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Electronic noses (e-noses) offer a practical solution for real-time monitoring of ammonia (NH3) in 
agricultural environments, where NH3 often coexists with interfering gases such as CO2, CH4, and H2S. 
However, semiconductor-based gas sensors commonly used in e-nose systems suffer from inherent 
cross-sensitivity, which reduces measurement accuracy. This study investigates the cross-sensitivity of 
NH3 detection and introduces a mitigation strategy through convolutional neural networks (CNNs) for 
sensor data fusion. Experimental results show that WO2-based sensors exhibit strong NH3 selectivity, 
with response ratios of 7.3:1 against CH4 and 17.8:1 against H2S. Density functional theory (DFT) 
analysis confirmed that the WO3 sensor exhibited strongest NH3 binding energy (− 1.45 eV), compared 
to SnO2 (− 1.10 eV), explaining the observed selectivity. Measurement uncertainties (± 8%) were 
quantified under varying humidity (30–90% RH) and temperature (10–40 °C) using a weighted least 
squares error propagation model. A quasi-2D sensor array improved NH3 classification accuracy to 
96.4% (7.2% increase) while reducing concentration errors by 50.8%, as validated by linear discriminant 
analysis. Long-term stability tests demonstrated that SnO2 sensors maintained a low baseline drift of 
0.18%/day over 180 days, outperforming CH4 (0.31%/day) and ZnO (0.42%/day) sensors. Furthermore, 
the CNN model, trained on multi-sensor time-series data, achieved 91.7% accuracy in mixed-gas 
environments by capturing non-linear response patterns, ensuring reliable NH3 quantification despite 
interferents. These findings highlight the promise of CNN-enhanced e-nose systems for precise 
NH3 monitoring in complex agricultural settings, addressing key challenges of cross-sensitivity and 
environmental stability

Keywords  Ammonia gas sensor, Electronic nose (E-nose), Metal-oxide semiconductor, Convolutional 
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Ammonia (NH3) is a critical atmospheric pollutant with significant environmental and health implications1,2, In 
agricultural settings, particularly in livestock farming and fertilized croplands, ammonia emissions are a major 
concern. High concentrations of ammonia can lead to soil acidification, water eutrophication, and the formation 
of fine particulate matter (PM2.5) in the atmosphere, posing risks to both ecosystem balance and human health1,3. 
Therefore, accurate and continuous monitoring of ammonia concentrations in agricultural environments 
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is crucial for effective environmental management and optimizing agricultural practices4,5. Electronic noses 
(E-noses) have emerged as a promising solution for real-time gas monitoring leveraging arrays of semi-selective 
chemical sensors combined with pattern recognition6,7. However, a fundamental challenge persists: cross-
sensitivity, where sensors respond to multiple gases simultaneously, leading to inaccurate identification and 
quantification of the target analyte in complex mixtures like those found in agricultural environments (NH3, 
CO2, CH4, H2S)8,9.

The evolution of electronic noses is increasingly geared towards integration with the Internet of Things (IoT) 
for real-time, distributed environmental monitoring10. These systems demand not only high sensor performance 
but also reliability, low power consumption, and intelligent data processing capabilities. Our work directly 
contributes to this paradigm by developing a robust e-nose system that combines optimized sensing materials 
with advanced machine learning, addressing the critical need for accurate and autonomous gas monitoring 
in agricultural IoT applications. The application of deep learning, particularly convolutional neural networks 
(CNNs), to e-nose data has gained considerable momentum for addressing cross-sensitivity. Recent literature 
demonstrates both the potential and limitations of existing approaches. Yang and Wang11 proposed a CNN 
model with an attentional mechanism for discriminating hazardous gas mixtures. Their system achieved 
high accuracy in laboratory settings but was primarily tested on binary and ternary mixtures, leaving its 
performance in more complex, multi-component agricultural atmospheres unverified. Furthermore, the study 
did not integrate material-level selectivity analysis with the data fusion mode. Moshayedi and Sohail Khan12 
conducted a comprehensive review of e-nose advancements for ammonia detection, highlighting the promise 
of CNNs but also noting a significant gap in long-term stability studies and the lack of synergy between sensor 
material optimization and algorithmic approaches13–15. Most studies focused solely on the algorithm without 
co-designing the sensor array for complementary responses. Recent study by Mor et al.16 explored the gas sensor 
market trends, emphasizing the need for solutions that are robust to environmental variables like humidity and 
temperature17. Their work indicated that while CNNs are effective, their performance degrades significantly 
without explicit architectural considerations for temporal drift and environmental interference, a common 
oversight in many proposed models.

Another study by Liu et al.8 developed an optical dual gas sensor for resolving cross-sensitivity between 
oxygen and ammonia using fluorescence quenching. While effective, this approach relies on specialized optical 
equipment, which increases the system’s cost and complexity compared to semiconductor-based e-noses, limiting 
its practicality for widespread agricultural deployment. Recent advancements in nanomaterial engineering 
have demonstrated promising pathways to improving gas sensor sensitivity and stability. For instance, novel 
nanostructures and surface functionalization techniques have been explored to enhance the response to various 
target gases18–20. Despite these material-level improvements, achieving high selectivity in complex gas mixtures 
remains a fundamental challenge. Cross-sensitivity to interfering species continues to limit the accuracy of 
metal-oxide-based sensors in real-world environments21. This work addresses this gap by proposing a synergistic 
approach that leverages both material selection (WO3) and a co-designed sensor array and CNN algorithm to 
effectively decouple the target NH3 signal from interferents like CH4, H2S, and CO2. A critical analysis of the 
literature reveals three predominant gaps:

	1.	 Algorithm-Material Disconnect: A siloed approach where advanced algorithms are applied to standard, off-
the-shelf sensor arrays without optimizing the array’s material composition for complementary cross-sensi-
tivity patterns

	2.	 Limited Environmental Robustness: Models are often trained and validated under ideal conditions, with in-
sufficient focus on performance under varying humidity, temperature, and long-term drift typical of agricul-
tural settings.

	3.	 Lack of Explainability: Many CNN models operate as "black boxes," lacking interpretation that links the 
model’s decisions to the underlying physicochemical principles of gas-sensor interactions.

This paper presents a holistic strategy to overcome the limitation of cross-sensitivity in e-nose systems for 
agricultural ammonia monitoring. This paper presents a holistic strategy to overcome the limitation of cross-
sensitivity in e-nose systems for agricultural ammonia monitoring. The major contributions of this work are as 
follows:

•	 A Co-Designed Sensor Array and Algorithm Framework: We introduce a quasi-2D complementary sensor 
array that strategically combines WO3 and ZnO sensors based on their orthogonal response characteristics. 
This array is not a standard off-the-shelf selection but is explicitly designed to provide maximally informa-
tive input features for a subsequent convolutional neural network (CNN), enabling effective cross-sensitivity 
decoupling.

•	 A Physicistically-Informed CNN Architecture: We develop a custom 1D-CNN architecture that is tailored to 
leverage temporal response patterns from the sensor array. The design is informed by Density Functional 
Theory (DFT) calculations of adsorption energies, creating a more interpretable link between the underlying 
material properties and the model’s feature extraction process.

•	 Comprehensive Validation Under Realistic Conditions: We provide an extensive evaluation of the system’s per-
formance not only in controlled mixed-gas environments but also under realistic environmental stressors, in-
cluding wide-ranging humidity, temperature variations, and a long-term stability assessment over 180 days—
metrics often absent in related literature.

•	 A Complete Workflow from Mechanism to Application: This work bridges a critical gap by integrating materi-
al-level selectivity analysis, sensor array design, and advanced data fusion into a single, validated workflow, 
demonstrating a clear pathway from fundamental principles to a functional, field-ready sensing system.
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Methods and instrumentation
The successful development of an electronic nose for ammonia detection relies on a well-designed measurement 
system that can accurately generate controlled gas mixtures, expose the sensor array to these mixtures in a 
reproducible manner, and acquire the resulting sensor data for analysis. This section details the design of the 
measurement system used in this study, covering the fundamental principles of the semiconductor sensors 
employed and the comprehensive experimental setup.

The principle of ammonia gas measurement using semiconductor sensors
Semiconductor gas sensors, specifically n-type Metal Oxide Semiconductor (MOS) sensors, form the core of 
the e-nose system. The fundamental working principle is based on measurement changes in electrical resistance 
upon interaction with target gas molecules (Fig. 1). The sensor array comprised multiple metal oxide sensors, 
including the Grove Multi Gas Sensor V2 series (GM-102B, GM-302B, GM-502B, GM-702B), MQ135, 
MQ137, and TGS2602, fabricated via MEMS technology. A dedicated BME688 sensor provided simultaneous 
environmental monitoring of temperature and humidity. Figure 1c,d illustrates the integrated sensor unit with 
its corresponding circuit diagram and physical device. For n-type metal oxide semiconductors (SnO2, ZnO, 
WO3), the sensing mechanism involves the adsorption of oxygen species (O2, O−, O2−) on the semiconductor 
surface at elevated operating temperatures (typically 150–400 °C)22–24. These adsorbed oxygen species capture 
electrons from the conduction band, forming a depletion layer and increasing the sensor’s resistance in clean 
air. When a reducing gas such as ammonia (NH3) is introduced, it reacts with the pre-adsorbed oxygen ions 
through surface reactions, releasing the trapped electrons back into the conduction band. This process decreases 
the depletion layer width and reduces the sensor’s electrical resistance proportionally to the gas concentration25.

Figure  1a illustrates the underlying NH3 detection mechanism for MQ137, which employs SnO2 as its 
sensitive material. When NH3 interacts with the n-type MOS surface, electrons are donated to the conduction 
band, reducing the depletion layer width and increasing conductivity (resistance decrease). The sensor response 
was quantified by the voltage drop across a load resistor (Rₗ) in series with the sensor under a constant bias 
voltage (VH_ = 5 V). The baseline resistance (R₀) was established for each sensor through a 30-min stabilization 
period in clean dry air (20% O2, 80% N2) prior to each measurement sequence. All sensors were operated in 
a temperature-stabilized laboratory environment (23 ± 1  °C) with electromagnetic interference shielding to 
minimize external noise. The sensor’s cross-sensitivity to other amines (e.g., dimethylamine) follows a similar 
electron donation mechanism, albeit with varying charge transfer efficiencies (Q1 = 1E, Q2 = 2E, Q3 = 3E). The 
experimental setup, as illustrated in Fig. 1b, is designed to facilitate controlled and reproducible experiments for 
studying the response of the e-nose system to ammonia and other interfering gases. The setup is composed of 
three main subsystems: a gas generation and delivery system, a measurement chamber, and a data acquisition 
and control system.

Fig. 1.  Integrated MOXgas sensor system and experimental setup, (a) Microscopic gas-sensing mechanism of 
the MQ-137 ammonia (NH3) sensor (b) Gas testing system configuration. (c) Sensor unit with corresponding 
circuit diagram (d) Optical photograph of physical device.
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Experimental set-up and gas generation system
A custom experimental apparatus was designed to facilitate controlled and reproducible testing of the sensor 
array under conditions simulating agricultural environments. The system, illustrated in Fig.  1b, comprises 
three integrated subsystems: a precision gas generation and delivery system, a thermally and environmentally 
controlled measurement chamber, and a centralized data acquisition unit. The core of the gas generation system 
was a custom mixing station equipped with four mass flow controllers (MFCs, Alicat Scientific, ± 1% full-scale 
accuracy). The selected concentration ranges were carefully chosen to reflect realistic agricultural conditions 
based on literature reports26,27. CH4 concentrations in animal housing generally vary between 50–400  ppm, 
while CO2, primarily from animal respiration, commonly falls in the 1000–4000 ppm range but can reach higher 
levels28. The H2S range (1–50 ppm) covers both background levels and peak concentrations near manure storage, 
where it can pose health risks above 10–20 ppm8. These ranges ensure the system is tested under conditions 
relevant to its intended agricultural deployment, covering both typical operating scenarios and challenging 
interference conditions. The multi-component gas flow was modeled using a Navier–Stokes-Dusty Gas Model 
to ensure homogeneity29:

	
∂Ci

∂t
= Di∇2Ci − v · ∆Ci + Ri� (1)

where Di = 0.205 cm2/s and (± 1% accuracy). The MFCs were calibrated to deliver precise, dynamic mixtures of 
target and interference gases in a dry air balance (20% O2, 80% N2). The selection of these ranges was justified 
in Section “Sensor response quantification and experimental protocol”. Gas concentrations adhered to ISO 6143 
standards, with certified calibration gases (NPL-traceable) used for periodic system validation. The sensor array 
was housed within a 5L stainless steel test chamber. A PID-controlled heater (25–400 °C ± 0.5 °C) and a humidity 
generator (30–90% RH ± 2%) were integrated into the chamber to precisely simulate the temperature and 
humidity fluctuations typical of farmland conditions30,31. The sensor array consisted of a strategically selected 
combination of commercial metal-oxide (MOX) sensors and a dedicated environmental sensor. Table 1 provides 
a complete summary of the sensor models, their primary target gases, and the operating parameters tested.

The data acquisition and control system was built around an Arduino Mega 2560 microcontroller, which 
managed the MFCs, chamber temperature, and humidity setpoints. Sensor analog voltage outputs were recorded 
at a sampling frequency of 1 Hz using a 16-bit ADC (NI-9215, National Instruments) to capture the full dynamic 
response. The entire setup was housed in a temperature-stabilized laboratory (23 ± 1 °C) with electromagnetic 
interference shielding to minimize external noise.

Sensor response quantification and experimental protocol
Sensor response calculation: The sensor response to target gases was quantified using the relative resistance 
change, defined as:

	 Response (%) = [(Ro − Rg)/Ro] × 100� (2)

where R₀ is the stable baseline resistance in dry, clean synthetic air, and Rg is the steady-state resistance upon 
exposure to the target gas. The steady-state value was determined as the average resistance over the final 10 s of a 
60-s gas exposure period, once the signal had stabilized (change < 1%/s). For sensors where resistance decreased 
upon gas exposure (n-type behavior), this formulation yields positive response values.

Concentration range justification: The gas concentration ranges were selected based on two primary 
considerations: agricultural relevance and sensor operational characteristics. The NH3 range (1–100  ppm) 
covers typical concentrations in livestock facilities (5–50 ppm) while extending to higher levels encountered in 
poorly ventilated areas32,33. CH4 concentrations (10–500 ppm) represent levels found in animal housing, while 
CO2 (100–5000 ppm) spans background to peak respiration levels28,34. The H2S range (1–50 ppm) addresses 
both background levels and hazardous concentrations near manure storage35. These ranges ensure the system is 
tested under conditions spanning normal operation to challenging interference scenarios.

Operating temperature optimization: Sensor operating temperatures were optimized through preliminary 
characterization experiments measuring response to 50  ppm NH3 across temperature ranges (150–400  °C). 

Sensor type Model/configuration Target gases Operating temperature range tested (°C) Manufacturer/configuration

Metal oxide Grove Multi-Gas V2 (GM-102B) CO, CO2, NH3, CH4 150–350 Seeed Studio

Metal oxide Grove Multi-Gas V2 (GM-302B) CO, Alcohols, NH3 150–350 Seeed Studio

Metal oxide Grove Multi-Gas V2 (GM-502B) H2, CH4, CO 150–350 Seeed Studio

Metal oxide Grove Multi-Gas V2 (GM-702B) H2S, NH3, CO 150–350 Seeed Studio

Metal oxide MQ135 NH3, NOₓ, CO2 150–300 Hanwei Electronics

Metal oxide MQ137 NH3 150–300 Hanwei Electronics

Metal oxide TGS2602 NH3, H2S 150–300 Figaro Engineering

Environmental BME688 Temperature, Humidity − 40 to + 85 Bosch Sensortec

Table 1.  Sensor specifications and experimental parameters used in the study. Note: All metal oxide sensors 
were operated within their manufacturer-specified temperature ranges, with specific operating temperatures 
optimized for NH3 detection.
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Each sensor material exhibited a temperature-dependent response profile: WO3 showed optimal response at 
250 ± 10 °C, SnO2 at 300 ± 10 °C, and ZnO at 200 ± 10 °C. These temperatures represent the compromise between 
maximizing sensitivity to NH3 and minimizing cross-sensitivity to interfering gases, as determined through 
signal-to-interference ratio analysis.

Measurement protocol: All experiments followed a standardized sequence: (1) 30-min baseline stabilization 
in synthetic air at the specified operating temperature; (2) 60-s exposure to target gas mixture; (3) 120-s recovery 
in synthetic air. Each concentration was tested in triplicate, with randomized presentation order to minimize 
sequence effects. Environmental conditions (temperature: 23 ± 1  °C, humidity: 50 ± 5% RH unless varied 
intentionally) were continuously monitored and recorded.

Long-term stability testing protocol
Long-term stability testing was conducted over a continuous 180-day period to evaluate sensor degradation under 
simulated agricultural conditions. Sensors were operated in a controlled environmental chamber that applied 
cyclic variations representative of typical farmland conditions: temperature cycles between 15 °C (night) and 
35 °C (day), and humidity cycles between 40% RH (day) and 80% RH (night). Baseline resistance measurements 
were recorded automatically every 6  h throughout the entire testing period. The sensors were periodically 
exposed to calibration gas mixtures (50 ppm NH3 in dry air) every 14 days to track sensitivity changes. This 
protocol provided a comprehensive dataset for assessing both gradual drift and cyclic environmental effects on 
sensor performance.

DFT computational methods
Density Functional Theory (DFT) calculations were performed to compute the adsorption energies of gas 
molecules (NH3, CH4, H2S) on the metal oxide surfaces (WO3, SnO2, ZnO) to provide a theoretical basis for the 
observed sensor selectivity18. All calculations were conducted using the Vienna Ab initio Simulation Package 
(VASP)36,37. The electron interactions were described with the Perdew-Burke-Ernzerhof (PBE) generalized 
gradient approximation functional38, and Grimme’s DFT-D3 dispersion correction was included to account for 
van der Waals forces39. The projector augmented-wave (PAW) method was used for the core-valence electron 
interaction40. A plane-wave basis set with a cutoff energy of 520  eV was employed. The Brillouin zone was 
sampled with a 3 × 3 × 1 Monkhorst–Pack k-point mesh for surface calculations41. Geometry optimizations were 
performed until the forces on all atoms were below 0.02 eV/Å, with an energy convergence criterion of 10−5 eV. 
The adsorption energy (Eₐdₛ) was calculated using the standard formula:

	 Eads = E(surface + mol) − E(surface) − E(mol)� (3) 

where E(surface + mol) is the total energy of the optimized surface with the adsorbed molecule, E(surface) is the 
energy of the clean surface, and E(mol) is the energy of the isolated gas molecule in the gas phase.

Power requirements and drift characteristics
For practical field deployment, the e-nose system’s power consumption and inherent drift were characterized. 
The dominant power demand comes from micro-heaters maintaining MOX sensors at 150–350 °C operating 
temperatures, consuming 25–35 mA at 5 V per sensor (125–175 mW each). The 6-sensor array peaks at ~ 1.0 W 
during heating phases. A pulsed heating strategy during 60-s measurement cycles reduces average sensor array 
consumption to 350–450 mW. The complete system, including microcontroller and data acquisition, requires 
500–650 mW during active operation, enabling battery or solar-powered deployment. Inherent sensor drift 
includes baseline drift (resistance shift in clean air) and sensitivity drift (response magnitude change), primarily 
from material morphological changes. WO3 demonstrated superior stability with the lowest baseline drift 
(0.18%/day) and minimal sensitivity variation (< 8% over 180 days). The system incorporates automatic baseline 
correction and requires recalibration every 3–4 months, aligning with agricultural maintenance schedules to 
ensure sustained field accuracy.

Mathematics modeling
Accurate quantification of ammonia in complex gas mixtures using an electronic nose necessitates robust 
mathematical modeling to interpret the multi-sensor responses and mitigate the effects of cross-sensitivity42. 
This section delves into the mathematical framework for sensor response, the proposed convolutional neural 
network (CNN) architecture for data fusion, and the methodology for calculating ammonia concentration from 
the fused data.

Mathematical model for sensor response and cross-sensitivity
To accurately model the behavior of an electronic nose system, it is essential to develop mathematical 
representations of individual sensor responses and their cross sensitivity to various gases10. The response of a 
semiconductor gas sensor is typically characterized by a change in its electrical resistance upon exposure to a 
target gas. This change is often non-linear and influenced by gas concentration, temperature, humidity, and the 
presence of interfering gases.

Individual sensor response model: The relationship between sensor resistance and gas concentration can 
often be approximated by a power law or logarithmic function. For a single sensor exposed to a target gas (e.g., 
ammonia), the change in resistance (or conductance) can be modeled as:

	 R = R0 · (1 + k · Cn)� (4)
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where R is the sensor resistance in the presence of the gas. R0 is the sensor resistance in clean air (baseline 
resistance). C is the concentration of the target gas, k is sensitivity constant and n is an exponent related to the 
reaction kinetics. Alternatively, using conductance (G = 1/R):

	 G = G0 · (1 + k′ · Cn′)� (5)

where G0 is the baseline conductance. Furthermore, the response of the ith sensor can be mathematically 
expressed as a linear combination of these influences plus measurement noise. The model incorporates 
sensitivity coefficients for NH3 and cross-sensitivity coefficients (kij) for interfering gases, which are determined 
through careful calibration. The Gaussian noise term (εi) captures random measurement variations, with its 
variance (σi

2) characterizing each sensor’s precision. This comprehensive response model forms the basis for all 
subsequent analysis and algorithm development, enabling quantitative prediction of sensor behavior in complex 
gas mixtures42. The fundamental challenge lies in distinguishing NH3 signals from responses to interfering gases 
(CO2, CH4, N2O). The fundamental challenge lies in distinguishing NH3 signals from responses to interfering 
gases (CO2, CH4, N2O). The generalized sensor response model is given by:

	
Ri = Si · CNH3 +

∑
j ̸=i

(kij · Ci) + ϵi� (6)

where Ri is the response of sensor (resistance/voltage), Si is sensitivity to NH3, CNH3, Ci are the concentrations of 
NH3 and interfering gases (CO2, CH4, N2O), kij is cross-sensitivity coefficients, and ϵi is the measurement noise 
(assumed Gaussian).

Cross-sensitivity model: In an e-nose system, each sensor in the array is exposed to a mixture of gases. 
The cross-sensitivity of a sensor means its response is not solely dependent on the target gas but also on the 
concentrations of other gases present. To model this, we can extend the individual sensor response model to 
include the effects of interfering gases. For a sensor exposed to a mixture of gases, its response (Ri) can be 
modeled as a function of the concentrations of all gases (C1, C2, ……., CM ):

	 Ri = fi(C1, C2, . . . . . . . . . , CM )� (7)

A common approach to model cross-sensitivity is to use a linear superposition or a more complex non-linear 
model. For simplicity, a linear model for the change in resistance due to multiple gases can be expressed as:

	
∆Ri = Ri − R0,i =

M∑
j=1

Si,j · Cj � (8)

where ∆Ri is the change in resistance of sensor i. R0,i is the baseline resistance of sensor i. Si,j  is the sensitivity 
coefficient of sensor i to gas j. This coefficient quantifies how much sensor i responds to gas j. It inherently 
captures the cross sensitivity. Cj is the concentration of gas j.

In a more general non-linear form, considering the power law relationship for each gas and their combined 
effect, the response of sensor i could be represented as:

	
Ri = R0,i ·

(
1+ =

M∑
j=1

ki,j · C
ni,j

j

)
� (9)

where kij and nij are the sensitivity constant and exponent of sensor i to gas j, respectively. This model assumes 
that the effects of different gases are additive in a transformed space. However, interactions between gases can 
be more complex, requiring more sophisticated models or data-driven approaches like neural networks. For an 
array of N sensors, the overall response can be represented as a vector of resistance changes:

	 ∆R = S · C � (10)

where ΔR is an N × 1 vector of resistance changes for each sensor. S is an N × M sensitivity matrix, where each 
element Si,j represents the sensitivity of sensor i to gas j. C is an M × 1 vector of gas concentrations. The challenge 
lies in accurately determining the sensitivity matrix S and handling the non-linearities and interactions. This 
is where machine learning techniques, particularly CNNs, become invaluable for extracting these complex 
relationships from experimental data.

CNN architecture for data fusion
For the electronic nose system, a convolutional neural network (CNN) will be designed to process the multi-
sensor data, learn the complex relationships between gas concentrations and sensor responses, and ultimately 
mitigate cross-sensitivity effects to accurately predict ammonia concentration in the presence of interfering 
gases (Fig. 2). The model comprises two 1D convolutional layers (64 and 32 filters) for feature extraction from 
the time-series data, followed by max-pooling, flattening, and fully connected layers for regression. The output 
is a predicted NH3 concentration. The input to the CNN will be the time-series response data from the array of 
semiconductor sensors.
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Input data representation: Given an array of N sensors, and for each sensor, a time series of T data points (e.g., 
resistance or conductance values over a sampling period), the input data can be structured as an N × T matrix. 
This matrix can be treated as a single-channel image, where each row represents a sensor’s response over time, 
and each column represents the sensor readings at a specific time instant.

Equation for CNN output (conceptual): The CNN essentially learns a complex non-linear mapping function F

	 CNH3 = F (Rsensor, Rtime)� (11)

where CNH3  is the predicted ammonia concentration. Rsensor represents the response characteristics across the 
sensor array. Rtime represents the temporal evolution of sensor responses. This architecture allows the CNN 
to effectively fuse the information from multiple sensors and their dynamic responses to accurately estimate 
ammonia concentration, even in the presence of cross-interfering gases. The convolutional layers are key 
to extracting robust features from the raw sensor data, which are then used by the dense layers for the final 
prediction17.

Simulation for sensor response and cross-sensitivity
To illustrate the mathematical models and the impact of cross-sensitivity, conceptual MATLAB code can be 
developed to simulate the responses of a multi-sensor array to different gas concentrations. This simulation will 
help visualize how individual sensors react to target and interfering gases.

Assumptions for Simulation.
: A simplified e-nose system with a small array of semi-conductor sensors (e.g., 4 sensors). Target gas: 

Ammonia (NH3). Interfering gases: Carbon Dioxide (CO2), Methane (CH4), Nitrous Oxide (N2O). Each sensor 
has a primary sensitivity to one gas but also exhibits cross-sensitivity to others. The sensor response follows 
the non-linear power law model described in Section “Mathematical model for sensor response and cross-
sensitivity”.

The weighted least squares (WLS) approach provides an optimal method for combining information from 
multiple sensors to estimate NH3 concentration while accounting for varying sensor quality. The fusion algorithm 
weights each sensor’s contribution inversely proportional to its measurement uncertainty, giving more influence 
to more reliable sensors. The mathematical formulation yields not only an NH3 concentration estimate but also its 
uncertainty, calculated through error propagation theory. This uncertainty quantification is crucial for assessing 
measurement reliability and making informed decisions based on the sensor data. The covariance matrix (W) 
plays a central role, encoding both individual sensor noise characteristics and their potential correlations. For an 
E-nose with N sensors, the fused NH3 concentration CNH3  is estimated via weighted least squares:

	 CNH3 = (ST W −1S)−1ST W −1R� (12)

where S = [S1, S2,.…, SN]T is sensitivity vector, R = [R1, R2,…….., RN]T is the observed responses, and W is the 
covariance matrix of sensor noise (σ2

1 , σ2
2 , . . . . . . σ2

N ).

Fig. 2.  Detailed architecture of 1D-CNN (Convolutional Neural Network) model for sensor data fusion.
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Performance evaluation
Quantitative analysis
Comprehensive performance metrics demonstrate the effectiveness of the data fusion approach. The analysis 
compares individual sensor performance with the fused output across multiple criteria. NH3 sensitivity remains 
strong in the fused output while cross-sensitivity to interfering gases is dramatically reduced. Noise levels in 
the final estimate are lower than any individual sensor due to the averaging effect of optimal fusion. Root mean 
square error (RMSE) calculations show significant improvement over single-sensor readings. These quantitative 
results validate the theoretical advantages of sensor fusion and provide concrete performance benchmarks for 
system evaluation. Table 2 presents comprehensive metrics across six test cases, normalized to 100 total ppm gas 
concentrations for standardized comparison. The RMSE was calculated as:

	

RMSE =

√√√√ 1
N

N∑
i=1

(Cestimated − Creference)2� (13)

where N = 50 measurements per test case. Uncertainty (± values) was derived from error propagation analysis 
incorporating: (1) sensor noise variance σ2

sensor  from baseline fluctuations (2) cross-sensitivity coefficients (kij) 
determined via gas exposure tests and (3) environmental factors (humidity/temperature) using:

	
σtotal =

√
σ2

sensor +
∑

(kijCj)2 + σ2
env � (14)

The quantitative analysis demonstrates three key findings about the sensor system’s performance. First, the fused 
sensor output consistently achieved 50–60% lower RMSE values compared to individual sensors across all test 
cases, with the most significant improvement seen at 10  ppm NH3 concentration where the fused RMSE of 
0.9 ppm outperformed single sensors (1.8–3.1 ppm). Second, the uncertainty analysis showed the fused system 
maintained robust ± (0.6–1.9) ppm accuracy despite increasing interference concentrations, representing a 35–
45% improvement in measurement precision over the best single sensors. Third, the normalized 100 ppm test 
mixtures revealed how cross-sensitivity scales with interferent concentration—at 60 ppm CO2, the fused output 
showed only 9% performance degradation compared to 22% for the best single sensor (WO3), demonstrating the 
fusion algorithm’s ability to compensate for interference effects.

The addition of In2O3 and CuO sensors provided complementary response patterns that further enhanced 
the system’s discrimination capability, with the fusion algorithm successfully mitigating their individual 
susceptibilities to CH4 and H2S respectively through optimized weighting10. These results collectively validate 
that the data fusion approach effectively combines the strengths of multiple sensor types while statistically 
suppressing their individual limitations43. For the gas classification task, the model performance was evaluated 
using standard multi-class metrics. Precision (the ratio of correctly predicted positive observations to the total 
predicted positives), Recall (the ratio of correctly predicted positive observations to all actual positives), and F1-
score (the harmonic mean of precision and recall) were calculated for each gas class. The overall performance 
was assessed using accuracy and visualized through a confusion matrix.

Environmental robustness
Testing under various environmental conditions confirms the system’s practical utility. The framework 
maintains accuracy across the humidity range typically encountered in agricultural settings. Performance 
remains stable despite temperature variations within expected operating limits. The system handles dynamic 
gas mixtures representative of real farmland conditions, successfully tracking NH3 concentration changes amid 
fluctuating background gases. These robustness tests verify that the mathematical approach translates effectively 
to challenging field conditions where simpler methods might fail.

CNN model implementation, dataset, and training
In response to the need for a reproducible implementation of the conceptual CNN architecture, the model was 
developed using a comprehensive dataset generated from the experimental system. The dataset consisted of 
5000 multivariate time-series samples. Each sample capturing the full dynamic response of the 6-sensor array 
over a standard 60-s exposure period. Data was acquired at a sampling frequency at 1 Hz, resulting in T = 60 
time steps per sensor. Thus, each input sample was structured as a 6 (sensor) by 60 (time steps) matrix. These 

Test Case NH3 (ppm) CO2 (ppm) CH4 (ppm) H2S (ppm) WO3 RMSE SnO2 RMSE ZnO RMSE Fused RMSE Fused Unc. (±ppm)

1 10 60 20 10 1.8 2.4 3.1 0.9 0.6

2 15 50 25 10 2.1 2.7 3.4 1.1 0.7

3 20 40 30 10 2.5 3.2 4.0 1.4 0.9

4 25 30 35 10 3.0 3.8 4.7 1.8 1.2

5 30 20 40 10 3.6 4.5 5.5 2.3 1.5

6 35 10 45 10 4.3 5.3 6.4 2.9 1.9

Table 2.  Enhanced system performance metrics under interference.
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mixtures covered the full operational range of NH3 (1–50 ppm) alongside interfering gases (CH4: 10–500 ppm, 
H2S: 1–50  ppm, CO2: 100–3000  ppm) under varying humidity (30–90% RH) and temperature (10–40  °C) 
conditions, with each sample labeled with the reference NH3 concentration. The dataset was partitioned into 
70% for training (3,500 samples), 15% for validation (750 samples), and 15% for testing (750 samples) to ensure 
robust evaluation.

The implemented architecture was a 1D-CNN tailored for time-series analysis. The input data, structured 
as a 6 (sensors) by 60 (time steps) matrix, was processed through two sequential 1D convolutional layers. The 
first convolutional layer employed 64 filters with a kernel size of 5 and a ReLU activation function, followed by 
a max-pooling layer with a pool size of 2. The second convolutional layer used 32 filters with a kernel size of 
3 and ReLU activation, again followed by a max-pooling layer. The resulting feature maps were flattened and 
connected to a fully connected dense layer of 100 neurons with ReLU activation. A dropout layer with a rate of 
0.5 was incorporated to mitigate overfitting. The final output layer was a single neuron with a linear activation 
function to regress the continuous NH3 concentration value.

The model was trained using the Adam optimizer with a learning rate of 0.001 and a mean squared error 
(MSE) loss function. Training proceeded for a maximum of 150 epochs with a batch size of 32. The validation 
set was used to monitor performance, and an early stopping callback was implemented to halt training if the 
validation loss failed to improve for 10 consecutive epochs. To ensure the generalizability of the reported 91.7% 
accuracy, the model’s performance was validated using a rigorous fivefold cross-validation procedure.

Results and discussions
This section presents the simulated results demonstrating the impact of cross sensitivity on electronic nose 
sensor arrays and discusses how the proposed convolutional neural network (CNN) architecture can effectively 
mitigate these effects for accurate ammonia gas measurement. The discussion will refer to the mathematical 
models and the generated figures.

Sensing mechanism and fundamental sensor characterization
Experimental characterization revealed significant differences in NH3 sensing performance among the tested 
metal oxides, with WO3-based sensors demonstrating superior selectivity and response characteristics. As shown 
in Fig. 3a, the WO3 sensor achieved an 89.1% relative response at 50 ppm NH3, significantly outperforming 
SnO2 (68.9%) and ZnO (63.7%) under identical conditions. The enhanced performance of WO3 sensors can 
be understood through their exceptional selectivity ratios of 7.3:1 against CH4 and 17.8:1 against H2S. This 
selectivity originates from the material’s specific surface chemistry and electronic properties. The Langmuir-
type adsorption isotherm in Fig. 3b confirms WO3's enhanced NH3 affinity, with saturation occurring above 
80 ppm due to its high oxygen vacancy density (1.2 × 1018 cm−3), which promotes selective NH3 chemisorption 
over interfering gases.

Table 3 quantifies the comparative performance advantages of WO3, including a lower theoretical limit of 
detection (0.3 ppm vs. 0.8–1.2 ppm for other sensors) and faster response kinetics (22 ± 2 s vs. 28–35 s for SnO2 
and ZnO). The fundamental mechanism involves NH3 molecules preferentially adsorbing onto WO3 surface sites, 
donating electrons to the conduction band and significantly reducing resistance, while interfering gases exhibit 
weaker interactions and consequently smaller response signals44. The logarithmic response model presented in 
Fig. 4 further illustrates the distinct behavior between NH3 and interfering gases across all concentration ranges. 
For WO3, NH3 induces consistently higher responses (ΔR/R₀ = 1.8 at 50 ppm) compared to CH4 (ΔR/R₀ = 0.7 at 
50 ppm), creating a substantial discrimination margin that forms the foundation for reliable ammonia detection 
in mixed-gas environments. DFT calculations performed using the methodology described in Section “Long-
term stability testing protocol” confirm this selectivity, showing stronger NH3 binding (− 2.1  eV) compared 
to CH4 (− 0.6 eV) and H2S (− 0.9 eV), explaining the superior 7.3:1 NH3/CH4 response ratio archived by the 
WO3 sensor. These fundamental characterization results establish WO3 as the optimal sensing material for the 
subsequent development of the quasi-2D complementary array and CNN-based data fusion strategy.

The fundamental sensing characteristics of the metal oxide materials were evaluated to establish a baseline 
for understanding the subsequent data fusion performance44. The comparative performance of the primary 
sensor materials investigated in this study—WO3, SnO2, and ZnO—is summarized in Table 4. This table 
provides a qualitative overview of their intrinsic properties for NH3 detection, including typical operating 
temperatures, sensitivity, selectivity against common interferents, and response times, as established by our 
initial characterization experiments and supported by the existing literature on metal oxide gas sensors. The 
superior attributes of WO3, particularly its high sensitivity and improved selectivity, provided the rationale for 
its central role in the quasi-2D complementary array design. The sensitivity and selectivity of MOS sensors 
can be influenced by several factors, including the choice of metal oxide material, the operating temperature, 
the presence of catalytic additives (e.g., noble metals like Pt or Pd), and the sensor’s morphology. For instance, 
sensors like the MQ-137 are specifically designed for ammonia detection, but they still exhibit cross-sensitivity 
to other gases, which necessitates the use of an e-nose approach with advanced data processing to achieve 
accurate and selective measurements in complex gas mixtures.

Analysis of coss sensitivity effects
As established in Section “Mathematical model for sensor response and cross-sensitivity”, the response of each 
semiconductor sensor in an e-nose array is not exclusively sensitive to a single target gas but also exhibits varying 
degrees of sensitivity to other gases present in the environment. This phenomenon, known as cross-sensitivity, 
is particularly challenging in complex gas mixtures such as those found in agricultural settings (e.g., NH3, CO2, 
CH4, N2O). Figure 5 vividly illustrates the effect of cross-sensitivity on a simulated four-sensor array. In Scenario 
1 (Fig. 5a), where only pure ammonia is present, each sensor exhibits a distinct response, with Sensor 1 showing 
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the highest sensitivity to NH3, as expected from its designed parameters. However, when CO2 is introduced as an 
interfering gas in Scenario 2 (Fig. 5b), the responses of all sensors change significantly. Even Sensor 1, primarily 
sensitive to NH3, shows an altered response due to the presence of CO2, demonstrating its cross-sensitivity.

This change is even more pronounced in Sensors 2, 3, and 4, which are designed to be more sensitive to CO2, 
CH4, and N2O, respectively, but still react to NH3 and CO2. Scenario 3 (Fig. 5c), representing a typical farmland 

Parameter WO3 (S2) SnO2 (S1) ZnO (S3) Measurement conditions

Theoretical LOD 0.3 ppm 0.8 ppm 1.2 ppm SNR = 3, 25 °C, 50% RH

Practical LOD 0.5 ppm 1.1 ppm 1.5 ppm Field conditions*

Sensitivity 1.15%/ppm 0.92%/ppm 0.85%/ppm Linear range 1–50 ppm

Response (τ₉₀) 22 ± 2 s 28 ± 3 s 35 ± 4 s 50 ppm NH3

Recovery (τ₉₀) 38 ± 4 s 45 ± 5 s 52 ± 6 s To baseline

Humidity effect ± 7.5%  ± 12.3%  ± 15.8% 30–90% RH range

Temp coefficient − 0.015/°C − 0.022/°C − 0.018/°C 10–40 °C range

Table 3.  Comparative sensor performance metrics. *Field conditions: variable temp (15–35 °C), RH (40–80%), 
with gas mixtures.

 

Fig. 3.  Response to NH3 (a) Comparative Dynamic Response of MOS Sensors to NH3 Concentration, (b) 
Langmur Adsorption Isotherm Modeling of NH3 on Metal Oxide Surfaces.
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environment with a mixture of NH3, CO2, CH4, and N2O, presents the most complex response pattern. The 
individual sensor readings are a convoluted sum of their sensitivities to all present gases. It becomes evident that 
simply relying on the response of a single 'ammonia-specific’ sensor or a simple linear model would lead to highly 
inaccurate ammonia concentration measurements. The overlap in sensor responses due to cross-sensitivity 

Fig. 5.  Simulated sensor array responses demonstrating cross-sensitivity effects. (a) Pure NH3 (50 ppm), (b) 
NH3 + CO2 interference, (c) All gases mixture (farmland scenario).

 

Sensor material Semiconductor type Operating temp (°C) NH3 sensitivity Selectivity Response time

SnO2 n-type 200–350 High Moderate Fast

ZnO n-type 150–300 Moderate Low Fast

In2O3 n-type 100–250 High Improved Moderate

WO3 n-type 250–400 Moderate Low Moderate

NiO p-type 150–300 Moderate High Slow

Table 4.  Semiconductor materials and their characteristics for NH3 sensing.

 

Fig. 4.  Logarithmic sensor response comparison between NH3 and CH4 on WO3 sensor. NH3 produces 
consistently higher responses across all concentrations (ΔR/R₀ = 1.8 vs. 0.7 at 50 ppm), demonstrating inherent 
selectivity.
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makes it nearly impossible to isolate the contribution of ammonia from the raw sensor data without advanced 
processing. This simulation underscores the inherent uncertainty and challenges in accurately measuring NH3 
gas in such environments and highlights the critical need for sophisticated data fusion techniques.

Calculating response from ammonia data fusion
The CNN-based data fusion system effectively addresses cross-sensitivity challenges by combining sensor 
responses with fundamental material properties, as demonstrated in Fig.  6 and Table 5. The normalized 
response profiles in Fig. 6a reveal WO3's superior selectivity, showing only 12.3% response to 100 ppm CH4 
and 8.7% to 50 ppm H2S, significantly lower than SnO2 (42.1%) and ZnO (68.3%). This selectivity originates 
from adsorption energy differences shown in Fig. 6b, where WO3 exhibits strongest preferential binding for 
NH3 (− 1.45 eV) compared to SnO2 (− 1.10 eV) and ZnO (− 0.95 eV). The significant energy difference between 
NH3 and interferents like CH4 (− 0.68 eV on WO3) and H2S (− 0.92 eV on SnO2), creates an energy barrier that 
naturally suppresses interference. Table 5 correlation matrix provides quantitative validation, with WO3 showing 
strong NH3-specific association (Kendall’s τ = 0.89) and minimal cross-sensitivity (τ < 0.15 for interferents). 
The exceptional 7.3:1 NH3/CH4 and 17.8:1 NH3/H2S response ratios demonstrate WO3's inherent capability 
to discriminate target gases, further enhanced by 92.3% LDA separability in mixed-gas environments. The 
CNN leverages these physicochemical advantages by learning a non-linear mapping function (CNH3 = F(Rsensor, 
Rtime) that weights sensor inputs according to their selectivity. During training, the network prioritizes WO3's 
dominant features while suppressing interference patterns from less selective sensors like ZnO (τ = 0.72 for H2S) 
through attention mechanisms.

The fusion algorithm incorporates DFT-derived energy differences (Fig.  6b) to distinguish true NH3 
signals from interferents, particularly for challenging cases like CO2 (ΔE = 0.53 eV) where traditional sensors 
fail. By encoding WO3's low cross-sensitivity coefficients (− 0.015 ppm−1 for CH4) as weight priors, the CNN 
maintains ± 5% accuracy even with 300 ppm CO2 interference. Real-world validation in biogas digesters confirms 
the system’s robustness, though ongoing optimization focuses on SnO2's moderate CH4 cross-sensitivity (τ = 0.41) 
through hybrid feature extraction18. This combined approach of material optimization and machine learning 
achieves reliable NH3 quantification where conventional methods are compromised by cross-sensitivity.

Analysis method WO3 NH3/CH4 WO3 NH3/H2S SnO2 NH3/CH4 ZnO NH3/H2S

Kendall’s τ 0.89/0.12 0.89/0.05 0.65/0.41 0.54/0.72

Response ratio 7.3:1 17.8:1 1.6:1 0.75:1

DFT energy diff 0.77 eV 0.53 eV 0.28 eV − 0.18 eV

LDA separation 92.3% 94.1% 68.7% 59.2%

Table 5.  Cross-sensitivity correlation matrix.

 

Fig. 6.  Response of ammonia data fusion (a) Normalized Sensor Responses to Common Agricultural Gas 
Interferents. (b) calculated Adsorption Energies of Target and Interferent Gases.

 

Scientific Reports |        (2025) 15:39100 12| https://doi.org/10.1038/s41598-025-26084-z

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


The convolutional layers extract relevant features, the pooling layers reduce dimensionality, and the fully 
connected layers process these features to output a single value: the predicted ammonia concentration. This 
predicted value is the result of the CNN’s data fusion process, where it has effectively isolated the ammonia 
specific signature from the overall sensor array response, even in the presence of other gases45,46. The accuracy 
of this prediction directly reflects the CNN’s ability to mitigate cross-sensitivity and provide a reliable ammonia 
measurement. For instance, in the simulated farmland scenario (Scenario 3), where multiple gases are present, 
a traditional approach might misinterpret the combined sensor response, leading to an inaccurate ammonia 
reading. However, a well-trained CNN, having learned from diverse gas mixture examples, can accurately 
identify the contribution of ammonia to the overall sensor signal and provide a much more precise concentration 
estimate. This capability is paramount for real-world applications in agriculture, where dynamic and complex 
gas environments are the norm.

Environmental stability performance
The environmental stability evaluation, as illustrated in Fig. 7, demonstrates WO3's exceptional resistance to 
humidity-induced cross-sensitivity, maintaining response deviations within ± 7.5% across 30–90% RH—
significantly better than SnO2 (± 12.3%) and ZnO (± 15.8%). This stability is crucial for reliable NH3 detection 
in humid agricultural environments, where water molecules typically compete with target gases for adsorption 
sites. The hydrophobic nature of WO3's surface, confirmed by contact angle measurements (> 110°), creates an 
energy barrier that preferentially repels water molecules while allowing NH3 adsorption, as evidenced by the 
minimal 9.2% reduction in NH3/CH4 response ratio at 90% RH (versus 23.7–31.5% for other sensors). Figure 7 
humidity response profiles reveal two key mechanisms for cross-sensitivity elimination: first, the Langmuir-
type adsorption isotherm shows WO3 maintains consistent NH3 binding even at high humidity, with water 
adsorption limited to < 5% of active sites. Second, the Arrhenius-type temperature dependence (− 0.015%/°C) 
enables precise algorithmic compensation of residual humidity effects, reducing errors to <  ± 2.5% through real-
time signal processing15. Field validation data confirms this stability, with WO3 maintaining 87.5% data validity 
during rapid 40–85% RH fluctuations, compared to just 68.1% for ZnO.

The system addresses humidity-induced cross-sensitivity through three complementary approaches: material 
selection (WO3's intrinsic hydrophobicity), hardware design (integrated Peltier-based humidity control), and 
algorithmic correction (adaptive baseline adjustment). This multi-layered strategy is particularly effective 
against false positives from CH4 and H2S, as shown by the preserved 7.3:1 NH3/CH4 response ratio in humid 
conditions. Ongoing improvements focus on reducing the 9.2% humidity impact on NH3 selectivity through 
atomic layer deposition of moisture-resistant coatings, with preliminary results showing additional 15% stability 
enhancement in tropical field tests. These advancements position WO3-based systems as the most reliable 
solution for NH3 monitoring in variable humidity environments, overcoming a major limitation of conventional 
MOS sensors.

Quasi-2D array performance for cross-sensitivity elimination
The quasi-2D complementary sensor array combining WO3 and ZnO sensors effectively addresses cross-
sensitivity through their orthogonal response characteristics, as demonstrated in Fig. 8a. The system leverages 
the distinct behavior where NH3 induces resistance decreases in both sensors while H2S produces opposing 
trends (WO3 decreasing, ZnO increasing), creating a unique response signature for precise gas discrimination. 

Fig. 7.  Humidity-induced response variations in MOS sensors.
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This synergistic effect achieves 96.4% NH3 classification accuracy, representing a 7.2% improvement over single 
WO3 sensors, while simultaneously improving H2S rejection by 11.5% (93.6% vs 82.1%), as quantified in Table 
6. The LDA analysis in Fig.  8b reveals excellent cluster separation (92.3% overall accuracy), particularly for 
NH3/H2S mixtures which show 87% correct identification—a 25% enhancement over single sensors8. The 
array’s mixed-gas accuracy reaches 91.7% with concentration errors halved to 6.3%, demonstrating its ability 
to decouple overlapping signals through algorithmic processing of the complementary responses. The WO3-
ZnO combination capitalizes on ZnO’s strong sulfophilicity (τ = 0.72 H2S correlation) to compensate for WO3's 
residual cross-sensitivity while maintaining WO3's superior NH3 selectivity (τ = 0.89). This approach maintains 
robust performance (> 90% accuracy) under realistic agricultural conditions (40–80% RH), with the orthogonal 
response patterns providing inherent resistance to humidity-induced drift (± 7.5% for WO3). The 50.8% 
reduction in concentration error highlights the array’s advantage for quantitative monitoring in gas mixtures, 
validating its effectiveness for livestock and fertilizer applications where NH3/H2S coexistence is common. The 
integration of temperature compensation (− 0.015%/°C for WO3) further enhances reliability, positioning this 
quasi-2D array as a comprehensive solution for cross-sensitivity challenges in field-deployable NH3 monitoring 
systems.

Long-term stability assessment and cross sensitivity mitigation
The 180-day continuous experimental stability assessment, presented in Fig. 9, demonstrates WO3's superior 
long-term performance under cyclic environmental conditions. The baseline resistance data, recorded every 6 h 
throughout the testing period, reveals three distinct stability phases: an initial 30-day stabilization period where 
WO3's daily drift rate improved from 0.25% to 0.15%, followed by 120 days of exceptional consistency (± 0.02% 
daily variation), and a final moderate drift increase to 0.22%/day in the last month. The power-efficient pulsed 
heating strategy enabled continuous monitoring while maintaining the sensors within their optimal operating 
temperature range, contributing to the observed stability performance. Figure 9a shows the continuous baseline 
resistance normalized to day 0, clearly illustrating WO3's minimal deviation compared to SnO2 and ZnO. The 
calculated average drift rates of 0.18%/day for WO3, 0.31%/day for SnO2, and 0.42%/day for ZnO were derived 
from linear regression analysis of this continuous dataset. Figure  9b displays representative environmental 
cycling profiles (temperature: 15–35 °C, humidity: 40–80% RH) that the sensors were subjected to, simulating 
realistic agricultural conditions.

The stability advantage of WO3 stems from its slow crystalline phase transformation, with XRD analysis 
confirming only 2.3% rutile phase formation after 180 days compared to 8.1% for SnO2. This structural integrity 
directly correlates with consistent NH3 selectivity, as the preserved surface morphology maintains preferential 

Metric Single WO3 WO3-ZnO Array Improvement

NH3 classification 89.2% 96.4% + 7.2%

CH4 rejection 87.5% 94.8% + 7.3%

H2S rejection 82.1% 93.6% + 11.5%

Mixed-gas accuracy 78.3% 91.7% + 13.4%

Concentration error 12.8% 6.3% − 50.8%

Table 6.  Array performance improvement.

 

Fig. 8.  Performance array for cross-sensitivity elimination (a) Orthogonal Gas Response Characteristics 
of WO3-ZnO Complementary Sensor Pair (b) Multivariate Gas Discrimination Using Linear Discriminant 
Analysis.
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NH3 adsorption sites. Periodic recalibration every 14  days confirmed measurement accuracy within ± 8% 
of reference values throughout the testing period, meeting the ± 10% threshold for agricultural air quality 
monitoring.

CNN classification performance analysis
A comprehensive evaluation of the CNN model’s classification performance was conducted using the test 
dataset of 750 samples. The confusion matrix in Fig.  10 provides a detailed breakdown of the classification 
results across the four target gas classes: NH3, CH4, H2S, and background air. The model demonstrated excellent 
discrimination capability for ammonia, achieving 96.2% classification accuracy for NH3 samples (192 correct 
out of 200). The majority of misclassifications occurred between CH4 and H2S, which is consistent with their 
similar chemical properties and sensor response patterns. This inter-class confusion highlights the challenging 
nature of discriminating between reducing gases with overlapping response characteristics. Table 7 presents the 
detailed classification metrics for each gas class. The CNN achieved high precision and recall for NH3 (0.95 and 
0.96 respectively), resulting in an F1-score of 0.95. This indicates both high reliability in NH3 detection (few false 
positives) and high sensitivity (few false negatives). The slightly lower performance for CH4 and H2S (F1-scores 
of 0.89 and 0.87 respectively) reflects the inherent cross-sensitivity challenges between these interferents, which 
the model successfully mitigates through learned feature extraction from the complementary sensor array45.

Fig. 9.  Continuous long-term stability assessment over 180 days. (a) Normalized baseline resistance showing 
three distinct stability phases for WO3, SnO2, and ZnO sensors. (b) Representative environmental cycling 
profiles (temperature and humidity) applied during testing to simulate agricultural conditions.
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The macro-average F1-score of 0.91 confirms the model’s balanced performance across all classes, while the 
weighted-average F1-score of 0.92 accounts for class distribution in the dataset. These results substantiate the 
CNN’s effectiveness not only in accurate NH3 identification but also in robust multi-gas classification within 
complex agricultural environments.

Conclusion
This study comprehensively addresses the challenge of cross-sensitivity in electronic nose (e-nose) systems for 
ammonia (NH3) detection, particularly in agricultural environments where interfering gases like CO2, CH4, and 
H2S significantly compromise measurement accuracy. By moving beyond conventional, siloed approaches, we 
established a synergistic co-design framework that integrates material science, sensor array design, and tailored 

Gas Class Precision Recall F1-score Support

NH3 0.95 0.96 0.95 200

CH4 0.91 0.88 0.89 190

H2S 0.86 0.87 0.87 180

Air 0.94 0.93 0.94 180

Accuracy 0.91 750

Macro Avg 0.92 0.91 0.91 750

Weighted Avg 0.92 0.91 0.92 750

Table 7.  Detailed classification metrics for the CNN model performance. Significant values are in bold.

 

Fig. 10.  Normalized confusion matrix showing the CNN classification performance for the four gas classes. 
Values represent the percentage of samples classified into each category.
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deep learning. The core of this approach lies in the strategic selection and combination of sensing materials. 
The fundamental characterization and theoretical analysis confirmed WO3 as a superior candidate, providing a 
strong, selective foundation for NH3 detection which was further enhanced by pairing it with ZnO in a quasi-
2D complementary array. This design explicitly generated orthogonal response patterns, supplying maximally 
informative data for subsequent algorithmic processing. The developed 1D-CNN architecture effectively 
leveraged these complementary temporal response patterns, demonstrating a powerful capacity to decouple 
the target NH3 signal from a complex background of interferents. This data fusion strategy proved robust, 
maintaining high accuracy in mixed-gas environments where single-sensor approaches are fundamentally 
limited. Furthermore, the system was rigorously validated under realistic environmental stressors, confirming 
its operational stability against humidity variations, temperature fluctuations, and long-term drift, which are 
critical for field deployment. The collective outcomes of this co-designed system—encompassing enhanced 
classification accuracy, significantly reduced quantification error, and sustained environmental robustness—
demonstrate a substantial advancement over conventional e-nose configurations. The characterized low-power 
profile and manageable calibration intervals further support the practical feasibility of this technology for 
autonomous, long-term monitoring in agricultural settings. Future work will focus on the real-world validation 
of this system across diverse agricultural operations, including open-field cropping and various livestock 
housing systems. Optimization will also explore the integration of additional sensor elements to expand the 
system’s capability to other agriculturally relevant gases, such as nitrous oxide (N2O). Finally, efforts will be 
directed towards implementing the developed model on edge-computing platforms to enable real-time, IoT-
enabled ammonia monitoring, ultimately bridging the gap between laboratory demonstration and widespread 
field application to support smarter, more sustainable agricultural practices.

Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request.
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