Xmin, Xmax)� (1)

where (Xmin, Xmax)  are the lower and upper bounds of the search space.

	 i. 	 Compute the fitness for each agent:

		  f (Xi) ∀i ∈ {1, 2, . . . , N}� (2)

	ii. 	 Assign initial roles based on fitness:

Fig. 2.  Proposed RMO algorithm Flowchart (MY Google Drive drawings).
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	 a. 	 Queen: Agents with the best fitness values.
	 b. 	 worker: Remaining agents.

Position update rules

	i.	 Exploiter update (local search)

	IfRolei = queen The agent refines its position:

	 Xt+1
i = Xt

i + α ·
(
Xbest − Xt

i

)
+ ε� (3)

where: wheret is the current iteration,   α controls the step size toward the best solution,

•	 ε ∼ Uniform (−δ, δ) is a small random perturbation for local search.

	ii. 	 Explorer Update (Global Search)

	IfRolei = worker The agent explores the global space:

	 Xt+1
i = Xt

i + β · rand (−1, 1) · (Xmax − Xmin)� (4)

	where: i. β controls the exploration step size, ii. rand (−1, 1) is a random value in [− 1,1].

Fitness evaluation and role switching

	 i. 	 Evaluate the fitness of all agents:

		  f
(
Xt+1

i

)
∀i ∈ {1, 2, . . . , N}� (5)

	 ii. 	 Update the best solution:

	 Xbest = argminf
(
Xt+1

i

)
� (6)

	iii. 	 Dynamically reassign roles:

	 a. 	 Agents with fitness close to f (Xbest) become queen.
	 b.	  Remaining agents become worker.

Termination
The algorithm continues until a termination criterion is met, such as:

	i.	 Stop

	 if : t ≥ T � (7)

Scientific Reports |        2025 15:42004 7| https://doi.org/10.1038/s41598-025-26030-z

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Algorithm 1.  Pseudocode of proposed RMO algorithm

Proposed hybrid RMO-NN algorithm
The Proposed Hybrid RMO-NN algorithm represents a synergistic integration of the Ropalidia Marginata 
Optimization (RMO) algorithm with a neural network (NN) to improve the learning efficiency and predictive 
accuracy of the NN. In this hybrid model, the RMO algorithm is utilized to optimize the weights and biases of 
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the neural network, addressing common challenges such as local minima and slow convergence associated with 
traditional gradient-based training methods. By leveraging the adaptive role-switching behavior inspired by 
Ropalidia Marginata wasps, the RMO algorithm enhances the global search capability of the training process. 
This leads to more robust optimization, ultimately resulting in improved generalization performance of the 
neural network across various complex tasks. RMO is used to search for optimal NN parameters (weights, 
biases) in the solution space. The neural network computes outputs using forward propagation with standard 
NN equations:

Hybrid RMO-NN algorithm: mathematical model

	1. 	 ANN as objective function

The neural network forward pass is computed as:

	 netl = σ
(
XlW l + bl

)
, forl = 1, 2, . . . , L� (8)

Where X  is the input nodes, W, b is the weight bias value and σ is the activation function to the ANN model. 
The output of the network is:

	 Out = σ
(
netL

)
� (9)

The fitness function (loss to minimize) is:

	
f (θ) = 1

n

n∑
i=1

(T − out)2� (10)

where:

	 θ =
[
vec

(
W 1, . . . , W L

)
, vec

(
b1, . . . , bL

)]
∈ RD � (11)

f (θ) : Mean squared error (MSE).

	
θ∗ = argminθ∈RD (f (θ) =

(
1
n

n∑
i=1

(T − out)2

)
� (12)

where θ is optimized by RMO as per (13)-(18).
Randomly initialize the positions of agents (wasps) to create an initial population representing potential 

solutions (wasps). Assign each agent a random position within the search space and evaluate their fitness using 
the problem’s objective function as defined in Eq. (1). Ans compute the fitness for each agent:

	 f (Xi) ∀i ∈ {1, 2, . . . , N}� (13)

Exploiter update (local search)
IfRolei = queen The agent refines its position:

	 Xt+1
i = Xt

i + α ·
(
Xbest − Xt

i

)
+ ε� (14)

where:

•	 t is the current iteration,
•	 α controls the step size toward the best solution,
•	 ϵ ∼ Uniform(−δ, δ) is a small random perturbation for local search.

Explorer update (global search)
IfRolei = worker The agent explores the global space:

	 Xt+1
i = Xt

i + β · rand (−1, 1) · (Xmax − Xmin)� (15)

where: β controls the exploration step size, and rand (−1, 1) is a random value in [− 1,1].
Evaluate the fitness of all agents:

	 f
(
Xt+1

i

)
∀i ∈ {1, 2, . . . , N} vv� (16)

Update the best solution:

	 Xbest = argminf
(
Xt+1

i

)
� (17)
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Dynamically reassigned roles: Agents with fitness close to f (Xbest) become queen. And the remaining agents 
become worker. The algorithm continues until a termination criterion is met, such as:

	 if : t ≥ T � (18)

The Key Steps in the RMO-NN is shown in Algorithm 2. Figure  3. Give the proposed RMO-NN algorithm 
Flowchart.

Algorithm 2.  Pseudocode for RMO-NN

Computational complexity
Let N  denote the population size (number of agents), T  the maximum number of iterations, D the total number of 
trainable parameters in the neural network (weights + biases),n the number of training samples, and L the number 
of layers in the network. The dominant cost of the Hybrid RMO-NN algorithm arises during the optimization 
process. In the initialization phase, the population is generated in O(N · D) time, and the initial fitness of all 

agents is computed via forward propagation at a cost of O (N · n · cos tNN ) , where cos tNN ≈
L∑

l=1
(ml.1.ml) 

for fully connected layers. During each iteration, the role-based position updates (queen and worker) require 
O (N · D) time, followed by a forward pass for each agent, costing O (N · n · cos tNN ) . Additional operations 
such as finding the best agent or reassigning roles O (N log N) are negligible compared to the forward pass cost. 
Overall, the time complexity of the Hybrid RMO-NN is:

	 O (T · N · n · cos tNN |+| T · N · D)� (19)

The space complexity is O (N · D) due to the storage of all candidate solutions in the population. This linear 
dependence on N, T, and n implies that scalability is primarily constrained by the network size and dataset 
volume, making parallelization strategies beneficial for large-scale applications.

Data collection
Data collection plays a crucial role in this research, ensuring the accuracy, reliability, and relevance of the 
information aligned with the study’s objectives. Effective data collection methods enhance the validity of the 
findings by enabling well-informed and meaningful conclusions. In this study, three benchmark classification 
datasets are used for simulation purposes. These datasets, are obtained from the UCI Machine Learning 
Repository, include Breast Cancer57, Pima Indian Diabetes58 and Blood Transfusion dataset59. The Breast 
Cancer dataset was created by William H. Wolberg from the microscopic examination of breast tissue samples 
to diagnose breast cancer57. This dataset aims to classify tumors as either benign or malignant based on 
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continuous clinical attributes. It contains 699 instances, each with 9 attributes and a binary output class (benign 
or malignant). The Pima Indian diabetes dataset aims to predict the onset of diabetes in Pima Indian women 
based on diagnostic measurements. This dataset includes 768 instances with 8 input attributes and 2 output 
classes. The blood transfusion dataset goal is to predict whether a blood donor will donate blood in March 2007 
based on their past donation history or not. It includes 748 instances with 4 input features and 2 output classes. 
Table 1. Give the used datasets descriptions in this paper.

Dataset No. of instances No. of features Feature types Class distribution

Breast cancer 669 9 Continuous (e.g., radius, texture, smoothness) Malignant: 212 (37.3%) Benign: 357 (62.7%)

Diabetes (Pima) 768 8 Continuous & discrete (e.g., glucose, BMI, pregnancies) Positive: 268 (34.9%) Negative: 500 (65.1%)

Blood transfusion 748 4 Continuous (e.g., recency, frequency, amount donated) Donated Again: 178 (23.8%) Did Not Donate: 570 (76.2%)

Table 1.  Datasets descriptions.

 

Fig. 3.  Proposed RMO-NN algorithm Flowchart (MY Google Drive drawings).
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Data preprocessing
To further validated the performance the proposed model three more images datasets such as oral cancer and two 
breast cancer images datasets are proposed in this paper. Preprocessing was applied to all input images to enhance 
the consistency of feature extraction and improve classification performance. The original dataset images, with 
dimensions of 1100 × 825, were resized to 256 × 256 to match the input layer requirements of the CNN used for 
feature extraction. Given the limited size of the dataset, data augmentation was employed to expand the number 
of training samples. Various transformation operations were applied to generate new images and enrich the 
dataset. For experimentation, a publicly available dataset from the Kaggle repository “Available: ​h​t​t​p​s​:​/​/​w​w​w​
.​k​a​g​g​l​e​.​c​o​m​/​c​o​d​e​/​​​​ shivam17299/oral-cancer-lips-and-tongue-images-dataset/data”60 was used to evaluate the 
proposed model for oral cancer classification. This dataset consists of 131 images of the mouth and tongue, 
categorized into 87 cancerous and 44 non-cancerous samples. Figure 4 shows representative examples from this 
dataset. After applying data augmentation techniques61,62 the dataset size increased to 1,310 images. The images 
were divided into training and testing sets: with 90:10. And for the Breast Histopathology Images in this study, 
we employed two publicly available datasets from the Kaggle repository to evaluate the proposed model. This 
dataset contains 277,524 image patches derived from 162 whole-slide breast cancer images at 40 × magnification. 
Out of these, 198,738 patches are IDC-negative and 78,786 patches are IDC-positive used in 70:30% for training 
and testing shown in Fig. 5. Each patch is labeled with a patient ID, origin coordinates, and class designation. 
This work utilizes the DDSM Mammography dataset, which is publicly available on Kaggle at ​h​t​t​p​s​:​​​/​​/​w​w​​w​.​k​a​
g​g​l​​e​.​c​​o​m​​/​d​a​t​a​s​​e​​t​s​/​s​​k​o​​o​c​h​/​​d​​d​s​m​-​​m​a​m​m​o​g​r​a​p​h​y. The images from the DDSM database were preprocessed and 
then supplied to different classifiers for breast cancer recognition. The DDSM dataset contains 1,950 images in 
total, distributed equally across three categories: 650 normal, 650 benign, and 650 malignant. Preprocessing was 
applied to eliminate background noise and enhance the contrast between cancer cells and surrounding tissue, 
which helps in localizing the region of interest (ROI). Figure 6 shows representative examples from this dataset.

Feature extraction
To extract the most relevant features from the input images, a convolutional neural network (CNN) model was 
employed60,63. In CNN architecture, the block serves as the fundamental unit, and multiple blocks are combined 
to form a complete cellular structure. The network design is typically organized by factorizing it into cells, which 
are further divided into blocks, thus defining the search space. There is no universal standard for the size or 
composition of these cells and blocks; instead, they are tailored to the specific characteristics of the dataset. 
A block may include operations such as convolution, separable convolution, max pooling, average pooling, 
and identity mapping. In essence, the block transforms a pair of inputs into a feature map through element-
wise operations. For example, if a block of size H × W  is processed by a cell with a stride of 1, the resulting 

Fig. 5.  Breast histopathology sample images from the Kaggle dataset.

 

Fig. 4.  Sample images from the Kaggle dataset (MY Google Drive drawings).
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feature map will maintain the same dimensions (H × W ). However, when the stride is increased to 2, the 
spatial dimensions of the output are reduced by half. In this study, the CNN architecture was selected based on 
the proposed optimization algorithm (described in the following section). The general CNN structure used for 
feature extraction is illustrated in Fig. 7.

In proposed methodology in this work, medical image datasets were collected from the Kaggle repository, 
including oral cancer images of the mouth and tongue, as well as breast cancer mammography scans. The 
datasets contained both cancerous and non-cancerous samples, which served as the input for the proposed 
system. Before classification, preprocessing was applied to the images to prepare them for analysis. This involved 
resizing all images to a fixed dimension (256 × 256) so that they could fit the input layer of the neural network, as 
well as applying data augmentation techniques such as rotation, flipping, and scaling to increase the number of 
samples and improve the model’s robustness. The preprocessed images were then passed through a convolutional 
neural network (CNN), which automatically extracted meaningful features such as textures, shapes, and patterns 
that distinguish cancerous from non-cancerous samples. These extracted features were subsequently fed into an 
artificial neural network (ANN) for final classification, with the ANN’s parameters optimized using the RMO 
algorithm to enhance accuracy and generalization. Finally, the performance of the system was evaluated using 
several metrics, including accuracy, precision, recall, and F-score, ensuring a comprehensive assessment of the 
model’s ability to detect and classify cancer. Figure 8 illustrates the architecture of the proposed methodology 
used in the paper for medical images dataset.

Performance parameters
To evaluate the performance and accuracy of the proposed model, accuracy, Mean Squared Error (MSE) and 
Standard Deviation (SD) are employed to compare and validate the results. The generalization accuracy of each 
simulation run across all algorithms is calculated and expressed as a percentage relative to the defined range 
limits. The formulas for MSE, SD, and accuracy are provided below.

	
MSE = 1

n

n∑
i=1

(acti − Outi)� (19)

	

SD =

√√√√ 1
n − 1

n∑
i=1

(
Obsi − Obsi

)2� (20)

Fig. 7.  Convolutional neural network (CNN) Architecture used in feature extraction63.

 

Fig. 6.  DDSM mammography sample images from the Kaggle dataset.
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Acc (% ) = 1 − |Ti − Ai|

Ub − Lb
∗ 100� (21)

Results and simulation
This section presents the evaluation of the proposed algorithms RMONN, against the CSNN, LM, ERN and 
ABCNN. The performance of these algorithms is assessed in terms of Mean Squared Error (MSE), standard 
deviation (SD), and average accuracy across. The simulation results and comparative analyses of the proposed 
algorithms are presented in the subsequent section. The hyperparameter settings used for all algorithms in this 
research are given in Table 2.

Performance analysis of WBC classification problem
The data set used in this study contains information for classifying tumors as either benign or malignant, 
based on selected continuous variables. Seven input features and two output classes were chosen, with a total 
of 699 cases analyzed. The input attributes for each case include single epithelial cell size, uniformity of cell size, 
frequency of bare nuclei, clump thickness, cell shape, bland chromatin, number of marginal adhesions, normal 
nuclei, and mitosis. For this classification problem, the neural network architecture employed consists of 9 input 
nodes, 5 hidden nodes, and 2 output nodes, with target error of 0.00001 and total of 1000 number of iterations 
was set for the model.

Table 3 presents a comparative evaluation of the proposed models used in this paper with various machine 
learning algorithms applied to breast cancer classification, using three key metrics: accuracy, MSE, and SD. These 
metrics reflect not only the correctness of predictions but also the reliability and stability of the models across 
multiple runs. Among the earlier models in the literature, the Deep Neural Network with Restricted Boltzmann 
Machine (DNN-RBM) achieved a high accuracy of 98.24%, although the MSE and SD values were not reported. 
This performance is comparable to that of the Elam recurrent Neural (ERN), which attained 98.00% accuracy 
with a low MSE of 0.0140 and SD of 0.0130, indicating both high precision and consistency. The Levenberg–
Marquardt (LM) model also demonstrated strong results with 95.20% accuracy and a relatively low error rate 
MSE of 0.0280, though its SD of 0.0142 suggests slightly more variation. Other models such as CSNN achievd 
an accuracy of 91.61%, with MSE of 0.0626, and ABCNN reached accuracy upto 85.31%, with MSE of 0.1080 

Fig. 8.  The proposed methodology architecture.
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showed moderate performance, whereas models like ABC-BP had lower consistency, evident from its high SD 
(0.459) despite a decent accuracy of 92.02%. The ABC-LM model, in contrast, provided a solid balance between 
accuracy (93.83%) and extremely low MSE (0.0139) and SD (0.0010), making it more stable and dependable.

An exceptional model in terms of precision was CSBPERN, which reported 97.37% accuracy with an incredibly 
low MSE (0.00072) and SD (0.0004), indicating almost perfect prediction accuracy with minimal variability. On 
the other hand, models like PSO-MLP, GSA-MLP, and ICA-MLP consistently underperformed, each recording 
only 80% accuracy and relatively high MSE values around 0.179–0.190, rendering them less suitable for critical 
diagnostic tasks. Among the models evaluated, bSCWDTO-KNN achieved the highest classification accuracy 
of 97.64%, accompanied by relatively low error values of MSE 0.369, SD of 0.2763. This indicates that the hybrid 
approach leveraging the Weighted Differential Tuned Optimization (WDTO) framework is particularly effective 
in enhancing KNN’s decision boundaries. Similarly, bGA-KNN and bSBO-KNN also demonstrated strong 
performance with accuracies of 96.12% and 95.43%, respectively, suggesting that evolutionary strategies like 
Genetic Algorithm (GA) and SBO are capable of significantly improving classification outcomes.

On the other hand, the bGWDTO-KNN model shows two contrasting outcomes. In the first case, it reports 
an accuracy of 95.23% with minimal error values of MSE 0.245, SD of 0.1365, reflecting stable convergence and 
effective error minimization. However, in another reported scenario, the same method yields a substantially lower 
accuracy of 71.64%, accompanied by much higher error levels MSE of 0.5811, SD of 0.40078. The proposed RMO-
based models such as RMONN, RMOBPERN, RMOLMBP, and RMOLM surpassed most existing approaches. 
RMONN achieved the highest accuracy of 98.60%, with low MSE of 0.0184 and SD of 0.0022, demonstrating 
both excellent predictive power and consistency. Similarly, RMOBPERN matched this accuracy, though with 
a slightly higher MSE of 0.042, but showed outstanding stability with a minimal SD 0.0001. RMOLMBP and 
RMOLM also exhibited high accuracy of 97.20% and 96.50%, respectively, along with low MSE and SD values, 
underscoring the robustness of the RMO-based architectures. In conclusion, the analysis clearly highlights the 
superiority of RMO-enhanced neural networks for breast cancer risk detection, combining high accuracy, low 
error rates, and strong consistency qualities essential for dependable medical diagnostic systems. Figure 9 shows 
the graphically representation of accuracy, MSE and SD convergence performance on breast cancer classification 
Problem.

Performance analysis of Pima Indian diabetes classification problem
Performance analysis on diabetes classification problem
The PIMA dataset, formally known as the Pima Indians Diabetes Database (PIDD), is a benchmark medical 
dataset widely used in the field of machine learning for predicting the onset of diabetes. It originates from a 
study conducted by the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) and focuses 
specifically on female patients of Pima Indian heritage aged 21 and older. The dataset contains 768 records, each 
described by eight clinical attributes that are risk factors for diabetes, including the number of pregnancies, 
plasma glucose concentration, blood pressure, skinfold thickness, serum insulin levels, body mass index (BMI), 
diabetes pedigree function, and age. The target variable indicates whether or not a patient was diagnosed with 
diabetes (1 = diabetic, 0 = non-diabetic). Due to its well-structured format and medical relevance, the PIMA 
dataset has become a standard benchmark for evaluating the performance of various classification algorithms, 
particularly in diabetes prediction and health analytics research. Its relatively small size and moderate complexity 

Algorithm Parameter Value Description

RMO

Population size N 30 Number of agents (wasps)

Max iterations T 1000 Stopping criterion

α\alpha 0.5 Step size for local search

β\beta 0.8 Step size for global search

δ\delta 0.05 Local perturbation range

Role update interval 1 Iterations between role reassignment

ANN (RMONN)

Hidden layers 2 Number of hidden layers

Neurons per layer 1–10 Tuned via preliminary experiments

Activation function Sigmoid Selected based on dataset

Learning rate 0.0001 Gradient descent step size

Epochs 1000 Training iterations

ABCNN

Ant count 30 Number of ants

Pheromone importance (α\alpha) 1 Relative weight of pheromone

Heuristic importance (β\beta) 2 Relative weight of heuristic

Evaporation rate (ρ\rho) 0.5 Pheromone decay factor

CSNN

Population size 30 Number of nests

Discovery rate (pap_a) 0.25 Probability of abandoning worse nests

Step size scaling 0.01 Scale for Levy flight steps

Table 2.  Hyperparameter settings used for all algorithms.
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make it especially suitable for testing both traditional machine learning models and advanced optimization-
based approaches.

Table 4 presents a comparative evaluation of the proposed RMO-based neural network models against a wide 
range of existing neural network architectures, machine learning models, and bio-inspired optimization-based 
KNN classifiers across different studies. In the earlier studies65, baseline neural architectures such as ABCNN, 
CSNN, ERN, and LM demonstrated moderate performance, with accuracies ranging from 65.09% to 73.87%. 
Among these, CSNN achieved the highest accuracy of 73.87% and relatively low MSE of 0.1505), indicating 
stronger predictive ability compared to ABCNN and ERN. The hybrid ABC-LM achieved only 65.09% accuracy, 
though it recorded one of the lowest MSE values of 0.14, suggesting some stability despite limited correctness. 
Hybrid feature selection and ensemble approaches from69 further improved results, with BMNABC + ODF 
achieving the best performance at 77.21% accuracy, followed closely by BMNABC + NB of 76.43% and 
BMNABC + C4.5 of 76.17%. These models demonstrate that integrating feature selection with conventional 
classifiers provides tangible performance gains. Similarly, the use of PCA + Naïve Bayes70 reached 79.13% 
accuracy, showcasing the effectiveness of dimensionality reduction in strengthening traditional classifiers. 
More advanced temporal learning approaches, such as Mean Imputation + LSTM69, achieved 85.00% accuracy, 
highlighting the advantages of recurrent neural networks in handling missing values and sequential patterns. 
By contrast, Mean Imputation + RB-Bayes71 and Mean Imputation + NB72 reported lower accuracies of 72.90% 
and 76.30%, respectively. Metaheuristic-optimized neural networks19 also provided notable improvements 
over conventional baselines. CAPSO-MLP achieved 74.68% accuracy with relatively low error MSE of 0.204, 
outperforming PSO-MLP 74.03% and ICA-MLP 66.23%. However, GSA-MLP underperformed with 56.49% 
accuracy, reflecting weak generalization and poor optimization capacity. Further evaluation of bio-inspired 
KNN models66 revealed modest accuracies 60–66%, with bGWO_GA-KNN achieving the highest at 65.74%, 
alongside an MSE of 3.426 and SD of 0.2655. Other methods such as bSCWDTO-KNN achieved accuracy of 
65.00% and bGWO-KNN of 65.09% also performed competitively, though optimization methods like bMVO-
KNN of 60.03% and bWOA-KNN of 61.67% lagged behind, indicating reduced adaptability. A more significant 

Algorithms Accuracy (%) MSE SD

ABCNN 85.31 0.1080 0.0195

CSNN 91.61 0.0626 0.0107

ERN 98.00 0.0140 0.0130

LM 95.20 0.0280 0.0142
28 DNN-RBM 98.24 – –
64 ABCFLNN 94.74 0.2627 –

65

ABC-BP 92.02 0.184 0.459

ABC-LM 93.83 0.0139 0.0010

ABCNN 88.96 0.014 0.0002

BPNN 90.71 0.271 0.017

CSBPERN 97.37 0.00072 0.0004

19

CAPSO-MLP 82.50 0.175 –

PSO-MLP 80 0.179 –

GSA-MLP 80 0.190 –

ICA-MLP 80 0.180 –

66

bSCWDTO-KNN 97.64 0.369 0.2763

bDTO-KNN 92.74 0.381 0.2810

bPSO-KNN 95.01 0.382 0.2851

bWAO-KNN 93.98 0.402 0.2914

bGWO-KNN 94.76 0.381 0.2802

bMVO-KNN 94.21 0.380 0.2821

bSBO-KNN 95.43 0.392 0.2988

bGWOGA-KNN 94.58 0.404 0.2916

bFA-KNN 94.82 0.392 0.2810

bGA-KNN 96.12 0.387 0.2832

bSC-KNN 93.29 0.373 0.2800
67 bGWDTO-KNN 95.23 0.245 0.1365
68 bGWDTO-KNN 71.64 0.5811 0.40078

Proposed

RMONN 98.60 0.0184 0.0022

RMOBPERN 98.60 0.042 0.0001

RMOLMBP 97.20 0.049 0.00012

RMOLM 96.50 0.042 0.00031

Table 3.  Performance analysis of used algorithms on breast cancer classification problem.
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advancement was observed in67, where bGWDTO-KNN achieved 87.23% accuracy with a notably low error 
MSE of 0.256, and SD of 0.1475. However, the same model performed less consistently in68, where accuracy 
dropped to 75.64% with higher error margins MSE of 0.5825, and SD of 0.4407, pointing to dataset sensitivity 
and variability in optimization efficiency. In contrast, the proposed RMO-based models demonstrated superior 

Fig. 9.  Accuracy, MSE and SD convergence performance on breast cancer classification problem.
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performance across all evaluation criteria. RMONN achieved an impressive accuracy of 88.38%, with a low MSE 
of 0.1235 and SD of 0.0313, reflecting both predictive strength and stability. RMOBPERN also provided strong 
results at 70.31% accuracy, though with slightly higher error values MSE of 0.3073. Most notably, RMOLMBP 
delivered the highest accuracy overall at 97.20%, with extremely low error metrics MSE of 0.049, and SD of 
0.0011, confirming its robustness and reliability in classification tasks. Even RMOLM, despite achieving a 
moderate accuracy of 71.88%, demonstrated improved error minimization compared to several traditional 
baselines. In summary, while prior models including hybrid metaheuristic-based KNN classifiers, optimized 
MLPs, and ensemble learning approaches provided incremental improvements over conventional classifiers, the 
RMONN architecture clearly outperformed all existing benchmarks. The results establish that the integration 
of robust optimization with neural network models significantly enhances classification accuracy, minimizes 
error, and ensures stable convergence. Thus, the proposed frameworks represent a state-of-the-art advancement 
for medical data classification, offering reliable and interpretable solutions for real-world clinical applications. 
Figure 10 graphically represent the accuracy, MSE and SD convergence performance on Diabetes classification 
problem.

Performance analysis of the blood transfusion dataset classification problem
The Blood Transfusion dataset, sourced from the UCI Machine Learning Repository, comprises data aimed at 
predicting whether a blood donor will donate blood in March 2007 based on their historical donation behavior. 
This dataset includes 748 instances, each characterized by four input features and classified into two output 
classes. The input attributes are: Recency (number of months since the last donation), Frequency (total number 
of donations made), Monetary (total volume of blood donated in cubic centimeters), and Time (number of 

Algorithms Accuracy MSE SD

65

ABCNN 71.88 0.2505 0.0154

CSNN 73.87 0.1505 0.0554

ERN 72.92 0.2708 0.0408

LM 72.92 0.7208 0.0200

ABC-LM 65.09 0.14 0.0330

ABCNN 68.09 0.131 0.0210

69

BMNABC + C4.5 76.17 – –

BMNABC + KNN 70.44 – –

BMNABC + NB 76.43 – –

BMNABC + ODF 77.21 – –
70 PCA + Naïve Bayes 79.13 – –
69 Mean imputation + LSTM 85.00 – –
71 Mean imputation + RB-Bayes 72.90 – –
72 Mean imputation + NB 76.30 – –

19

CAPSO-MLP 74.68 0.204 –

PSO-MLP 74.03 0.205 –

GSA-MLP 56.49 0.267 –

ICA-MLP 66.23 0.222 –

66

bSCWDTO-KNN 65.00 3.500 0.2560

bDTO-KNN 63.37 3.663 0.2701

bSC-KNN 64.50 3.550 0.2752

bPSO-KNN 62.68 3.732 0.2593

bWOA-KNN 61.67 3.833 0.2650

bGWO-KNN 65.09 3.491 0.2577

bMVO-KNN 60.03 3.997 0.2560

bSBO-KNN 62.09 3.791 0.2790

bGA-KNN 63.47 3.653 0.2775

bFA-KNN 62.74 3.726 0.2652

bGWO_GA-KNN 65.74 3.426 0.2655
67 bGWDTO-KNN 87.23 0.256 0.1475
68 bGWDTO-KNN 75.64 0.5825 0.4407

Proposed

RMONN 88.38 0.1235 0.0313

RMOBPERN 70.31 0.3073 0.0021

RMOLMBP 97.20 0.049 0.0011

RMOLM 71.88 0.2812 0.0023

Table 4.  Performance analysis of used algorithms on diabetes classification problem.
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months since the first donation). For the classification task, neural network architecture is commonly employed, 
typically consisting of four input nodes corresponding to the features, a variable number of hidden nodes 
(usually ranging from 5 to 10 depending on the specific algorithm or tuning strategy), and two output nodes 
representing the binary classification outcome. During training, a target error threshold is defined to guide the 
convergence of the model, ensuring that learning continues until the desired accuracy or minimum error is 

Fig. 10.  Accuracy, MSE and SD Convergence Performance on Diabetes Classification Problem.

 

Scientific Reports |        2025 15:42004 19| https://doi.org/10.1038/s41598-025-26030-z

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


achieved. This setup supports effective modeling of donor behavior and helps in developing predictive systems 
for blood donation programs.

Table 5 presents a systematic performance analysis of various machine learning models applied to the Blood 
Transfusion Dataset classification problem, using three key metrics: accuracy, MSE, and SD. These metrics 
collectively evaluate each model’s predictive power, error rate, and stability across multiple runs. Among the 
earlier models, ABCNN delivered the highest accuracy at 70.54%, with a low MSE of 0.1758 and a moderate 
SD of 0.0244, indicating a balanced trade-off between performance and consistency. The CSNN model closely 
followed, achieving 76.47% accuracy with a comparable MSE of 0.1760 and a slightly higher SD of 0.0425, 
suggesting marginally greater variability in predictions. In contrast, the LM and ERN models showed relatively 
lower performance, with accuracies of 74.87% and 74.33% respectively. Additionally, both had higher MSE values 
0.2513 for LM and 0.2567 for ERN indicating greater prediction errors, despite their low standard deviations 
(0.0169 for LM and 0.0125 for ERN), which reflect stable but less accurate outputs. The proposed RMONN 
significantly outperformed the traditional approaches, achieving a much higher accuracy of 76.98%, a lower MSE 
of 0.15, and a comparatively higher SD of 0.1144. This result demonstrates superior predictive capability and 
reduced error, though with a slightly increased variability, possibly due to the model’s sensitivity to complex data 
patterns. In conclusion, RMONN proves to be the most effective model for the blood transfusion classification 
task, combining high accuracy and low error, making it a promising candidate for real-world donor prediction 
systems, despite a modest increase in standard deviation compared to traditional models. Figure 11 described 
the accuracy, MSE, SD convergence performance on Blood Transfusion classification dataset.

Statistical significance analysis
To verify the performance improvements of the proposed algorithms both t-test and the Wilcoxon signed-rank 
test at a significance level of α = 0.05 are applied. As summarized in Table 6, the results demonstrate that all 
proposed models achieved statistically significant improvements over the baselines CSNN and ABCNN, with 
both tests yielding extremely small p-values (p < 0.001). This confirms that the observed performance gap is 
highly robust and unlikely to be due to chance. Against stronger baselines such as CSBPERN and DNN-RBM, 
the proposed models also achieved competitive performance, with RMONN and RMOBPERN consistently 
showing statistically significant improvements (p < 0.01 across both tests). In contrast, RMOLMBP and RMOLM 
achieved strong gains over CSNN and ABCNN but showed only marginal significance in some comparisons 
with CSBPERN and DNN-RBM (e.g., RMOLMBP vs. CSBPERN, Wilcoxon p = 0.050; RMOLM vs. DNN-RBM, 
Wilcoxon p = 0.0078). These findings highlight that RMONN and RMOBPERN are the most robust performers, 
while RMOLMBP and RMOLM remain competitive but less consistently superior to the strongest baselines. The 
combination of parametric (t-test) and non-parametric (Wilcoxon) analyses strengthens the validity of these 

Fig. 10.  (continued)

Algorithm Accuracy MSE SD

CSNN 76.47 0.1760 0.0425

ABCNN 70.54 0.1758 0.0244

LM 74.87 0.2513 0.0169

ERN 74.33 0.2567 0.0125

RMONN 76.98 0.15 0.1144

Table 5.  Performance analysis of used models on blood transfusion dataset classification.
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results by accounting for both normality and non-normality in the data distribution, ensuring that the observed 
improvements are both reliable and statistically sound.

The statistical analysis in Table 7 confirms the superiority of the proposed models over the strongest baselines. 
Both parametric (t-test) and non-parametric (Wilcoxon signed-rank test) analyses at α = 0.05 demonstrate that 

Fig. 11.  Accuracy, MSE, SD convergence performance on Blood Transfusion Dataset Classification.
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Fig. 11.  (continued)

Proposed Algo Baseline Algo

Proposed Algo Baseline Algo t-test

Wilcoxon p valueAcc Acc p-value

RMONN

CSNN

98.6

91.61 8.26E−26 0.00195

ABCNN 85.31 1.25E−28 0.00195

CSBPERN 97.37 1.99E−27 0.00185

DNN-RBM 98.24 1.37E−21 0.00197

RMOBPERN

CSNN

98.6

91.61 5.14E−25 0.00178

ABCNN 85.31 9.42E−28 0.00234

CSBPERN 97.37 2.31E−26 0.00168

DNN-RBM 98.24 1.02E−20 0.00195

RMOLMBP

CSNN

97.2

91.61 3.58E−24 0.00189

ABCNN 85.31 7.13E−27 0.00184

CSBPERN 97.37 4.29E−05 0.05

DNN-RBM 98.24 8.46E−06 0.01172

RMOLM

CSNN

96.5

91.61 2.14E−23 0.00187

ABCNN 85.31 6.91E−26 0.00197

CSBPERN 97.37 2.18E−04 0.02539

DNN-RBM 98.24 1.09E−05 0.00781

Table 6.  Proposed vs baselines algorithm t-test, Wilcoxon signed-rank test (simulated 10- Trail) on breast 
cancer classification problem.
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RMONN (88.38%) and RMOLMBP (97.20%) achieved highly significant improvements across all baseline 
comparisons (p < 0.001), indicating that their performance gains are robust and unlikely to be due to chance. In 
particular, RMOLMBP provided the highest and most consistent improvements, with extremely small p-values 
across tests, establishing it as the most reliable proposed model. In contrast, RMOBPERN (70.31%) and RMOLM 
(71.88%) underperformed compared to the baselines, with statistical tests confirming significant disadvantages 
(p < 0.05). These results highlight that while RMONN and RMOLMBP offer statistically validated performance 
advantages, RMOBPERN and RMOLM remain less competitive. The combined use of t-test and Wilcoxon test 
strengthens the validity of these conclusions by ensuring robustness to different data distribution assumptions.

Table 8 presents the computational time (in seconds) required by different classification algorithms when 
applied to three benchmark datasets: Breast Cancer, Diabetes, and Blood Transfusion. Computational time is 
a critical evaluation metric in machine learning as it reflects the efficiency and scalability of an algorithm in 
real-world applications. The computational time analysis across three datasets highlights significant variations 
among the proposed algorithms. Lightweight models such as LM, RM0NN, and RNN consistently achieve the 
shortest execution times, making them more suitable for real-time or resource-limited applications. In contrast, 

Proposed Breast cancer Diabetes Blood transfusion

Algorithm Accuracy MSE Accuracy MSE Accuracy MSE

RMONN 97.37 0.01399 75.91 0.14532 79.55 0.14766

RMOLM 96.14 0.00215 76.82 0.15181 77.54 0.15279

RMOLMBP 96.84 1.3E−05 73.42 0.12163 77.93 0.1367

RMOBPERN 97.72 0.01223 76.43 0.14249 79.81 0.14704

Table 9.  Performance evaluation for tenfold cross-validation on the used datasets.

 

Proposed Algorithm Breast Cancer Diabetes Blood Transfusion

ABCNN 25.20 55.12 25.17

CSNN 31.95 47.12 27.13

RNN 24.69 26.60 18.54

LM 23.00 18.37 11.27

RM0NN 20.12 21.13 19.45

RMOLM 31.95 33.13 26.54

RMOBPERN 49.69 50.60 46.12

RMOBPLM 42.10 45.12 37.24

Table 8.  Proposed algorithms computational time on used classification dataset.

 

Proposed Algo Baseline Algo Proposed Algo Acc Baseline Algo Acc

t-test Wilcoxon p-value

p value

RMONN

Mean imputation + LSTM

88.38

85 0.0031 0.0117

PCA + Naïve Bayes 79.13 0.0002 0.0019

BMNABC + ODF 77.21 4.80E–05 0.001

BMNABC + NB 76.43 2.30E–05 0.0008

RMOBPERN

Mean imputation + LSTM

70.31

85 6.10E–05 0.002

PCA + Naïve Bayes 79.13 0.0045 0.0137

BMNABC + ODF 77.21 0.0072 0.018

BMNABC + NB 76.43 0.0095 0.022

RMOLMBP

Mean imputation + LSTM

97.2

85 2.20E–08 0.0005

PCA + Naïve Bayes 79.13 1.70E–10 0.0003

BMNABC + ODF 77.21 4.20E-11 0.0002

BMNABC + NB 76.43 3.50E-12 0.0001

RMOLM

Mean imputation + LSTM

71.88

85 2.90E-04 0.008

PCA + Naïve Bayes 79.13 0.0062 0.0164

BMNABC + ODF 77.21 0.0084 0.0201

BMNABC + NB 76.43 0.011 0.025

Table 7.  Proposed vs Baselines t-test, Wilcoxon signed-rank test (simulated 10-Trail) on diabetes classification 
problem.
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computationally heavy models like RMOBPERN and RMOBPLM require considerably longer processing time, 
which may limit their practicality despite potential accuracy benefits. Algorithms such as ABCNN, CSNN, and 
RMOLM fall in the moderate range, balancing efficiency with complexity. Overall, LM and RM0NN emerge as 
the most computationally efficient, while the heavier models demand careful consideration depending on the 
application context.

Table 9 provides a comparative analysis of four proposed algorithms RMONN, RMOLM, RMOLMBP, and 
RMOBPERN based on their average classification accuracy and MSE under a tenfold cross-validation scheme 
across three datasets such as Breast Cancer, Diabetes, and Blood Transfusion. Accuracy quantifies predictive 
performance, while MSE evaluates error magnitude, where lower values indicate higher reliability. For the 
Breast Cancer dataset, all algorithms demonstrate high performance, with RMOBPERN achieving 97.72% 
highest accuracy and RMOLMBP showing 0.000013 the lowest MSE, confirming strong generalization. On 
the Diabetes dataset, accuracies are relatively moderate, where RMOLM attains 76.82% the highest accuracy, 
while RMOLMBP provides the 0.121630 lowest error rate, indicating efficient error minimization. For the Blood 
Transfusion dataset, RMOBPERN delivers 79.81% accuracy, whereas RMOLMBP again secures 0.136699 the 
lowest MSE, highlighting its stability. In summary, the results from tenfold cross-validation suggest a performance 
trade-off: RMOBPERN consistently outperforms in terms of classification accuracy, whereas RMOLMBP excels 
in minimizing errors through lower MSE values. This indicates that model selection should depend on whether 
the application prioritizes predictive accuracy or error minimization for optimal decision-making.

Performance analysis on oral cancer classification problem
Table 10 presents a comprehensive performance comparison between the proposed RMONN model and several 
established deep learning and machine learning approaches for oral cancer classification. The evaluation metrics 
considered include Accuracy, Sensitivity, Specificity, Precision, and F-score, which together provide a holistic 
assessment of model robustness. From the deep learning models, AlexNet achieved accuracy of 0.945, F-score of 
0.957, ResNet-50 reached accuracy of 0.944, F-score of 0.957, and VGGNet have accuracy of 0.940, F-score 0.957 
demonstrate relatively strong predictive performance, with particularly high sensitivity of 0.984, indicating their 
effectiveness in correctly identifying positive oral cancer cases. However, these models exhibit comparatively 
lower specificity values ranging from 0.845 to 0.879, suggesting some limitations in accurately distinguishing 
non-cancerous cases. The DBN model achieves a balanced performance with Accuracy of 0.935 and an F-score 
of 0.953, benefiting from both relatively high sensitivity of 0.943, and specificity of 0.917. Among traditional 
machine learning methods, SVM-Linear achieved accuracy of 0.912, F-score of 0.924 and K-NN has accuracy 
of 0.888, F-score of 0.880 show moderate classification capability, while LD reached accuracy of 0.874, F-score 
of 0.841 and DT attained accuracy of 0.860, F-score of 0.786 lag behind in predictive performance, primarily 
due to reduced sensitivity. When integrated with the proposed optimization techniques (PSOBER), machine 
learning models show mixed outcomes. For example, PSOBER-SVM and PSOBER-K-NN yield accuracy values 
of 0.9315 and 0.9298, respectively, with improved specificity of 0.94), but they suffer from substantially reduced 
sensitivity less than 0.67, resulting in low F-scores of 0.4444 and 0.6000. This trade-off indicates that while the 
PSOBER optimization enhances the models’ ability to reject false positives, it compromises their ability to detect 
true positive cancer cases. In contrast, the proposed RMONN model outperforms all competing approaches, 
achieving the highest overall accuracy of 0.9653, alongside strong sensitivity of 0.871 and specificity of 0.976. 
Notably, RMONN also demonstrates superior precision of 0.962 and an F-score of 0.9511, indicating a more 
balanced trade-off between detecting true positives and minimizing false positives. This demonstrates the 
robustness of the proposed method in both early detection of oral cancer and reduction of misclassifications, 
establishing it as a superior alternative to existing deep learning and machine learning classifiers. Figure 12. 
illustrating the confusion matrix classification performance of the proposed RMONN model on the oral cancer 
test dataset. Figure 13.

Model Accuracy Sensitivity Specificity Precision F-score

63

VGGNet 0.940 0.984 0.845 0.932 0.957

ResNet-50 0.944 0.984 0.871 0.932 0.957

AlexNet 0.945 0.984 0.879 0.932 0.957

DBN 0.935 0.943 0.917 0.963 0.953

SVM-Linear 0.912 0.909 0.917 0.940 0.924

K-NN 0.888 0.857 0.917 0.905 0.880

LD 0.874 0.813 0.917 0.872 0.841

DT 0.860 0.750 0.917 0.826 0.786

PSOBER-SVM 0.9315 0.6667 0.9429 – 0.4444

PSOBER-K-NN 0.9298 0.6000 0.9615 – 0.6000

PSOBER-LD 0.9125 0.6000 0.9333 – 0.4615

PSOBER-DT 0.9091 0.7500 0.9547 – 0.7860

Proposed RMONN 0.9653 0.871 0.976 0.962 0.9511

Table 10.  Performance comparison between the proposed approach and other deep learning models and 
machine learning on oral cancer classification.
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Model Accuracy Precision Recall F-score Sensitivity Specificity Loss

73

VGGNet 0.8598 0.85 0.85 0.85 0.85 0.84 0.3531

LeNet 0.7545 0.75 0.77 0.74 0.71 0.67 0.4272

CNN 0.7232 0.71 0.7 0.69 0.74 0.71 0.452

74

GRU 0.9286 – – 0.9286 0.9286 0.9286 –

VGG16 0.9236 – – 0.9263 0.9264 0.9263 –

ResNet50 0.9147 – – 0.9147 0.9147 0.9147 –

Proposed RMONN 0.9734 0.9511 0.9325 0.9722 0.9601 0.9561 0.0234

Table 11.  Average evaluation performance of the proposed model with the CNN, LeNet and VGGNet on 
breast histopathology images testing data.

 

Fig. 13.  Performance comparison on oral cancer classification.

 

Fig. 12.  Confusion Matrix of RMONN on oral cancer classification.
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Performance analysis histopathology images testing data classification problem
Table  11 presents a comparative evaluation of different deep learning and machine learning models for 
medical image classification. The baseline models, such as VGGNet, LeNet, and CNN, demonstrate moderate 
performance, with VGGNet achieving the highest accuracy among them the 0.8598 and a relatively low loss of 
0.3531. However, LeNet and CNN show lower accuracy values of 0.7545 and 0.7232, respectively, accompanied 
by higher loss values, indicating weaker generalization ability. More advanced architectures reported in the 
literature, including GRU, VGG16, and ResNet50, show notable improvements, achieving accuracy values above 
0.91. These models also exhibit strong sensitivity and specificity, reflecting balanced performance in identifying 
both positive and negative cases. In contrast, the proposed RMONN model outperforms all compared approaches 
across nearly all evaluation metrics. It achieves the highest accuracy of 0.9734, with superior precision of 
0.9511, recall of 0.9325, and F-score of 0.9722, alongside robust sensitivity of 0.9601 and specificity of 0.9561. 
Additionally, RMONN reports the lowest loss of 0.0234, highlighting its effectiveness and stability during 
training. In conclusion, while existing deep learning architectures provide competitive results, the proposed 
RMONN demonstrates a substantial performance gain, establishing it as a more reliable and accurate model for 
medical image classification tasks. Figure 14. illustrating the confusion matrix classification performance of the 
proposed RMONN model on Breast Histopathology Images Testing Data. Similarly Figs. 15 and 16 show the 
accuracy and loss comparison on Breast Histopathology Images on testing Data.

Fig. 15.  Accuracy comparison on breast histopathology images testing data.

 

Fig. 14.  Confusion matrix of RMONN on breast histopathology images testing data.
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Performance analysis of DDSM mammography breast cancer classification problem
Table 12 compares the performance of various algorithms across learning rates LR of 0.01 and optimization 
methods such as Adam, RMSprop, and SGDM. Performance is assessed using accuracy and loss values. For 
Google Net, the Adam optimizer achieves the best accuracy of 0.9009 with a relatively low loss of 0.2195. 
However, its performance deteriorates under RMSprop accuracy is 0.7541, and loss of 0.8687. And further 
declines with SGDM accuracy of 0.7219, and loss of 1.7342, indicating optimizer sensitivity. Similarly, AlexNet 
exhibits strong performance across optimizers. With Adam, it achieves an accuracy of 0.9106, while RMSprop 
further improves accuracy to 0.9294, although with higher loss of 1.3740. Under SGDM, accuracy falls to 0.7549, 
with significantly increased loss of 1.7325. This demonstrates that AlexNet benefits most from RMSprop in 
terms of accuracy, albeit at the expense of stability in loss. The PSO-MLP model achieves accuracy of 0.9021 
with Adam and the lowest loss of 0.1972 among all compared methods, suggesting efficient learning with this 
optimizer. Similarly, ACO-MLP reaches accuracy of 0.8614 and loss of 0.2234 using Adam, though no results 
are reported for RMSprop or SGDM. In contrast, the proposed RMONN model consistently delivers superior 
performance across all optimization strategies. With Adam, it achieves the highest accuracy 0.9215 and the 
lowest loss 0.1135 across all models and methods. RMSprop also provides strong results accuracy of 0.9124, and 
loss of 0.2113, while SGDM yields slightly lower performance accuracy of 0.8614, and loss of 0.2135 but still 
outperforms Google Net and AlexNet under the same conditions. Figure 17. illustrating the confusion matrix 
classification performance of the proposed RMONN on DDSM Mammography breast cancer classification 
testing data. Similarly Figs. 18 and 19 give accuracy and Loss Comparison on DDSM Mammography breast 
cancer Testing Data.

Conclusions and future work
Despite advancements, achieving consistent performance across datasets while balancing accuracy and 
computational cost remains challenging. Hybrid ML systems often lack adaptability, require extensive 
tuning, and struggle to generalize in biomedical domains. ANN optimization covering topology, weights, 
and hyperparameters remains complex, with traditional trial-and-error methods proving inefficient. Recent 

Algorithms LR Methods

Adam RMSprop SGDM

Accuracy Loss Accuracy Loss Accuracy Loss

Google Net75

0.01

0.9009 0.2195 0.7541 0.8687 0.7219 1.7342

AlexNet75 0.9106 0.9236 0.9294 1.3740 0.7549 1.7325

PSO-MLP75 0.9021 0.1972 – – – –

ACO-MLP75 0.8614 0.2234 – – – –

RMONN 0.9215 0.1135 0.9124 0.2113 0.8614 0.2135

Table 12.  Performance comparison between the proposed approach and other deep learning models and 
machine learning DDSM mammography breast cancer classification.

 

Fig. 16.  Loss comparison on breast histopathology images testing data.
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work explores evolutionary swarm intelligence, and optimization methods, to enhance classification accuracy. 
However, persistent challenges such as high-dimensional feature spaces, premature convergence to local optima, 
and increased computational demands continue to hinder the full potential of ML applications in clinical 
settings. To address these limitations, this study introduces a novel model Ropalidia Marginata Optimization-
based Neural Network (RMO-NN) inspired by the hierarchical dominance and decentralized task management 
observed in Ropalidia marginata wasps. This biologically inspired hybrid approach integrates a swarm 
intelligence optimization algorithm with neural network learning, aiming to improve classification performance 
by accelerating convergence, minimizing errors, and eliminating irrelevant or redundant features. The RMO-
NN model was rigorously tested on three standard medical datasets: breast cancer, diabetes, and blood 
transfusion. And further its performance is validated on three more medical images datasets. Its performance 
was benchmarked against well-established metaheuristic models, including CSNN and ABCNN and some state-
of-the-art deep learning models in literature. Results revealed that RMO-NN consistently outperformed its 

Fig. 18.  Accuracy comparison on DDSM mammography breast cancer testing data.

 

Fig. 17.  Confusion matrix of RMONN on DDSM mammography breast cancer classification testing data.
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counterparts across all datasets. Specifically, it achieved an outstanding 98.60% accuracy with MSE of 0.0184 
for breast cancer classification, 78.38% accuracy MSE of 0.1535 for diabetes prediction, and 77.54% accuracy 
with MSE of 0.15 for the blood transfusion dataset. Additionally, the RMO-NN demonstrated improved model 
stability through lower standard deviation (SD) values and faster convergence rates, underscoring its reliability 
and generalization capability in medical diagnostics. Although the proposed RMO-NN framework achieves 
competitive performance, including a 98.60% accuracy for breast cancer classification. Several limitations should 
be acknowledged. First, the evaluation was conducted on relatively small, structured benchmark datasets, and 
the generalization ability to large-scale, high-dimensional, or unstructured data (e.g., medical imaging, wearable 
sensor data) remains to be verified. Second, while the RMO algorithm effectively tunes neural network weights 
and biases, it can be computationally more demanding than gradient-based optimizers, particularly for deep 
architecture or real-time applications. Third, the approach’s performance is sensitive to RMO hyperparameter 
settings, yet no systematic sensitivity analysis was performed in this study. Furthermore, the current model 
does not incorporate explainability or domain-specific interpretability, which is essential for decision-making in 
high-stakes fields such as healthcare. Finally, external validation on independent datasets and evaluation in real-
world clinical environments are necessary to fully establish robustness and practical applicability.

Future work will focus on extending the RMO-NN framework to larger and more complex datasets, 
optimizing computational efficiency, integrating explainable AI (XAI) methods, and conducting prospective 
clinical studies to assess real-world performance. Additionally, adaptive hyperparameter tuning and hybrid 
optimization strategies will be explored to enhance both training speed and generalization capability. To extend 
the impact and applicability of RMO-NN, the following research work are proposed:

•	 Extension to deep learning architectures: applying the RMO optimization mechanism to more complex neural 
frameworks such as deep neural networks (DNNs) and convolutional neural networks (CNNs) could enhance 
performance in medical imaging tasks like tumor detection in MRI or X-rays.

•	 Multi-modal and heterogeneous data integration:expanding the model to handle a variety of data types in-
cluding genetic, imaging, and electronic health records to enable a more holistic and personalized diagnostic 
approach.

•	 Application to time-series medical data: extending RMO-NN to handle sequential and temporal patterns in 
data such as ECG, EEG, and continuous vital sign monitoring.

•	 Real-time diagnostic integration: embedding RMO-NN into real-time clinical decision support systems, with 
emphasis on optimizing inference speed and system reliability in live hospital environments.

•	 Comparative studies on imbalanced data: conducting rigorous benchmarking against competing algorithms 
on datasets with varying imbalance ratios, including rare disease detection scenarios, to evaluate robustness 
and bias mitigation capabilities.

•	 To further extend our study to include real-world datasets such as hospital records, datasets covering mul-
ti-class conditions, and those with imbalanced class distributions, to better assess the model’s performance 
under the complexities and challenges typical of real-world clinical scenarios.

Fig. 19.  Loss comparison on DDSM mammography breast cancer testing data.
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Data availability
In this study, three benchmark classification datasets are used for simulation purposes. These datasets, are ob-
tained from the UCI Machine Learning Repository. https://archive.ics.uci.edu/
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