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Against the backdrop of increasing global extreme climate events, the water-receiving area of the Tao 
River Diversion Project in China frequently experiences drought disasters. In view of this, this study 
uses the meteorological drought index (SPEI) and 12 extreme climate indicators to analyze drought 
and extreme climate changes and their effects on drought. The results show that SPEI12 presents a 
slow but persistent downward trend, with 1988 as the turning point. Drought frequency exhibited a 
spatial pattern of being lower in the northwest and higher in the southeast. Additionally, droughts 
occurred more frequently but were of shorter duration. The summer days (SU) and warm days and 
warm nights (TX 90p, TN 90p) increased significantly. Although extreme precipitation events increased, 
the magnitude of change was not significant and thus could not effectively counteract the drought 
trend. Annual total precipitation (PRCPTOT), cold days (TX10p) and summer days (SU) are the main 
driving factors of meteorological drought, and their contribution rates are 23.35, 18.93 and 14.75% 
respectively. Annual total precipitation (PRCPTOT) and summer days (SU) have linear relationship 
with meteorological drought, and extreme climate indexes such as warm spell duration index (WSDI) 
and warm nights (TN90p) have nonlinear changes. Especially, the consecutive wet days (CWD) has a 
significant nonlinear change, when less than 8.58 days will lead to wetting, more than 8.58 days will 
lead to drought. In response to pressures from a warmer and drier future climate, the agricultural 
sector can build adaptive capacity. This can be achieved through the adjustment of planting structures, 
the promotion of water-saving technologies, and the incorporation of machine learning-derived 
thresholds into drought monitoring systems to enhance their early warning capabilities.

Against the backdrop of accelerating global climate change, the frequency and intensity of extreme climate 
events have increased markedly worldwide. Among these, droughts in particular have been occurring more 
often and with greater impact each year. As a widespread natural hazard exacerbated by global climate change, 
drought significantly threatens ecosystem stability and sustainable agricultural development1. China stands as 
one of the regions most vulnerable and sensitive to these changes2, This is especially evident in the Loess Plateau 
and surrounding areas, where persistent drought has long constrained regional development. The Tao River 
Diversion Project, the largest inter-basin water transfer initiative in Gansu Province, has alleviated water scarcity 
issues in the receiving regions. However, against a background of rapid urbanization, increased rainfall variability, 
and more frequent extreme heat events, drought disasters are occurring more often and causing worsening 
economic losses. Traditional disaster management approaches are increasingly inadequate in addressing the 
compound challenges arising from the interplay of climate crises and human activities. Extreme climate events 
refer to those that fall in the tail of the statistical distribution of climate variables and have very low probabilities 
of occurrence. As a major category of such extremes, meteorological drought specifically describes a severe 
imbalance in the water budget caused by prolonged abnormal precipitation deficits coupled with anomalously 
high potential evapotranspiration.
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Defined by a sustained imbalance where precipitation is insufficient to meet evapotranspiration demands, 
meteorological drought is a precursor to other forms of drought and plays a vital role in drought monitoring3. 
Numerous quantitative indices have been established in drought research, such as the Standardized Precipitation 
Index (SPI)4, Standardized Precipitation Evapotranspiration Index (SPEI)5, Standardized Runoff Index (SRI)6, 
Self-Calibrated Palmer Drought Severity Index (scPDSI)7 and a variety of other quantitative indicators. Different 
drought indicators represent different types of drought. These indices correspond to different drought categories; 
SPI and SPEI typically characterize meteorological drought, and SRI corresponds to hydrological drought. 
An ongoing controversy, however, surrounds whether SPEI and scPDSI should be classified as indicators of 
meteorological or agricultural drought. Comparative studies have indicated that on a global scale, scPDSI 
demonstrates a superior capacity over SPEI for characterizing agricultural drought8.

In recent years, considerable progress has been made in understanding the relationship between drought 
dynamics and extreme climate events. However, most studies have focused primarily on the impacts of extreme 
climate on agricultural and hydrological droughts, while in-depth analysis of the nonlinear interactions between 
meteorological drought and extreme climate remains limited. For instance: Jehanzaib et al. applied the non-
stationary GAMLSS algorithm to reveal how climate change and human activities influence hydrological 
drought across different time scales9; Shah et al. used multiple regression and ridge regression to analyze the 
effects of surface temperature and precipitation on wheat and rice yields10; B. et al. adopted the comprehensive 
ranking OME method to prioritize extreme climate indices affecting agriculture in the U.S. Corn Belt11; Jamalzi 
et al. assessed drought conditions in Afghanistan using the SPI and SPEI indices and performed correlation 
analyses with climatic variables such as maximum temperature (Tx) and minimum temperature (Tn) using 
Pearson correlation and linear regression12; YIN & BAI quantitatively evaluated the contributions of extreme 
climate variables to multi-scale meteorological drought across different climatic zones in the Yellow River Basin, 
China. Their results indicated that the Rx5day index is the dominant factor contributing to meteorological 
drought at various time scales, accounting for approximately 65% of the influence13; QU et al. employed wavelet 
spectrum analysis to quantify extreme climate conditions and their impact on hydrological drought in the Xilin 
River Basin of Inner Mongolia, China. They found a warming and drying trend in the region, where a significant 
increase in extreme temperature events, coupled with a lack of synchronous increase in extreme precipitation, 
has intensified hydrological drought risks14; Sifang et al. investigated changes in compound hydrological drought 
and extreme high temperature (CHDHE) events in China’s semi-arid Luanhe River Basin from 1961 to 201615. 
Although various methods are available to quantify the relationship between drought and extreme climate, 
their association is often not simply linear. Moreover, while existing research has largely centered on the effects 
of extreme climate or climate change on hydrological and agricultural droughts, further analysis is needed to 
elucidate the mechanisms through which extreme climate influences meteorological drought.

This study is designed to bridge this knowledge gap by pursuing three key objectives: first, to create a 
multidimensional portrait of the dynamics of extreme climate and meteorological drought by combining a suite 
of relevant indices; second, to decipher their interrelationships and lag effects using wavelet coherence and cross-
wavelet analysis; and finally, to pinpoint the dominant drivers and unravel the nonlinear influence of extreme 
climate on drought through an integrated XGBoost-SHAP framework. Our goal is to clarify the underlying 
response mechanisms, providing actionable insights for this and other vulnerable regions worldwide.

Materials and methods
Overview of the study area
The Tao River is the second-largest tributary of the upper reaches of the Yellow River in China, with a total 
length of 673 km. The water-receiving area of the Tao River Diversion Project is located in the central part of 
Gansu Province, China, lying in the transition zone from the hilly and gully area of the Loess Plateau to the 
Longxi Loess Plateau, with an altitude ranging from 1137 to 3858 m. Dominated by landforms such as loess 
ridges, loess hills, and gullies, this region features diverse terrain with significant undulations. It suffers from 
severe soil erosion and high ecological environment sensitivity, making it one of the key areas for soil and water 
conservation on the Loess Plateau. In terms of topography, it presents a spatial pattern of being higher in the 
northwest and lower in the southeast. The overview map of the study area is shown in Fig. 1.

Data sources and processing
The Standardized Precipitation Evapotranspiration Index (SPEI) is sourced from the CHM_Drought dataset 
(https://zenodo.org/records/14634774). It is a raster dataset with a spatial resolution of 0.1° × 0.1°. This dataset 
is robust and capable of accurately capturing drought events across mainland China16. The extreme climate data 
are sourced from the National Cryosphere Desert Data Center of China (http://www.ncdc.ac.cn). It is an NC 
dataset with a spatial resolution of 0.1° × 0.1°. The annual drought and extreme climate data from 1985 to 2018 
were selected, and subsequently, ArcMap 10.8 was used to perform clipping and masking processing on the 
downloaded data.

Extreme climate indices are based on the 27 extreme climate indices defined by the Expert Team on Climate 
Change Detection and Indices (ETCCDI). In this study, 12 of these commonly used extreme climate indices 
were selected for analysis17 (Table 1).

Research methods
This study develops a comprehensive framework to analyze how meteorological drought responds to extreme 
climate conditions in the receiving area of China’s Tao River Diversion Project. The framework comprises three 
integrated modules, as illustrated in Fig. 2: trend and mutation analysis, drought characterization, and driving 
factor analysis.

Scientific Reports |        (2025) 15:42077 2| https://doi.org/10.1038/s41598-025-26162-2

www.nature.com/scientificreports/

https://zenodo.org/records/14634774
http://www.ncdc.ac.cn
http://www.nature.com/scientificreports


	(a)	 Trend and Mutation Point Analysis: Interannual trends (1985–2018) in meteorological drought and twelve 
extreme climate indices were evaluated using a combination of linear regression, Sen’s slope test, and the 
Mann–Kendall test. The Innovative Trend Analysis (ITA) method provided graphical validation of these 
trends. Key mutation points in the time series were subsequently identified using the Sequential Mann–
Kendall test.

	(b)	 Drought Characterization and Cycle Identification: Based on run theory, key characteristics—average du-
ration, severity, and intensity—of drought events were extracted from the SPEI12 series. The spatial fre-
quency of different drought grades was also mapped. Wavelet coherence and cross-wavelet analyses were 
then applied to identify resonance periods, phase relationships, and lag effects between SPEI12 and extreme 
climate indices across multiple time scales.

	(c)	 Driving Factor Analysis: A two-stage analytical approach was employed to identify key drivers. First, Pear-
son correlation analysis was used to prescreen extreme climate indices significantly associated with SPEI. 
Next, an optimized XGBoost model, tuned via Bayesian optimization, was constructed to predict SPEI12. 

Classifications Acronyms Title Define Unit

Extreme 
Temperature 
Index

SU Summer Days Number of days with daily maximum temperature TX > 25 °C days

TN10p Cold Nights Number of cold night days Percentage of days with daily minimum temperature < 10% quartile % of 
the year %

TX10p Cold Days Percentage of days with daily maximum temperatures < 10% quartile for the year %

TN90p Warm Nights Percentage of days with daily minimum temperature > 90% quartile for the year %

TX90p Warm Days Percentage of days with daily maximum temperature > 90% quartile for the year %

WSDI Warm Spell Duration Index Percentage of days with maximum temperature > 90% quartile for 6 consecutive days of the year days days

CSDI Cold Spell Duration Index Percentage of days with minimum temperature < 10% quartile for 6 consecutive days in a year days days

Extreme 
precipitation 
index

SDII Simple Daily Intensity Index Ratio of total precipitation on wet days (daily precipitation ≥ 1.0 mm) to the number of wet days 
mm/day

mm/
day

R20mm Days with Precipitation ≥ 20mm Number of days with daily precipitation ≥ 20 mm in a year days

CWD Consecutive Wet Days Maximum number of consecutive days with precipitation ≥ 1 mm days days

R95pTOT Total Precipitation on Very 
Wet Days 100*r95p / PRCPTOT %

PRCPTOT Annual Total Precipitation Sum of precipitation in a year mm

Table 1.  Definitions of extreme climate indicators.

 

Fig. 1.  Overview of the Study Area .Note: The figure made in ARCGIS10.8 ​(​​​h​t​t​p​s​:​/​/​d​e​s​k​t​o​p​.​a​r​c​g​i​s​.​c​o​m​/​z​h​-​c​n​
/​i​n​d​e​x​.​h​t​m​l​​​​​)​, the using of natural resources reproduction standard mapping (http://bzdt.ch.mnr.gov.cn/). The 
approval number is GS(2024) 0650, and the boundary of the base map is not modified.
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The SHAP framework quantified the contribution of each influencing factor, while dependence plots illus-
trated the nonlinear effects and critical thresholds of the principal drivers.

Standardized precipitation evapotranspiration index
The Standardized Precipitation Evapotranspiration Index (SPEI) is an indicator developed based on the 
Standardized Precipitation Index (SPI)5, The Standardized Precipitation Evapotranspiration Index (SPEI) 
comprehensively considers meteorological factors such as temperature, precipitation, and evapotranspiration. 
It can stably assess the spatiotemporal characteristics of drought across multiple spatiotemporal scales and has 
been widely applied at present18,19. According to China’s national standard GB/T 20,481–2017 Meteorological 
Drought Grades, the SPEI drought grades are divided into 5 levels (Table 2).

Trend and mutation analysis
The Mann–Kendall non-parametric test (abbreviated as M–K test)20,21, Sen’s slope test22, and ITA (Interactive 
Trend Analysis) method were employed to analyze the interannual characteristic changes and trendality of 
the Standardized Precipitation Evapotranspiration Index (SPEI) and 12 extreme climate indices in the water-
receiving area of the Tao River Diversion Project. Among these methods, the ITA test can provide complementary 
visualized result s of trends. To validate the Mann–Kendall (M–K) trend test, a linear trend test was used for 
cross-validation23,24. (see Table 3 for the results of spatial trend classification).

For the M–K trend test, at a given significance level α, if |z|> zα/2, it indicates that the hypothesis of no trend 
is rejected, and the time series data exhibit an obvious trend change. When |z| is greater than 1.645, 1.96 and 
2.58, the trend is considered to have passed the significance test, with confidence levels of 90, 95 and 99%, 
respectively25.

Drought level Drought type SPEI range

1 No Drought SPEI >  − 0.5

2 Mild Drought  − 1.0 < SPEI ≤  − 0.5

3 Moderate Drought  − 1.5 < SPEI ≤  − 1.0

4 Severe Drought  − 2.0 < SPEI ≤  − 1.5

5 Extreme Drought SPEI ≤  − 2.0

Table 2.  Evaluation grades of drought severity.

 

Fig. 2.  Flow chart of research methods.
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The Interactive Trend Analysis (ITA) procedure begins by dividing a long-term time series into two 
consecutive sub-intervals of equal length, each sorted in ascending order. The data from the first sub-interval are 
plotted on the x-axis of a Cartesian coordinate system, and the data from the second on the y-axis. A diagonal 
line (45°) serves as a reference, bisecting the coordinate plane into upper and lower triangular areas. The trend of 
the time series is interpreted from the scatter plot as follows: data points distributed along the diagonal indicate 
stationarity (no trend); points accumulating in the upper triangle denote an increasing trend; and points in the 
lower triangle signify a decreasing trend. Non-monotonic trends can be precisely characterized by categorizing 
the data into low, medium, and high-value groups for separate analysis. Comprehensive computational details 
are available in26.

Currently, there are several methods for identifying mutation points, including the M–K test27, Pettit test28,29, 
and heuristic segmentation method30. However, uncertainties may exist in the identification of mutation points 
for drought and extreme climate. Compared with the traditional M–K test, the Sequential Mann–Kendall test 
is more suitable for mutation analysis, and its core advantage lies in its ability to identify multiple mutation 
points in a time series. The Sequential Mann–Kendall test is a sequential version of the Mann–Kendall test31,32 
and enables more distinct identification of mutation points based on the significance value (α). Specifically, 
it first locates points where variables shift abruptly, then finds the intersection of the forward and backward 
sequences with the highest significance values. If this value falls within the confidence interval, the mutation 
point is determined based on the breakpoints with high significance values33.

Run theory
Run theory is a time series analysis method that has been widely used to extract drought characteristics34,35.
In this study, drought identification was conducted based on the annual-scale Standardized Precipitation 
Evapotranspiration Index (SPEI). According to the drought grade classification, a drought event occurs only 
when SPEI ≤ -0.5, with a minimum drought duration of 1 year. The number of drought events, average duration 
(D), severity (S), and intensity (L) of droughts in the water-receiving area of China’s Tao River Diversion Project 
were calculated. The average values can comprehensively reflect the long-term drought characteristics of the 
region, and the specific calculation formulas are as follows:

	 D = Tend − Tstart + 1� (1)

	
S =

Tend∑
t=Tstart

|SP EI|� (2)

	
L = S

D
� (3)

Drought occurrence frequency
The drought occurrence frequency (P) refers to the degree of drought occurrence within a specific time period.

	
P = n

N
× 100%� (4)

where: n is the number of years with a specific grade of drought, and N is the total number of years in the study 
period. In this study, the total frequency of mild, moderate, severe, extreme droughts, as well as the overall 
drought frequency, were analyzed respectively based on the pixel-wise SPEI12.

Wavelet coherence and cross-wavelet
Wavelet Coherence (WTC) describes the consistency of changes between two sequences across different time 
scales36,37. To enhance the analytical ability in high-energy regions, the Cross Wavelet Transform (XWT) 
is simultaneously used to analyze the correlation characteristics between the Standardized Precipitation 
Evapotranspiration Index (SPEI) and extreme climate indices in high-energy regions.

Classifications Sen’s slope test(β) M–K Trend Test (Z) Significance of trend change

1 β > 0 Z ≥ 2.58 Extremely Significant Increase

2 β > 0 2.58 > Z ≥ 1.96 Significant Increase

3 β > 0 1.96 > Z ≥ 1.645 Slight Increase

4 β > 0 Z < 1.645 Not-significant Increase

5 β < 0 Z ≥ 2.58 Extremely Significant Decrease

6 β < 0 2.58 > Z ≥ 1.96 Significant Decrease

7 β < 0 1.96 > Z ≥ 1.645 Slight Decrease

8 β < 0 Z < 1.645 Not-significant Decrease

9 β = 0 No Change

Table 3.  Statistics of spatial trend changes.
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In this analysis, colors denote the relative energy density, while the thin black solid line defines the cone 
of influence (COI), within which the spectral values are considered valid. The black contours inside the COI 
delineate regions exceeding the 95% confidence level (α = 0.05). The phase relationship between the SPEI and 
extreme climate indices is indicated by the arrow direction: rightward for a positive phase and leftward for 
a negative phase. Concurrently, the arrow orientation reveals the lead-lag dynamics: an upward orientation 
denotes that the SPEI lags the extreme index, and a downward orientation denotes that the SPEI leads it.

Driving factor analysis based on XGBoost and SHAP
Pearson correlation analysis was used to examine the relationship between meteorological drought and extreme 
climate indices. To further clarify the response of meteorological drought to extreme climates, machine learning 
(among 6 machine learning models, XGBoost performed the best) combined with SHAP analysis was adopted 
to determine the contribution degree of different extreme climate indices to meteorological drought. The 
XGBoost algorithm is an efficient ensemble learning method, commonly used for predicting high-dimensional 
data. By gradually optimizing the objective function and constructing weighted decision trees, it can capture 
nonlinear relationships38.The Shapley Value method can be used to evaluate the contribution of various extreme 
climates to the prediction results of meteorological drought. By calculating the marginal contribution of features, 
SHAP (SHapley Additive exPlanations) can reveal the impact of each factor on meteorological drought39. The 
XGBoost-SHAP method provides deeper insights into climate driving mechanisms and uncovers complex 
interdependencies that may be overlooked by traditional analyses10.

Results and analysis
Spatiotemporal variation analysis of meteorological drought
This study analyzed the 12-month Standardized Precipitation Evapotranspiration Index (SPEI12) in the water-
receiving area of the Tao River Diversion Project from 1985 to 2018. As shown in Fig. 3a, the region experienced 
considerable fluctuations in meteorological drought, with the SPEI12 exhibiting a non-significant downward 
trend at a rate of − 0.04 per decade (Zₘ₋ₖ =  − 0.55, βₛₑₙ’ₛ =  − 0.006). A distinct wet-to-dry transition was also 
observed between 1992 and 1997.

To complement these findings, trend variations across different value ranges were visualized using the 
Interactive Trend Analysis (ITA) test (Fig. 3b). The results indicated relatively stable SPEI12 values in the high-
value zone, a decrease at 62% of the points in the medium-value zone, and non-significant fluctuations in the 
low-value zone. These outcomes were consistent across the linear trend, Mann–Kendall (M–K), Sen’s slope, and 
ITA tests.

Fig. 3.  Analysis of Meteorological Drought Trend Mutation from 1985 to 2018.
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The Sequential Mann–Kendall test was further applied to identify abrupt drought shifts. Figure 3c reveals 
statistically significant mutation points in 1988 and 1990, with the highest significance (α = 0.651) occurring in 
1988. Thus, a meteorological drought mutation was confirmed in 1988. Additionally, the UF statistic remained 
below zero after 1992, indicating a progressive intensification of aridity in the study area from that year onward.

Based on the Sen’s slope estimator and Mann–Kendall (M–K) trend test, this study examined the spatial 
variation characteristics of meteorological drought in the water-receiving area of China’s Tao River from 1985 
to 2018 (Fig. 4).

As illustrated in Fig.  4a, the region overall exhibited a persistent drying trend during the study period. 
Specifically, the northwest showed a slight or non-significant decrease in SPEI values, indicating a tendency 
toward aridification over the long term. In contrast, most of the southeast experienced a non-significant increase 
in SPEI, suggesting a gradual shift toward humidification.

Analysis of the spatial distribution of the mean annual SPEI (Fig. 4b) further revealed relatively high values 
(indicating wetter conditions) in the northwest and parts of the east—likely influenced by monsoon patterns—
while the southern and central parts showed relatively low SPEI values, reflecting drier conditions.

Spatial distribution of drought event characteristics
Based on the run theory, this study conducted a pixel-wise drought analysis using SPEI12 data, with drought 
events defined as periods where SPEI ≤ –0.5 lasting at least one year.

The results (Fig. 5) reveal that the highest frequency of drought events occurs in the southeastern part of the 
water-receiving area of the Tao River Diversion Project, with up to 11 recorded episodes. In contrast, the western 
areas experienced the fewest droughts, with only 6 events, while the central and northern regions showed 
moderate occurrence. In terms of average duration, droughts tended to persist longer—up to 3 years—in the 
southeast and parts of the central region, whereas shorter durations were observed elsewhere. A similar spatial 
pattern was found for average severity, with higher values (up to 3.14) in the southern and western regions and 
lower values in the remaining areas.

Notably, the spatial distribution of average drought intensity exhibited an inverse pattern to that of duration: 
high values were concentrated in the northwest and low values in the southeast. Overall, although the southern 
region experienced fewer drought events, those that did occur were relatively prolonged. Conversely, in the 
drought-prone east, the duration of individual events was generally shorter.

Figure  6 displays the spatial distribution of drought frequency at the annual scale. Mild droughts occur 
primarily in the southeastern and central parts of the region, while their frequency is notably lower in the 
northwest. In contrast, the pattern for moderate drought is essentially the inverse, with a higher frequency in the 
northwest and a lower frequency in the southeast. Severe drought occurrences are relatively uniform across the 
entire study area. Extreme droughts, however, are concentrated mainly in the central and western zones and are 
absent elsewhere. In summary, while the southeastern region experiences more frequent droughts overall, the 
northwestern area has a higher propensity for moderate drought.

Spatiotemporal variation analysis of extreme climate indices
Analysis of extreme climate indices in the water-receiving area of the Tao River Diversion Project reveals 
distinct warming trends and subtle shifts in precipitation patterns (Fig. 7 and Table 4). For temperature-related 
indices, a marked increase was observed in summer days (SU) at a rate of 4.4 d/10a, suggesting more frequent 

Fig. 4.  Spatial Variation Trend and Distribution of Meteorological Drought. Note: The figure made in 
ARCGIS10.8 (https://desktop.arcgis.com/zh-cn/index.html), the using of natural resources reproduction 
standard mapping (http://bzdt.ch.mnr.gov.cn/). The approval number is GS(2024) 0650, and the boundary of 
the base map is not modified.
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intense warm events. Concurrently, cold nights (TN10p) decreased significantly (− 1.5%/10a), while cold days 
(TX10p) declined insignificantly (− 1.2%/10a). In contrast, both warm nights (TN90p) and warm days (TX90p) 
increased significantly, by 3.9%/10a and 2.3%/10a, respectively. The warm spell duration index (WSDI) also rose 
significantly (1 d/10a), whereas the cold spell duration index (CSDI) showed an insignificant decrease (− 0.2 
d/10a). Collectively, these results indicate that the magnitude of increase in extreme warm indices substantially 
exceeds the decrease in extreme cold indices.

Among precipitation indices, only the Simple Daily Intensity Index (SDII) increased significantly, by 0.2 (mm/
day)/10a. Other indices, including theDays with Precipitation ≥ 20mm (R20mm; 0.4 d/10a), total precipitation 
on very wet day (R95pTOT; 2.2%/10a), and the annual total precipitation (PRCPTOT; 23.9 mm/10a), exhibited 
insignificant upward trends. Consecutive wet days (CWD) decreased insignificantly (− 0.3 d/10a). Although 
most precipitation trends are not statistically significant, they collectively suggest a potential tendency toward 
future humidification in the region.

The variation trends identified were consistent across the linear trend, Mann–Kendall, and Sen’s slope tests.
Between 1985 and 2018, the water-receiving area of the Tao River Diversion Project exhibited considerable 

spatial heterogeneity in extreme climate indices (Fig. 8).
The summer days (SU) ranged from 6.65 to 88.74 days—a 13.4-fold difference—with higher values in the 

periphery and lower values in the central area. The spatial distributions of cold nights (TN10p) and cold days 
(TX10p) were similar, with higher frequencies in the northwest and central parts and lower frequencies in the 
southeast. Their maximum values reached 10.22% and 10.24%, and minimum values were 8.78% and 9.38%, 
respectively.

In contrast, warm nights (TN90p) and warm days (TX90p) both reached their maxima in the southeast, 
with minima located in the northwest and central regions, respectively. The spatial pattern of the warm spell 

Fig. 5.  Distribution of Drought Event Characteristics. Note: The figure made in ARCGIS10.8 ​(​​​h​t​t​p​s​:​/​/​d​e​s​k​t​o​p​.​
a​r​c​g​i​s​.​c​o​m​/​z​h​-​c​n​/​i​n​d​e​x​.​h​t​m​l​​​​​)​, the using of natural resources reproduction standard mapping ​(​​​h​t​t​p​:​/​/​b​z​d​t​.​c​h​.​m​
n​r​.​g​o​v​.​c​n​/​​​​​)​. The approval number is GS(2024) 0650, and the boundary of the base map is not modified.

 

Scientific Reports |        (2025) 15:42077 8| https://doi.org/10.1038/s41598-025-26162-2

www.nature.com/scientificreports/

https://desktop.arcgis.com/zh-cn/index.html
https://desktop.arcgis.com/zh-cn/index.html
http://bzdt.ch.mnr.gov.cn/
http://bzdt.ch.mnr.gov.cn/
http://www.nature.com/scientificreports


duration index (WSDI) resembled that of warm days. The cold spell duration index (CSDI) showed marked 
spatial variation, with a maximum value of 7.59 days concentrated in the south, while most other areas recorded 
a minimum of 1 day.

Among precipitation-related indices, the simple daily intensity index (SDII) and Days with Precipitation ≥ 
20mm(R20mm) shared a similar spatial structure—low in the north and south, high in the east and west. Both 

Fig. 7.  Linear trend test of extreme climate.

 

Fig. 6.  Spatial Distribution of Drought Frequency. Note: The figure made in ARCGIS10.8 ​(​​​h​t​t​p​s​:​/​/​d​e​s​k​t​o​p​.​a​r​c​g​
i​s​.​c​o​m​/​z​h​-​c​n​/​i​n​d​e​x​.​h​t​m​l​​​​​)​, the using of natural resources reproduction standard mapping ​(​​​h​t​t​p​:​/​/​b​z​d​t​.​c​h​.​m​n​r​.​g​
o​v​.​c​n​/​​​​​)​. The approval number is GS(2024) 0650, and the boundary of the base map is not modified.
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consecutive wet days (CWD) and annual total precipitation (PRCPTOT) decreased from south to north. In 
contrast, the total precipitation on very wet days (R95pTOT) was lower in the central area and higher in the 
surrounding regions.

For extreme climate indices with multiple mutation points identified, the most statistically significant point 
from the Sequential Mann–Kendall test was selected as the definitive mutation year. As summarized in Table 5, 
a significant mutation in meteorological drought occurred in 1988.

The mutation points for extreme temperature indices—including warm nights (TN90p), warm days (TX90p),   
summer days(SU), cold nights(TN10p), cold days(TX10p)—were concentrated between 1990 and 2000, showing 
a slight lag relative to the 1988 drought mutation. Similarly, mutation points for extreme precipitation indices 
(SDII, R20mm,  R95pTOT) generally occurred later, with most emerging after 2000. Specifically, the simple daily 
intensity index (SDII) and the total precipitation on very wet days (R95pTOT) mutated between 2007 and 2008, 
whereas the days with precipitation ≥ 20mm (R20mm) and annual total precipitation (PRCPTOT) shifted as 
late as 2015–2016.

This sequential pattern suggests that the mutation in meteorological drought is an integrated response to the 
combined effects of temperature and moisture, reacting more directly to global warming. In contrast, extreme 
precipitation depends not only on sufficient water vapor but also on specific atmospheric circulation patterns, 
making its triggering mechanisms more complex. This added complexity likely accounts for the observed lag in 
its mutation points.

Wavelet analysis of meteorological drought and extreme climate
A correlation analysis was conducted between the annual Standardized Precipitation Evapotranspiration Index 
(SPEI) and several extreme climate indices (Fig. 9), with the key findings summarized as follows.

Significant periodic resonances and phase relationships were identified between SPEI and specific extreme 
indices. For summer days (SU), cross wavelet transform (XWT) revealed a significant 3–4 year resonance period 
with a negative phase during 1990–1996, while wavelet coherence (WTC) showed strong correlations around the 
4-year scale from 1990 to 2001 and a 4–5 year period during 2009–2012, both indicating SPEI lagging behind 
SU under a negative correlation. In the case of cold nights (TN10p), although XWT showed no significant 
resonance, WTC identified a relatively significant 0–3  year period with SPEI leading TN10p under weak 
negative correlation. For cold days (TX10p), WTC indicated high-energy resonances at 2–4 years (1990–1998) 
and 5–7 years (2008–2011), showing a positive correlation with SPEI leading. Regarding warm nights (TN90p), 
WTC detected significant resonances at 0–2 years (1990–1995) and 4–5 years (2009–2012), with upward-left 
arrows suggesting negative correlation and SPEI lagging. Finally, for warm days (TX90p), XWT indicated a 
sub-annual resonance during 2003–2006, while WTC revealed a significant 8–9 year period from 1996 to 2007, 
also reflecting negative correlation and SPEI lagging behind TX90p.Wavelet analysis of SPEI and the warm 
spell duration index (WSDI) revealed a significant 0–1 year resonance period during 1998–2001 in the XWT 
results. The WTC analysis further identified three significant resonance periods: two 0–1 year bands during 
1987–1991 and 1997–1999, and an 8–10 year period during 1998–2007. All of these resonance periods exhibited 
a significant negative correlation, with SPEI lagging behind WSDI. For the cold spell duration index (CSDI), 
the XWT analysis showed no significant resonance period, although intermittent energy concentration was 
observed at the 0–7 year scale. In contrast, the WTC analysis detected a significant 0–1 year resonance period 
during 2001–2003, which also showed a significant negative correlation with SPEI lagging behind CSDI.

For precipitation-related indices, SPEI and both the simple daily intensity index (SDII) and the Days with 
Precipitation ≥ 20mm (R20mm) exhibited similar correlation patterns. The XWT results showed significant 
approximately 3-year resonance periods during 1993–1997 for SPEI-SDII and during 1992–1996 for SPEI-
R20mm. The WTC analysis identified three common significant resonance periods: 0–8 years during 1998–2013, 
0–7 years during 1998–2003, and 5–10 years during 1996–2015. All showed significant positive correlations 

Norm CODING

M–K trend test Sen’s slope test

ZM-K movement Significance β

Summer Days SU 2.3719 Up * 0.4116

Cold Nights TN10p  − 2.7277 Low **  − 0.1716

 Cold days TX10p  − 1.8975 Low  − 0.1176

 Warm Nights TN90p 5.0107 Up ** 0.4329

 Warm Days TX90p 3.0835 Up ** 0.2762

Warm Spell Duration Index WSDI 2.2830 Up * 0.1046

Cold Spell Duration Index CSDI  − 1.0377 Low  − 0.0174

Simple Daily Intensity Index SDII 2.0754 Up * 0.0228

Days with Precipitation ≥ 20mm R20mm 1.8382 Up 0.0345

Consecutive Wet Days CWD  − 0.7857 Low  − 0.0163

Total Precipitation on Very Wet Days R95pTOT 1.6603 Up 0.2058

Annual total precipitation PRCPTOT 1.5121 Up 2.2174

Table 4.  Statistical table of extreme climate trend tests. **is the significance level of α = 0.01;* is the significance 
level of α = 0.05.
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with SPEI leading both SDII and R20mm. For consecutive wet days (CWD), the XWT revealed a significant 
approximately 6-year resonance period during 2007–2011, while the WTC analysis showed significant 0–1 year 
resonance periods during 1989–1990 and 2001–2003, as well as a significant 3–6 year period during 1990–2012. 
These correlations were significantly positive with SPEI lagging behind CWD. Regarding the total precipitation 
on very wet days (R95PTOT), the XWT detected a significant 2–3 year resonance period during 1992–1997, 

Fig. 8.  Spatial Distribution of Extreme Climate Indices. Note: The figure made in ARCGIS10.8 ​(​​​h​t​t​p​s​:​/​/​d​e​s​k​t​o​
p​.​a​r​c​g​i​s​.​c​o​m​/​z​h​-​c​n​/​i​n​d​e​x​.​h​t​m​l​​​​​)​, the using of natural resources reproduction standard mapping ​(​​​h​t​t​p​:​/​/​b​z​d​t​.​c​h​.​
m​n​r​.​g​o​v​.​c​n​/​​​​​)​. The approval number is GS(2024) 0650, and the boundary of the base map is not modified.
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Fig. 9.  Wavelet spectra of meteorological drought and extreme climate.

 

Norm Coding Sequential Mann–Kendall test

Summer Days SU 1991

 Cold Nights TN10p 1994

 Cold Days TX10p 1990

 Warm Nights TN90p 1999

Warm Days TX90p 1996

Warm Spell Duration Index WSDI 2010

Cold Spell Duration Index CSDI 1989

Simple Daily Intensity Index SDII 2008

Days with Precipitation ≥ 20mm R20mm 2016

 Consecutive Wet Days CWD 1991

Total Precipitation on Very Wet Days R95pTOT 2007

Annual total precipitation PRCPTOT 2015

Table 5.  Mutation point test of extreme climate indices.
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and the WTC analysis identified a significant 0–8 year period during 1998–2012, showing a significant positive 
correlation with SPEI leading. For annual total precipitation (PRCPTOT), the XWT indicated a significant less-
than-1-year resonance period during 2002–2003, and the WTC analysis revealed a significant 0–6 year period 
during 1998–2012, exhibiting a significant positive correlation with SPEI leading.

Overall, the Standardized Precipitation Evapotranspiration Index (SPEI) exhibits a negative correlation with 
extreme temperature indices and a positive correlation with extreme precipitation indices. Specifically, SPEI lags 
behind several temperature-related indices— summer days (SU),  warm nights (TN90p), warm days (TX90p), 
and warm spell duration index (WSDI)—while it leads several precipitation-related indices:  cold nights 
(TN10p),  cold days (TX10p), simple daily intensity index (SDII),  days with precipitation ≥ 20mm (R20mm), 
total precipitation on very wet days (R95PTOT), and annual total Precipitation (PRCPTOT).

In terms of temporal dynamics, SPEI and many extreme temperature indices show significant resonance 
on short-time scales (under 5 years), reflecting the rapid influence of changing climatic conditions on drought. 
In contrast, certain extreme precipitation indices—SDII, R20mm, and consecutive wet days (CWD)—display 
significant resonance with SPEI on medium- to long-time scales (over 5  years), highlighting the long-term 
regulatory role of precipitation patterns in drought evolution.

Analysis of drought driving factors
Analysis of driving factors based on Pearson correlation
Pearson correlation analysis (Fig. 10) indicates that from 1985 to 2018, meteorological drought, as represented 
by the Standardized Precipitation Evapotranspiration Index (SPEI), exhibited distinct relationships with various 
extreme climate indices. SPEI was positively correlated with annual total precipitation (PRCPTOT), days with 

Fig. 9.  (continued)
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precipitation ≥ 20mm (R20mm), simple daily intensity index (SDII), and cold days (TX10p). Conversely, it 
was negatively correlated with the summer days (SU), warm days (TX90p), and the warm spell duration index 
(WSDI).

Among these correlations, SPEI showed a highly significant positive correlation with PRCPTOT and a 
highly significant negative correlation with SU (both at *p* ≤ 0.01). Meteorological drought was most strongly 
influenced by PRCPTOT and SU, while it was least affected by total precipitation on very wet days (R95pTOT) 
and thecold nights (TN10p). These results suggest that increased annual precipitation corresponds to higher 
SPEI values—indicating a trend toward wetter conditions—whereas more summer days are associated with 
lower SPEI, reflecting intensified drought.

Analysis of driving factors based on machine learning
Several nonlinear fitting algorithms—including Decision Tree Regressor, Random Forest Regressor, Support 
Vector Regressor (with RBF kernel), XGBoost Regressor, Network Regressor, and Gaussian Process Regressor—
were employed for model fitting. The coefficient of determination (R2) was used to quantify the proportion of 
variance explained by the model40, hough it does not convey prediction error. In contrast, the root mean square 
error (RMSE) reflects the accuracy of model predictions41.

Results (Fig. 11) indicate that XGBoost achieved the best performance, with an R2 of 0.8335 and an RMSE 
of 0.265. Based on this, an SPEI12 prediction model was developed using XGBoost. Bayesian optimization was 
applied to determine the optimal hyperparameters: a maximum tree depth of 3, a learning rate of 0.096, L1 
regularization of 0.0187, and L2 regularization of 0.0124. The dataset was split into 80% for training and 20% for 
testing. Through incremental learning and early stopping, the optimal number of iterations was identified as 62.

The model exhibited excellent performance on both the training set (R2 = 0.94, RMSE = 0.21) and the test 
set (R2 = 0.91, RMSE = 0.25), indicating strong predictive capability, high generalization capacity, and no signs 
of overfitting. Overall, the model demonstrates high effectiveness and fulfills the required prediction standards.

To further investigate the driving factors of meteorological drought, SHAP (SHapley Additive exPlanations) 
analysis was employed. As illustrated in Fig. 12a, annual total precipitation (PRCPTOT) is the primary driver of 
changes in meteorological drought (SPEI12), with the highest mean absolute SHAP value of 0.245, confirming 
the dominant role of precipitation. The cold days (TX10p) and the summer days (SU) rank second and third, 
with mean absolute SHAP values of 0.198 and 0.154, respectively. While Pearson correlation analysis identified 
PRCPTOT, SU, and the days with precipitation ≥ 20mm (R20mm) as the top three influential factors, SHAP 
analysis reveals that TX10p and SU may significantly influence drought through nonlinear mechanisms.

Fig. 10.  Pearson correlation Heatmap.
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The SHAP contributions of the warm days (TX90p), consecutive wet days (CWD), and warm spell duration 
index (WSDI) are 0.093, 0.08, and 0.069, respectively—significantly lower than those of PRCPTOT, TX10p, 
and SU. By integrating Pearson correlation analysis with SHAP interpretation, this study not only identifies the 
key drivers of meteorological drought and confirms the importance of annual precipitation, but also uncovers 
nonlinear relationships that cannot be captured by correlation analysis alone.

To quantify the relative contributions of different variables, the absolute Shapley values were averaged and 
normalized to sum to 100%. Among the 12 extreme climate indices, PRCPTOT, TX10p, and SU emerge as the 
top three drivers, contributing 23.35%, 18.93%, and 14.75%, respectively, to the model output. Other variables 
such as TX90p, CWD, WSDI, and SDII have relatively minor impacts, with contributions of 8.92%, 7.66%, 

Fig. 12.  SHAP importance and summary plot.

 

Fig. 11.  Model Evaluation.
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6.60%, and 5.80%, respectively. The remaining indices—TN90p, TN10p, R20mm, CSDI, and R95pTOT—each 
contribute less than 5%.

Figure 12b further illustrates the direction of influence of each variable. When an increase in a feature value 
corresponds to a positive SHAP value, it indicates that the variable contributes to higher SPEI values (reduced 
drought). PRCPTOT, TX10p, CWD, SDII, TN10p and TN90p exhibit such positive effects, suggesting they 
alleviate aridification. Conversely, SU, TX90p, WSDI show negative relationships, indicating they intensify 
drought conditions. Meanwhile, R20mm, CSDI, and R95pTOT are distributed near zero SHAP values, reflecting 
their minimal contribution to SPEI12 predictions.

To better elucidate the influence of dominant factors on SPEI12, this study employed SHAP (SHapley 
Additive exPlanations) visualization to rank all factors by importance, thereby intuitively revealing the impact of 
different extreme climate indices on SPEI12 predictions.

As shown in Fig. 13, PRCPTOT (annual total precipitation) exhibits a clear linear relationship with SHAP 
values: as precipitation increases, SHAP values consistently rise, indicating a direct humidifying effect on drought 
conditions. Similarly, TX10p (cold days) also contributes to humidification, though in a nonlinear manner, with 
the rate of moisture increase slowing as TX10p rises. In contrast, SU (summer days) shows a straightforward 
negative influence, where more summer days directly intensify aridification.

TX90p (warm days) and CSDI (cold spell duration index) display threshold-based behaviors. For TX90p, 
values below 21.23% enhance aridification, with the effect diminishing as the threshold is approached. CSDI 
exhibits a dual pattern: below 11.69%, it promotes aridification, while above this value, it favors humidification.

CWD (consecutive wet days) demonstrates a notable nonlinear relationship. Below 8.58 days, it contributes 
to humidification at a decelerating rate; beyond this threshold, however, it begins to promote aridification. This 
may be because short wet spells replenish soil moisture, whereas prolonged precipitation increases runoff or 
evaporation, reducing water use efficiency.

Fig. 13.  Diagram of the dependence relationship between extreme factors and meteorological drought.
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WSDI (warm spell duration index), TN90p (warm nights), TN10p (cold nights), and R95pTOT (total 
precipitation on very wet days) all follow similar threshold-dependent patterns, with respective thresholds 
of 2.15  days, 14.79%, 11.74%, and 18.95%. Notably, R95pTOT has only a minor influence on SHAP values. 
Meanwhile, both SDII (simple daily intensity index) and R20mm (days with precipitation ≥ 20mm) promote 
humidification at an accelerating rate as they increase.

Overall, the analysis reveals that most extreme climate indices exhibit complex nonlinear relationships with 
meteorological drought, often involving specific risk thresholds (as seen with CWD, TX90p, and WSDI). In 
contrast, SU and PRCPTOT maintain simple linear relationships with SPEI12.

Discussion
Aridification and extreme climate change trends
The persistent aridification trend observed in the water-receiving area of China’s Tao River Diversion Project aligns 
closely with the documented warm-dry pattern across Northwest China42,43. This trend is further corroborated 
by pronounced changes in extreme climate indices: a marked increase in warm extremes (SU, TX90p, TN90p), 
a decline in cold extremes (TX10p, TN10p), and an overall rise in extreme precipitation indicators (R20mm, 
R95pTOT, PRCPTOT). These shifts collectively reflect the sharp increases in both temperature and precipitation 
that Northwest China has experienced over the past half-century44. The complexity of precipitation variability 
in the region may be attributed to Gansu Province’s location in central Eurasia, where interactions between the 
Western Pacific Monsoon and westerly flows from the Mediterranean, Black Sea, and North Atlantic shape local 
rainfall patterns, resulting in a highly variable and intricate extreme precipitation regime45.

Explanation of lag response
Wavelet analysis reveals distinct correlation and lag effects between meteorological drought and extreme climate 
indices. The observed negative correlation and lagged response of drought to extreme high temperatures may be 
attributed to accumulated heat stress leading to sustained moisture loss, while increased temperatures enhance 
evapotranspiration from the land surface, thereby delaying drought recovery. This interpretation is consistent 
with existing studies reporting a gradual rise in evapotranspiration across Northwest China46. Conversely, 
meteorological drought exhibits a leading response and positive correlation with extreme precipitation 
indices (e.g., SDII and R20mm), suggesting that increased extreme precipitation provides short-term drought 
alleviation. The short-term resonance period between extreme high temperature and drought contrasts with 
the longer resonance period observed for extreme precipitation. This indicates that while temperature directly 
drives drought onset, precipitation plays a moderating role that operates over longer time scales. These findings 
collectively underscore that temperature remains the dominant factor influencing drought dynamics in the arid 
inland regions of Northwest China47.

Discovery of nonlinear threshold effect
The XGBoost-SHAP model effectively quantified the contribution rates and nonlinear thresholds of extreme 
climate factors influencing drought in the water-receiving area of the Tao River Diversion Project. Among 
these factors, annual total precipitation (PRCPTOT) is the most important variable alleviating drought, with 
a contribution rate of 23.35%, followed by the cold days (TX10p) at 18.93%. A notable threshold effect was 
observed for consecutive wet days (CWD). When CWD exceeds 8.58  days, it may paradoxically intensify 
drought, likely because prolonged rainfall increases surface runoff and reduces water infiltration efficiency. 
Similarly, the warm nights (TN90p) and cold nights (TN10p) exhibit threshold behaviors at 14.79% and 11.74%, 
respectively. In contrast, the cold spell duration index (CSDI) shows an opposite pattern: values below 11.69 days 
exacerbate drought, while those above this threshold alleviate it. This can be explained by the fact that shorter 
cold spells (low CSDI) in winter lead to early soil thaw and enhanced evaporation before spring, intensifying 
aridification. Conversely, longer cold spells promote the formation of stable snow cover, which preserves water 
for spring and reduces evaporation losses during the non-growing season.

Limitations and prospects
This study has several limitations that point to valuable directions for future research. Although the CHM_
Drought dataset was employed to alleviate the limitations posed by sparse meteorological station coverage, 
uncertainties in data representation may still persist at small spatial scales. Furthermore, the temporal scope of 
the data is limited to records up to 2018, excluding more recent years that could provide additional insights. In 
terms of climate indicators, the selection of extreme climate indices did not include weak precipitation measures, 
which hold relevance for understanding drought mechanisms and should be incorporated in subsequent studies.

Additionally, the use of annual-scale data may obscure important seasonal or sub-seasonal variations in 
meteorological drought (SPEI) and extreme climate events. Given the strong seasonality typically exhibited by 
droughts and extreme climate phenomena, future analyses would benefit from adopting a seasonal or monthly 
analytical framework. While the machine learning models demonstrated strong capability in identifying 
complex patterns and relationships, their capacity to elucidate the underlying physical mechanisms remains 
limited. Future work should integrate reanalysis data to explore the synergistic effects of large-scale climate 
drivers, such as ENSO, on regional extreme climate patterns and drought dynamics.

Recommendations for regional water resources management
The observed warm-drying trend underscores the inadequacy of relying solely on local precipitation to ensure 
regional water security. In response, the agricultural sector should proactively adjust cropping structures and 
promote water-saving technologies to mitigate the increasing evapotranspiration pressure driven by persistent 
warming. Among precipitation-related factors, annual total precipitation (PRCPTOT) is identified as the 
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primary variable alleviating drought, with a contribution rate of 23.35%. It is thus advisable to leverage water 
storage infrastructure, such as reservoirs, in years with higher PRCPTOT to build strategic reserves and buffer 
against uncertainties in interannual precipitation variability. Furthermore, the nonlinear thresholds derived 
from the machine learning model can serve as critical benchmarks for drought early warning. Study recommend 
that relevant agencies integrate these key drivers into a comprehensive monitoring and risk-alert framework to 
enhance drought preparedness and adaptive resource management.

Conclusions

	(1)	 From 1985 to 2018, the SPEI12 index in the water-receiving area of the Tao River Diversion Project revealed 
a gradual yet persistent aridification trend, marked by a pivotal transition point around 1988. The summer 
days (SU) increased significantly, as did the warm days and nights. Conversely, a pronounced decline was 
observed in cold nights and cold days. Although most extreme precipitation indices exhibited mild increas-
es, their overall trends were not statistically significant.

	(2)	 The relationship between meteorological drought (represented by SPEI) and extreme climate indices is 
complex and nonlinear. SPEI was negatively correlated with extreme temperature indices but positively cor-
related with extreme precipitation indices. On shorter time scales, most extreme climate indices exhibited 
significant resonance periods with SPEI, reflecting the rapid influence of changing weather conditions on 
drought. In contrast, extreme precipitation indices showed resonance over longer time scales.

	(3)	 The main drivers of meteorological drought were identified as annual total precipitation (PRCPTOT, 
23.35%), the cold days (TX10p, 18.93%), and the summer days (SU, 14.75%). Increased annual precipitation 
significantly alleviates drought conditions, while most extreme climate indices exhibit nonlinear relation-
ships with SPEI.

Data availability
The SPEI index was derived from the CHM_Drought dataset  (https://zenodo.org/records/14,634,774), a raster 
dataset with a spatial resolution of 0.1° × 0.1°. This dataset is robust and capable of accurately capturing drought 
events across mainland China. The SPEI-12 index, covering the period from 1985 to December 2018, was select-
ed for analysis. ArcMap 10.8 was used to crop and mask the downloaded data, enabling the extraction of SPEI 
data at various scales. Extreme climate data were obtained from the dataset provided by the National Cryosphere 
Desert Data Center (http://www.ncdc.ac.cn), an NC-format dataset with a spatial resolution of 0.1° × 0.1°.
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