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Down syndrome (DS) is associated with elevated rates of insulin resistance and chronic metabolic 
disease, yet its detailed metabolic and lipidomic profiles, particularly in pediatric populations, 
remain poorly defined. To characterize plasma lipid profiles in children and young adults with DS and 
overweight or obesity, to determine degree of lipid heterogeneity and if the observed dyslipidemia is 
independent of obesity severity. An extended objective is to search for metabolite features that may 
differentiate DS from weight‑matched controls. Plasma samples from 12 African‑American participants 
with DS (age 11–21 years, all overweight or obese) and 513 age‑matched overweight or obese controls 
were profiled by Nightingale 1H‑NMR spectroscopy (249 metabolites). Because all participants with DS 
in our cohort were overweight or obese, we restricted the control group to individuals with comparable 
weight status to minimize confounding by adiposity. Metabolites were log₂‑transformed and 
standardized to z-scores. Partial least‑squares discriminant analysis (two components) was followed by 
k‑means clustering (k = 2). Cluster distributions were compared by χ² test, and metabolite differences 
between clusters, stratified by obesity class, were assessed using Welch’s t‑tests and Benjamini-
Hochberg false‑discovery correction. Nine of twelve DS samples (75%) clustered into a dyslipidemic 
profile (cluster 1), compared to 209 of 513 controls (41%), demonstrating a significant enrichment 
(p = 0.033). Among controls, cluster assignment showed no association with obesity class. Across all 
obesity strata, 92 metabolites consistently differed between clusters. Cluster 1 exhibited a distinct 
lipidomic pattern marked by triglyceride enrichment across the lipoprotein spectrum [from extra-extra-
large very-low-density lipoprotein (XXL-VLDL) to high-density lipoprotein (HDL)], elevated remnant 
cholesterol, increased intermediate-density lipoprotein (IDL) and HDL particle concentrations, and 
cholesterol-ester-poor, triglyceride-rich HDL particles. Additionally, this cluster showed elevated levels 
of saturated and monounsaturated fatty acids, alongside a relative depletion of Ω-6 polyunsaturated 
fatty acids. Together, these features recapitulate a lipid profile associated with insulin resistance and 
pro-inflammatory metabolic dysfunction. A lipidomic profile characterized by high triglyceride and 
low cholesterol ester content is highly prevalent among children with DS and overweight or obesity, 
and present in approximately 40% of overweight or obese controls, irrespective of obesity severity. 
This insulin-resistant phenotype, independent of adiposity, likely reflects intrinsic alterations in lipid 
metabolism. The use of the Nightingale 1H‑NMR offers a scalable and clinically accessible platform 
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for detecting this metabolic signature, offering promise for early risk stratification and precision 
management of metabolic dysfunction in DS. 
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Down syndrome (DS) affects approximately one in 700–1000 live births1 and is now accompanied by a median life 
expectancy exceeding 60 years2, shifting clinical priorities toward chronic metabolic diseases. Cardiometabolic 
disorders have emerged as an important threat in this population3. Children and young adults with DS show 
higher rates of overweight and obesity than their neurotypical peers4, as well as an increased prevalence of 
non‑alcoholic fatty liver disease (NAFLD)5. Adults with DS exhibit early-onset cardiometabolic complications, 
including accelerated atherosclerosis and type 2 diabetes6,7, along with the almost universal development 
of Alzheimer’s neuropathology by midlife8. Multiple genes on chromosome 21 are known to influence lipid 
metabolism and inflammatory signaling (e.g., SOD1 increases oxidative stress; APP drives amyloid processing; 
and ABCG1, a key mediator of cholesterol efflux) potentially predisposing individuals with DS to dyslipidemia 
and metabolic dysfunction9,10, thereby amplifying both cardiovascular and neurodegenerative disease risk. Taken 
together, these findings point to an urgent need for systematic cardiometabolic surveillance in DS, especially in 
pediatric cohorts where targeted lifestyle or pharmacologic interventions could most effectively attenuate long-
term cardiovascular and metabolic risk.

To address this need, we applied high-resolution proton nuclear magnetic resonance (1H-NMR) metabolomics 
to characterize the plasma lipid profile of African-American children and young adults with DS and overweight 
or obesity, compared to weight-matched controls. This study aimed to determine whether DS is associated with 
a distinct, obesity-independent lipidomic signature that may underlie the elevated cardiometabolic risk in this 
population.

Methods
Subjects
Pediatric participants (≤ 21 years, American Academy of Pediatrics definition)11 were recruited prospectively 
through the Children’s Hospital of Philadelphia (CHOP) Center for Applied Genomics (CAG) between 2002 and 
2020. All self‑identified as African American to minimize population‑stratification bias in downstream genetic 
analyses. Written informed consent (parental consent for minors) was obtained for all procedures. The study was 
approved by the Institutional Review Board of CHOP and conducted in accordance with the ethical principles 
of the Declaration of Helsinki, the U.S. Common Rule (45 CFR 46), and all relevant institutional and federal 
guidelines for research involving human participants. The study comprised 12 individuals with DS (10 female, 2 
male; age 11–21 years), all of whom met criteria for overweight or obesity (3 overweight, 3 Class I obese, 2 Class 
II obese, 4 Class III obese), and 513 age-matched controls (270 female, 243 male; age 11–21 years) after exclusion 
of normal‑weight and under‑weight individuals. Since all participants with DS were overweight or obese, the 
control cohort was limited to individuals with similar weight status, enabling identification of metabolic features 
associated with DS independent of obesity severity. Among controls, 171 were classified as overweight, 147 as 
Class I obese, 91 as Class II obese, and 104 as Class III obese. For the control cohort, weight categories were 
assigned using CDC growth‑chart percentiles for participants ≤ 19 years12,13 and standard adult cut‑offs for 
those older than 19 years. For the DS patients, BMI values were also compared against the DS-specific BMI-for-
age reference curves14, confirming that all participants were at least overweight and most met criteria for obesity. 
Individuals with sickle‑cell disease, type 1 diabetes, 22q11.2 deletion syndrome, HIV infection, or other known 
Mendelian disorders (e.g., cystic fibrosis or single-gene metabolic disorders) were excluded to avoid metabolic 
confounding. Additional details regarding the metabolic characterization of control participants with obesity 
were reported in our related study15, which included a subset of participants from the current cohort.

Metabolomic profiling
Venous blood was collected after an overnight fast into EDTA tubes and centrifuged within two hours of 
collection to obtain plasma. Aliquots were transferred to cryovials, immediately frozen, and maintained at 
−80 °C under continuous temperature monitoring within the CAG biobank. Plasma specimens were archived 
within the CAG automated biorepository, which uses robotic storage and retrieval to prevent temperature 
fluctuations associated with manual handling and thereby preserve long-term sample integrity. Each vial carries 
a unique two-dimensional barcode linked to the laboratory information-management system (LIMS), ensuring 
complete traceability from collection through analysis. All aliquots used for this study were confirmed to have 
remained frozen without prior thaw cycles. All samples were analyzed in a single batch to minimize storage-time 
and inter-batch variability.

Metabolite quantification was performed using Nightingale Health’s 1H-NMR spectroscopy platform (version 
2020)16, which operates within an ISO-certified quality framework. The platform simultaneously acquires 
lipid, lipoprotein, and low-molecular-weight metabolite spectra using standardized acquisition sequences 
and automated quality-control procedures. Concentrations for 249 biomarkers, including lipoprotein subclass 
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distributions, apolipoproteins, fatty-acid fractions, amino acids, and glycolysis-related intermediates, were 
derived through traceable regression models calibrated against chemical reference methods17,18.

Data analysis
The resulting datasets were initially imported into R (v4.4.1)19 for preprocessing. To prepare the data for analysis, 
each metabolite concentration was log₂-transformed (adding 1 × 10⁻⁹ to handle zeros) and then standardized 
by subtracting the mean and dividing by the standard deviation, yielding z-scores for all features. Features with 
more than 20% missing values were removed. No biomarkers in the 249-marker panel exceeded this threshold, 
except for Glycerol, which was originally included in the panel but is not part of the final 249 biomarkers. The 
workflow then transitioned to Python (v 3.9.18)20, using scikit-learn (v1.6.1) and related packages for further 
analysis21. Missing values were imputed using the median (SimpleImputer, scikit-learn)21. We then retained the 
100 metabolites exhibiting the greatest variance across all samples. To adjust for obesity class (1 = overweight; 
2 = Class I obesity; 3 = Class II obesity; 4 = Class III obesity), each metabolite concentration was regressed 
on obesity status using LinearRegression (scikit-learn). The residuals, representing the variability in metabolite 
concentrations after accounting for obesity, were extracted. These residuals were mean-centered and rescaled to 
unit variance using StandardScaler (scikit-learn)21, ensuring that only the obesity-independent variability was 
considered in the clustering and t-tests. The standardized residuals were then used as the input matrix for Partial 
Least Squares Discriminant Analysis (PLS-DA)22 to identify metabolomic patterns distinguishing DS participants 
from weight-matched controls and to determine whether these differences were independent of obesity severity. 
The PLS-DA model, comprising two latent components, was fitted to maximize separation between the DS and 
control groups. Samples were projected onto the first two PLS components (PLS1, PLS2) for visualization. The 
robustness of the PLS-DA model was evaluated using 10-fold cross-validation and 1,000-iteration permutation 
testing. Cross-validated performance supported non-random separation between DS and controls (Q2 = −0.003; 
mean AUC = 0.698 ± 0.187; permutation-test p = 0.038). K-means clustering (k = 2) was then applied to the two-
component PLS-DA score space as an unsupervised method to identify natural sample clusters, without using 
diagnostic labels, to test for DS enrichment within the data-driven clusters.

Metabolite differences between the two PLS-DA-derived clusters were then evaluated within the control 
subset only, to avoid the confounding effects of DS diagnosis. For each metabolite, distributions in cluster 1 versus 
cluster 0 were compared using Welch’s t-test. Raw p-values were adjusted for multiple testing by the Benjamini-
Hochberg procedure to control the false discovery rate (FDR). To avoid confounding by heterogeneity across 
obesity classes, a stratified analysis was performed using the same approach for each obesity class.

Results
PLS‑DA followed by k‑means clustering (Fig.  1) separated the cohort into two data‑driven groups. Cluster 
1 contained 9 of 12 DS samples, but only 209 of 513 weight‑matched controls (Fisher’s Exact Test p = 0.033), 
indicating significant enrichment of DS in cluster 1. To determine whether cluster membership varied by obesity 
severity, we tabulated cluster counts across the four overweight/obesity classes in controls and performed a χ² 
test of independence. No significant association was observed between obesity class and cluster assignment 
(Supplementary Table 1), demonstrating that obesity status did not drive the clustering.

Fig. 1.  Partial least‑squares discriminant analysis (PLS‑DA) separates participants into two metabolic clusters, 
with significant enrichment of DS cases in cluster 1.
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Next, we sought to define the metabolic distinctions between clusters within the non‑DS controls across 
obesity classes. We performed t‑tests comparing standardized metabolite levels between cluster 1 and cluster 
0 within each obesity class and applied the Benjamini-Hochberg procedure to control the false discovery 
rate. Ninety‑two metabolites were consistently different (FDR < 0.05) in all four overweight/obesity classes 
(Supplementary Table 2). These metabolites thus represent a robust signature distinguishing the two clusters, 
independent of obesity level.

Drawing on this 92‑metabolite signature, we interpreted the metabolic context of the clusters (Tables 1 and 
2). Cluster 1 exhibits a pro‑atherogenic, insulin‑resistant profile, marked by global triglyceride enrichment 
across very-low-density lipoprotein (VLDL) to high-density lipoprotein (HDL), increased lipoprotein particle 
counts, triglyceride‑rich and cholesterol‑depleted HDL, and a fatty‑acid pool skewed toward saturated and 
monounsaturated species with reduced polyunsaturated (Ω‑6) fractions. In contrast, cluster 0 displays a more 
favorable lipid profile, with lower triglycerides, fewer particles, higher cholesterol ester content, and enrichment 
in anti‑inflammatory polyunsaturated fatty acids. In the controls, absolute Ω−6 concentrations were higher in 
cluster 1, whereas the percentage of Ω−6 within the total fatty-acid pool was lower and the Ω−6 to Ω−3 ratio was 
reduced in all obesity classes. Absolute Ω−3 concentrations showed modest increases in overweight and Class I 
obesity, but differences were not consistent in Classes II and III, and Ω−3% did not differ significantly.

Discussion
The present study identifies an intrinsic dyslipidemic phenotype in DS with overweight or obesity, characterized 
by triglyceride-rich, cholesterol-ester–depleted lipoproteins and altered fatty-acid composition. This pattern 
suggests a state of insulin-resistant lipid metabolism and impaired lipoprotein remodeling in DS, independent 
of adiposity. The enrichment of DS participants within a distinct, data-driven lipidomic cluster supports the 
notion that DS confers a unique metabolic signature rather than merely reflecting excess weight. Moreover, 
the 92-metabolite panel that consistently distinguished the two clusters across all obesity classes in controls 
indicates that these lipidomic features are robust and biologically grounded. The cluster with a more favorable 
lipidomic profile was marked by lower triglyceride and particle concentrations, higher cholesterol-ester 
content, and enrichment in anti-inflammatory polyunsaturated fatty acids23. Together, these findings refine our 
understanding of the DS metabolic landscape, reveal clinically meaningful heterogeneity among overweight 
and obese children and young adults, and pinpoint specific lipid and fatty-acid pathways that may offer novel 
therapeutic targets in DS and broader cardiometabolic risk.

Cluster Metabolic signature Likely metabolic state

Cluster 1 • Widespread TG enrichment across VLDL → HDL Pro-atherogenic, insulin-resistant phenotype

(positive meanDiff) • ↑ particle numbers (especially VLDL remnants) – Hypertriglyceridaemia

• ApoA1 ↑, but HDL TG-rich and CE-poor – CETP-driven TG exchange

• Enlarged FA pool skewed toward SFA + MUFA; PUFA fraction ↓ – Small-dense LDL/dysfunctional HDL

• Lipoprotein cores TG-laden, cholesterol-depleted – Diet/metabolism favoring saturated & monounsaturated fats

Cluster 0

• Relative depletion of TG across lipoproteins Metabolically favorable lipid profile

• Lower lipoprotein particle counts – Efficient lipid clearance

• Higher cholesterol ester (CE) content – Reduced CETP-mediated TG exchange

• Higher PUFA percentage – Enrichment in anti-inflammatory PUFA

Table 2.  Metabolic signatures and inferred phenotypes of two PLS‑DA clusters in overweight and obese 
controls.

 

Pattern in cluster 1 vs. cluster 0 (Δ = meanDiff) Key observations Biological interpretation

Marked ↑ in total, VLDL, LDL and HDL triacylglycerol (TG)
• Total_TG, VLDL_TG, IDL_TG, L_LDL_TG, M_LDL_TG, S_LDL_TG, 
XL_HDL_TG, L_HDL_TG, M_HDL_TG, S_HDL_TG all ↑ 0.7–1.1 SD

Global TG enrichment across all 
lipoprotein classes—especially VLDL and 
remnant particles

• Hypertriglyceridaemia/VLDL overproduction
• Suggests higher hepatic TG export and delayed lipolysis

↑ Phospholipids, cholines, phosphatidylcholine, sphingomyelin Enlarged membrane-associated lipid pools • Lipoprotein particle enlargement (greater surface PL)
• Potential altered membrane fluidity and signalling

↑ ApoA1 and HDL-related core lipids (HDL-TG, HDL-PL, HDL-FC) HDL particles contain more TG and free 
cholesterol

• TG-rich HDL typical of insulin-resistance/CETP exchange
• HDL may be less efficient in reverse-cholesterol transport

Lipoprotein subclass particle counts
• VLDL_P, XS_VLDL_P, IDL_P, L_HDL_P, M_HDL_P, S_HDL_P all ↑

Increased particle numbers in large-to-
very-small VLDL and HDL subclasses

• Particle number expansion supports overproduction and 
slowed clearance

Fatty-acid composition shifts
• Absolute FA classes (MUFA, SFA, PUFA, Ω−6) ↑
• Ω- %, PUFA % ↓ and PUFA/MUFA ratio ↓

Total FA pool larger but proportionally 
enriched in SFA and MUFA, depleted in 
PUFA (especially Ω−6)

• Desaturase dysregulation or diet high in saturated & 
monounsaturated fat
• Pro-inflammatory shift (lower PUFA fraction)

Percent lipid composition within small VLDL & LDL particles
• TG % ↑; CE % & FC % ↓ (numerous negative meanDiffs)

Core replaced by TG at the expense of 
cholesterol esters

• Core TG swapping via CETP → TG-rich, CE-poor 
particles
• Favors formation of small, dense LDL phenotype

Table 1.  Key metabolite alterations distinguishing PLS‑DA cluster 1 from cluster 0 in overweight/obesity 
controls.
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DS and the triglyceride‑rich (TG‑rich) lipoprotein phenotype
Nine of twelve DS participants aligned with cluster 1, a distribution unlikely by chance (p = 0.033). Cluster 
1 displays marked elevations in triglyceride content across the lipoprotein spectrum, including XXL_VLDL_
TG, XS_VLDL_TG, S_VLDL_TG, IDL_TG, LDL_TG, and HDL_TG subclasses, along with increased total 
triglycerides (Total_TG) and remnant cholesterol (Remnant_C). There is also a broad expansion in particle 
concentrations, particularly within remnant lipoproteins (IDL_P) and HDL (L_HDL_P, M_HDL_P, S_HDL_P). 
A distinct inversion in HDL composition is evident, with high triglyceride levels (HDL_TG, L_HDL_TG, M_
HDL_TG, S_HDL_TG, XL_HDL_TG) coupled with low cholesterol ester content (L_HDL_CE_pct, M_HDL_
CE_pct, S_HDL_CE_pct), indicating a dysfunctional HDL profile skewed toward triglyceride enrichment 
and cholesterol ester depletion. Fatty acid patterns are similarly disrupted, with elevated saturated (SFA) and 
monounsaturated fatty acids (MUFA), and reduced polyunsaturated fractions, particularly Ω−6 (Omega_6_
pct, PUFA_pct, PUFA_by_MUFA). These metabolic shifts mirror features commonly associated with insulin-
resistant states24. The apparent discrepancy between Ω−6 and Ω−3 reflects expansion of the total fatty-acid 
pool in cluster 1 with disproportionate enrichment in saturated and monounsaturated species. Under these 
conditions, absolute Ω−6 can increase while its percentage declines. By contrast, Ω−3 differences were smaller 
and not consistent across obesity classes. The Nightingale assay aggregates Ω−3 species rather than resolving 
EPA and DHA, which may attenuate detection of cardioprotective signals. Future species-resolved lipidomics 
targeting EPA and DHA will be important to delineate Ω−3 biology in DS.

Altered fatty-acid composition likely contributes to the insulin-resistant, pro-inflammatory phenotype 
observed in cluster 1. Evidence from human metabolic studies indicates that enrichment in saturated and 
monounsaturated fatty acids, accompanied by depletion of polyunsaturated species, has been associated with 
impaired HDL remodeling and reduced cholesterol-efflux capacity. In children and adolescents with abdominal 
obesity, Martin et al. (2024) found that myristic and palmitic acids were significantly elevated and linoleic acid 
was lower in the obese group compared to controls and that these fatty acids showed significant correlations with 
reduced cellular cholesterol efflux and lower lecithin–cholesterol acyltransferase (LCAT) activity25. Similarly, 
Davico et al. (2025) observed that plasma fatty-acid profiles characterized by lower EPA and linoleic acid and 
higher saturated and monounsaturated species correlated with markers of inflammation and dyslipidemia26. 
Together, these findings align closely with our observation of triglyceride-rich, cholesterol-ester-poor HDL 
particles in cluster 1 and support the interpretation that fatty-acid imbalance in DS contributes to insulin 
resistance and dyslipidemia independent of adiposity.

At the molecular level, these alterations may involve interferon-driven suppression of ABCG1 and ABCA1 
cholesterol efflux transporters27, hepatic insulin resistance promoting VLDL overproduction28, and putative 
impaired bile acid - Farnesoid X receptor (FXR) signaling29, all of which are plausibly intensified by gene dosage 
effects in trisomy 2130.

Obesity‑independent clustering unmasks covert metabolic risk
The 92‑metabolite fingerprint separates individuals independently of BMI class. More than one‑third of 
overweight controls fall into cluster 1 despite only modest adiposity. Because obesity severity effects were 
removed by stratified testing, the signature likely reflects intrinsic lipid‑handling programs such as hepatic TG 
export, cholesteryl ester transfer protein (CETP)‑mediated exchange, and desaturase flux rather than sheer fat 
mass31. In other words, we reveal a dyslipidemic predisposition that conventional anthropometry would miss, 
extending the metabolically unhealthy phenotype to the overweight and DS populations.

The integrated signature points to a coherent disruption across lipid pathways. Triglyceride accumulation 
in VLDL and HDL reflects heightened hepatic TG output and impaired clearance32. Particle number increases 
further support lipoprotein overproduction33. The HDL lipid core is altered by CETP-driven exchange, producing 
TG-rich, CE-depleted particles that are less efficient in reverse cholesterol transport34. Enrichment in membrane-
associated lipids such as phospholipids, cholines, and sphingomyelins may indicate lipoprotein surface 
remodeling or altered cellular signaling35. Fatty acid imbalances suggest either dietary skewing or enzymatic 
dysregulation, favoring a pro-inflammatory lipid profile36. Smaller VLDL and low-density lipoprotein (LDL) 
particles exhibit increased core TG and reduced cholesterol, consistent with CETP activity and the emergence of 
small, dense LDL phenotypes37. Collectively, these interwoven features define a lipidome dominated by ectopic 
TG storage, dysfunctional HDL, inflammatory fatty acid composition, and an atherogenic lipoprotein profile.

Translational leverage
The cluster 1 lipid pattern may have direct relevance for children with DS and overweight or obesity, a group 
at elevated long-term cardiometabolic risk. Although lipid monitoring is recommended in pediatric practice, a 
nationwide U.S. analysis of electronic medical records encompassing more than 3 million youths aged 9 to 21 
years found that only 11.3% had a documented lipid screening test38. Dedicated data on screening prevalence 
among children with DS are lacking, but given their higher cardiometabolic burden, under-screening in this 
group is a concern. A recent meta-analysis reported that individuals with DS exhibit less favorable serum 
lipid concentrations, including lower HDL-cholesterol and higher triglycerides than neurotypical peers39. The 
lipidomic profile identified in this study could reflect hepatic overproduction of triglycerides, altered CETP-
mediated exchange, and impaired HDL remodeling, mechanisms associated with insulin-resistant dyslipidemia 
but not yet confirmed specifically in DS.

Nightingale 1H-NMR metabolomics represents a standardized and scalable translational research platform, 
validated in large-scale epidemiologic studies17,18. The UK Biobank study by Julkunen et al. (2023) profiled 
118,461 participants and linked 249 NMR biomarkers to over 700 disease outcomes, with replication in more than 
30,000 individuals from five Finnish cohorts, confirming the platform’s analytical robustness and translational 
value40. Although not yet implemented in clinical diagnostics, this technology could eventually be integrated 
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into DS-focused metabolic research and early-risk screening programs as analytic accessibility improves. The 
present findings suggest that 1H-NMR-derived lipid signatures could provide an important tool for identifying 
DS individuals who exhibit triglyceride-rich, cholesterol-ester–poor lipoprotein profiles. However, the direct 
relationship between these lipidomic patterns and cardiometabolic outcomes in DS remains to be established. 
Repeated measurements to monitor therapeutic response should therefore be considered a hypothetical research 
framework to be tested in longitudinal cohorts and implemented, if validated, in accordance with pediatric and 
DS-specific clinical guidelines to ensure feasibility and minimize patient burden.

Limitations and future directions
This work has several constraints that shape the interpretation of its findings. First, the DS cohort is small and 
drawn from a single center, limiting statistical power for gene‑dosage interaction analyses and for detecting less 
common lipid patterns. Second, the cross‑sectional design captures only a snapshot of metabolism, so it cannot 
establish whether the triglyceride‑rich lipidotype precedes, accompanies, or follows clinical complications such 
as steatosis or insulin resistance. Third, potential confounders such as diet, thyroid status, and sleep disordered 
breathing were not systematically quantified and may influence the lipid profile. In addition, Tanner stage was 
not systematically recorded for participants. Because puberty can affect lipid and insulin-resistance indices, 
unmeasured variation in pubertal status may have contributed to interindividual metabolic differences. However, 
the age range (11–21 years) corresponds largely to mid- to late-pubertal stages, which may reduce, but does not 
eliminate, this potential confounding effect. Future research should enroll larger, multi‑center DS cohorts and 
collect serial samples from childhood through adulthood to define the natural history of the cluster 1 phenotype. 
Longitudinal studies are needed to determine whether individuals transition between clusters, whether such 
transitions parallel lifestyle changes or pharmacotherapy, and how strongly cluster 1 membership predicts 
insulin‑resistance-related outcomes in DS, e.g. non‑alcoholic fatty liver disease, type 2 diabetes, cardiovascular 
events, and Alzheimer’s disease.

Data availability
The primary data generated in this study are available through the International HundredK+ Cohorts Con‑
sortium (IHCC). Additional data can be requested from the corresponding author, Dr. Hakon Hakonarson, by 
request.
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