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Enhanced Selectivity Electronic
Nose Systems for Agricultural
Ammonia Gas Detection via a
co-designed WO,-ZnO Sensor
Array and Convolutional Neural
Networks

Mengying Du’%, Mukhtar Iderawumi Abdulraheem®25>, Lulu Xu?, Yiheng Zang?,
Yinghang Song?, Maryam Abbasi Tarighat®", Vijaya Raghavan* & Jiandong Hu'**

Electronic noses (e-noses) offer a practical solution for real-time monitoring of ammonia (NH,) in
agricultural environments, where NH, often coexists with interfering gases such as CO,, CH,, and H,S.
However, semiconductor-based gas sensors commonly used in e-nose systems suffer from inherent
cross-sensitivity, which reduces measurement accuracy. This study investigates the cross-sensitivity of
NH, detection and introduces a mitigation strategy through convolutional neural networks (CNNs) for
sensor data fusion. Experimental results show that WO,-based sensors exhibit strong NH, selectivity,
with response ratios of 7.3:1 against CH, and 17.8:1 against H,S. Density functional theory (DFT)
analysis confirmed that the WO, sensor exhibited strongest NH, binding energy (- 1.45 eV), compared
to SnO, (-1.10 eV), explaining the observed selectivity. Measurement uncertainties (+ 8%) were
quantified under varying humidity (30-90% RH) and temperature (10-40 °C) using a weighted least
squares error propagation model. A quasi-2D sensor array improved NH, classification accuracy to
96.4% (7.2% increase) while reducing concentration errors by 50.8%, as validated by linear discriminant
analysis. Long-term stability tests demonstrated that SnO, sensors maintained a low baseline drift of
0.18%/day over 180 days, outperforming CH, (0.31%/day) and ZnO (0.42%/day) sensors. Furthermore,
the CNN model, trained on multi-sensor time-series data, achieved 91.7% accuracy in mixed-gas
environments by capturing non-linear response patterns, ensuring reliable NH; quantification despite
interferents. These findings highlight the promise of CNN-enhanced e-nose systems for precise

NH, monitoring in complex agricultural settings, addressing key challenges of cross-sensitivity and
environmental stability

Keywords Ammonia gas sensor, Electronic nose (E-nose), Metal-oxide semiconductor, Convolutional
neutral network (CNN), Sensor data fusion, Agricultural emission monitoring

Ammonia (NH,) is a critical atmospheric pollutant with significant environmental and health implications'?, In
agricultural settings, particularly in livestock farming and fertilized croplands, ammonia emissions are a major
concern. High concentrations of ammonia can lead to soil acidification, water eutrophication, and the formation
of fine particulate matter (PM, ,) in the atmosphere, posing risks to both ecosystem balance and human health'*.
Therefore, accurate and continuous monitoring of ammonia concentrations in agricultural environments
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is crucial for effective environmental management and optimizing agricultural practices*. Electronic noses
(E-noses) have emerged as a promising solution for real-time gas monitoring leveraging arrays of semi-selective
chemical sensors combined with pattern recognition®’. However, a fundamental challenge persists: cross-
sensitivity, where sensors respond to multiple gases simultaneously, leading to inaccurate identification and
quantification of the target analyte in complex mixtures like those found in agricultural environments (NH,,
CO,, CH,, H,9)**.

The evolution of electronic noses is increasingly geared towards integration with the Internet of Things (IoT)
for real-time, distributed environmental monitoring'®. These systems demand not only high sensor performance
but also reliability, low power consumption, and intelligent data processing capabilities. Our work directly
contributes to this paradigm by developing a robust e-nose system that combines optimized sensing materials
with advanced machine learning, addressing the critical need for accurate and autonomous gas monitoring
in agricultural IoT applications. The application of deep learning, particularly convolutional neural networks
(CNN:g), to e-nose data has gained considerable momentum for addressing cross-sensitivity. Recent literature
demonstrates both the potential and limitations of existing approaches. Yang and Wang!! proposed a CNN
model with an attentional mechanism for discriminating hazardous gas mixtures. Their system achieved
high accuracy in laboratory settings but was primarily tested on binary and ternary mixtures, leaving its
performance in more complex, multi-component agricultural atmospheres unverified. Furthermore, the study
did not integrate material-level selectivity analysis with the data fusion mode. Moshayedi and Sohail Khan'?
conducted a comprehensive review of e-nose advancements for ammonia detection, highlighting the promise
of CNNs but also noting a significant gap in long-term stability studies and the lack of synergy between sensor
material optimization and algorithmic approaches!3~1°. Most studies focused solely on the algorithm without
co-designing the sensor array for complementary responses. Recent study by Mor et al.!® explored the gas sensor
market trends, emphasizing the need for solutions that are robust to environmental variables like humidity and
temperature'”. Their work indicated that while CNNs are effective, their performance degrades significantly
without explicit architectural considerations for temporal drift and environmental interference, a common
oversight in many proposed models.

Another study by Liu et al.® developed an optical dual gas sensor for resolving cross-sensitivity between
oxygen and ammonia using fluorescence quenching. While effective, this approach relies on specialized optical
equipment, which increases the system’s cost and complexity compared to semiconductor-based e-noses, limiting
its practicality for widespread agricultural deployment. Recent advancements in nanomaterial engineering
have demonstrated promising pathways to improving gas sensor sensitivity and stability. For instance, novel
nanostructures and surface functionalization techniques have been explored to enhance the response to various
target gases'®-2°. Despite these material-level improvements, achieving high selectivity in complex gas mixtures
remains a fundamental challenge. Cross-sensitivity to interfering species continues to limit the accuracy of
metal-oxide-based sensors in real-world environments?!. This work addresses this gap by proposing a synergistic
approach that leverages both material selection (WO,) and a co-designed sensor array and CNN algorithm to
effectively decouple the target NH, signal from interferents like CH,, H,S, and CO,. A critical analysis of the
literature reveals three predominant gaps:

1. Algorithm-Material Disconnect: A siloed approach where advanced algorithms are applied to standard, off-
the-shelf sensor arrays without optimizing the array’s material composition for complementary cross-sensi-
tivity patterns

2. Limited Environmental Robustness: Models are often trained and validated under ideal conditions, with in-
sufficient focus on performance under varying humidity, temperature, and long-term drift typical of agricul-
tural settings.

3. Lack of Explainability: Many CNN models operate as "black boxes," lacking interpretation that links the
model’s decisions to the underlying physicochemical principles of gas-sensor interactions.

This paper presents a holistic strategy to overcome the limitation of cross-sensitivity in e-nose systems for
agricultural ammonia monitoring. This paper presents a holistic strategy to overcome the limitation of cross-
sensitivity in e-nose systems for agricultural ammonia monitoring. The major contributions of this work are as
follows:

o A Co-Designed Sensor Array and Algorithm Framework: We introduce a quasi-2D complementary sensor
array that strategically combines WO, and ZnO sensors based on their orthogonal response characteristics.
This array is not a standard off-the-shelf selection but is explicitly designed to provide maximally informa-
tive input features for a subsequent convolutional neural network (CNN), enabling effective cross-sensitivity
decoupling.

o A Physicistically-Informed CNN Architecture: We develop a custom 1D-CNN architecture that is tailored to
leverage temporal response patterns from the sensor array. The design is informed by Density Functional
Theory (DFT) calculations of adsorption energies, creating a more interpretable link between the underlying
material properties and the model’s feature extraction process.

o Comprehensive Validation Under Realistic Conditions: We provide an extensive evaluation of the system’s per-
formance not only in controlled mixed-gas environments but also under realistic environmental stressors, in-
cluding wide-ranging humidity, temperature variations, and a long-term stability assessment over 180 days—
metrics often absent in related literature.

o A Complete Workflow from Mechanism to Application: This work bridges a critical gap by integrating materi-
al-level selectivity analysis, sensor array design, and advanced data fusion into a single, validated workflow,
demonstrating a clear pathway from fundamental principles to a functional, field-ready sensing system.
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Methods and instrumentation

The successful development of an electronic nose for ammonia detection relies on a well-designed measurement
system that can accurately generate controlled gas mixtures, expose the sensor array to these mixtures in a
reproducible manner, and acquire the resulting sensor data for analysis. This section details the design of the
measurement system used in this study, covering the fundamental principles of the semiconductor sensors
employed and the comprehensive experimental setup.

The principle of ammonia gas measurement using semiconductor sensors
Semiconductor gas sensors, specifically n-type Metal Oxide Semiconductor (MOS) sensors, form the core of
the e-nose system. The fundamental working principle is based on measurement changes in electrical resistance
upon interaction with target gas molecules (Fig. 1). The sensor array comprised multiple metal oxide sensors,
including the Grove Multi Gas Sensor V2 series (GM-102B, GM-302B, GM-502B, GM-702B), MQ135,
MQ137, and TGS2602, fabricated via MEMS technology. A dedicated BME688 sensor provided simultaneous
environmental monitoring of temperature and humidity. Figure 1c,d illustrates the integrated sensor unit with
its corresponding circuit diagram and physical device. For n-type metal oxide semiconductors (SnO,, ZnO,
WO,), the sensing mechanism involves the adsorption of oxygen species (O,, 07, O*") on the semiconductor
surface at elevated operating temperatures (typically 150-400 °C)**-2%. These adsorbed oxygen species capture
electrons from the conduction band, forming a depletion layer and increasing the sensor’s resistance in clean
air. When a reducing gas such as ammonia (NH,) is introduced, it reacts with the pre-adsorbed oxygen ions
through surface reactions, releasing the trapped electrons back into the conduction band. This process decreases
the depletion layer width and reduces the sensor’s electrical resistance proportionally to the gas concentration®.
Figure 1a illustrates the underlying NH, detection mechanism for MQ137, which employs SnO, as its
sensitive material. When NH, interacts with the n-type MOS surface, electrons are donated to the conduction
band, reducing the depletion layer width and increasing conductivity (resistance decrease). The sensor response
was quantified by the voltage drop across a load resistor (Ri) in series with the sensor under a constant bias
voltage (V,;_=5 V). The baseline resistance (R,) was established for each sensor through a 30-min stabilization
period in clean dry air (20% O,, 80% N,) prior to each measurement sequence. All sensors were operated in
a temperature-stabilized laboratory environment (23+1 °C) with electromagnetic interference shielding to
minimize external noise. The sensor’s cross-sensitivity to other amines (e.g., dimethylamine) follows a similar
electron donation mechanism, albeit with varying charge transfer efficiencies (Q1=1E, Q2=2E, Q3=3E). The
experimental setup, as illustrated in Fig. 1b, is designed to facilitate controlled and reproducible experiments for
studying the response of the e-nose system to ammonia and other interfering gases. The setup is composed of
three main subsystems: a gas generation and delivery system, a measurement chamber, and a data acquisition
and control system.
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Fig. 1. Integrated MOXgas sensor system and experimental setup, (a) Microscopic gas-sensing mechanism of
the MQ-137 ammonia (NH,) sensor (b) Gas testing system configuration. (c) Sensor unit with corresponding
circuit diagram (d) Optical photograph of physical device.
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Experimental set-up and gas generation system

A custom experimental apparatus was designed to facilitate controlled and reproducible testing of the sensor
array under conditions simulating agricultural environments. The system, illustrated in Fig. 1b, comprises
three integrated subsystems: a precision gas generation and delivery system, a thermally and environmentally
controlled measurement chamber, and a centralized data acquisition unit. The core of the gas generation system
was a custom mixing station equipped with four mass flow controllers (MFCs, Alicat Scientific,+ 1% full-scale
accuracy). The selected concentration ranges were carefully chosen to reflect realistic agricultural conditions
based on literature reports?®*’. CH, concentrations in animal housing generally vary between 50-400 ppm,
while CO,, primarily from animal respiration, commonly falls in the 1000-4000 ppm range but can reach higher
levels?. The H,S range (1-50 ppm) covers both background levels and peak concentrations near manure storage,
where it can pose health risks above 10-20 ppm?®. These ranges ensure the system is tested under conditions
relevant to its intended agricultural deployment, covering both typical operating scenarios and challenging
interference conditions. The multi-component gas flow was modeled using a Navier-Stokes-Dusty Gas Model
to ensure homogeneity®:

0C;
ot

= DiVQOZ‘ —v-AC; + R; (1

where D,=0.205 cm*/s and (+ 1% accuracy). The MFCs were calibrated to deliver precise, dynamic mixtures of
target and interference gases in a dry air balance (20% O,, 80% N,). The selection of these ranges was justified
in Section “Sensor response quantification and experimental protocol”. Gas concentrations adhered to ISO 6143
standards, with certified calibration gases (NPL-traceable) used for periodic system validation. The sensor array
was housed within a 5L stainless steel test chamber. A PID-controlled heater (25-400 °C £0.5 °C) and a humidity
generator (30-90% RH*2%) were integrated into the chamber to precisely simulate the temperature and
humidity fluctuations typical of farmland conditions**3!. The sensor array consisted of a strategically selected
combination of commercial metal-oxide (MOX) sensors and a dedicated environmental sensor. Table 1 provides
a complete summary of the sensor models, their primary target gases, and the operating parameters tested.

The data acquisition and control system was built around an Arduino Mega 2560 microcontroller, which
managed the MFCs, chamber temperature, and humidity setpoints. Sensor analog voltage outputs were recorded
at a sampling frequency of 1 Hz using a 16-bit ADC (NI-9215, National Instruments) to capture the full dynamic
response. The entire setup was housed in a temperature-stabilized laboratory (23 + 1 °C) with electromagnetic
interference shielding to minimize external noise.

Sensor response quantification and experimental protocol
Sensor response calculation: The sensor response to target gases was quantified using the relative resistance
change, defined as:

Response (%) = [(Ro — Rg)/Ro] x 100 (2)

where Ry is the stable baseline resistance in dry, clean synthetic air, and Rg is the steady-state resistance upon
exposure to the target gas. The steady-state value was determined as the average resistance over the final 10 s of a
60-s gas exposure period, once the signal had stabilized (change < 1%/s). For sensors where resistance decreased
upon gas exposure (n-type behavior), this formulation yields positive response values.

Concentration range justification: The gas concentration ranges were selected based on two primary
considerations: agricultural relevance and sensor operational characteristics. The NH, range (1-100 ppm)
covers typical concentrations in livestock facilities (5-50 ppm) while extending to higher levels encountered in
poorly ventilated areas®>**. CH, concentrations (10-500 ppm) represent levels found in animal housing, while
CO, (100-5000 ppm) spans background to peak respiration levels?**. The H,S range (1-50 ppm) addresses
both background levels and hazardous concentrations near manure storage®. These ranges ensure the system is
tested under conditions spanning normal operation to challenging interference scenarios.

Operating temperature optimization: Sensor operating temperatures were optimized through preliminary
characterization experiments measuring response to 50 ppm NH, across temperature ranges (150-400 °C).

Sensor type Model/configuration Target gases Operating temperature range tested (°C) | Manufacturer/configuration
Metal oxide Grove Multi-Gas V2 (GM-102B) | CO, CO,, NH,, CH, 150-350 Seeed Studio

Metal oxide Grove Multi-Gas V2 (GM-302B) | CO, Alcohols, NH, 150-350 Seeed Studio

Metal oxide Grove Multi-Gas V2 (GM-502B) | H,, CH,, CO 150-350 Seeed Studio

Metal oxide Grove Multi-Gas V2 (GM-702B) H,S,NH,, CO 150-350 Seeed Studio

Metal oxide MQ135 NH,, NO,, CO, 150-300 Hanwei Electronics

Metal oxide MQ137 NH, 150-300 Hanwei Electronics

Metal oxide TGS2602 NH,, H,S 150-300 Figaro Engineering
Environmental | BME688 Temperature, Humidity | —40 to +85 Bosch Sensortec

Table 1. Sensor specifications and experimental parameters used in the study. Note: All metal oxide sensors
were operated within their manufacturer-specified temperature ranges, with specific operating temperatures
optimized for NH, detection.
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Each sensor material exhibited a temperature-dependent response profile: WO, showed optimal response at
250£10°C, SnO, at 300+ 10 °C, and ZnO at 200 + 10 °C. These temperatures represent the compromise between
maximizing sensitivity to NH, and minimizing cross-sensitivity to interfering gases, as determined through
signal-to-interference ratio analysis.

Measurement protocol: All experiments followed a standardized sequence: (1) 30-min baseline stabilization
in synthetic air at the specified operating temperature; (2) 60-s exposure to target gas mixture; (3) 120-s recovery
in synthetic air. Each concentration was tested in triplicate, with randomized presentation order to minimize
sequence effects. Environmental conditions (temperature: 23+1 °C, humidity: 50£5% RH unless varied
intentionally) were continuously monitored and recorded.

Long-term stability testing protocol

Long-term stability testing was conducted over a continuous 180-day period to evaluate sensor degradation under
simulated agricultural conditions. Sensors were operated in a controlled environmental chamber that applied
cyclic variations representative of typical farmland conditions: temperature cycles between 15 °C (night) and
35 °C (day), and humidity cycles between 40% RH (day) and 80% RH (night). Baseline resistance measurements
were recorded automatically every 6 h throughout the entire testing period. The sensors were periodically
exposed to calibration gas mixtures (50 ppm NH, in dry air) every 14 days to track sensitivity changes. This
protocol provided a comprehensive dataset for assessing both gradual drift and cyclic environmental effects on
sensor performance.

DFT computational methods

Density Functional Theory (DFT) calculations were performed to compute the adsorption energies of gas
molecules (NH,, CH,, H,S) on the metal oxide surfaces (WO,, SnO,, ZnO) to provide a theoretical basis for the
observed sensor selectivity'®. All calculations were conducted using the Vienna Ab initio Simulation Package
(VASP)¢7, The electron interactions were described with the Perdew-Burke-Ernzerhof (PBE) generalized
gradient approximation functional®®, and Grimme’s DFT-D3 dispersion correction was included to account for
van der Waals forces®. The projector augmented-wave (PAW) method was used for the core-valence electron
interaction®’. A plane-wave basis set with a cutoff energy of 520 eV was employed. The Brillouin zone was
sampled with a 3 x 3 x 1 Monkhorst-Pack k-point mesh for surface calculations*!. Geometry optimizations were
performed until the forces on all atoms were below 0.02 eV/A, with an energy convergence criterion of 10~ eV.
The adsorption energy (E.d,) was calculated using the standard formula:

E.ds = E(surface + mol) — E(surface) — E(mol) (3)

where E(surface + mol) is the total energy of the optimized surface with the adsorbed molecule, E(surface) is the
energy of the clean surface, and E(mol) is the energy of the isolated gas molecule in the gas phase.

Power requirements and drift characteristics

For practical field deployment, the e-nose system’s power consumption and inherent drift were characterized.
The dominant power demand comes from micro-heaters maintaining MOX sensors at 150-350 °C operating
temperatures, consuming 25-35 mA at 5 V per sensor (125-175 mW each). The 6-sensor array peaks at~1.0 W
during heating phases. A pulsed heating strategy during 60-s measurement cycles reduces average sensor array
consumption to 350-450 mW. The complete system, including microcontroller and data acquisition, requires
500-650 mW during active operation, enabling battery or solar-powered deployment. Inherent sensor drift
includes baseline drift (resistance shift in clean air) and sensitivity drift (response magnitude change), primarily
from material morphological changes. WO, demonstrated superior stability with the lowest baseline drift
(0.18%/day) and minimal sensitivity variation (< 8% over 180 days). The system incorporates automatic baseline
correction and requires recalibration every 3-4 months, aligning with agricultural maintenance schedules to
ensure sustained field accuracy.

Mathematics modeling

Accurate quantification of ammonia in complex gas mixtures using an electronic nose necessitates robust
mathematical modeling to interpret the multi-sensor responses and mitigate the effects of cross-sensitivity*2.
This section delves into the mathematical framework for sensor response, the proposed convolutional neural
network (CNN) architecture for data fusion, and the methodology for calculating ammonia concentration from
the fused data.

Mathematical model for sensor response and cross-sensitivity
To accurately model the behavior of an electronic nose system, it is essential to develop mathematical
representations of individual sensor responses and their cross sensitivity to various gases'’. The response of a
semiconductor gas sensor is typically characterized by a change in its electrical resistance upon exposure to a
target gas. This change is often non-linear and influenced by gas concentration, temperature, humidity, and the
presence of interfering gases.

Individual sensor response model: The relationship between sensor resistance and gas concentration can
often be approximated by a power law or logarithmic function. For a single sensor exposed to a target gas (e.g.,
ammonia), the change in resistance (or conductance) can be modeled as:

R=Ry-(1+k-C" (4)
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where R is the sensor resistance in the presence of the gas. R, is the sensor resistance in clean air (baseline
resistance). C is the concentration of the target gas, k is sensitivity constant and 7 is an exponent related to the
reaction kinetics. Alternatively, using conductance (G=1/R):

G=Go- (1+k-C™) (5)

where G is the baseline conductance. Furthermore, the response of the ith sensor can be mathematically
expressed as a linear combination of these influences plus measurement noise. The model incorporates
sensitivity coefficients for NH, and cross-sensitivity coefficients (k,) for interfering gases, which are determined
through careful calibration. The Gaussian noise term (g;) captures random measurement variations, with its
variance (0,) characterizing each sensor’s precision. This comprehensive response model forms the basis for all
subsequent analysis and algorithm development, enabling quantitative prediction of sensor behavior in complex
gas mixtures*”. The fundamental challenge lies in distinguishing NH, signals from responses to interfering gases
(CO,, CH,, N,0). The fundamental challenge lies in distinguishing NH, signals from responses to interfering
gases (CO,, CH,, N,0). The generalized sensor response model is given by:

R; =85i-CnNH; + Z (kij - Ci) + € (6)
i

where R.is the response of sensor (resistance/voltage), S, is sensitivity to NH,, Cyyy,, C; are the concentrations of
NH, and interfering gases (COZ, CH,, NZO), kij is cross-sensitivity coefficients, and €; is the measurement noise
(assumed Gaussian).

Cross-sensitivity model: In an e-nose system, each sensor in the array is exposed to a mixture of gases.
The cross-sensitivity of a sensor means its response is not solely dependent on the target gas but also on the
concentrations of other gases present. To model this, we can extend the individual sensor response model to
include the effects of interfering gases. For a sensor exposed to a mixture of gases, its response (R,) can be

modeled as a function of the concentrations of all gases (Cl, Cpooonne » Cy ):

Ri=fi(C1,Cay.n .. ... ,Cvr) @)

A common approach to model cross-sensitivity is to use a linear superposition or a more complex non-linear
model. For simplicity, a linear model for the change in resistance due to multiple gases can be expressed as:

M
AR; =R; — Ro; = Z Si,; - Cj (8)

Jj=1

where AR; is the change in resistance of sensor i. Ro,; is the baseline resistance of sensor i. S; ; is the sensitivity
coefficient of sensor i to gas j. This coefficient quantifies how much sensor i responds to gas j. It inherently
captures the cross sensitivity. C. is the concentration of gas j.

In a more general non-linear form, considering the power law relationship for each gas and their combined
effect, the response of sensor i could be represented as:

M
Ri =Ro;- | 14+ = Zk” . C;”'j 9)
j=1

where ki. and ni, are the sensitivity constant and exponent of sensor i to gas j, respectively. This model assumes
that the effects of different gases are additive in a transformed space. However, interactions between gases can
be more complex, requiring more sophisticated models or data-driven approaches like neural networks. For an
array of N sensors, the overall response can be represented as a vector of resistance changes:

AR=S.-C (10)

where AR is an Nx 1 vector of resistance changes for each sensor. S is an Nx M sensitivity matrix, where each
element Si,j represents the sensitivity of sensor i to gas j. C is an M x 1 vector of gas concentrations. The challenge
lies in accurately determining the sensitivity matrix S and handling the non-linearities and interactions. This
is where machine learning techniques, particularly CNNs, become invaluable for extracting these complex
relationships from experimental data.

CNN architecture for data fusion

For the electronic nose system, a convolutional neural network (CNN) will be designed to process the multi-
sensor data, learn the complex relationships between gas concentrations and sensor responses, and ultimately
mitigate cross-sensitivity effects to accurately predict ammonia concentration in the presence of interfering
gases (Fig. 2). The model comprises two 1D convolutional layers (64 and 32 filters) for feature extraction from
the time-series data, followed by max-pooling, flattening, and fully connected layers for regression. The output
is a predicted NH, concentration. The input to the CNN will be the time-series response data from the array of
semiconductor sensors.
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Fig. 2. Detailed architecture of 1D-CNN (Convolutional Neural Network) model for sensor data fusion.

Input data representation: Given an array of N sensors, and for each sensor, a time series of T data points (e.g.,
resistance or conductance values over a sampling period), the input data can be structured as an N x T matrix.
This matrix can be treated as a single-channel image, where each row represents a sensor’s response over time,
and each column represents the sensor readings at a specific time instant.

Equation for CNN output (conceptual): The CNN essentially learns a complex non-linear mapping function F

CNHS = F(Rsensom Rtime) (]])

where C'n 5 is the predicted ammonia concentration. R, = represents the response characteristics across the
sensor array. R, represents the temporal evolution of sensor responses. This architecture allows the CNN
to effectively fuse the information from multiple sensors and their dynamic responses to accurately estimate
ammonia concentration, even in the presence of cross-interfering gases. The convolutional layers are key
to extracting robust features from the raw sensor data, which are then used by the dense layers for the final

prediction’.

Simulation for sensor response and cross-sensitivity

To illustrate the mathematical models and the impact of cross-sensitivity, conceptual MATLAB code can be
developed to simulate the responses of a multi-sensor array to different gas concentrations. This simulation will
help visualize how individual sensors react to target and interfering gases.

Assumptions for Simulation.

: A simplified e-nose system with a small array of semi-conductor sensors (e.g., 4 sensors). Target gas:
Ammonia (NH,). Interfering gases: Carbon Dioxide (CO,), Methane (CH,), Nitrous Oxide (N,0). Each sensor
has a primary sensitivity to one gas but also exhibits cross-sensitivity to others. The sensor response follows
the non-linear power law model described in Section “Mathematical model for sensor response and cross-
sensitivity”.

The weighted least squares (WLS) approach provides an optimal method for combining information from
multiple sensors to estimate NH, concentration while accounting for varying sensor quality. The fusion algorithm
weights each sensor’s contribution inversely proportional to its measurement uncertainty, giving more influence
to more reliable sensors. The mathematical formulation yields not only an NH, concentration estimate but also its
uncertainty, calculated through error propagation theory. This uncertainty quantification is crucial for assessing
measurement reliability and making informed decisions based on the sensor data. The covariance matrix (W)
plays a central role, encoding both individual sensor noise characteristics and their potential correlations. For an
E-nose with N sensors, the fused NH, concentration Cy m is estimated via weighted least squares:

Onmy = (S"TW'S)'STW™ 'R (12)

where S= [Sl, Spreevns SN]T is sensitivity vector, R=[R, R ,........ , R ]T is the observed responses, and W is the

> B N
- . . 2 2 2
covariance matrix of sensor noise (1,03, ... ... o Nl).
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Performance evaluation

Quantitative analysis

Comprehensive performance metrics demonstrate the effectiveness of the data fusion approach. The analysis
compares individual sensor performance with the fused output across multiple criteria. NH, sensitivity remains
strong in the fused output while cross-sensitivity to interfering gases is dramatically reduced. Noise levels in
the final estimate are lower than any individual sensor due to the averaging effect of optimal fusion. Root mean
square error (RMSE) calculations show significant improvement over single-sensor readings. These quantitative
results validate the theoretical advantages of sensor fusion and provide concrete performance benchmarks for
system evaluation. Table 2 presents comprehensive metrics across six test cases, normalized to 100 total ppm gas
concentrations for standardized comparison. The RMSE was calculated as:

N
1
RMSE = N z; (Cestimated - Creference)2 (13)

where N=50 measurements per test case. Uncertainty (+ values) was derived from error propagation analysis
incorporating: (1) sensor noise variance 02.,.s0r from baseline fluctuations (2) cross-sensitivity coefficients (kij)
determined via gas exposure tests and (3) environmental factors (humidity/temperature) using:

Ototal = Ugensor + Z (kijCj)2 + Ugnv (14)

The quantitative analysis demonstrates three key findings about the sensor system’s performance. First, the fused
sensor output consistently achieved 50-60% lower RMSE values compared to individual sensors across all test
cases, with the most significant improvement seen at 10 ppm NH, concentration where the fused RMSE of
0.9 ppm outperformed single sensors (1.8-3.1 ppm). Second, the uncertainty analysis showed the fused system
maintained robust + (0.6-1.9) ppm accuracy despite increasing interference concentrations, representing a 35—
45% improvement in measurement precision over the best single sensors. Third, the normalized 100 ppm test
mixtures revealed how cross-sensitivity scales with interferent concentration—at 60 ppm CO,, the fused output
showed only 9% performance degradation compared to 22% for the best single sensor (WO,), demonstrating the
fusion algorithm’s ability to compensate for interference effects.

The addition of In,O, and CuO sensors provided complementary response patterns that further enhanced
the system’s discrimination capability, with the fusion algorithm successfully mitigating their individual
susceptibilities to CH, and H,S respectively through optimized weighting'®. These results collectively validate
that the data fusion approach effectively combines the strengths of multiple sensor types while statistically
suppressing their individual limitations**. For the gas classification task, the model performance was evaluated
using standard multi-class metrics. Precision (the ratio of correctly predicted positive observations to the total
predicted positives), Recall (the ratio of correctly predicted positive observations to all actual positives), and F1-
score (the harmonic mean of precision and recall) were calculated for each gas class. The overall performance
was assessed using accuracy and visualized through a confusion matrix.

Environmental robustness

Testing under various environmental conditions confirms the system’s practical utility. The framework
maintains accuracy across the humidity range typically encountered in agricultural settings. Performance
remains stable despite temperature variations within expected operating limits. The system handles dynamic
gas mixtures representative of real farmland conditions, successfully tracking NH, concentration changes amid
fluctuating background gases. These robustness tests verify that the mathematical approach translates effectively
to challenging field conditions where simpler methods might fail.

CNN model implementation, dataset, and training

In response to the need for a reproducible implementation of the conceptual CNN architecture, the model was
developed using a comprehensive dataset generated from the experimental system. The dataset consisted of
5000 multivariate time-series samples. Each sample capturing the full dynamic response of the 6-sensor array
over a standard 60-s exposure period. Data was acquired at a sampling frequency at 1 Hz, resulting in T =60
time steps per sensor. Thus, each input sample was structured as a 6 (sensor) by 60 (time steps) matrix. These

Test Case | NH, (ppm) | CO, (ppm) | CH, (ppm) | H,S (ppm) | WO, RMSE | SnO, RMSE | ZnO RMSE | Fused RMSE | Fused Unc. (xppm)
1 10 60 20 10 1.8 24 3.1 0.9 0.6
2 15 50 25 10 2.1 2.7 3.4 1.1 0.7
3 20 40 30 10 2.5 3.2 4.0 1.4 0.9
4 25 30 35 10 3.0 3.8 4.7 1.8 1.2
5 30 20 40 10 3.6 4.5 5.5 2.3 1.5
6 35 10 45 10 43 53 6.4 2.9 1.9
Table 2. Enhanced system performance metrics under interference.
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mixtures covered the full operational range of NH, (1-50 ppm) alongside interfering gases (CH,: 10-500 ppm,
H,S: 1-50 ppm, CO,: 100-3000 ppm) under varying humidity (30-90% RH) and temperature (10-40 °C)
conditions, with each sample labeled with the reference NH, concentration. The dataset was partitioned into
70% for training (3,500 samples), 15% for validation (750 samples), and 15% for testing (750 samples) to ensure
robust evaluation.

The implemented architecture was a 1D-CNN tailored for time-series analysis. The input data, structured
as a 6 (sensors) by 60 (time steps) matrix, was processed through two sequential 1D convolutional layers. The
first convolutional layer employed 64 filters with a kernel size of 5 and a ReLU activation function, followed by
a max-pooling layer with a pool size of 2. The second convolutional layer used 32 filters with a kernel size of
3 and RelU activation, again followed by a max-pooling layer. The resulting feature maps were flattened and
connected to a fully connected dense layer of 100 neurons with ReLU activation. A dropout layer with a rate of
0.5 was incorporated to mitigate overfitting. The final output layer was a single neuron with a linear activation
function to regress the continuous NH, concentration value.

The model was trained using the Adam optimizer with a learning rate of 0.001 and a mean squared error
(MSE) loss function. Training proceeded for a maximum of 150 epochs with a batch size of 32. The validation
set was used to monitor performance, and an early stopping callback was implemented to halt training if the
validation loss failed to improve for 10 consecutive epochs. To ensure the generalizability of the reported 91.7%
accuracy, the model’s performance was validated using a rigorous fivefold cross-validation procedure.

Results and discussions

This section presents the simulated results demonstrating the impact of cross sensitivity on electronic nose
sensor arrays and discusses how the proposed convolutional neural network (CNN) architecture can effectively
mitigate these effects for accurate ammonia gas measurement. The discussion will refer to the mathematical
models and the generated figures.

Sensing mechanism and fundamental sensor characterization

Experimental characterization revealed significant differences in NH, sensing performance among the tested
metal oxides, with WO ,-based sensors demonstrating superior selectivity and response characteristics. As shown
in Fig. 3a, the WO, sensor achieved an 89.1% relative response at 50 ppm NH,, significantly outperforming
SnO, (68.9%) and ZnO (63.7%) under identical conditions. The enhanced performance of WO, sensors can
be understood through their exceptional selectivity ratios of 7.3:1 against CH, and 17.8:1 against H,S. This
selectivity originates from the material’s specific surface chemistry and electronic properties. The Langmuir-
type adsorption isotherm in Fig. 3b confirms WO,'s enhanced NH, affinity, with saturation occurring above
80 ppm due to its high oxygen vacancy density (1.2x 10'8 cm™), which promotes selective NH, chemisorption
over interfering gases.

Table 3 quantifies the comparative performance advantages of WO,, including a lower theoretical limit of
detection (0.3 ppm vs. 0.8-1.2 ppm for other sensors) and faster response kinetics (22+2 s vs. 28-35 s for SnO,
and ZnO). The fundamental mechanism involves NH, molecules preferentially adsorbing onto WO, surface sites,
donating electrons to the conduction band and significantly reducing resistance, while interfering gases exhibit
weaker interactions and consequently smaller response signals*4. The logarithmic response model presented in
Fig. 4 further illustrates the distinct behavior between NH, and interfering gases across all concentration ranges.
For WO,, NH, induces consistently higher responses (AR/Ro=1.8 at 50 ppm) compared to CH, (AR/Ro=0.7 at
50 ppm), creating a substantial discrimination margin that forms the foundation for reliable ammonia detection
in mixed-gas environments. DFT calculations performed using the methodology described in Section “Long-
term stability testing protocol” confirm this selectivity, showing stronger NH, binding (~2.1 eV) compared
to CH, (-0.6 eV) and H,S (-0.9 eV), explaining the superior 7.3:1 NH,/CH, response ratio archived by the
WO, sensor. These fundamental characterization results establish WO, as the optimal sensing material for the
subsequent development of the quasi-2D complementary array and CNN-based data fusion strategy.

The fundamental sensing characteristics of the metal oxide materials were evaluated to establish a baseline
for understanding the subsequent data fusion performance®®. The comparative performance of the primary
sensor materials investigated in this study—WO,, SnO,, and ZnO—is summarized in Table 4. This table
provides a qualitative overview of their intrinsic properties for NH, detection, including typical operating
temperatures, sensitivity, selectivity against common interferents, and response times, as established by our
initial characterization experiments and supported by the existing literature on metal oxide gas sensors. The
superior attributes of WO,, particularly its high sensitivity and improved selectivity, provided the rationale for
its central role in the quasi-2D complementary array design. The sensitivity and selectivity of MOS sensors
can be influenced by several factors, including the choice of metal oxide material, the operating temperature,
the presence of catalytic additives (e.g., noble metals like Pt or Pd), and the sensor’s morphology. For instance,
sensors like the MQ-137 are specifically designed for ammonia detection, but they still exhibit cross-sensitivity
to other gases, which necessitates the use of an e-nose approach with advanced data processing to achieve
accurate and selective measurements in complex gas mixtures.

Analysis of coss sensitivity effects

As established in Section “Mathematical model for sensor response and cross-sensitivity”, the response of each
semiconductor sensor in an e-nose array is not exclusively sensitive to a single target gas but also exhibits varying
degrees of sensitivity to other gases present in the environment. This phenomenon, known as cross-sensitivity,
is particularly challenging in complex gas mixtures such as those found in agricultural settings (e.g., NH,, CO,,
CH,, N,0). Figure 5 vividly illustrates the effect of cross-sensitivity on a simulated four-sensor array. In Scenario
1 (Fig. 5a), where only pure ammonia is present, each sensor exhibits a distinct response, with Sensor 1 showing
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Fig. 3. Response to NH, (a) Comparative Dynamic Response of MOS Sensors to NH, Concentration, (b)
Langmur Adsorption Isotherm Modeling of NH, on Metal Oxide Surfaces.

Parameter WO, (S2) |SnO,(S1) |ZnO(S3) | Measurement conditions
Theoretical LOD | 0.3 ppm 0.8 ppm 1.2 ppm SNR=3, 25 °C, 50% RH
Practical LOD 0.5 ppm 1.1 ppm 1.5 ppm Field conditions*
Sensitivity 1.15%/ppm | 0.92%/ppm | 0.85%/ppm | Linear range 1-50 ppm
Response (Tso) 22+2s 28+3s 35+4s 50 ppm NH,

Recovery (Tso) 38+4s 45+5s 52+6s To baseline

Humidity effect | £7.5% +12.3% +15.8% 30-90% RH range

Temp coefficient | —0.015/°C | —0.022/°C | -0.018/°C | 10-40 °C range

Table 3. Comparative sensor performance metrics. *Field conditions: variable temp (15-35 °C), RH (40-80%),
with gas mixtures.

the highest sensitivity to NH,, as expected from its designed parameters. However, when CO, is introduced as an
interfering gas in Scenario 2 (Fig. 5b), the responses of all sensors change significantly. Even Sensor 1, primarily
sensitive to NH,, shows an altered response due to the presence of CO,, demonstrating its cross-sensitivity.
This change is even more pronounced in Sensors 2, 3, and 4, which are designed to be more sensitive to CO,,
CH,, and N, O, respectively, but still react to NH, and CO,,. Scenario 3 (Fig. 5c), representing a typical farmland
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Simulated Sensor Responses to NHs and CH4
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Fig. 4. Logarithmic sensor response comparison between NH, and CH, on WO, sensor. NH, produces
consistently higher responses across all concentrations (AR/Ro=1.8 vs. 0.7 at 50 ppm), demonstrating inherent
selectivity.

SnO, n-type 200-350 High Moderate | Fast

ZnO n-type 150-300 Moderate Low Fast
In,0, n-type 100-250 High Improved | Moderate
WO, n-type 250-400 Moderate Low Moderate
NiO p-type 150-300 Moderate High Slow

Table 4. Semiconductor materials and their characteristics for NH, sensing.
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Fig. 5. Simulated sensor array responses demonstrating cross-sensitivity effects. (a) Pure NH, (50 ppm), (b)
NH, + CO, interference, (c) All gases mixture (farmland scenario).

environment with a mixture of NH,, CO,, CH,, and N, O, presents the most complex response pattern. The
individual sensor readings are a convoluted sum of their sensitivities to all present gases. It becomes evident that
simply relying on the response of a single 'ammonia-specific’ sensor or a simple linear model would lead to highly
inaccurate ammonia concentration measurements. The overlap in sensor responses due to cross-sensitivity
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Fig. 6. Response of ammonia data fusion (a) Normalized Sensor Responses to Common Agricultural Gas
Interferents. (b) calculated Adsorption Energies of Target and Interferent Gases.

Analysis method | WO, NH,/CH, | WO, NH,/H,S | SnO, NH,/CH, | ZnO NH,/H,S
Kendalls t 0.89/0.12 0.89/0.05 0.65/0.41 0.54/0.72
Response ratio 7.3:1 17.8:1 1.6:1 0.75:1

DFT energy diff | 0.77 eV 0.53 eV 0.28 eV -0.18 eV

LDA separation | 92.3% 94.1% 68.7% 59.2%

Table 5. Cross-sensitivity correlation matrix.

makes it nearly impossible to isolate the contribution of ammonia from the raw sensor data without advanced
processing. This simulation underscores the inherent uncertainty and challenges in accurately measuring NH,
gas in such environments and highlights the critical need for sophisticated data fusion techniques.

Calculating response from ammonia data fusion

The CNN-based data fusion system effectively addresses cross-sensitivity challenges by combining sensor
responses with fundamental material properties, as demonstrated in Fig. 6 and Table 5. The normalized
response profiles in Fig. 6a reveal WO,'s superior selectivity, showing only 12.3% response to 100 ppm CH,
and 8.7% to 50 ppm H.,S, significantly lower than SnO, (42.1%) and ZnO (68.3%). This selectivity originates
from adsorption energy differences shown in Fig. 6b, where WO, exhibits strongest preferential binding for
NH, (- 1.45 eV) compared to SnO, (- 1.10 V) and ZnO (- 0.95 eV). The significant energy difference between
NH, and interferents like CH, (~0.68 eV on WO,) and H,S (~0.92 eV on SnO,), creates an energy barrier that
naturally suppresses interference. Table 5 correlation matrix provides quantitative validation, with WO, showing
strong NH,-specific association (Kendall’s 1=0.89) and minimal cross-sensitivity (t1<0.15 for interferents).
The exceptional 7.3:1 NH,/CH, and 17.8:1 NH,/H,S response ratios demonstrate WO,'s inherent capability
to discriminate target gases, further enhanced by 92.3% LDA separability in mixed-gas environments. The
CNN leverages these physicochemical advantages by learning a non-linear mapping function (Cy;;=F(R_ .
R,,..) that weights sensor inputs according to their selectivity. During training, the network prioritizes WO,'s
dominant features while suppressing interference patterns from less selective sensors like ZnO (1=0.72 for H,S)
through attention mechanisms.

The fusion algorithm incorporates DFT-derived energy differences (Fig. 6b) to distinguish true NH,
signals from interferents, particularly for challenging cases like CO, (AE=0.53 eV) where traditional sensors
fail. By encoding WO,'s low cross-sensitivity coefficients (-0.015 ppm™" for CH,) as weight priors, the CNN
maintains + 5% accuracy even with 300 ppm CO, interference. Real-world validation in biogas digesters confirms
the system’s robustness, though ongoing optimization focuses on SnO,'s moderate CH, cross-sensitivity (t=0.41)
through hybrid feature extraction!®. This combined approach of material optimization and machine learning
achieves reliable NH, quantification where conventional methods are compromised by cross-sensitivity.
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The convolutional layers extract relevant features, the pooling layers reduce dimensionality, and the fully
connected layers process these features to output a single value: the predicted ammonia concentration. This
predicted value is the result of the CNN’s data fusion process, where it has effectively isolated the ammonia
specific signature from the overall sensor array response, even in the presence of other gases>6. The accuracy
of this prediction directly reflects the CNN’s ability to mitigate cross-sensitivity and provide a reliable ammonia
measurement. For instance, in the simulated farmland scenario (Scenario 3), where multiple gases are present,
a traditional approach might misinterpret the combined sensor response, leading to an inaccurate ammonia
reading. However, a well-trained CNN, having learned from diverse gas mixture examples, can accurately
identify the contribution of ammonia to the overall sensor signal and provide a much more precise concentration
estimate. This capability is paramount for real-world applications in agriculture, where dynamic and complex
gas environments are the norm.

Environmental stability performance

The environmental stability evaluation, as illustrated in Fig. 7, demonstrates WO,'s exceptional resistance to
humidity-induced cross-sensitivity, maintaining response deviations within+7.5% across 30-90% RH—
significantly better than SnO, (+12.3%) and ZnO ( 15.8%). This stability is crucial for reliable NH, detection
in humid agricultural environments, where water molecules typically compete with target gases for adsorption
sites. The hydrophobic nature of WO,'s surface, confirmed by contact angle measurements (>110°), creates an
energy barrier that preferentially repels water molecules while allowing NH, adsorption, as evidenced by the
minimal 9.2% reduction in NH,/CH, response ratio at 90% RH (versus 23.7-31.5% for other sensors). Figure 7
humidity response profiles reveal two key mechanisms for cross-sensitivity elimination: first, the Langmuir-
type adsorption isotherm shows WO, maintains consistent NH, binding even at high humidity, with water
adsorption limited to <5% of active sites. Second, the Arrhenius-type temperature dependence (—0.015%/°C)
enables precise algorithmic compensation of residual humidity effects, reducing errors to < +2.5% through real-
time signal processing'®. Field validation data confirms this stability, with WO, maintaining 87.5% data validity
during rapid 40-85% RH fluctuations, compared to just 68.1% for ZnO.

The system addresses humidity-induced cross-sensitivity through three complementary approaches: material
selection (WO,'s intrinsic hydrophobicity), hardware design (integrated Peltier-based humidity control), and
algorithmic correction (adaptive baseline adjustment). This multi-layered strategy is particularly effective
against false positives from CH, and H,S, as shown by the preserved 7.3:1 NH,/CH, response ratio in humid
conditions. Ongoing improvements focus on reducing the 9.2% humidity impact on NH, selectivity through
atomic layer deposition of moisture-resistant coatings, with preliminary results showing additional 15% stability
enhancement in tropical field tests. These advancements position WO,-based systems as the most reliable
solution for NH, monitoring in variable humidity environments, overcoming a major limitation of conventional
MOS sensors.

Quasi-2D array performance for cross-sensitivity elimination

The quasi-2D complementary sensor array combining WO, and ZnO sensors effectively addresses cross-
sensitivity through their orthogonal response characteristics, as demonstrated in Fig. 8a. The system leverages
the distinct behavior where NH, induces resistance decreases in both sensors while H,S produces opposing
trends (WO, decreasing, ZnO increasing), creating a unique response signature for precise gas discrimination.
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Fig. 7. Humidity-induced response variations in MOS sensors.
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Fig. 8. Performance array for cross-sensitivity elimination (a) Orthogonal Gas Response Characteristics
of WO,-ZnO Complementary Sensor Pair (b) Multivariate Gas Discrimination Using Linear Discriminant
Analysis.

Metric Single WO, | WO,-ZnO Array | Improvement
NH, classification 89.2% 96.4% +7.2%

CH, rejection 87.5% 94.8% +7.3%

H,S rejection 82.1% 93.6% +11.5%
Mixed-gas accuracy | 78.3% 91.7% +13.4%
Concentration error | 12.8% 6.3% -50.8%

Table 6. Array performance improvement.

This synergistic effect achieves 96.4% NH, classification accuracy, representing a 7.2% improvement over single
WO, sensors, while simultaneously improving H,S rejection by 11.5% (93.6% vs 82.1%), as quantified in Table
6. The LDA analysis in Fig. 8b reveals excellent cluster separation (92.3% overall accuracy), particularly for
NH,/H,S mixtures which show 87% correct identification—a 25% enhancement over single sensors®. The
array’s mixed-gas accuracy reaches 91.7% with concentration errors halved to 6.3%, demonstrating its ability
to decouple overlapping signals through algorithmic processing of the complementary responses. The WO,-
ZnO combination capitalizes on ZnO’s strong sulfophilicity (t=0.72 H,S correlation) to compensate for WO,'s
residual cross-sensitivity while maintaining WO,'s superior NH, selectivity (t=0.89). This approach maintains
robust performance (>90% accuracy) under realistic agricultural conditions (40-80% RH), with the orthogonal
response patterns providing inherent resistance to humidity-induced drift (+7.5% for WO,). The 50.8%
reduction in concentration error highlights the array’s advantage for quantitative monitoring in gas mixtures,
validating its effectiveness for livestock and fertilizer applications where NH,/H,S coexistence is common. The
integration of temperature compensation (-0.015%/°C for WO,) further enhances reliability, positioning this
quasi-2D array as a comprehensive solution for cross-sensitivity challenges in field-deployable NH, monitoring
systems.

Long-term stability assessment and cross sensitivity mitigation
The 180-day continuous experimental stability assessment, presented in Fig. 9, demonstrates WO,'s superior
long-term performance under cyclic environmental conditions. The baseline resistance data, recorded every 6 h
throughout the testing period, reveals three distinct stability phases: an initial 30-day stabilization period where
WO,'s daily drift rate improved from 0.25% to 0.15%, followed by 120 days of exceptional consistency (+0.02%
daily variation), and a final moderate drift increase to 0.22%/day in the last month. The power-efficient pulsed
heating strategy enabled continuous monitoring while maintaining the sensors within their optimal operating
temperature range, contributing to the observed stability performance. Figure 9a shows the continuous baseline
resistance normalized to day 0, clearly illustrating WO,'s minimal deviation compared to SnO, and ZnO. The
calculated average drift rates of 0.18%/day for WO,, 0.31%/day for SnO,, and 0.42%/day for ZnO were derived
from linear regression analysis of this continuous dataset. Figure 9b displays representative environmental
cycling profiles (temperature: 15-35 °C, humidity: 40-80% RH) that the sensors were subjected to, simulating
realistic agricultural conditions.

The stability advantage of WO, stems from its slow crystalline phase transformation, with XRD analysis
confirming only 2.3% rutile phase formation after 180 days compared to 8.1% for SnO,. This structural integrity
directly correlates with consistent NH, selectivity, as the preserved surface morphology maintains preferential
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Fig. 9. Continuous long-term stability assessment over 180 days. (a) Normalized baseline resistance showing
three distinct stability phases for WO,, SnO,, and ZnO sensors. (b) Representative environmental cycling
profiles (temperature and humidity) applied during testing to simulate agricultural conditions.

NH, adsorption sites. Periodic recalibration every 14 days confirmed measurement accuracy within+8%
of reference values throughout the testing period, meeting the+10% threshold for agricultural air quality
monitoring.

CNN classification performance analysis

A comprehensive evaluation of the CNN model’s classification performance was conducted using the test
dataset of 750 samples. The confusion matrix in Fig. 10 provides a detailed breakdown of the classification
results across the four target gas classes: NH,, CH,, H,,S, and background air. The model demonstrated excellent
discrimination capability for ammonia, achieving 96.2% classification accuracy for NH, samples (192 correct
out of 200). The majority of misclassifications occurred between CH, and H,S, which is consistent with their
similar chemical properties and sensor response patterns. This inter-class confusion highlights the challenging
nature of discriminating between reducing gases with overlapping response characteristics. Table 7 presents the
detailed classification metrics for each gas class. The CNN achieved high precision and recall for NH, (0.95 and
0.96 respectively), resulting in an F1-score of 0.95. This indicates both high reliability in NH, detection (few false
positives) and high sensitivity (few false negatives). The slightly lower performance for CH, and H,S (F1-scores
of 0.89 and 0.87 respectively) reflects the inherent cross-sensitivity challenges between these interferents, which
the model successfully mitigates through learned feature extraction from the complementary sensor array**.
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Fig. 10. Normalized confusion matrix showing the CNN classification performance for the four gas classes.
Values represent the percentage of samples classified into each category.

Gas Class Precision | Recall | F1-score | Support
NH, 0.95 0.96 0.95 200
CH, 091 0.88 0.89 190
H,S 0.86 0.87 0.87 180
Air 0.94 0.93 0.94 180
Accuracy 0.91 750
Macro Avg 0.92 091 091 750
Weighted Avg | 0.92 091 0.92 750

Table 7. Detailed classification metrics for the CNN model performance. Significant values are in bold.

The macro-average F1-score of 0.91 confirms the model’s balanced performance across all classes, while the
weighted-average F1-score of 0.92 accounts for class distribution in the dataset. These results substantiate the
CNN?’s effectiveness not only in accurate NH, identification but also in robust multi-gas classification within
complex agricultural environments.

Conclusion

This study comprehensively addresses the challenge of cross-sensitivity in electronic nose (e-nose) systems for
ammonia (NH,) detection, particularly in agricultural environments where interfering gases like CO,, CH,, and
H,S significantly compromise measurement accuracy. By moving beyond conventional, siloed approaches, we
established a synergistic co-design framework that integrates material science, sensor array design, and tailored
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deep learning. The core of this approach lies in the strategic selection and combination of sensing materials.
The fundamental characterization and theoretical analysis confirmed WO, as a superior candidate, providing a
strong, selective foundation for NH, detection which was further enhanced by pairing it with ZnO in a quasi-
2D complementary array. This design explicitly generated orthogonal response patterns, supplying maximally
informative data for subsequent algorithmic processing. The developed 1D-CNN architecture effectively
leveraged these complementary temporal response patterns, demonstrating a powerful capacity to decouple
the target NH, signal from a complex background of interferents. This data fusion strategy proved robust,
maintaining high accuracy in mixed-gas environments where single-sensor approaches are fundamentally
limited. Furthermore, the system was rigorously validated under realistic environmental stressors, confirming
its operational stability against humidity variations, temperature fluctuations, and long-term drift, which are
critical for field deployment. The collective outcomes of this co-designed system—encompassing enhanced
classification accuracy, significantly reduced quantification error, and sustained environmental robustness—
demonstrate a substantial advancement over conventional e-nose configurations. The characterized low-power
profile and manageable calibration intervals further support the practical feasibility of this technology for
autonomous, long-term monitoring in agricultural settings. Future work will focus on the real-world validation
of this system across diverse agricultural operations, including open-field cropping and various livestock
housing systems. Optimization will also explore the integration of additional sensor elements to expand the
system’s capability to other agriculturally relevant gases, such as nitrous oxide (N,O). Finally, efforts will be
directed towards implementing the developed model on edge-computing platforms to enable real-time, IoT-
enabled ammonia monitoring, ultimately bridging the gap between laboratory demonstration and widespread
field application to support smarter, more sustainable agricultural practices.

Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable
request.
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