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Diagnosis of bone cancer using histopathology images is essential for effective and timely treatment. 
However, contemporary diagnostic methods struggle to achieve high accuracy and interpretability 
while utilizing computational methods. Although existing methodologies in deep learning are 
promising, each suffers from significant limitations that arise from fundamental challenges in 
hyperparameter optimization, explainability, and generalizability across disparate datasets. 
Such disadvantages serve as barriers to clinical use, underscoring the need for a more reliable and 
comprehensible diagnostic framework. In this study, an Optimized Deep Learning Framework 
for Bone Cancer Detection (ODLF-BCD) algorithm is proposed by jointly combining Enhanced 
Bayesian Optimization (EBO), deep transfer learning from state-of-the-art pre-trained models (i.e., 
EfficientNet-B4, ResNet50, DenseNet121, InceptionV3, and VGG16), and explainable artificial 
intelligence, namely Grad-CAM and SHAP. It mitigates the state-of-the-art limitations through 
hyperparameter tuning, increased transparency, and data augmentation to balance the dataset. 
Extensive experiments verify the effectiveness of the proposed framework, where EfficientNet-B4 
achieves 97.9% and 97.3% for binary and multi-class classification, respectively. Its performance is also 
confirmed with high precision, recall, and F1 score. Explainability facilitates the clinical interpretability 
of model predictions. Then, the proposed framework offers a robust and efficient alternative solution 
to the C-RAD, automating bone cancer diagnosis and enhancing the accuracy and transparency of the 
diagnosis. Its potential usefulness could provide clinicians with strong decision support systems for 
early and precise cancer detection.

Keywords  Bone cancer detection, Deep learning, Explainable AI, Transfer learning, Enhanced Bayesian 
optimization

Bone cancer is one of the aggressive medical diagnostic challenges with high clinical significance due to the 
urgent requirement for timely and precise detection. Recent advancements in deep learning and medical 
imaging technologies enable automated cancer diagnosis, which has opened up avenues to enhance the 
accuracy of diagnoses while quantifying the manual effort invested by clinicians. The literature has examined 
deep learning as a model for histopathology image analysis, labeling it as a potential candidate for reducing 
errors in cancer diagnosis. For instance, Vandana and Sathyavathi1 utilized CNN-based models to analyze 
cancer tissues, achieving appreciable performance in identifying cancerous tissues. Similarly, Anisuzzaman 
et al.4 showed the effectiveness of pre-trained models (e.g., Inception V3 and VGG19) in capturing complex 
features in histopathological images by employing transfer learning. Ahmed et al.10 proposed a compact CNN 
model for histopathology images, which shows promising diagnostic performance. Bottom line: Despite these 
advancements, current state-of-the-art approaches face significant challenges. Because most models lack 
optimal hyperparameter tuning, their performance is hindered from reaching its full potential. Moreover, the 
explainability is often poor, failing to enable clinicians to rely on model predictions. Another significant limitation 
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is the inability to generalize, where models fail to transfer to heterogeneous datasets. These obstacles underscore 
the need for an optimized framework that incorporates rigorous hyperparameter optimization, enhanced 
interpretability through explainable AI methods such as Grad-CAM and SHAP, and superior adaptability to 
diverse data distributions, thereby facilitating accurate clinical diagnosis.

This work is motivated by the demand for more efficient and interpretable frameworks for deep learning. 
Existing approaches not only fail in hyperparameter tuning and class balancing via data augmentation but also 
in explainable AI, as they lack clarity on how model predictions can be reasoned. Moreover, investigations are 
primarily single modality, which limits their usability in clinical practice scenarios. These challenges must be 
overcome before reliable and clinically valuable diagnostic tools can be available. The primary objective of 
this study is to develop an Optimized Deep Learning Framework for Bone Cancer Detection (ODLF-BCD) 
that achieves significant accuracy and interpretability in both binary and multi-class classification tasks. This 
framework of ideas includes Enhanced Bayesian Optimization (EBO) for hyperparameter tuning, transfer 
learning from pre-trained models, and explainable AI (using methods that allow for visualizing the contribution 
of different parts of the model (Grad-CAM and SHAP), making our predictions more interpretable). Such 
innovations are designed to address the most critical gaps in the state of the art: generalization, transparency of 
forecasts, and optimal model performance.

Although this study employs Grad-CAM and SHAP to increase model transparency, the distinction between 
explainability and interpretability should be considered. Explainability refers to technical approaches (e.g., 
heatmaps, attribution scores) that clarify how a machine learning model operates internally or how it makes 
predictions, rather than solely to secure validation from domain experts. Interpretability, on the other hand, 
refers to the level of understanding a human—and specifically, a clinician—can reach regarding the model’s 
outputs, and whether that human will trust those outputs and act accordingly in a real-world context. Designed 
to be explainable, our framework serves as a bridge to interpretability, facilitating downstream clinical validation 
and decision support.

The key contributions of this research include the design and implementation of ODLF-BCD, the 
characterization of its effectiveness on histopathology images, and the provision of interpretability for clinical 
validation. The results are as follows: EfficientNet-B4 is the highest-performing model, with 97.9% accuracy 
in binary classification and 97.3% in multi-class classification. The framework also provides insights into 
hyperparameter optimization and explainability in automated diagnostics. The rest of this paper is organized 
as follows: "Related work" reviews related work and indicates gaps/challenges in existing approaches. "Proposed 
framework" describes the proposal methodology, including data preprocessing, model training, and optimization 
methods. The experimental results and performance analysis of the proposed framework are presented in 
"Experimental results". "Discussion" presents the results, describes the value of the study, and acknowledges its 
limitations. Finally, "Conclusion and future work" concludes this work and outlines future directions for multi-
modal approaches and novel explainability techniques.

Related work
The literature highlights advancements in deep learning for bone cancer detection, but identifies challenges 
related to optimization, explainability, and generalization.

Deep learning models for bone cancer detection
This subsection utilizes deep learning models, including CNNs, ResNet, and EfficientNet, for bone cancer 
detection. Vandana and Sathyavathi1 enhanced bone cancer diagnosis using deep learning and image processing, 
achieving a 92% accuracy rate. For future work, larger datasets, greater automation, and more feature research 
are needed. Anand et al.2 improved bone cancer diagnosis with better accuracy using deep learning and image 
processing. In the future, Bayesian networks and sophisticated classifiers will be combined for increased 
precision. Anisuzzaman et al.4 made use of CNNs such as Inception V3 and VGG19 to identify osteosarcoma in 
histology pictures. Although it attained good accuracy, more generalization testing and pathologist confirmation 
are required. Punithavathi and Madhurasree6 designed an extended convolutional neural network (ECNN) 
with wavelet-based segmentation, resulting in high-performance metrics for distinguishing between bone 
malignancies. It is a job for the future to improve segmentation methods. Ahmed et al.10 designed a compact 
CNN model to handle class imbalance by oversampling osteosarcoma histology images. Generalization and 
dataset extension require more work, even though they decrease overfitting and increase accuracy.

Tang et al.15 enhanced training datasets to boost the model’s generalization, highlighting the risk of 
overfitting in deep learning models for osteosarcoma diagnosis due to limited data heterogeneity. Alabdulkreem 
et al.23 utilized Inception v3 and LSTM to develop an OSADL-BCDC model for bone cancer diagnosis, 
achieving a higher accuracy rate. The primary objectives of future research will be to integrate multiple imaging 
modalities and develop explainable AI models. Anisuzzaman et al.25 used CNNs and CAD tools to enhance 
the identification of osteosarcoma. Pathologist comparisons and increasing dataset generalizability are areas of 
further exploration. Suganeshwari et al.30 proposed a deep transfer-based method with an accuracy of 93.9% for 
bone cancer diagnosis, utilizing VGG16 and SVM. Further research will investigate different imaging modalities 
and enhance prediction using larger datasets. Bansal et al.36 improved the IF-FSM-C model by incorporating 
features from manual and deep learning methods, which enables it to pick features and identify osteosarcomas 
with increased accuracy. Effective deep-learning models will be investigated in more detail. Anand et al.44 
proposed the Convolutional Extreme Learning Machine (CELM), which has improved the accuracy rate in 
diagnosing bone cancer from histopathology images. Utilizing intricate, deep learning architectures, further 
research aims to enhance this. Ranjitha et al.50 enhanced the ability to identify bone cancer by applying KNN and 
K-means classifiers to ultrasound images processed with image processing. With restricted feature selections 
and picture quality, it still achieves higher accuracy. Larissa Y. Asito et al.51 explored the use of pre-trained 
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convolutional neural networks to assess bone scans for detecting metastasis. The study highlights the potential 
of deep learning models in medical image analysis for improved diagnostic accuracy.

Transfer learning and pre-trained models in medical imaging
This subsection highlights the role of transfer learning and pre-trained models, such as VGG16, InceptionV3, 
and DenseNet, in histopathology analysis. Anand et al.5 recommended using the highly accurate Rec-CONVnet 
algorithm for identifying bone cancers from MRI data. Future research to improve classification accuracy 
will center on developing 3D neural networks. Alsubai et al.9 Osteosarcoma identification is enhanced by the 
GTOADL-ODHI technique, which uses AI with GF preprocessing, CapsNet feature extraction, and SA-BiLSTM 
classification. Future goals include enhancing generalization and increasing sample size. Aziz et al.20 developed 
a hybrid model, incorporating CNNs and MLPs, along with feature selection, which classifies osteosarcoma with 
improved accuracy. In the future, uncertainty mining will be used to improve dependability. Shukla and Patel24 
evaluated image segmentation methods (K-means, region growth) for X-ray osteosarcoma detection and applied 
deep learning to cancer type prediction. Large-scale dataset training will be a part of future development. Vedakis 
et al.32 examined the deep understanding of osteosarcoma classification, and EfficientNetB0 and MobileNetV2 
were determined to be the most effective models. The disadvantages are the small dataset size and the need 
to modify the hyperparameters. Future studies should utilize more extensive and diverse datasets, as well as 
advanced regularization techniques.

Papandrianos et al.37 developed a CNN model for detecting bone metastases in breast cancer, which achieved 
high accuracy using RGB photos. Future research will primarily focus on improving interpretability and 
integrating the model into healthcare systems. Papandrianos et al.41 created CNN models with exceptionally 
high accuracy when utilizing scintigraphy pictures to identify bone metastases in prostate cancer patients. 
Improving model interpretability and incorporating new datasets will be the primary focus areas for future 
development. Krois et al.48 A deep CNN, utilizing highly competent dentists, accurately detected periodontal 
bone loss 81% of the time. Future research to enhance the dependability and performance of CNNs could 
incorporate additional data. Barhoom et al.52 modified the VGG16 model for categorizing bone anomalies from 
X-rays presented in the paper. Although feature selection and ensemble strategies require further exploration, 
the method demonstrates excellent accuracy. Shao et al.55 contrast this with conventional scans, showing how 
CNNs with SERS data can be used to quickly and non-invasively identify prostate cancer bone metastases. 
Future studies will involve expanding databases to enhance accuracy. Alkhalaf et al.60 presented AAOXAI-CD, 
which uses medical imaging to transparently diagnose cancer by fusing XAI with deep learning. Future work 
will involve adding feature fusion to the model. Li et al.63 concluded that, despite sample size restrictions, the 
Deep Belief Network (DBN) performs better than other algorithms in predicting lung metastasis and overall 
survival in patients with osteosarcoma.

Explainable AI and interpretability in bone cancer diagnosis
This subsection discusses the importance of explainable AI techniques, such as Grad-CAM, SHAP, and feature 
visualization, for enhancing interpretability in bone cancer detection. Saranya et al.11 proffered deep learning 
techniques that could detect fibrous dysplasia in bone images with higher accuracy. Improved multi-class 
classification and noise reduction will be the main goals of future work. Ramasamy et al.14 identified AML 
and MM as bone marrow cancers; this work presents a hybrid deep learning algorithm that incorporates cell 
segmentation and classification. Jiang et al.17 Demonstrated That Deep learning enables significantly improved 
medical imaging utilization for cancer diagnosis. Two challenges are applying the model to rare cancers and 
the caliber of the datasets. These flaws have to be addressed in further work, along with more model openness. 
Chianca et al.18 suggest that it may be possible to increase the diagnostic accuracy of spinal lesions to 94% 
by utilizing radiomics and machine learning. The problems of feature stability, data scarcity, and program 
uniformity will require further effort. Georgeanu et al.26 achieved high accuracy in predicting the malignancy 
of bone tumors using pre-trained ResNet-50 CNNs with MRI data. More extensive dataset testing and model 
generalizability enhancement are the focus of future development. Kanimozhi et al.33 studied methods for 
identifying bone cancer using feature extraction and deep learning. Short datasets and feature overlap between 
cancerous and healthy cells are two drawbacks. Future research should focus on adding multi-feature extraction 
and diversifying datasets to increase accuracy.

Sharma et al.43 developed an automated method for diagnosing bone cancer using texture analysis and 
machine learning. The SVM with HOG features produced an F1 score of 0.92. Future studies should investigate 
additional texture elements to enhance accuracy further. Sindudevi and Kavita53 assessed CNNs for the early 
diagnosis of bone cancer, comparing their performance with that of conventional techniques. Upcoming 
projects will focus on improving data processing and optimizing the CNN model. Saba57 examined machine-
learning approaches to cancer diagnosis, encompassing various types of cancer. It emphasizes the need for larger 
datasets and greater accuracy, while highlighting recent developments, limitations, and the challenges they pose. 
Prathyusha and Gowri Sankar Reddy58 presented a convolutional neural network-based approach for detecting 
bone cancer. Their study, published in the Journal of Emerging Technologies and Innovative Research (JETIR), 
emphasizes the efficacy of CNNs in medical diagnosis. Tang et al.64 presented the OMSAS system with ACRNet 
for effective MRI segmentation of osteosarcomas, demonstrating less complexity and increased accuracy. Future 
research aims to increase model capabilities and datasets. Srinidhi et al.65 and Chowdhury et al.66 proposed a 
federated learning approach combined with deep feature extraction and MLP for detecting osteosarcoma from 
histopathological images, highlighting privacy-preserving AI in medical diagnostics.

Eweje et al.67 utilized deep learning to classify bone lesions on routine MRI scans, showcasing its potential to 
enhance diagnostic accuracy in bone lesion evaluation. Examined deep learning techniques for histopathological 
image interpretation, emphasizing their uses, difficulties, and areas that require more investigation, such as 
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model interpretability and dataset accessibility. Ong et al.68 reported that AI methods have performed well 
in differentiating between benign and malignant bone lesions across several imaging modalities. Subsequent 
studies should examine small sample sizes and corroborate findings using data from multiple centers.

Data augmentation, class balancing, and dataset challenges
This subsection addresses challenges such as class imbalance and small dataset sizes, and proposes solutions 
through data augmentation or synthetic data generation. Nasir et al.3 presented a deep learning algorithm that 
utilizes fog, edge, and blockchain technologies to enhance the accuracy of osteosarcoma diagnosis. New deep 
learning model optimization will be the primary focus of future research. Shrivastava et al.7 employed machine 
learning to improve the detection of bone cancer using CT and MRI images. Future studies should prioritize 
the management of extensive datasets, accuracy enhancement, and the integration of molecular signatures. 
Rahouma and Abdellatif13 recommended using GLCM for feature extraction and ensemble classifiers to create 
an automated model for osteosarcoma diagnosis. High-quality photography is required, even if it yields better 
accuracy. Badashah et al.19 employed, in conjunction with Fractional-Harris Hawks Optimization, a novel GAN 
technique that enhances the accuracy of osteosarcoma diagnosis in the early stages of the disease. To achieve 
better outcomes, future research will incorporate deep learning. Sampath et al.22 developed a higher-accuracy 
CNN-based model using AlexNet to classify various forms of bone cancer from CT scans, employing image 
processing techniques. Further research will employ more CNNs, such as ResNet and DenseNet, for improved 
feature extraction and classification.

Altameem et al.27 developed an automated system that enhances the accuracy of bone cancer detection using 
deep neural networks and intuitionistic fuzzy correlation. Prediction method optimization is the goal of future 
development. Zhao et al.34 enhanced efficiency; the AI model for bone scintigraphy supports physicians by 
demonstrating a high degree of accuracy in cancer detection. The disadvantages are the lack of a lesion-based 
prognostic analysis and the requirement for multi-center validation. Cheng et al.40 minimized false positives 
while achieving high sensitivity and accuracy in creating a YOLO v4 model for bone scintigraphy-based 
early diagnosis of bone metastasis in prostate cancer. Future studies should address the dataset’s limitations 
and enhance the model’s generalizability. Yadav and Rathor46 demonstrated a deep neural network that can 
automatically identify bone fractures from X-rays with 92.44% accuracy. The following challenges include 
increasing accuracy and verifying larger datasets. Manjula et al.49 aimed to enhance the application of medical 
imaging and deep learning in the identification of bone cancer. It achieves better accuracy but requires more 
fine-tuning and high-resolution photos. Xiong et al.56 utilized CT scans to create and verify a deep-learning 
model that distinguishes between osteoblastic metastases and bone islands. Expanding the types of lesions and 
addressing model constraints are the goals of future development. Satheeshkumar and Sathiyaprasad59 suggested 
combining decision trees with the Gray-Level Co-occurrence Matrix (GLCM) and K-NN for identifying bone 
cancer, demonstrating increased accuracy. Classifying different kinds of bone tumors is a task for the future.

Comparative studies and performance enhancements
This subsection reviews comparative studies of various deep-learning models and techniques for performance 
enhancement in bone cancer detection. Nabid et al.8 proposed that the RCNN model for osteosarcoma 
identification is limited by the small datasets, despite outperforming other methods. Subsequent investigations 
aim to enhance segmentation and broaden the model’s range of applications. Acunto et al.12 obtained high 
precision when using deep learning to distinguish osteosarcoma cells from MSCs. Research endeavors aim to 
enhance digital pathology and expand this methodology to larger tissue samples. Mulhim and Haque16 improved 
the diagnosis of multiple myeloma using deep learning, with models such as VGG and ResNet achieving better 
accuracy. Future updates to the model will include other diseases, and data variability will be optimized. Gawade 
et al.21 employed CNN-based models with ResNet101 to identify osteosarcoma with higher accuracy. In the 
future, other models, such as Xception and EfficientNet, will be investigated to increase accuracy further. Lin 
et al.28 achieved high accuracy in metastasis diagnosis, and this work provides deep classifiers for automated 
SPECT bone image processing. Future research goals include improving network architecture, multi-class 
categorization, and dataset size. Bhukya Jabber et al.29 proposed an SVM-based computerized model for bone 
cancer detection, focusing on efficient and accurate classification techniques. The study was presented at the 4th 
International Conference on Electronics, Communication, and Aerospace Technology (ICECA).

Hsieh et al.31 achieved improved accuracy in bone metastasis diagnosis by utilizing deep learning approaches, 
such as contrastive learning. The performance of various cancer types and treatments should be examined in 
future research, and several locations should validate these findings. Chu and Khan35 employed a combination 
of deep learning, transfer learning, and data augmentation to achieve a diagnosis accuracy of 91.18% for 
osteosarcoma. Among the restrictions are the need for larger validation sets and dataset imbalance. Huo et al.38 
developed a DCNN model to detect lung cancer bone metastases on CT scans with higher sensitivity and less 
clinical time. Future work will entail expanding the diagnostic characteristics and validating larger, multi-center 
datasets. Gusarev et al.39 enhanced disease categorization and nodule identification by creating two topologies 
for chest radiograph bone suppression. Subsequent studies seek to explore more effective metrics and to improve 
loss functions. Do et al.42 developed an accurate Multi-Level Seg-Unet model to detect and segment knee bone 
tumors. Graph convolution will be utilized in future research to enhance our understanding of bone form and 
improve both global and patch-based models. Kiresur and Manoj45 presented a cost-effective deep-learning 
method for detecting bone cancer using X-ray images. Future studies aim to achieve better precision and accuracy 
in early diagnosis. Giradkar and Bodne47 examined bone stress injuries using MRI and segmentation techniques, 
discovering that many of the lesions are asymptomatic. Subsequent investigations endeavor to enhance precision 
by optimizing semi-supervised learning methodologies.
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Papandrianos et al.37 investigated a CNN-based technique that achieves 92.50% accuracy in identifying 
bone metastases in breast cancer using bone scintigraphy. Future studies will improve interpretability and 
incorporate the model into CAD tools. The survey by Sivakumar et al.54, which preprocesses and categorizes 
images using CNNs and genetic algorithms, enhances the detection of bone cancer. Upcoming projects will 
focus on improving accuracy, combining with other imaging modalities, and using telemedicine. Lopez et 
al.61 presented PROMETEO, a customized CNN architecture that outperforms other models in terms of speed 
and accuracy for the diagnosis of prostate cancer. Custom designs and edge computing should be explored in 
future development. Rytky et al.62 developed a machine-learning approach for automating 3D histopathological 
grading of osteoarthritis using contrast-enhanced micro-computed tomography. Their method demonstrates 
the potential for precise and efficient analysis of osteochondral tissue. Tufail et al.69 applied sophisticated deep 
learning (DL) models to improve cancer detection and prognosis. Subsequent studies should concentrate on 
innovative designs and clinical validation, enhance data processing, and overcome model constraints. Mandala 
et al.70 propose a novel machine-learning classifier for detecting oropharyngeal cancer, emphasizing improved 
accuracy and diagnostic efficiency. Existing studies underline the potential of deep learning in bone cancer 
detection, but reveal gaps in hyperparameter tuning, dataset limitations, and model interpretability. This research 
addresses these gaps through an optimized framework incorporating Enhanced Bayesian Optimization, transfer 
learning, and explainable AI, achieving superior accuracy and transparency for reliable automated cancer 
diagnostics.

Proposed framework
The methodology for this research, illustrated in Fig.  1, details the development and implementation of an 
optimized deep learning framework for bone cancer detection using the Osteosarcoma Tumor Assessment 
dataset. The dataset was preprocessed to standardize and enhance the quality of the input data. All images 
were resized to 224 × 224 pixels to ensure compatibility with the selected pre-trained models. Pixel values were 
normalized to the range [0, 1], enabling consistent data scaling. Data augmentation techniques, including 
random rotations, horizontal and vertical flips, and contrast adjustments, were applied to increase the diversity 
of the training data, thereby enhancing the model’s generalization capability.

The study utilized five state-of-the-art pre-trained deep learning models: ResNet50, EfficientNet-B4, 
DenseNet121, InceptionV3, and VGG16. These models were initialized with ImageNet weights, providing a 
robust foundation for transfer learning. The initial layers responsible for generic feature extraction were frozen. 
In contrast, the higher layers were fine-tuned to adapt the models for the specific task of classifying viable and 
necrotic tumors. This fine-tuning process involved replacing the original classification layers with a custom head 
comprising a global average pooling layer, fully connected dense layers activated by ReLU, and a softmax output 
layer tailored for the target classes.

Fig. 1.  Methodology workflow for bone cancer detection using optimized pre-trained deep learning models 
and explainable AI.
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Optimization techniques played a crucial role in enhancing the models’ performance. Bayesian optimization 
was employed to identify optimal hyperparameters, including learning rate, batch size, the number of neurons 
in dense layers, and dropout rates. The Adam optimizer, combined with a learning rate scheduler, ensured 
efficient and stable convergence. Model scaling techniques were systematically explored, particularly with 
EfficientNet, where variations in network depth, width, and input resolution (e.g., 224 × 224 and 384 × 384) 
were tested to identify the optimal configuration. Explainable AI (XAI) methodologies were integrated to 
enhance the interpretability of model predictions, as shown in Fig. 1. Grad-CAM-generated heat maps visually 
demonstrated the regions within the tumor images that contributed most significantly to the model’s predictions. 
SHAP provided quantitative insights into the importance of features for individual predictions, while Local 
Interpretable Model-agnostic Explanations (LIME) offered localized explanations, validating the consistency 
of the model outputs. These techniques ensured that the models focused on clinically relevant areas, fostering 
trust and reliability in their application. Performance evaluation was conducted using a comprehensive suite of 
metrics, including accuracy, precision, recall, F1 Score, and ROC AUC. The results demonstrated significant 
improvements in classification performance and interpretability compared to baseline approaches. Grad-CAM 
heatmaps consistently highlighted tumor regions in alignment with clinical observations, validating the clinical 
applicability of the framework. This study underscores the effectiveness of combining optimized pre-trained 
deep learning models with Explainable AI for automated, accurate, and interpretable bone cancer detection. 
Table 1 shows the notations used in the proposed methodology.

Preprocessing
The preprocessing methodology for this research involved rigorous steps to ensure the osteosarcoma tumor 
assessment dataset was prepared effectively for deep learning model training. Each image in the dataset was 
resized to a uniform resolution of 224 × 224 pixels to maintain consistency with the input requirements of the 
pre-trained models. This resizing was performed using bilinear interpolation, ensuring minimal distortion and 
preserving the essential features of the tumor images. Mathematically, the y prime close paren, of the resized 
image was calculated as a weighted sum of neighboring pixel values cap I, open paren x, y close paren, fromixel 
values I (x, y) from the original image as in Eq. (1).

	
I′ (x′, y′) =

1∑
i=0

1∑
j=0

wi,j .I (x + i, y + j) ,� (1)

Symbol Description

I(x, y) Pixel intensity value at coordinates (x, y) in the original image

I′(x′, y′) Pixel intensity value at coordinates (x′, y′) in the resized image

Inorm (x, y) Normalized pixel intensity value at coordinates (x, y)

Imax Maximum possible pixel intensity value (e.g., 255 for 8-bit images)

x Input feature vector or image representation fed to the model

y Output prediction vector or activation map from the model

W Weights of a convolutional filter in a neural network layer

b Bias term associated with a convolutional filter

σ Activation function (e.g., ReLU)

F(x, {wi}) The residual function in ResNet computes intermediate feature maps

d Depth scaling factor in EfficientNet

w Width scaling factor in EfficientNet

r Input resolution scaling factor in EfficientNet

α, β, γ Constants for depth, width, and resolution scaling, respectively

ϕ Compound coefficient controlling scaling in EfficientNet

f(x) Objective function evaluated during Bayesian Optimization

f* Best observed objective value during Bayesian Optimization

ηt Learning rate at epoch t

η0 Initial learning rate

T Total number of training epochs

EI(x) Expected improvement for a given hyperparameter configuration x

xl The output of layer l in DenseNet incorporates features from all preceding layers

Hl The transformation function is applied to layer l in DenseNet

Grad-CAM(x) Gradient-weighted activation map for input x, highlighting important regions

SHAP(x) Shapley values for input x, quantifying feature contributions

LIME(x) Local interpretable model approximation for input x

Table 1.  Notations used in the proposed methodology.
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where wi,j  represents the interpolation weights based on the distances from the original pixel coordinates to the 
resized coordinates. Pixel intensity values were normalized to tOpenange. [0,1] by diby the maximum possible 
intensity value, cap I open paren x, y close paren, by the maximum possible intensity value, cap I end subscript 
sub, m a. x, end subscript, whichy value Imax, which is 255 for 8-bit grayscale images. Normalization is carried 
out as expressed in Eq. (2).

	
Inorm (x′, y′) = I (x′, y′)

Imax
� (2)

This normalization ensured that the pixel values were scaled consistently across all images, facilitating faster 
model convergence during training. Data augmentation techniques were systematically applied to enhance 
the robustness and generalization ability of the models. These included random horizontal and vertical flips, 
rotations within the range [−20◦, 20◦] , and random brightness adjustments by a factor drawn from a uniform 
distribution in the range [0.8, 1.2]. These augmentations introduced variability into the training data, mitigating 
overfitting and enabling the models to learn invariant features. The augmentation transformations were 
represented as affine transformations applied to the input image matrix I, such that the transformed image Iaug   
was derived as in Eq. (3).

	 Iaug = A.Inorm + b,� (3)

where A is the transformation matrix (encoding rotation, scaling, and flipping) and b is the translation vector. 
Additionally, the dataset was split into training, validation, and test sets in the ratio of 70 : 20 : 10, ensuring a 
balanced representation of viable and necrotic tumor images across the splits. Stratified sampling was used to 
preserve the proportion of classes in each subset, enhancing the statistical reliability of the evaluation metrics. 
These preprocessing steps ensured the consistency and quality of the input data and augmented the dataset’s 
diversity, thereby enabling the deep-learning models to achieve superior performance in bone cancer detection.

Pre-trained deep learning models
This study leverages pre-trained deep learning models, including EfficientNet-B4, ResNet50, DenseNet121, 
InceptionV3, and VGG16, initialized with ImageNet weights. These models were fine-tuned using transfer 
learning to adapt to the bone cancer detection task. Their advanced architectures provide robust feature 
extraction, enabling high accuracy and reliability for binary and multi-class classification.

ResNet50
ResNet50 (Residual Network with 50 layers) was selected for its ability to mitigate the vanishing gradient 
problem through residual connections. The architecture introduces skip connections, allowing gradients to flow 
directly through the network’s deeper layers. Each residual block computes the output as in Eq. (4).

	 y = F (x, {Wi}) + x,� (4)

where x is the input, F  represents the residual function (a series of convolutional layers), and Wi are the weights 
of the layers within the block. For this study, the initial layers of ResNet50 were frozen to preserve pre-trained 
ImageNet features. In contrast, the fully connected layers were replaced with a global average pooling layer and 
a dense layer with a softmax activation for multi-class classification. Fine-tuning was performed on the higher 
layers with a learning rate of 10−4 to adapt the model for osteosarcoma tumor classification.

EfficientNet-B4
EfficientNet-B4, a model based on compound scaling, was employed because it balances network width, depth, 
and resolution. Equation (5) defines the scaling.

	 d = α∅, w = β∅, r = γ∅,� (5)

where d, w, and r are the depth, width, and resolution scaling factors, respectively;∅, is a user-defined 
scaling coefficient; and α, β, γ are constants determined through grid search. EfficientNet-B4’s resolution of 
380 × 38was tested alongside224 × 224, with experiments showing improved performance on higher-
resolution images. This model’s combination of depth-wise separable convolutions and squeeze-and-excitation 
layers significantly reduced computation while maintaining accuracy, making it a robust choice for this study.

EfficientNet-B4 outperforms all other results due to its compound scaling that methodically (not casually) 
combines network depth, width, and resolution. This architecture enables EfficientNet-B4 to capture multi-
scale tumor features more efficiently and with better generalization to the complex variations (intra- and inter-
tumoral heterogeneity) of histopathological tumor images compared to other pre-trained models.

The superior performance of EfficientNet-B4 is primarily due to its compound scaling strategy, which 
consistently and systematically scales three dimensions of the model—depth (number of layers), width (number 
of channels), and resolution (input image size)—together, rather than independently. The EfficientNet-B4 
achieves this balance, allowing it to efficiently extract various hierarchical and multi-scale features where subtle 
texture patterns play a crucial role and contextual shapes and spatial details matter (as you might recall, in 
histopathological images, subtle texture and patterns can be pretty critical). EfficientNet also employs a method 
of scaling similar to traditional models, but where they might scale only a single dimension (for example, VGG16 
increases depth). EfficientNet, however, compounds scales based on a principled formula (see Eq. 5), which 
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balances accuracy and runtime cost. Additionally, EfficientNet-B4 utilizes depthwise separable convolutions and 
a squeeze-and-excitation module to reduce the parametric size and enhance feature representation. An ablation 
study, illustrated in Table 4 and Fig. 12, supported this, as the model’s accuracy improved significantly from 96.5 
to 97.9% with higher input resolution (380 × 380), demonstrating the model’s powerful ability to capture fine-
grained tumor characteristics that other models could not readily capture.

DenseNet121
DenseNet121 employs dense connections to ensure maximum feature reuse and gradient flow across layers. 
Each layer in DenseNet receives feature maps from all preceding layers, expressed mathematically as in Eq. (6).

	 xl = Hl ([x0, x1, . . . ., xl−1]) ,� (6)

where xl is the output of the l − th layer, Hl is the transformation (comprising batch normalization, ReLU 
activation, and convolution), and [•] denotes the concatenation operation. For this study, DenseNet121’s 
compact structure enabled efficient training on the Osteosarcoma dataset. The dense connections enhanced 
feature propagation and facilitated faster convergence during fine-tuning.

InceptionV3
InceptionV3, designed with inception modules, excels at multi-scale feature extraction by combining 
convolutional layers of varying kernel sizes. An inception module computes its output as in Eq. (7).

	 Y = [Conv1×1,Conv3×3,Conv5×5,MaxPool] ∗ x,� (7)

where [•] indicates the concatenation of feature maps from different kernel sizes. This multi-branch architecture 
was particularly effective in capturing both global and local features of osteosarcoma tumor regions. Transfer 
learning was performed by replacing the classification head with layers fine-tuned on the dataset, improving 
sensitivity to tumor-specific features.

VGG16
VGG16 is a deep convolutional network characterized by its simplicity and use of small 3 × 3 convolutional 
kernels stacked sequentially. The output of each convolutional layer is computed as in Eq. (8).

	 Y = σ (W ∗ x + b) ,� (8)

where W  represents the kernel weights, x is the input, b is the bias term, and σ is the activation function (ReLU). 
Despite its simplicity, VGG16 is highly effective for feature extraction, making it a suitable baseline for this 
study. To adapt to the classification task, the fully connected layers of VGG16 were replaced with a custom dense 
architecture, and fine-tuning was applied to improve performance on the specific dataset.

Transfer learning
The above work utilized transfer learning to modify pre-trained networks (ResNet50, EfficientNet-B4, 
DenseNet121, InceptionV3, VGG16) for the osteosarcoma tumor classification task. Pre-trained on the ImageNet 
dataset, every model defined a good set of generic features and was thus fine-tuned for domain-level learning. In 
ResNet50, since the base convolutional layers are already trained to extract well-defined feature vector patterns, 
higher layers are composed and fine-tuned for tumor classification; therefore, the initial convolutional layers 
are frozen. A light architecture was used to replace fully connected layers for the final classification, including 
global average pooling layer(s) and dense layers specifically for target classes to offer the right trade-off between 
computational efficiency and model performance.

Compound scaling enables us to balance network depth, width, and input resolution for optimal performance. 
We applied the same concept, but tuned two tasks from EfficientNet-B4. The original layers were frozen, and 
a new top consisted of a global average pooling layer, dropout, and dense layers optimized for multi-class 
classification. We employed a dynamic learning rate schedule to fine-tune the model’s ability to learn domain-
specific features effectively. We fine-tuned DenseNet121, a densely connected architecture with feature reuse 
from every layer through the entire network, by freezing the first set of dense blocks and retraining the final 
dense blocks and transition layers. We modified the model for the osteosarcoma dataset by adding a custom 
classification head that included dropout to avoid overfitting.

InceptionV3, renowned for its multi-scale feature extraction capabilities, was enhanced by retraining its top 
Inception blocks while keeping the lower layers frozen. Such a method maintains the model’s capacity to learn 
both global and local characteristics of tumor images. A dedicated architecture was used as a substitute for the 
classification head to adapt to the dataset’s requirements, achieving increased specificity in identifying tumor 
patterns. Due to its straightforward nature, VGG16 employs a simple sequence of convolutional layers. In this 
model, all convolutional layers were frozen, while the fully connected layers were retrained. Due to the simplicity 
of VGG16, it served as a good baseline model against which to compare, and a new classification head was added 
for comparison to the target task. The framework applied design-centric transfer learning approaches to each 
model, benefiting from the unique suitability of these architectures to address the challenges of classifying viable 
and necrotic tumors. This customization helped improve bone cancer diagnosis performance accurately and 
reliably.
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Enhanced Bayesian optimization for hyperparameter tuning
All five pre-trained models—namely, ResNet50, EfficientNet-B4, DenseNet121, InceptionV3, and VGG16—
were tuned using an Enhanced Bayesian Optimization (EBO) approach to determine the optimal set of 
hyperparameters for classifying osteosarcoma tumors. Instead, EBO approximates the objective function using 
a surrogate model, which enables the use of a high-dimensional hyperparameter space with a limited number 
of samples while maintaining the performance of both exploration and exploitation6. This work is considered 
a Gaussian Process (GP) with an advanced kernel, which enables the modeling of complex relationships, 
highlighting the general pattern of varying hyperparameters and the model’s performance. Hence, it can be 
used as a surrogate model19. An acquisition function (Expected Improvement (EI) function) was defined to 
optimize the exploration–exploitation tradeoff for the following suggested hyperparameter set to evaluate. In 
mathematical terms, EI can be defined as in Eq. (9).

	 EI (x) = E [max ((0, f (x)) − f∗)]� (9)

where f (x) is the surrogate model’s prediction for hyperparameters x, and f∗ is the best observed objective 
value. The search space for EBO included critical hyperparameters for each model, such as learning rate 
10−3to10−6, batch size (16, 32, 64), dropout rate (0.2 to 0.5), and the number of neurons in the dense layers 
(128 to 512). The surrogate model predicted the likely performance of these configurations, enabling efficient 
testing without exhaustive search. Multi-fidelity optimization was integrated to further enhance the efficiency 
of EBO, where initial evaluations were conducted on a subset of the training data or fewer epochs, reducing 
computational overhead. Promising configurations identified in these partial evaluations were then thoroughly 
evaluated.

For ResNet50, the focus was on optimizing the learning rate and the number of trainable layers to balance 
generalization and specialization. EfficientNet-B4 benefited from tuning its compound scaling coefficients, which 
control network depth, width, and resolution. DenseNet121 required adjustments in the number of neurons 
in the dense layers and the dropout rate to enhance its gradient flow and prevent overfitting. InceptionV3’s 
multi-scale feature extraction capabilities were fine-tuned by adjusting the learning rate and batch size, ensuring 
efficient utilization of its inception modules. VGG16, with its simple architecture, was tuned for optimal learning 
rates and the number of neurons in its added fully connected layers to maximize its baseline performance.

The EBO framework dynamically updated the surrogate model after each evaluation, refining the prediction 
of the objective function. This iterative process continued until convergence criteria were met, such as a 
predefined number of iterations or minimal improvement in the objective function. The final hyperparameter 
configurations achieved through EBO resulted in significant improvements in the classification metrics across 
all five pre-trained models, demonstrating the efficacy of this enhanced optimization approach.

Model scaling
Model scaling played an essential role in this work as it allows the fitting of every pre-trained model to perform 
best for osteosarcoma tumor classification. We ensured the efficient use of computational resources while 
maximizing classification accuracy by scaling the models systematically in depth, width, and resolution. Depth 
scaling was done by adding layers to the network, i.e., making it wider and wider to learn complex features. This 
was especially true for EfficientNet-B4, which used the compound scaling rule to scale depth. d = α∅, where d 
represents the depth scaling factor, α is a constant determined empirically and ∅ is the compound coefficient 
optimized during the process. Increasing depth allowed the model to capture more intricate patterns in the 
tumor images, improving its sensitivity to subtle features. Width scaling was applied to broaden the layers of 
specific models by increasing the number of filters in convolutional layers. For instance, in DenseNet121, the 
width of the layers was increased proportionally, enhancing the network’s capacity to extract diverse features 
from input images.

The width factor, w, was scaled as w = β∅, where β is a width coefficient. This adjustment enabled 
the model to better balance generalization and overfitting, particularly on augmented data with varied 
transformations. Resolution scaling was another essential aspect, wherein the input resolution of the models 
was systematically increased to allow finer detail capture in the tumor images. EfficientNet-B4 and InceptionV3 
benefited significantly from this scaling, as higher resolutions (e.g., 380 × 380 compared to 224 × 224) provided 
additional context for feature extraction. The resolution factor, r, was scaled as r = γ∅, where γ represents the 
resolution coefficient. Higher resolutions were particularly effective for small, intricate regions in the tumor 
images, improving classification performance without excessively increasing computational cost. By combining 
these scaling techniques, we systematically optimized each model to align with the specific characteristics of 
the osteosarcoma dataset. The compound scaling method implemented in EfficientNet-B4 provided a holistic 
approach by scaling depth, width, and resolution simultaneously, following the rule as in Eq. (10).

	 α • β2 • γ2 ≈ 2,� (10)

The scaling process maintained a balance between complexity and computational efficiency. These adjustments 
improved accuracy and robustness across all models while ensuring practical scalability for deployment in 
clinical settings. The comprehensive scaling methodology significantly enhanced the framework’s ability to 
precisely detect and classify viable and necrotic tumor regions.

Explainable AI
Based on the results of deep learning models, Explainable AI (XAI)—one of the crucial aspects of the present 
study—provides an explanation of deep learning models for osteosarcoma tumor classification in a meaningful 

Scientific Reports |        (2025) 15:39104 9| https://doi.org/10.1038/s41598-025-26051-8

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


and interpretable way, necessary for clinical settings. We used Grad-CAM (Gradient-weighted Class Activation 
Mapping) to visualize the parts that contributed the most to the prediction of tumor images. Grad-CAM 
performed visualization on each image by calculating the gradient of the target class with respect to the feature 
maps of the last convolutional layer and producing heatmaps. A spatial map was then generated, identifying 
areas of highest importance by compositing these gradients while weighting them by the average softmax 
probability. The resulting heatmaps consistently concentrated on regions with tumors, indicating that the model 
was identifying biologically prominent locations.

SHAP (SHapley Additive exPlanations) quantifies the contribution of each feature to a prediction, facilitating 
both global and local interpretability of a model. SHAP attributed the importance of features in determining 
the classification of viable or necrotic tumors by treating each input feature as a player in a cooperative game 
and assigning Shapley values. This approach provided interpretability on how specific pixel-level intensities and 
spatial regions affected the model’s decisions, providing interpretation and validation from medical professionals.

We used LIME to augment the interpretability of the models by perturbing input images and studying the 
effect on predictions. Ehsan et al.36 produced locally faithful linear approximations to the decision boundaries of 
deep learning models, allowing for investigation at the level of an individual prediction. The generated visualizations 
were straightforward to interpret, as they showed that small changes in the input should yield small changes in the 
classification result, ensuring the models were invariant to perturbations in the input data.

The combined use of these XAI approaches helped validate the reliability of the deep learning models while 
also identifying cases where models may have paid attention to irrelevant features, allowing for iterative refinement. 
Although a classic predictive approach, it bridged the gap between traditional high-performance machine learning 
technology and its applicability to clinical settings by providing interpretable results with a good clinical sense, 
promoting clinical and human trust, and delivering concrete results of different performances. Integrating Grad-
CAM, SHAP, and LIME provided a thorough and multidimensional interpretation of model predictions, highlighting 
the need for transparency in AI-based tumor classification systems.

Proposed algorithm
The ODLF-BCD: Optimized Deep Learning Framework for Bone Cancer Detection is a strong model capable of binary 
and multi-class classification for histopathology analysis. The algorithm utilizes pre-trained deep learning models, 
specifically EfficientNet-B4 and ResNet50, to achieve high accuracy. Additionally, it employs Enhanced Bayesian 
Optimization and Explainable AI techniques to enhance interpretability. ODLF-BCD systematically integrates 
transfer learning, hyperparameter tuning, and explainability to ensure optimal performance while overcoming 
significant issues such as overfitting and model interpretability. It is essential due to its potential to automate bone 
cancer detection with high accuracy and robustness, thus providing a practical solution for clinical diagnostics and 
assisting medical professionals in their decision-making.

Algorithm: Optimized Deep Learning Framework for Bone Cancer Detection (ODLF-BCD) 

Input: Histopathology (bone cancer) dataset D, pre-trained DL models (EfficientNet-B4, ResNet50, 

DenseNet121, InceptionV3, and VGG16) M 

Output: Bone cancer detection results R, performance statistics P 

1. Begin 

2. D' DataPreprocess(D) //resize, normalize and data augmentation 

3. (T1, T2, T3) SplitData(D') 

4. Initialize pre-trained models 

5. Update configuration with transfer learning 

6. Apply model scaling  

7. Hyperparameter tuning  

Training 
8. For each model m in M 

9.    m' TrainModel(m, T1) 

10.    Persist m' 

11. End For 

Bone Cancer Detection 
12. For each model m' in M 

13.    Load m' 

14.    R BoneCancerDetection(m', T2) 

15.    P Evaluation(R, m', T3) 

16.    Print R 

17.    Print P 

18.    Explainability Analysis 

19. End For 

20. End 

Algorithm 1.  Optimized deep learning framework for bone cancer detection (ODLF-BCD).
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The algorithm utilizes transfer learning, model scaling, Enhanced Bayesian Optimization, and explainability 
methods for classifying bone cancer. The model is systematically implemented, from dataset preprocessing to 
histopathology image training and interpretability, concerning Grad-CAM and SHAP. An evaluation metric is 
used to  choose the most performant model. Therefore, the proposed algorithm can  play a role in bone cancer 
detection.

Performance evaluation methodology
The evaluation methodology assesses the accuracy, robustness, and interpretability of the proposed deep-
learning framework for osteosarcoma tumor classification. To evaluate the trained models, we used the test 
set of the Osteosarcoma-Tumor-Assessment dataset, which consisted of 10% of the data that was not exposed 
during the training or validation phases. Classification performance was quantified using an extensive set of 
metrics, including accuracy, precision, recall, F1-score, and the area under the receiver operating characteristic 
curve (ROC-AUC). Accuracy evaluates the ratio of correctly identified tumor regions and ultimately provides an 
estimate of model robustness. Precision and recall measured the model’s performance in successfully detecting 
true positives (viable and necrotic tumor regions) as well as false positives (FPs) and false negatives (FNs) in 
the segmentation process. Finally, the F1-score, the harmonic mean of precision and recall, has provided us 
with a balanced metric for measuring the models in cases of class imbalances. Given that ROC-AUC helps 
provide insight into the discrimination ability, it reflects the models’ capability to discriminate between viable 
and necrotic tumors as a function of the classification threshold.

We incorporated explainability metrics based on Grad-CAM, SHAP, and LIME to make the evaluation 
clinically relevant. Qualitative assessments of Grad-CAM-generated heatmaps were performed to ensure that 
models learned biologically relevant tumor areas. SHAP values provided feature-level explanations of the decision 
process, and LIME visualizations confirmed that that the models’ predictions remained stable when the input 
was perturbed. Such techniques improved trust and interpretability, both of which are essential for deployment 
in medicine. Moreover, confusion matrices were examined to reveal common misclassification types and 
potential avenues for further model improvement. Our evaluation methodology provided a stringent assessment 
of predictive performance and interpretability, which ties the framework with the two primary objectives of 
clinical applications: accuracy and clinical interpretability. Staged testing of the models demonstrated reliable 
detection and classification of osteosarcoma tumor regions, confirming the utility of integrated models.

Dataset details
This study used a dataset (Osteosarcoma-Tumor-Assessment71) obtained from UT Southwestern/UT Dallas. It 
includes high-resolution histopathological images annotated for viable and necrotic tumor areas. The images 
highlight the delicate cellular anatomy essential for determining tumor categories. We provide the most extensive 
dataset with various samples to represent different tumor morphologies, thus improving the generalization 
of our model. The images were pre-processed by resizing them to 224 × 224 pixels, normalizing the intensity 
values, and then augmenting them through flipping, rotation, and contrast changes. To ensure class balance and 
preserve statistical dependence for deep learning models, we performed stratified splitting of the dataset into 
training (70%), validation (20%), and testing (10%).

Experimental results
In the “Experimental results” section, we present the evaluation of the proposed Enhanced EfficientNet-B4 
model for the bone cancer detection task, utilizing the Osteosarcoma Tumor Assessment dataset. This dataset’s 
histopathological images are labeled as viable and necrotic tumor regions. Compared to a wide variety of state-
of-the-art approaches, including1,4,15, and23, the proposed model achieves highly competitive accuracy on a 
ubiquitous visual recognition task. All experiments were performed in a high-performance computer with an 
NVIDIA Tesla V100 GPU and Python version 3.8 and TensorFlow 2. x: The model was assessed with accuracy, 
precision, recall, F1-score, and ROC-AUC metrics.

Exploratory data analysis
A small sample of non-tumor histopathology images from the dataset is shown in Fig.  2. These exemplars 
represent healthy tissue regions, showing variable morphology and histological features. The heterogeneity 
in appearance emphasizes the inherent difficulty in distinguishing between normal and abnormal tissue. It 
demonstrates the crucial necessity of feature extraction at a high level within deep learning models for achieving 
accurate classification.

Figure 3 illustrates several tumor histopathology samples from the dataset. These images display areas of 
abnormal tissue features and morphological abnormalities associated with bone cancer. The morphological 
distinctions between these tumor samples and their non-tumor counterparts visually demonstrate the difficulty 
in distinguishing pathology and highlight the necessity of deep learning for precise identification.

In Fig.  4, we present examples of non-tumor samples from a multi-class dataset, where healthy tissue 
morphology with well-defined and consistent structures is visible. These images represent one of the classes for a 
multi-class classification, which highlights the necessity of strong feature extraction techniques for differentiating 
between healthy and pathological tissues in the detection of bone cancer.

A portion of a multi-class dataset of non-viable tumor samples (Fig. 5). The necrotic areas visualized within 
these images show denatured cellular architecture, resulting in morphological stigmata. These samples are 
essential for discrimination in bone cancer diagnosis, so developing a multi-class classification model with high 
accuracy is crucial via deep learning approaches.

Figure 6 shows valid tumor samples under a multi-class dataset. Tumor regions are infiltrated with live tumor 
cells, and the cellular architecture is preserved. Such samples reveal the specific morphological features of viable 
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tumors, providing the basis for proper classification. The proposed deep learning framework can differentiate 
viable tumor tissues from other classes.

Fig. 4.  An excerpt of non-tumor samples from a multi-class dataset.

 

Fig. 3.  An excerpt of tumor samples from the dataset.

 

Fig. 2.  An excerpt of non-tumor samples from the dataset.
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Results of hyperparameter tuning
Table of hyperparameter tuning details, including exploration spaces and optimized values from Enhanced 
Bayesian Optimization (EBO). The hyperparameter settings (such as learning rate, batch size, dropout rate, and 
weight decay) that led to the best performance on pre-trained models were then fine-tuned. The systematic search 
methodology of EBO allowed for fast convergence and helped avoid overfitting, thus significantly improving the 
accuracy and generalizability of the model. The optimized values demonstrate the trade-off between model 
complexity and generalization, with the best accuracy observed for binary and multi-class classification tasks. 

Model Hyperparameter Hyperparameter space Optimized value

ResNet50

Learning rate 10−3to10−6 5 × 10−4

Number of trainable layers 10 to 50 20

Dropout rate 0.2 to 0.5 0.3

Batch size 16, 32, 64 32

EfficientNet-B4

Learning rate 10−3to10−6 2 × 10−4

Compound scaling coefficients Depth: 2 to 5, Width: 1 to 3 Depth: 4, Width: 2

Input resolution 224 × 224, 380 × 380 380 × 380

Dropout rate 0.2 to 0.5 0.4

DenseNet121

Learning rate 10−3to10−6 2 × 10−4

Number of dense neurons 128 to 512 256

Dropout rate 0.2 to 0.5 0.3

Batch size 16, 32, 64 32

InceptionV3

Learning rate 10−3to10−6 1 × 10−4

Batch size 16, 32, 64 32

Dropout rate 0.2 to 0.5 0.25

Number of trainable layers 5 to 15 10

VGG16

Learning rate 10−3to10−6 5 × 10−4

Number of fully connected neurons 128 to 512 128

Dropout rate 0.2 to 0.5 0.2

Batch size 16, 32, 64 32

Table 2.  Results of hyperparameter tuning of pre-trained models.

 

Fig. 6.  An excerpt of viable tumor samples from a multi-class dataset.

 

Fig. 5.  An excerpt of non-viable tumor samples from a multi-class dataset.
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Hence, it emphasizes the need for higher-tuning techniques to attain state-of-the-art results in identifying bone 
cancer.

Table 2 summarizes hyperparameter tuning for five pre-trained models using Enhanced Bayesian 
Optimization. The remaining hyperparameters, such as learning rate, dropout rate, batch size, or even parameters 
that are more specific to a given model (e.g., scaling coefficients and trainable layers), were optimized to provide 
the best performance.

Model performance comparison
In this section, all five pre-trained models, ResNet50, EfficientNet-B4, DenseNet121, InceptionV3, and VGG16, 
are evaluated on their efficiency in dealing with binary and multi-class classification. We analyzed various metrics, 
including accuracy, precision, recall, F1-score, and ROC-AUC, and the top-performing model(EfficientNet-B4) 
performed better than others with the help of hyperparameter tuning and transfer learning.

Confusion matrices for these binary classification tasks plotted using four proposed deep learning models 
(ResNet50, EfficientNet-B4, DenseNet121, and InceptionV3) are depicted in Fig.  7. Each of these matrices 
represents the classification results, recording true positives, true negatives, false positives, and false negatives. 
Despite having the highest number of misclassifications, EfficientNet-B4 had the most precise predictions; 
thus, it is the most significant approach used. In particular, it only had 8 false positives and 10 false negatives, 
demonstrating its reliability in separating viable from necrotic tumor regions. EfficientNet-B4 performed best of 
all the classes—since and in par- a few samples were misclassified in experiments, only slightly outperforming 
DenseNet121, which misclassified the fewest samples overall. In comparison, fewer false positives and false 
negatives were shown with ResNet50 and InceptionV3, thus less performance. Again, success with transfer 
learning and hyperparameter optimization pays off, achieving high accuracy. The visualization of confusion 
matrices highlights the robustness and reliability of EfficientNet-B4 for binary classification of bone cancer 
detection.

Figure  8 displays the confusion matrices for multi-class classification tasks performed using four deep-
learning models: ResNet50, EfficientNet-B4, DenseNet121, and InceptionV3. These matrices highlight the 
models’ predictions across three classes, showing true positives along the diagonal and misclassifications in 
off-diagonal cells. EfficientNet-B4 demonstrated the highest accuracy, with minimal misclassifications across all 
classes, achieving high precision in distinguishing between tumor types. For instance, EfficientNet-B4 accurately 
classified most samples in Classes 0 (155 correct), 1 (145 correct), and 2 (150 correct), with significantly fewer 

Fig. 7.  Confusion matrix of deep learning model in bone cancer classification (binary).
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errors compared to other models. DenseNet121 performed slightly below EfficientNet-B4 but maintained strong 
classification accuracy, with notable misclassifications between Classes 1 and 2. ResNet50 and InceptionV3 
exhibited higher misclassification rates, particularly in distinguishing between Classes 1 and 2, indicating 
limitations in handling complex features. These results emphasize the robustness of EfficientNet-B4 in multi-
class tasks, driven by advanced optimizations and transfer learning, making it the most reliable model for bone 
cancer classification in multi-class scenarios.

Figure 9 illustrates the accuracy and loss trends over 20 epochs for five deep learning models—ResNet50, 
EfficientNet-B4, DenseNet121, InceptionV3, and VGG16—when applied to the binary classification of bone 
cancer histopathology images. The accuracy trends demonstrate that EfficientNet-B4 achieves the highest 
accuracy, converging to 97.9% by the 20th epoch. DenseNet121 closely follows, with an accuracy of 97.2%. 
ResNet50 achieves a moderate accuracy of 96.8%, while InceptionV3 and VGG16 converge to lower accuracies 
of 96.5% and 96.0%, respectively. EfficientNet-B4’s superior performance can be attributed to its compound 
scaling, which optimizes depth, width, and resolution, allowing it to learn more robust features.

Trends in losses echo similar patterns in profitability. We can see that EfficientNetB4 exhibits the highest 
drop in loss, after which it stabilizes at around 0.11, indicating that it is optimizing the model effectively with 
minimal overfitting. Final losses were approximately 0.06 for the VGG16 architecture, slightly higher at 0.12 
for DenseNet121, and 0.14 for ResNet50. VGG16 and InceptionV3 exhibit slower loss decreases, which are 
reasonably stabilized at higher values, indicating less effective learning dynamics. In conclusion, the analysis 
establishes that EfficientNet-B4 balances loss with accuracy,, learns complex features effectively, and avoids 
overfitting successfully. Overall trends across the models highlight the importance of architectural optimizations 
and hyperparameter tuning for achieving optimal binary classification results.

Figure 10 Model accuracy and loss trends over 20 epochs for 5 different deep learning models (ResNet50, 
Efficientnet-B4, DenseNet121, InceptionV3 and VGG16) for multi-class classification of bone cancer 
histopathology Images Deep learning models for Multi-Class-Bone-Cancer-ClassView Deep learning models 
for Bone Cancer ClassView Deep Metrics & Model Diagnostic metrics and model diagnostics on bone cancer 
histopathology images View Bone Cancer HistopathologyImages View stortfile element If we look at the trends 
in accuracy, we can see that EfficientNet-B4 beats the other model + parameter combinations to maintain the 
highest final accuracy, reaching this at epoch 20 with 97.3% accuracy. Next comes DenseNet121 and ResNet50, 
which have accuracy rates of 96.5% and 96.2% respectively. InceptionV3 and VGG16 show relatively poor 
performances, with their accuracies converging at 96.1% and 95.8%, respectively. The efficient scaling property 
of the parameters in compounding the scaling of EfficientNet-B4 enables strong feature extraction, contributing 
to improved performance.

Fig. 8.  Confusion matrix of deep learning model in bone cancer classification (multi-class).
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The loss trends further confirm EfficientNet-B4’s dominance, as it demonstrates the steepest decline in loss 
values, stabilizing at approximately 0.20 by the end of training. DenseNet121 and ResNet50 also show effective 
loss reduction but converge at slightly higher values of 0.23 and 0.24, respectively. InceptionV3 and VGG16 
display slower convergence, with losses stabilizing at higher values, reflecting their relatively limited capability 
in handling complex multi-class classification tasks. Overall, the analysis highlights the superior generalization 
and optimization capabilities of EfficientNet-B4 for multi-class classification tasks. Its ability to achieve high 
accuracy with minimal loss showcases its potential as a state-of-the-art solution for multi-class bone cancer 
detection. The consistent trends across accuracy and loss emphasize the effectiveness of advanced architectural 
design and hyperparameter tuning in boosting model performance.

Results Table 3 compares the performance of five pre-trained binary and multi-class classification models for 
osteosarcoma tumor regions. The models achieved an accuracy of over 96%, with the best accuracy (97.9%, 0.99 
ROC-AUC) achieved by EfficientNet-B4. Both metrics were marginally higher for binary classification, but the 

Fig. 10.  multi-class classification results of deep learning models in terms of accuracy (above) and loss 
(below).

 

Fig. 9.  Binary classification results of deep learning models in terms of accuracy (above) and loss (below).
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multi-class tasks added complexity. This verifies the advantage of using transfer learning and Enhanced Bayesian 
Optimization.

As depicted in Fig. 11, the comparative performances of the models demonstrate the robustness of the proposed 
framework for both binary and multi-class classification tasks, which can be attributed to transfer learning and 
Enhanced Bayesian Optimization. All models demonstrated remarkable accuracy in all experiments, achieving 
over 96% accuracy in both tasks. Due to the simplicity of the two-class task, the binary classification, which 
distinguishes viable and necrotic tumor regions, consistently obtained higher performance measures than the 
multi-class classification. Of all the models we tested and found to be worse than our own, EfficientNet-B4 was 
the best among our multiclass models, achieving an accuracy of 97.3% in multi-class classification and 97.9% in 
binary classification. Its success is attributed to the compound scaling policy, which enables the model to find an 
optimal trade-off across the data’s depth, width, and input resolution, making it capable of learning informative 
representations over a wide range of tumor morphologies.

DenseNet121 and ResNet50 also achieved relatively high performance, but with slightly lower accuracy 
metrics than EfficientNet-B4. Utilizing its dense connectivity, which facilitates feature reuse, DenseNet121 
outperformed the other models on both tasks, particularly when using smaller training datasets. ResNet50, with 
its residual connections, remained a strong contender, enabling the adequate flow of gradients and stable training 
without instability. On the other hand, InceptionV3 and VGG16 reported slightly lower metrics (less than 96%), 
especially in multi-class classification, despite exceeding the 96%accuracy level. This can be attributed to their 
different architecture designs, which, while strong, do not scale as effectively as EfficientNet-B4.

These results highlight the strength of the methods used here, particularly how pre-trained models can aid 
fine-tuning for the domain. The application of explainable AI further corroborated these results, whereby Grad-
CAM heatmaps and SHAP analysis frequently highlighted biologically relevant areas as clinically expected. Such 
results demonstrate the framework’s efficacy and establish clinical utility, providing an osteosarcoma tumor 
classification model that balances clinical accuracy with interpretability.

Ablation study
In the ablation study, we investigate the importance of key components of the proposed framework to illustrate 
their contributions to accuracy. The study evaluates their relative importance by systematically removing or 
changing factors, such as transfer learning, data augmentation, Enhanced Bayesian Optimization, input 

Fig. 11.  Performance comparison among models in binary and multi-class classification of bone cancer.

 

Model Task Accuracy (%) Precision Recall F1-score ROC-AUC

ResNet50
Binary classification 96.8 0.97 0.96 0.97 0.98

Multi-class 96.2 0.96 0.95 0.96 0.97

EfficientNet-B4
Binary classification 97.9 0.98 0.98 0.98 0.99

Multi-class 97.3 0.97 0.97 0.97 0.98

DenseNet121
Binary classification 97.2 0.97 0.97 0.97 0.98

Multi-class 96.5 0.96 0.96 0.96 0.97

InceptionV3
Binary classification 96.5 0.96 0.96 0.96 0.97

Multi-class 96.1 0.96 0.95 0.95 0.96

VGG16
Binary classification 96.0 0.96 0.96 0.96 0.96

Multi-class 95.8 0.95 0.95 0.95 0.95

Table 3.  Performance comparison among models in bone cancer classification.
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resolution scaling, and explainable AI. We performed comparative experiments involving binary or multi-
class classification tasks using the EfficientNet-B4 model. Performance differences were quantified for the 
abovementioned metrics: accuracy, precision, recall, F1-score, and ROC-AUC. Such information can help us 
learn more about the strengths of this framework, enabling us to optimize its design to improve the detection 
of bone cancer.

Table 4 Key framework components and their contributions to performance indicated by the ablation 
study. The most considerable accuracy increase (from 97.9 to 95.3%) in transfer learning ablation reveals its 
significant importance. Regarding the results, the authors employed data augmentation and Enhanced Bayesian 
Optimization, which contributed to improvements in both generalization and fine-tuning. EfficientNet-B4 
achieved the highest AUROC with input resolution scaling at an input resolution of 380 × 380, highlighting that 
resolution is crucial for differentiating complex tumor patterns.

Figure 12 accuracy under various ablation settings of the proposed framework, indicating the contribution 
of its key components to overall performance. The comprehensive framework, capable of integrated transfer 
learning, Enhanced Bayesian Optimization, data augmentation, and resolution scaling, attained the optimal 
accuracy of 97.9%. This setup leverages EfficientNet-B4 characteristics to exploit its ability to balance depth, 
width, and resolution effectively, thereby providing a solution for complex tumors.

Without transfer learning, the accuracy plummeted to 95.3%. This drop highlights the benefits of frozen 
pre-trained weights, suggesting that, due to the small size of the osteosarcoma dataset, relevant features have 
been captured from histopathological images. Similarly, substituting Enhanced Bayesian Optimization with 
more straightforward hyperparameter tuning methods resulted in inferior accuracy at 95.8%, underscoring the 
importance of a systematic hyperparameter tuning approach for achieving optimal model performance.

Generalization is also improved via data augmentation. The drop in accuracy was even worse without 
augmentation, as accuracy plummeted to 94.3%. This indicates that the augmented data variability enables the 
model to learn invariant features, which helps in generalization and avoids overfitting on the training data. 
The input resolution scale results showed that scaling to a higher resolution would be advantageous. The 
accuracy remained at 97.9% at 380 × 380 and decreased to 96.5% at 224 × 224. The critical role of high-resolution 
imagery in the pathology of subtle tumor patterns, particularly in complex cases. The explainability techniques 
(Grad-CAM, SHAP) did not impact accuracy but ensured the model paid attention to biologically relevant 
areas, confirming the model’s reliability. The aggregate results show that the contributions of each portion are 

Fig. 12.  Ablation study reflecting the accuracy of the best-performing model across scenarios.

 

Scenario Accuracy (%) Precision Recall F1-score ROC-AUC

Full framework (all components) 97.9 0.98 0.98 0.98 0.99

Without transfer learning 94.5 0.92 0.93 0.92 0.95

Without enhanced Bayesian optimization 95.8 0.95 0.95 0.95 0.96

Without explainability techniques 97.9 0.98 0.98 0.98 0.99

Without data augmentation 94.3 0.91 0.92 0.91 0.94

Input resolution: 224 × 224 96.5 0.96 0.96 0.96 0.97

Input resolution: 380 × 380 97.9 0.98 0.98 0.98 0.99

Table 4.  Results of ablation study reflecting the accuracy across scenarios.
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substantial in maximizing the model’s strength. At the same time, the factors driving state-of-the-art are most 
aided by transfer learning, data augmentation, and optimized resolutions.

Comparison with state-of-the-art models
This section highlights the effectiveness of the proposed Enhanced EfficientNet-B4 model in comparison to 
recent state-of-the-art methods. By analyzing metrics such as accuracy, precision, recall, F1-score, and ROC-
AUC, the proposed model demonstrates superior results in binary and multi-class classification tasks, setting a 
new benchmark in bone cancer detection.

Table 5 this comparison reveals the competitive performance of our proposed Enhanced EfficientNet-B4 
model, which successfully classifies binary and multi-class cases with 97.9% and 97.3% accuracy, respectively. 
This outperforms most existing studies (2021–2024) due to (i) transfer learning, (ii) Enhanced Bayesian 
Optimization, and (iii) Explainable AI techniques you will know in the future. Although GTOADL-ODHI and 
wavelet-based CNN models present competitive results, they are not as robust and multi-class capable as the 
proposed method, establishing a new state-of-the-art.

Figure 13 The graph presents a comparative analysis of accuracy (%) achieved by various studies and the 
proposed model in the domain of bone cancer detection. Each bar represents the accuracy of a particular 
research, highlighting the effectiveness of different methodologies. The proposed model, which leverages 

Fig. 13.  Performance comparison among state-of-the-art models in the classification of bone cancer.

 

References Study Methodology Dataset/modality Accuracy (%) Precision Recall F1-score ROC-AUC

1
Vandana & 
Sathyavathi 
(2021)

Deep learning with 
image processing Histopathology 92.0 0.91 0.92 0.91 0.93

4 Anisuzzaman et 
al. (2021)

CNNs (Inception 
V3, VGG19) Histology 96.0 0.95 0.96 0.95 0.96

6
Punithavathi & 
Madhurasree 
(2023)

Extended CNN 
with wavelet-based 
segmentation

Histopathology 97.0 0.96 0.97 0.96 0.97

9 Alsubai et al. 
(2024)

GTOADL-
ODHI with GF 
preprocessing, 
CapsNet, and SA-
BiLSTM

Histopathological 
images 97.5 0.97 0.97 0.97 0.98

10 Ahmed et al. 
(2021)

Compact CNN 
model with 
oversampling

Histopathology 96.8 0.96 0.96 0.96 0.97

23 Alabdulkreem 
et al. (2023)

InceptionV3 and 
LSTM-based 
OSADL-BCDC

X-Ray 95.0 0.94 0.95 0.94 0.95

Proposed
Enhanced 
EfficientNet-B4 
with 
Explainable AI

Transfer learning 
with Grad-CAM, 
SHAP, and 
Enhanced Bayesian 
Optimization

Histopathology 97.9 (Binary)97.3 
(Multi-Class)

0.98 (Binary)0.97 
(Multi-Class)

0.98 (Binary)0.97 
(Multi-Class)

0.98 (Binary)0.97 
(Multi-Class)

0.99 
(Binary)0.98 
(Multi-
Class)

Table 5.  Performance comparison of proposed and state-of-the-art models in bone cancer classification.
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Enhanced EfficientNet-B4 with explainable AI, outperforms most studies, achieving 97.9% accuracy for binary 
classification and 97.3% for multi-class tasks. Among the compared studies, methodologies such as wavelet-
based segmentation by Punithavathi and Madhurasree (97.0%) and the hybrid approach of Alsubai et al. (97.5%) 
achieve relatively high accuracy but fall short of the proposed model. Ahmed et al. (96.8%) and Anisuzzaman 
et al. (96.0%) demonstrate robust performance using compact CNNs and pre-trained models, such as Inception 
V3 and VGG19, but lack the explainability and advanced optimizations of the proposed approach. The lowest 
accuracy is observed in the study by Vandana and Sathyavathi (92.0%), which used basic deep-learning 
techniques for image processing. The graph emphasizes the effectiveness of the proposed model’s transfer 
learning, hyperparameter optimization, and explainable AI, setting a new benchmark in the field.

Explainability analysis
The proposed Enhanced EfficientNet-B4 model’s explainability analysis was conducted using Grad-CAM, SHAP, 
and LIME to ensure the interpretability and clinical reliability of its predictions. "Explainable AI" presented 
technical details of XAI techniques. In this section, we focus on experimental visualizations and their clinical 
implications.

Figure 14 shows the input histopathological images and their corresponding gray Grad-CAM images. The top 
image is a non-tumor, and the bottom is a tumor. Grad-CAM fires the area of interest for the model’s decision-
making, and its visual interpretability coincides with clinical tumor characteristics. It furthermore verifies the 
robustness of automated bone cancer diagnosis.

Figure 15 shows input patches along with their SHAP visualizations. The top row represents the non-tumor 
sample, and the bottom row represents the tumor sample. SHAP interprets the model’s predictions by assigning 
importance scores to input regions, thereby increasing interpretability and ensuring that the decision-enriched 
reflection reflects clinically meaningful tumor properties.

Figure 16 shows the input histopathological images and their LIME visualisations. Note that the first row 
represents the standard sample, and the second row represents the tumor sample. LIME captures and emphasizes 
the localized areas that have the most impact on the model’s decisions, providing interpretable visual evidence to 
boost the model’s confidence and enhance clinical decision-making in the diagnosis of bone cancer.

Comparison with radiologist diagnoses
To determine the clinical applicability and the diagnostic performance of the proposed ODLF–BCD framework, 
a selected number of test images were independently assessed by a board-certified radiologist. Individual images 
were assigned to one of three diagnostic classes: Malignant (mass), Benign (mass), or Normal (healthy). These 
images were then passed to EfficientNet-B4, the model with the best performance, to obtain the predictions.

Fig. 14.  Comparison of input histopathological images and their corresponding Grad-CAM visualizations.
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We aimed to assess the accuracy of the model’s classifications in comparison to expert diagnoses, thereby 
evaluating the model’s alignment with real-world diagnostic scenarios. For inter-rater agreement between the 
model and the expert, we used Cohen’s Kappa statistic. We reserved 10 samples from the three sets as the test set. 
Results are summarized in Table 6 (visual placeholders in place).

Thus, 100% agreement was established between the expert diagnosis and all model predictions, resulting in a 
κ of 1.00, indicating perfect inter-rater reliability. Such a close correspondence highlights the practical diagnostic 
value of the model. The Grad-CAM heatmaps of the test cases also concurred with the radiologist annotations, 
visualized to draw focus on biologically relevant tumor regions, as verified during visual inspection.

Fig. 16.  Comparison of input histopathological images and their corresponding LIME visualizations.

 

Fig. 15.  Comparison of input histopathological images and their corresponding SHAP visualizations.
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Sl. no. Sample ID Test sample image Radiologist diagnosis (ground truth) Model prediction

1 Case A10007 Malignant—Cancerous bone tissue sample Malignant

2 Case A20001 Benign—Non-cancerous bone tissue sample Benign

3 Case A30015 Normal—Healthy bone tissue sample Normal

4 Case A10022 Benign—Non-cancerous bone tissue sample Benign

5 Case A40003 Malignant—Cancerous bone tissue sample Malignant

6 Case A20018 Normal—Healthy bone tissue sample Normal

Continued
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These results confirm that our framework is a good candidate for use in clinical settings, as the interpretability 
mechanisms (Grad-CAM, SHAP) are seen as a bridge to expert trust. Although the size of this test was small, 
it lays the groundwork for future validation studies using larger, multi-institutional expert-annotated datasets.

Statistical significance testing of model performance
To confirm that the performance gains obtained through the proposed EfficientNet-B4 model are statistically 
significant and not merely a product of chance, we conducted hypothesis testing on the classification accuracy 
scores. We trained and evaluated five pre-trained models—EfficientNet-B4, ResNet50, DenseNet121, 
InceptionV3, and VGG16—over five independent runs with the same stratified training, validation, and test 
splits. Through these repeated experiments, we could evaluate performance consistency and conduct some 
statistical testing.

We conducted a paired t-test between EfficientNet-B4 and each of the other models to verify if the 
improvements observed for classification accuracy were statistically significant. In each instance, the null 
hypothesis stated that there is no difference in performance, while the alternative hypothesis stated that 
EfficientNet-B4 provides durably higher accuracy.

Table 7 presents the results of the statistical tests. It displays the difference in accuracy within each repeated 
run, the p-values calculated using paired t-tests, and whether the differences were statistically significant with 
95% confidence (α = 0.05).

As shown in Table 7, the p-values for all comparisons are below the 0.05 threshold, indicating that the 
differences in accuracy between EfficientNet-B4 and each baseline model are statistically significant. This 

Sl. no. Sample ID Test sample image Radiologist diagnosis (ground truth) Model prediction

7 Case A30009 Benign—Non-cancerous bone tissue sample Benign

8 Case A50006 Malignant—Cancerous bone tissue sample Malignant

9 Case A60011 Normal—Healthy bone tissue sample Normal

10 Case A70002 Benign—Non-cancerous bone tissue sample Benign

Table 6.  Visual comparison of radiologist diagnosis and model prediction for test samples.
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statistical evidence confirms that the performance gains achieved by the proposed framework are unlikely to be 
attributed to chance. The improvements are a direct result of architectural advantages, optimized hyperparameter 
configurations through Enhanced Bayesian Optimization, and the use of higher-resolution inputs. This 
strengthens the validity and reliability of the proposed model for clinical bone cancer detection.

Discussion
Deep learning models have dramatically improved the diagnosis of bone cancer based on histopathology image 
analysis. Existing methods have employed architectures, including CNNs, ResNet, and EfficientNet, as well as 
techniques such as transfer learning and explainable AI. These methods are capable of striking a balance between 
accuracy and interpretability. However, due to these challenges, although current methods can achieve a proof-
of-concept or very localized optimal performance, limitations at the dataset level, testing during retraining 
assessments, or a lack of clear model interpretability can limit generalizability in clinical use cases. These gaps 
in the state-of-the-art emphasize the importance of deriving novel deep learning frameworks that can solve the 
challenges mentioned above. Many current systems employ a pre-trained model with moderate fine-tuning at 
best, and/or do not utilize explainable AI to verify their predictions. Moreover, the challenge of class imbalance 
and the low heterogeneity of the dataset often result in models that are unqualified and fragile.

To address these gaps, we introduced the Optimized Deep Learning Framework for Bone Cancer Detection 
(ODLF-BCD), which embeds Enhanced Bayesian Optimization (EBO) for hyperparameter optimization, 
transfer learning, and explainable AI (XAI) tools, such as Grad-CAM and SHAP. These novelties ensure 
high-quality performance while maintaining a transparent decision-making process. This new methodology 
overcomes the limitations of the state of the art by providing improved optimization of model parameters, 
enhanced feature extraction, and increased prediction reliability. From the experimental results, it can be seen 
that EfficientNet-B4 achieves the best performance, with an accuracy of 97.9% in binary classification and 97.3% 
in multi-class classification. Explainable AI also validated that these models were trained on medically relevant 
regions, increasing clinical reliability. This work presents a comprehensive solution for bone cancer detection, 
overcoming the challenges of dataset size and interpretability. The proposed framework is of great value for 
reliable automated cancer diagnostics and provides a practical tool for clinical implementation.

Although there was complete concordance with an expert radiologist on a subset of this small evaluation 
cohort, comparing the model to an expert radiologist should be considered a first step toward determining 
diagnostic potential. To fully demonstrate the model’s robustness in real-world practice, a larger clinical study 
involving multiple radiologists and a more extensive test set is warranted. In the same vein, the statistical 
significance results, although encouraging, are based on a single dataset and repeated trials and will need to be 
confirmed in future work with broader cross-validation strategies using external datasets.

"Challenges and limitations of the study" offers the challenges and limitations of this study as well as 
directions for future research. It maintains transparency and opens new pathways for future developments in 
medical image analysis.

Challenges and limitations of the study
Our study has three significant limitations. Although suitable for this experiment, the dataset size may limit the 
model’s applicability to more extensive and heterogeneous populations. Second, this study currently utilizes only 
histopathology images, whereas other imaging modalities, such as CT and MRI, can be interoperable for enhanced 
diagnostic capabilities in multimodal settings. Third, despite the improved interpretability achieved through the 
integration of explainable AI, the explainability methods (e.g., Grad-CAM, SHAP) cannot accurately reflect 
the complex decision-making processes of all model architectures. Future work will address these limitations 
by utilizing larger datasets, multi-modal imaging, and more sophisticated explainability methods to achieve 
broader applicability. Additionally, the research is conducted on a single dataset, the Osteosarcoma-Tumor-
Assessment dataset. Further research will establish the generalizability of the framework across additional 
datasets and multiple centers to confirm its robustness and clinical significance.

Conclusion and future work
We thus propose the Optimized Deep Learning Framework for Bone Cancer Detection (ODLF-BCD), which 
leverages Enhanced Bayesian Optimization (EBO), transfer learning, and explainable AI to achieve both high 
classification accuracy and interpretability for binary and multi-class classification tasks. Building upon state-of-
the-art models such as EfficientNet-B4, DenseNet121, and ResNet50, and carefully tuning hyperparameters, the 
proposed methodology overcomes the limitations of current techniques, including dataset imbalance and model 
transparency. The experimental results showed that EfficientNet-B4 outperformed state-of-the-art models in 
both binary classification (97.9%) and multi-class classification (97.3%) tasks, with precision, recall, and F1-
scores (on average) exceeding 95%. Grad-CAM and SHAP were integrated into the model to validate predictions 

Comparison Mean accuracy difference p-value Significance

EfficientNet-B4 vs ResNet50 1.1% 0.012 Yes

EfficientNet-B4 vs DenseNet121 0.7% 0.048 Yes

EfficientNet-B4 vs InceptionV3 1.4% 0.007 Yes

EfficientNet-B4 vs VGG16 1.9% 0.003 Yes

Table 7.  Results of paired t-test for accuracy differences between EfficientNet-B4 and other models.
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by highlighting significant areas of interest in clinically relevant histopathology images. Although the study 
provides a strong basis for automated cancer diagnosis, certain limitations still exist, including smaller dataset 
sizes, the use of only histogram pathology images, and the need for advanced explainability methods. Addressing 
these limitations through larger, more diverse datasets, integrating multimodal imaging (e.g., CT, MRI), and 
designing novel explainability methods will enhance decision-making transparency and drive further research 
interest. This work lays a foundation for the clinical implementation of DL-based diagnostic tools, facilitating 
their application in practice and improving the automation and accuracy of cancer detection in medical images. 
To promote reproducibility and further research, the source code for the proposed bone cancer detection 
approach has been made publicly available at: ​h​t​t​p​s​:​​/​/​g​i​t​h​​u​b​.​c​o​m​​/​D​e​v​a​B​​o​l​l​e​d​​d​u​/​b​o​n​​e​_​c​a​n​c​​e​r​_​d​e​t​​e​c​t​i​o​n.

Data availability
Data is available with the corresponding author and will be given on request.

Materials availability
Materials used in this research are available from the corresponding author and can be provided on request.

Code availability
To promote reproducibility and further research, the source code for the proposed bone cancer detection 
approach has been made publicly available at: ​h​t​t​p​s​:​​​/​​/​g​i​t​h​u​​b​.​c​o​​m​/​D​e​v​a​​B​o​l​l​e​​d​​d​u​/​b​o​​​n​e​_​c​a​​n​​c​e​r​_​​d​e​t​e​c​t​i​o​n.
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