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To enhance trajectory tracking performance for affine nonlinear systems with parametric uncertainties 
and improve parameter convergence under interval excitation, this paper proposes a multilateral 
cooperative adaptive learning mechanism. The initial parameter values are assigned based on 
available data distribution or predefined bounds when unknown. A composite learning adaptive 
controller estimates system uncertainties using multilateral learning outputs. Adaptive update laws 
for unknown parameters and multilateral weights are designed using parameter estimation errors 
and approximation errors, with a saturation function constraining weight variation rates to suppress 
oscillations. Experimental results on an inverted pendulum system demonstrate the superiority of the 
proposed controller over two conventional adaptive controllers.
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Parameter uncertainty is a problem to be faced in controller design and has been widely concerned for a long 
time. In direct adaptive control, it is usually unnecessary to consider the convergence of unknown parameters, 
and more attention is paid to the control performance of system state tracking. In this mode, the adaptive rate 
of parameters is directly designed from the tracking error of the system, and then the adaptive controller is 
designed. In indirect adaptive control, it is not only concerned with the trajectory tracking of the system state, 
but also the convergence of unknown parameters. When the identified parameters are accurate enough, this 
method can compensate the uncertainty to a large extent and reduce the tracking error of the system. In the 
usual controller design, both methods are effective1,2. In order to achieve good trajectory tracking characteristics 
of the four-rotor, a robust controller based on adaptive dynamic programming was proposed in reference3, 
which can eliminate the adverse effects of parameter uncertainty and external disturbance on the system. 
There are also uncertainties of parameters in spacecraft, an online estimator is designed to identify unknown 
parameters4. Robot system and multi-robot system have become a research hotspot, in which the problem of 
parameter uncertainty cannot be ignored, the application of adaptive neural network compensation mechanism 
is a common solution5–7. Similarly, fuzzy approximators are also a more commonly used intelligent method for 
approximating uncertainty, which has been applied in references8,9. By designing an event triggering strategy 
and an adaptive sliding mode estimator, reference10 compensates for the effects of interference and parameter 
uncertainty. In high-speed train system and virtual coupled train system, adaptive non-singular terminal sliding 
mode controller and adaptive nonlinear controller are designed respectively, which can ensure good tracking 
and safety of the system11,12. The Hamilton scheme of adaptive error port control is proposed in reference13, and 
the robust adaptive control scheme is designed in reference14,15, both of which are used to solve the parameter 
uncertainty problem in the system. A time derivative enhanced parallel hard physics-informed neural networks 
(T-phPINN) was developed to adaptively solve non-Fourier heat conduction problems, achieving notably high 
accuracy16. To address challenges in compressible flows modeling for aerospace applications, CF-DeepONet 
was proposed in reference17, integrating branch network extracted features for rapid flow fields prediction. In 
addition, some studies have solved the uncertainty problem in complex nonlinear systems to some extent18–21. 
Although these works are validated, the convergence error of the parameters is not fully considered in the design 
of the adaptive rate, or the convergence of the parameters to the true value cannot be guaranteed when the 
persistent excitation (PE) condition is not satisfied. Because the strict PE condition is difficult to achieve in 
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most physical systems, some researchers consider designing the adaptive rate under the interval excitation (IE) 
condition, in order to obtain the adaptive controller with good robustness and generalization.

Composite learning adaptive control is one such method, which can achieve accurate convergence of unknown 
parameters under IE conditions22. In the design of parameter adaptive rate, the method not only uses the 
instantaneous tracking error, but also constructs the prediction error to accurately identify the unknown system 
parameters. The following are some research advances on composite learning control methods in recent years. 
In order to achieve parameter convergence within a fixed time and improve the speed of parameter convergence, 
references23–25 proposed composite learning command filtering backstepping control, global composite learning 
timing control and fixed time adaptive neural network control, respectively. In the robot system, some scholars 
used the composite learning mechanism to design the adaptive update rate of the neural network26,27, and also 
designed the composite learning non-singular terminal sliding mode controller and the composite learning 
impedance controller28,29 to achieve the convergence of parameter estimation errors and impedance errors. In 
order to achieve good control characteristics of dynamically positioned ships and underactuated autonomous 
underwater vehicle, references30,31 designed a composite learning method to ensure an independent and flexible 
convergence trend of parameters. Reference32 considers a predicator-based composite learning technique to 
improve the ability of accurate estimation of unknown nonlinearities. In terms of prescribed performance 
control, references33,34 combined the use of composite learning control technology to ensure the stability of the 
system and the ability to approximate unknown nonlinearities. In affine nonlinear systems, based on the model 
reference adaptive control scheme, a composite learning adaptive controller was designed in35. Reference36 
designed a composite learning controller based on the actor critic network and interference observer to achieve 
good trajectory tracking and vibration suppression capabilities. And references37–39 have designed effective 
control methods based on composite learning. From these studies, it can be seen that composite learning adaptive 
is a novel adaptive control scheme, which has a good performance in the problem of parameter uncertainty. 
However, the convergence speed and precision of the parameters depend on the control parameters of the 
design, and are more sensitive to the selection of parameters. When the control parameters are not sufficiently 
adjusted, the convergence process of unknown parameters may be slow. Therefore, it is necessary to design an 
adaptive adjustment mechanism with easy parameter adjustment, fast response speed and high convergence 
accuracy to further improve the adaptive control method of composite learning.

In order to solve the problem of slow convergence and strong dependence of unknown parameters in 
traditional adaptive control system of composite learning with parameter uncertainty, a new multilateral 
cooperative adaptive learning mechanism is proposed in this paper to improve the adaptive adjustment process 
of composite learning, and then a controller with higher convergence accuracy of unknown parameters and 
tracking errors is designed. Multilateral cooperative adaptive learning mechanism is a multi-branch adaptive 
iterative strategy based on the same structure. The adaptive structure of each branch is the same, and multiple 
uncertain approximation outputs are obtained by passing in different initial values of pre-assigned adaptive 
parameters. The uncertainty estimator in the control closed loop is obtained by the linear fusion of the 
multilateral weight and it is used as the adaptive term of the controller signal. In order to solve the adverse 
effects caused by the unknown initial value of adaptive parameters and the rapid change rate of multilateral 
weight parameters, the parameter initial value allocation strategy and saturation conversion function are further 
designed to improve the controller performance. The specific contributions are as follows 

	1.	 A multilateral cooperative adaptive learning mechanism was proposed and designed, and a new controller 
was obtained by integrating it with the traditional composite learning adaptive controller in reference35, 
which effectively improved the convergence speed and accuracy of unknown parameters and reduced the 
state tracking error. The design of the multilateral mechanism is based on the same adaptive structure, and 
it is not necessary to design each adaptive loop separately when applying, and multiple uncertainty approxi-
mation loops can realize adaptive synchronization update without adding additional burden on calculation.

	2.	 Different from the unique initial parameter values set in reference41, this paper considers that different initial 
values have different effects on the control action, and designs the parameter initial value allocation strategy 
based on the potential possible laws of the data. By assigning the initial values of unknown parameters to 
multiple combinations in a unique way, different adaptive initial values of parameters are constructed for the 
multilateral. Through cyclic iteration and linear fusion of multilateral weight, the information output from 
different combinations can be fully utilized to quickly and accurately approximate the true values of param-
eters.

	3.	 In order to constrain the change rate of multilateral weight parameters and prevent bad jitter in complex 
nonlinear objects, a saturation conversion function is designed to improve the design of multilateral co-
operative adaptive learning mechanism. In general, the saturation conversion function has an adjustable 
boundary parameter, which is used to constrain the maximum value of the multilateral weight change rate. 
After the transformation of the nonlinear function, the change rate of the weight parameter can be stabilized 
in the bounded interval, which makes the action of the control system smoother.

The remaining parts are arranged as follows: In section 2, the parameter uncertainty problem and trajectory 
tracking control problem to be solved are proposed. In section 3, a combined feedforward feedback controller 
is designed under the framework of model reference adaptive adaptation, and the initial parameter assignment 
problem and corresponding solution are proposed. A multilateral composite learning adaptive controller is 
designed by integrating composite learning adaptive control and multilateral learning mechanism. In section 
4, the Lyapunov stability proof is presented. In section 5, the inverted pendulum system is taken as the control 
object, and the simulation experiments of trajectory tracking and parameter convergence are completed 
compared with two adaptive controller. In section 6, the conclusion is given.
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The symbols R, R+, Rn, Rn×n represent real numbers, positive real numbers, n-dimensional real vectors, 
and n × n-dimensional real matrices, respectively. W ∗ ∈ Rv  represents the expected unknown parameter, 
ŵi ∈ Rm represents the vector composed of m estimated parameters of the i-th unknown parameter, w̄j ∈ Rv  
represents the j-th group of estimated parameters, where v represents the dimension of the unknown parameter, 
and m represents the number of sides of the unilateral. | · | represents the absolute value symbol, and ∥ · ∥ 
represents the Euclidean-norm of a vector. sat(z, ld) represents the saturation conversion function of the design, 
where z is the input variable, which can be either a scalar or a vector, and ld ∈ R is the constraint boundary.

Problem formulation
The effectiveness of the controller design based on model reference adaptive control has been widely verified. 
In the following, the control problem under the framework of model reference adaptive control is introduced 
by taking the single-input single-output affine nonlinear system as the control object. The reference system is a 
linear system, and the state space equation is

	 ẋr = Arxr + brr� (1)

where, xr ∈ Rn represents the state of the linear reference system, Ar ∈ Rn×n is the system matrix, which 
is usually stable, br = [0, · · · , 0, 1]T , and r is exogenous excitation signal, which can be arbitrarily set. In the 
actual industrial scene, it is often necessary to track a certain trajectory. In this case, r can be set as a matching 
signal, and under the action of the control signal, the system can track this trajectory.

Affine nonlinear system is a nonlinear system with a specific structure, and its state space equation can be 
described as

	 ẋ = Λx + b (f (x) + u)� (2)

where x ∈ Rn is the state of the affine nonlinear system, the model reference adaptive control is to ensure that 
the state of the nonlinear system can track the state of the linear reference system well. Λ ∈ Rn×n is the system 
matrix of the known part of the model, which is a constant matrix, b = [0, · · · , 0, 1]T , f(x):Rn �→ R is the 
uncertain part of the model, and u(t) ∈ R is the control input.

Considering the parameter uncertainty problem in35, the uncertain part of the model can be parameterized 
linearly

	 f (x) = W ∗T Φ(x)� (3)

The unknown parameter is represented as W ∗ = [w1, w2, · · · , wv]T ∈ Rv , that is, there are v uncertain 
parameters, and correspondingly, Φ = [ϕ1, ϕ2, · · · , ϕv]T ∈ Rv  is the excitation vector, and all excitation 
functions are known.

Remark 1  The parameter uncertainty problem considered in this paper refers to unknown parameters that can 
be expressed in the form of linear parameterization as shown in Equation (3). The excitation functions of the pa-
rameters are usually known to accurately identify the unknown parameters. Unknown parameters in nonlinear 
forms are not considered here.

The objective of the control is to make the state x of the affine nonlinear system track the state xr  of the 
linear reference system, and to identify the true values of the unknown system parameters online. It is assumed 
that the states xr  and x are measurable, the value of the state quantity can be obtained in real time, and (Λ, b) 
is controllable.

Remark 2  In parameter uncertainty problems, only parameters are unknown, and the corresponding function 
vectors can be accurately represented by mathematical language. Usually, it is only necessary to pay attention 
to the convergence trend of parameters and the final convergence result. However, in some complex systems or 
scenarios, although the number of unknown parameters is limited, the number is large. At this time, it is trou-
blesome to observe the changes of a large number of parameters at the same time, but substituting equation (3) 
can view the problem from the perspective of system uncertainty. Multiple parameters are fused together, and 
it is easy to observe the approximation degree of system uncertainty. It should still be noted that such treatment 
reduces the dimension of observation. In some cases, even if the unknown parameters do not converge, the 
system uncertainty still has a good approximation effect. Therefore, when observing the approximation degree 
of the system uncertainty, it is also necessary to pay attention to the convergence of some parameters to truly 
reflect the control effect.

Definition 1  40 When there are constants te, τd, σ ∈ R+ and te > τd makes 
´ te

te−τd
Φ(τ)ΦT (τ)dτ ≥ σI  true, 

the bounded signal Φ(t) ∈ Rn is interval excitation (IE) on the interval [te − τd, te].

Definition 2  40 A bounded signal Φ(t) ∈ Rn satisfies the persistent excitation (PE) condition when there are 
constants σ, τd ∈ R+ makes 

´ t

t−τd
Φ(τ)ΦT (τ)dτ ≥ σI, ∀t ≥ 0.
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Controller design
Combined feedforward feedback controller
Define the tracking error signal as

	 e(t) = xr (t) − x (t)� (4)

Take the derivative of time and substitute it into equations (1) and (2) to get an expression for the differential 
error

	 ė = Λe + (Ar − Λ) xr + brr − b (f (x) + u)� (5)

A new state vector xre = [xr
T , r]T  is introduced, which is composed of the state of the linear reference system 

and the exogenous excitation signal, and is used to design the feedforward controller. In the framework of model 
reference adaptive, an adaptive controller containing feedforward feedback and adaptive terms is considered. The 
feedback control signal is based on the tracking error of the system, the feedforward control function is based 
on the new state vector xre, and the adaptive term is designed as the output result of multilateral composite 
learning. Among them, multilateral composite learning is a strategy of weighted fusion of multiple composite 
learning adaptive processes, and learning through the deviation between each part and the system uncertainty 
reference value. The controller can be designed as40

	 u = kT
e e + kT

r xre − uad� (6)

where, kr ∈ Rn+1 is the feedforward control gain, ke ∈ Rn is the feedback control gain, and uad is the adaptive 
compensation term.

For ease of analysis, the term containing xre is designed as

	 bkT
r xre = (Ar − Λ) xr + brr� (7)

By substituting equation (6) and equation (7) into equation (5), the dynamic expression of error after reduction 
can be obtained as

	 ė = Λe − b(f (x) + kT
e e − uad)� (8)

Remark 3  Regarding the selection of the control parameters ke and kr , first of all, the selection of kr  should 
satisfy the equation relationship in Equation (7). Then, it should be noted that the value of ke is conditional. That 
is, the result of the calculation of Λ − bke

T  should be strictly Hurwitz.

As shown in Fig. 1, the input of the reference model is the external input reference signal r, which makes the state 
of the reference system change along with r. In general, r is set as the desired reference trajectory, the state change 
trend of the linear system is consistent with it, and the state of the nonlinear system gradually approaches the 
state of the linear system under the control. The reference signal and the linear reference state together become 
the feedforward action u1 of the controller, and the tracking error is designed as the feedback control signal u2, 
and the adaptive term uad is subtracted from both to get the controller u. The tracking error e passes through 
the second-order linear filter to generate the differential error ėn, and both of which flow into the multilateral 
composite learning mechanism, and the multilateral learning result is the third term of the controller.

Remark 4  The blue area in Fig. 1 is the designed multilateral composite learning adaptive mechanism, which is 
one of the innovation parts of this paper. It can be seen that the tracking error and its differential signal are used 
as the input of this part to calculate the approximation error f̃  of the system uncertainty. Then, the approxima-
tion error and adaptive learning rate gain γ are fed into multiple adaptive adjustment channels with the same 
adaptive structure, and the output of each unilateral uncertainty approximation value weighted by multilateral 
weight wej  is obtained by the adder. To distinguish the unilateral with different adaptive parameters, the first, j-
th, and last adaptive adjustment channels are represented by purple, orange, and green backgrounds, respective-
ly. Among them, the adaptive channel with orange background is the most representative, completely drawing 
a single adaptive adjustment structure. The update output of the j-th estimation parameter w̄j  is completed by 
the composite learning adaptive parameter update mechanism, and then the corresponding system uncertainty 
estimate f̂j  is calculated directly. The j-th unilateral output is obtained by linear multiplication with the multilat-
eral weight parameter wej . In addition, in order to update the multilateral weight parameter wej , the required 
variable combination is passed to the saturation conversion function, and the parameter adaptive update rate 
after constraints is output to avoid the jitter phenomenon caused by excessive parameter adjustment. Some of 
these symbols are not yet defined and will be explained one by one below.

Parameter initial value assignment strategy for parameter uncertainty
In system control tasks with uncertain parameters, online identification of unknown parameters is a common 
approach. Each parameter is initially assigned a value and evolves during system operation to adapt to the control 
process. Under PE condition, unknown parameters may converge; otherwise, it’s difficult to achieve convergence 
with only instantaneous data correction. A composite learning adaptive control method combines direct and 
indirect adaptive control, builds prediction errors based on past data, and enables parameter convergence under 
IE condition with the joint action of instantaneous and historical data.
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To enhance parameter convergence accuracy, a finite number of likely initial values for each unknown 
parameter are selected based on data characteristics and combined with other possible initial values to form 
multiple parameter estimators with different initial conditions. Initial value assignment has two modes: 1) Offline 
data exists to predetermine parameter data distribution; 2) Parameter initial value characteristics are unknown. 
For the first case, interval division is based on data distribution property, and boundary values are taken as 
initial values. The second case, more common in practice, assumes parameters follow a uniform distribution, 
determines possible upper and lower bounds in advance, and obtains initial values through uniform sampling. 
Mathematical language is used below to analyze parameter uncertainty with uniformly distributed data.

It is known that the system has v unknown parameter, that is, wi (i = 1, 2, · · · , v), which is the true value 
of the parameter, and ŵi may be used to represent the corresponding estimate. Assuming m initial values are 
selected for each parameter, the multiple estimated parameters of the i-th parameter can be expressed as

	 ŵi = [ŵi1 ŵi2 · · · ŵim]T � (9)

where ŵij  represents the j-th estimate of the i-th parameter. w̃ij := wi − ŵij  is defined as the estimation error 
of the j-th estimate of the i-th parameter, which is later used in the design of the update rate of the parameter of 
the estimate.

Remark 5  Since the parameters are assumed to be uniformly distributed, and the initial value distribution re-
sults are obtained by sampling at equal intervals, ŵ0

ij  is used to represent the initial value of the j-th th estimate 
of the i-th parameter, then multiple initial values meet the characteristics of monotone increasing or decreasing 
with respect to j, that is, ŵ0

ij > ŵ0
ik (j > k) or ŵ0

ij < ŵ0
ik (j < k), which monotonicity is arbitrary.

There are v unknown parameters. If all combinations of different parameters with different initial values are 
considered, the problem of computation explosion will be encountered when v is large, and more combination 
forms are easy to cause unnecessary trouble. In fact, this problem can be minimized, and the m as the total 
number of combinations can greatly simplify the calculation process. At this time, only the parameters with the 
same subscript j are taken as a combination to form a parameter estimator, and w̄j (j = 1, 2, · · · , m) ∈ Rv  is 
used to represent such a combination of parameters, described in Table 1.

Fig. 1.  Model reference multilateral composite learning adaptive control structure.
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	 w̄j = [ŵ1j ŵ2j · · · ŵvj ]T � (10)

The error vector formed by the combination and the true value of the parameter is denoted as w̃j , there is

	 w̃j = W ∗ − w̄j = [w̃1j w̃2j · · · w̃vj ]T � (11)

The closer the initial parameter estimation range is to the actual initial parameter value, the better the transient 
behavior of the system in the control process. Assuming that the predetermined upper and lower bounds of the 
i-th parameter are lai, lbi(lai < lbi), and the length of the range is expressed by si := lbi − lai, the initial value 
ŵ0

ij  can be calculated as

	
ŵ0

ij = lai + (lbi − lai)(j − 1)
m − 1 = lai + si(j − 1)

m − 1
� (12)

Given that the excitation vector is Φ, the estimated value of the system uncertainty calculated by different 
parameter combinations can be expressed as

	 f̂j = w̄T
j Φ� (13)

where, f̂j  represents the estimated value of the system uncertainty calculated from the combination of the j-th 
parameter, and the deviation from the true value f is expressed as f̃j .

Consider introducing a multilateral learning weight wej (j = 1, 2, · · · , m), representing the weight of the 
j-th system uncertainty estimate, to calculate the final system uncertainty estimate uad. Instead of using a single 
uncertainty estimate directly, multiple uncertainty estimates are relearned in the form of weighting. On the 
one hand, the robustness of the system is improved, and on the other hand, the output result of the uncertainty 
estimator is more reliable.

	
uad =

m∑
j=1

wej f̂j � (14)

Similarly, the initial value of the multilateral learning weight is also to be considered, and it is useful to use w0
ej  

to represent the initial value of the j-th multilateral weight. In a simple example, several weight initialization 
methods such as random initial value, equal interval initial value and normalized average initial value are tested. 
The results show that normalized average initial value is the best one of them. The multilateral weights can then 
be initialized to

	
w0

ej = 1
m

� (15)

Remark 6  Regarding the selection of the initial values lai and lbi of the parameters, it can be based on the law of 
the prior distribution, or the parameters can be assumed to be unknown, so that the initial values are set within 
a reasonable range. Usually, when the possible range of the unknown parameters is not known, it is assumed 
that the upper and lower bounds of the parameters are values symmetric about the origin, and a small positive 
integer is selected in the positive direction. In addition, the multilateral parameter m should be chosen as an 
integer as small as possible, as long as it can ensure that the system is within the allowable error range. Because 
as m increases, some unilateral terms contribute little to the final formed uncertainty approximation value and 
occupy a certain amount of computational resources. Even if this part of the resources is acceptable, the entire 
controller can still be optimized by reducing unnecessary unilateral terms.

Composite learning adaptive mechanism
The composite learning adaptive control strategy uses both instantaneous data and historical data. In the design 
process, not only tracking error is considered, but also prediction error is constructed, so that the tracking error 

Lateral index The estimation vector of unknown parameters

1 w̄1 = [ŵ11 ŵ21 · · · ŵv1]T

2 w̄2 = [ŵ12 ŵ22 · · · ŵv2]T

3 w̄3 = [ŵ13 ŵ23 · · · ŵv3]T

⋮ ⋮

j w̄j = [ŵ1j ŵ2j · · · ŵvj ]T

⋮ ⋮

m w̄m = [ŵ1m ŵ2m · · · ŵvm]T

Table 1.  Initial value assignment for multilateral estimated parameters.
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can still converge to zero and the unknown parameter converges to the true value when the PE condition is not 
satisfied. Ideally, the method can get the actual value of the unknown parameter in a finite time, but the model in 
the actual scene is complex, the existence of noise and interference signals may prolong the identification process 
or the parameter convergence to the neighborhood near the true value, and the identified unknown parameter 
still has a small deviation. In order to improve the accuracy of identification, a multilateral learning mechanism 
is adopted to deal with this challenge. For the detailed design process, see the relevant content of multilateral 
composite learning. In the initial parameter assignment, w̄j  is used to represent the j-th parameter combination. 
The composite learning adaptive mechanism of the parameter combination is described below.

The symbol of the tracking error is known as e, a new prediction error ε := Θew̃j  is defined, and

	
Θe : =

{ Θ(t), t < Te

Θ(Te), t ≥ Te
� (16)

	
Θ(t) : =

ˆ t

t−τd

Φ(x(τ))ΦT (x(τ))dτ � (17)

where τd ∈ R+ is an integral period and Te ≥ τd is a specific time involved in the calculation. In the general 
composite learning adaptive controller design35, Te is the time when the minimum singular value of Θ(t) 
reaches the maximum, here, as with most controller parameters, it is considered as an artificial parameter.

Here we need to solve the calculation problem of prediction error ε, which is not difficult to get from the 
definition of w̃j  in equation (11)

	 Θ(t)w̃j(t) = Θ(t)W ∗ − Θ(t)w̄j(t)� (18)

Since Φ(x) is known and w̄j  is available in the control process, the second term on the right side of the equation 
can be computed. The more difficult thing to deal with is the first term on the right of the equation, which is 
ΘW ∗. Here is a solution. Rewrite equation (8) as follows

	 ė = Λe − b
(
f (x) + kT

e e − uad

)

Since the approximation value f̂j  to the uncertainty of the j-th parameter combination is itself similar result to 
uad, the variable is replaced here

	

ė = Λe − b
(
f + kT

e e − f̃j

)

=
(
Λ − bkT

e

)
e − bf̃j

� (19)

Multiply both sides by Φ(x(t)), integrate over the interval [t − τd, t], transform some terms and get

	
Θ (t) W ∗ =

ˆ t

t−τd

−Φ (x)
(
ėn − w̄T

j Φ − bAe
)

dτ � (20)

In equation (21), it is still necessary to obtain the differential signal ėn  of the tracking error e. In order to 
reduce the complexity of the calculation, this variable is obtained by using a second-order linear filter. The model 
of the filter is

	

{
˙̂en = ên+1
˙̂en+1 = −2ζωên+1 + ω2 (en − ên) � (21)

where

	

{
ên(0) = en(0)
ên+1(0) = 0 � (22)

Filter variable ên is the corresponding part of signal en, filter variable ên+1 is the corresponding part of signal 
ėn, and parameters ω ∈ R+ and ζ ∈ R+ represent the natural frequency and damping ratio respectively. 
Among them, the natural frequency and damping ratio are controllable parameters of the second-order linear 
filter. In order to meet the suitable filtering form, these two variables should adapt to the changing trajectory 
of the filtering state with time, so as to obtain more accurate filtering output results. The state differentiation of 
the tracking error is obtained by using the filter, which avoids the complexity of the analytical calculation and 
reduces the computational burden of the control process. In addition, in the process of second-order linear 
filtering, the adverse effects of high frequency noise such as measurement noise on the system will be reduced.

The adaptive control rate of composite learning is

	 ˙̄wj = γeeT P bΦ(x) + γekwε� (23)

where, γe ∈ R is the learning rate, P is the positive definite matrix designed later, and kw ∈ R is the predicted 
gain. The parameter adaptive update rate is composed of two parts. The first item makes use of the tracking 
error of the system, so that the parameter adjustment has the ability to quickly track the reference trajectory; the 
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second item makes use of the prediction error constructed earlier, so that the historical data can be fully used 
in the parameter adjustment, and the parameter convergence can still be completed under the condition of IE.

As shown in Fig. 2, the relevant historical data of state x is recorded in the memory, τ  represents the past 
time, ϖ1 can be calculated from the past excitation vector Φ(x(τ)), and then the integration output is obtained 
through the integrator. The tracking error e passes through the second-order linear filter to get the error 
differential ėn, and the two are involved in the calculation of ϖ2 together with the historical data Φ(x(τ)) and 
the current parameter vector w̄j , and then the integrated output is obtained through the integrator. The newly 
constructed prediction error ε is obtained by subtracting the dot product of the ϖ1 integral result from ϖ2 and 
the parameter vector w̄j . The product of the prediction error and the learning gain is the second term of the 
parameter update rate, plus the first term calculated by the tracking error e, to form the update formula of the 
parameter vector w̄j .

Multilateral composite learning adaptive mechanism
Based on the previous composite learning adaptive mechanism, the design of the multilateral composite learning 
adaptive mechanism is completed. The detailed process is as follows. The forward process and initial value of 
the multilateral learning mechanism are known from equations (14) and (15), where f̂j  is the fitting result of 
the system uncertainty obtained from the transformation of parameter uncertainty in the adaptive process of 
composite learning. Note the difference between the adaptive term uad and the true uncertainty f as f̃ , then

	 f̃ = f − uad� (24)

Substitute into equation (8) to get

	 ė =
(
Λ − bkT

e

)
e − bf̃ � (25)

Due to the existence of unknown parameters, the actual uncertainty f cannot be directly calculated and f̃  is 
difficult to determine. Look carefully at the above formula, transposition can be obtained

	 bf̃ =
(
Λ − bkT

e

)
e − ė� (26)

As previously known, the differential of the tracking error e can be obtained by a second-order linear filter, so 
equation (26) is solvable. The adaptive rate of multilateral learning weight wej  is

	 ẇej = γf̂j f̃ � (27)

where, γ ∈ R is the learning rate. The adaptive rate makes use of the deviation between the adaptive term 
and the actual uncertainty, and can adjust the multilateral weight to adapt to the actual uncertainty, which is 
advantageous for approximating the real value of the unknown parameter to a certain extent.

In order to prevent excessive oscillation caused by too fast adjustment of the adaptive rate, it is necessary 
to use some means to reduce the peak value of the adaptive rate. In the design of adaptive controller, there are 
some methods, such as σ correction, e correction, projection mechanism, which can limit the range of adaptive 
rate adjustment. In this paper, the saturation conversion function is used to achieve this effect. A new saturation 
conversion function is designed as

	
sat (z, ld) = ld

1 + e−z
− ld

1 + ez
� (28)

where z is the input of the nonlinear function, and ld ∈ R+ is the constraint boundary, limiting the input to the 
interval [−ld, ld]. Then equation (27) can be further improved to equation (29).

	 ẇej = sat
(
γf̂j f̃ , ld

)
� (29)

After constant updating, wej  will constantly adapt to the real uncertainty and may eventually converge to a 
definite value. Each parameter combination forms a composite learning adaptive process, and the obtained 
uncertainty estimate f̂j  is multiplied by m multilateral weights to obtain the final adaptive term, which constitutes 
a complete multilateral composite learning adaptive controller.

Fig. 2.  Composite learning adaptive parameter w̄j  update mechanism.
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The parameter selection process for the controller design is outlined as follows:
Step 1: Based on the nature of linear parameterization, determine the dimension and boundary range of 

the parameters to be estimated. Assign the extreme values of the parameter range to the boundary parameters 
lai and lbi, where lai typically represents the minimum value and lbi the maximum value. Considering both 
the multilateral principle and computational load, determine the dimension parameter m for the multilateral 
structure, partition the range for each unknown parameter accordingly, and initialize the estimated parameters 
w̄j  in a predefined form.

Step 2: Different initialization methods for the multilateral weight parameters wej  can be investigated. 
Through comparative analysis, an optimal initialization rule can be identified. In this study, normalized equal 
values are chosen as the initial values for the multilateral weight parameters. This approach normalizes the 
magnitudes across different branches, preventing abrupt signal variations during composite computation, while 
equal initial weighting ensures that all branches are treated equally at the start before entering their respective 
adaptive phases.

Step 3: Each branch of the multilateral structure incorporates a second-order linear filter. The filter parameters 
ζ  (damping ratio) and ω (natural frequency) are often determined empirically, ensuring that the filtered output 
adapts appropriately to the controller’s adaptive behavior.

Step 4: For gain and learning rate parameters such as γ, γe, and kw , a sensitivity analysis or trial-and-error 
method is used to identify their adjustable ranges. An iterative tuning process-gradually increasing or decreasing 
the values is then applied, combined with observation of the system’s response characteristics, to determine the 
optimal settings. Additionally, the boundary parameter ld must be tuned by considering both the amplitude 
variations of signals within the system and the magnitude of the learning rate gains, so as to ensure robust 
stability throughout the system’s operation.

Remark 7  As can be seen from equation (28), the saturation conversion function is a continuous nonlinear 
function, and ldis an amplification factor used to appropriately adjust the upper and lower bounds of the nonlin-
ear function curve. At the same time, ldalso defines the variable interval of the adaptive rate of the multilateral 
weight parameter, so that the adaptive rate signal is always bounded. The function is monotonically increasing 
and does not change the positivity of the incoming variable, and the output value is the ordinate of the corre-
sponding point of the incoming variable on the nonlinear curve. Without the saturation conversion function, 
the adaptive update rate may be a relatively large value, which will affect the adaptive parameters will have a 
large increment, resulting in overshoot phenomenon, resulting in a certain degree of jitter in the internal state of 
the system. However, under the constraint of the saturated transfer function, the adaptive update rate is always 
within the defined constraint range, which effectively weakens the jitter phenomenon, and the saturated transfer 
function is a continuous curve, which is conducive to the smooth adjustment of parameters.

Stability analysis
Theorem 1  Considering the model reference adaptive control problem of affine nonlinear systems (2) with pa-
rameter uncertainty, in order to ensure that state x can track state xr  of linear reference systems (1) well and that 
unknown parameters can converge to their true values under IE conditions, the controller (6), the update rate of 
composite learning parameters (23) and the update rate of multilateral weights (29) are designed. If the choice of 
gain parameter kr  satisfies equation (7) and ke satisfies the condition that Λ − bke

T  is a strict Hurwitz matrix, 
then the closed-loop system can achieve global asymptotic stability, and the closed-loop signal is bounded, and 
the tracking error can converge to a small neighborhood of zero and the parameters converge.

Proof  Define the multilateral weight vector Wm = [we1, we2, · · · , wem]T , assume that there is a correspond-
ing true value W ∗

m = [w∗
e1, w∗

e2, · · · , w∗
em]T , let W̃m represent the error vector between the multilateral weight 

vector and the true value, then

	 W̃m = W ∗
m − Wm� (30)

For equation (25), matrix A := Λ − bkT
e  is introduced, then ke should be taken so that matrix A is strictly 

Hurwitz matrix. In this case, the error dynamic is written as

	 ė = Ae − bf̃ � (31)

If matrix Q = QT > 0 is chosen, there is a unique solution P = P T > 0 to the Lyapunov equation.

	 AT P + P A = −Q� (32)

Define the Lyapunov energy function as

	
V = 1

2eT P e + 1
2γe

m∑
j=1

w̃T
j w̃j + 1

2γ
W̃ T

mW̃m� (33)

There are three items on the right side of the equation, which are tracking error term, composite learning 
adaptive error term and multilateral learning weight error term. For individual analyses, label them V1, V2, and 
V3 in order from left to right.
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V1 = 1

2eT P e � (34)

	
V2 = 1

2γe

m∑
j=1

w̃T
j w̃j � (35)

	
V3 = 1

2γ
W̃ T

mW̃m � (36)

Equation (34) is obtained with respect to time differentiation

	

V̇1 = 1
2 ėT P e + 1

2eT P ė

= −1
2eT Qe − eT P bf̃

� (37)

Similarly, derivation of V2 is obtained by substituting the composite learning adaptive rate formula (23), 
combining the definition of uncertainty approximation error f̃j  and prediction error ε get

	

V̇2 = − 1
γe

m∑
j=1

w̃T
j

˙̄wj

= −
m∑

j=1

w̃T
j

(
eT P bΦ + kwε

)

= −eT P b

m∑
j=1

f̃j −
m∑

j=1

w̃T
j Θew̃j

� (38)

From the definition and calculation of Θe, we can see that Θe ≥ 0 is always true and can be represented by its 
eigenvalue in t ≥ Te. Therefore, the second term in V̇2 is never greater than zero. The first item on it will be 
discussed at the end.

Then, the derivation analysis of V3 is carried out, and the adaptive rate of multilateral weights is substituted, 
taking equation (27) as an example.

	

V̇3 = 1
γ

W̃ T
m

˙̃Wm

= − 1
γ

m∑
j=1

w̃ejẇej

= −
m∑

j=1

w̃ej f̂j f̃

� (39)

It’s easy to know, f̃ =
∑m

j=1 w̃ej f̂j , then equation (39) can be further written as

	

V̇3 = −
m∑

j=1

m∑
k=1

w̃ejw̃ekf̂kf̂j

= −f̃T f̃ ≤ 0

� (40)

It is obtained by combining formula (37), formula (38) and formula (40)

	
V̇ = −1

2eT Qe −
m∑

j=1

w̃T
j Θew̃j − f̃T f̃ − eT P b

m∑
j=1

(w̃ej + 1) f̃j � (41)

The first three numbers on the right side of the middle sign of equation (41) are non-positive numbers, and only 
the positive or negative of the fourth term remains to be discussed. It is not difficult to know that under normal 
circumstances, the above signals are bounded. Suppose that the error w̃ej  of the multilateral weight satisfies 
condition |w̃ej | ≤ w̄ej , ∀t ≥ 0, where w̄ej  is the constrained boundary of the error. λmax(·) is used to represent 
the maximum eigenvalue of the matrix, ∥·∥ is used to represent the norm of the vector, and Young’s inequality 
is applied to the fourth term, then
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V̇ ≤ −1

2eT Qe −
m∑

j=1

w̃T
j Θew̃j − f̃T f̃ + C � (42)

where

	
C = 1

2mλmax (P ) ∥e∥ + 1
2

m∑
j=1

(w̄ej + 1)2 f̃2
j � (43)

Even if such a positive number C exists, the system is still stable enough to converge to a certain range. When 
the control parameters are selected appropriately, V̇ ≤ 0 is constant, and the system meets the global asymptotic 
stability. In the special case, V̇  may appear greater than zero in the initial adjustment phase, but as the first three 
items in equation (42) are always less than or equal to zero, some parameters converge to a sufficiently small 
range that V̇  is ultimately no greater than zero. Based on the above analysis, the system has a certain stability, 
which can ensure that the nonlinear system can track the state of the linear reference system well, the parameters 
are bounded and convergent, and theorem 1 is proved. □

Simulation
In order to verify the effectiveness of the designed model reference multilateral composite learning adaptive 
controller, the inverted pendulum system was simulated in the MATLAB2016b software platform, and the 
simulation duration was set at 30s.

Linear reference model is set to

	
ẋr =

[ 0 1
−1 −2

]
xr +

[0
1
]

r

There are two states, set the initial value to xr(0) = [1, 1]T , the exogenous excitation input to r = 1 (10 ≤ t < 15), 
r = −1.5 (20 < t < 25), otherwise r = 0.

The affine nonlinear model of inverted pendulum system is

	
ẋ =

[0 1
0 0

]
x +

[0
1
]

(f + u)

The initial state value is set to x(0) = [1, 1]T , the expected parameter is W ∗ = [1, −1, 0.5]T , and the excitation 
function vector is Φ (x) = [ex1x2 , sin (x1) , x2 |x2|]T .

The multilateral composite learning adaptive controller, the composite learning adaptive controller (COM) 
in35 and the adaptive finite time command filtered backstepping controller (AFTCFBC) in41 are compared in the 
experiment. Let m = 7 (M7-COM). The control gains ke and kr  are set to ke = [50, 30]T  and kr = [−1, −2, 1]T  
respectively. In equation (21), the parameters of the second-order linear filter are set to ω = 100, ζ = 0.7. 
Q = 10I  in equation (32), where I is the identity matrix. Set the predetermined upper and lower bounds of all 
unknown parameters equal, that is, lai = lak = −1(i ̸= k), lbi = lbk = 1(i ̸= k). The composite learning time 
parameter Te = 5, the value of delay time is equal to Te, that is, τd = 5. Learning rate γe = γ = 5, prediction 
gain kw = 1. The constraint boundary of the saturation conversion function is ld = 2. For fair comparison, 
the relevant parameters of the composite learning adaptive controller have the same values as those of the 
multilateral composite learning adaptive controller.

Specifically, the structure of AFTCFBC is expressed as

	 u = r − ke2e2 − W T
a Φa + ẋ2c − e1 − c2v2β−1

2

	 Ẇa = γa(Φa(ė2 + e1 + ke2e2 + c2v2β−1
2 ) − σaWa)

where, ke2 denotes the second element of the feedback gain vector ke. The parameters Wa and Φa represent 
the estimated parameter uncertainty and the excitation function utilized within the controller, respectively. The 
virtual control input x2c is defined as x2c = x2 + e2. The term v2 corresponds to the compensated tracking 
error, which is designed to mitigate tracking deviations through feedback correction. The parameters c2 = 0.1 
and β = 0.7 are tuning parameters. Additionally, γa = 5 specifies the adaptive learning rate for parameter 
adaptation, while σa = 10−4 is the correction gain parameter.

The integral of the absolute value of the tracking error is denoted as Jx, which is a performance indicator 
of the tracking error, and the integral of the absolute value of the fitting error of the system uncertainty 
transformed from the parameter uncertainty is denoted as Jf , as a performance indicator of the prediction 
error. The tracking error performance indicators of system state 1 and state 2 are represented as Jx1  and Jx2  
respectively. Furthermore, it is known that Jx represents the error performance over the entire simulation 
period, reflecting the combined effects of transient and steady-state characteristics. To comprehensively evaluate 
the actual performance of the controller, the steady-state accuracy must also be considered. This is quantified by 
the performance index J−

x , which denotes the system’s performance after the unknown parameters have been 
fully learned. The key distinction lies in the error accumulation period for J−

x , which begins at Te (as opposed 
to the full simulation period for Jx).
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Jx =

ˆ T

0
|e|dt

	
J−

x =
ˆ T

Te

|e|dt

	
Jf =

ˆ T

0

∣∣ϑ̃∣∣ dt
(
ϑ̃ = f̃ , f̃j

)

The simulation duration is 30 seconds, and the error performance indexes of the whole process are recorded in 
Tables 2 and 3.

As can be seen from Table 2, the performance indexes of M7-COM’s tracking error and prediction error are 
superior to those of COM’s control method. Among them, the performance indexes of M7-COM’s state-1 tracking 
error are about 41.8% of those of COM’s method, and that of M7-COM’s state-2 tracking error are about 40.7% 
of those of COM’s method. The prediction error performance index of M7-COM is about 39.2% that of COM 
method. Compared to AFTCFBC, the proposed control method M7-COM achieves optimal performance across 
all metrics except for Jx1 . As evidenced by the data in the last three rows of the table, AFTCFBC exhibits the 
worst performance across these metrics, indicating its inferior capability in approximating unknown parameters 
compared to composite learning-based controllers. Overall, while AFTCFBC employs certain strategies to enable 
rapid state tracking of the reference trajectory, its relatively weak learning ability necessitates local readjustments 
when encountering trajectory variations or disturbances, requiring adaptation to new control conditions. In 
summary, the proposed M7-COM controller demonstrates superior numerical performance.

In Table 3, the cumulative errors of seven composite learning adaptive processes are listed. Compared with 
21.2952 of M7-COM method in Table 2, the prediction error performance indicators of the composite learning 
adaptive process are all too large, indicating the effectiveness of the multilateral composite learning adaptive 
strategy. The distribution of multilateral initial values is obtained uniformly in the interval [−1, 1]. In Table 3, 
the composite learning adaptive process of different initial values shows different error performance. As the 
index increases, the performance index data first becomes smaller and then becomes larger. In the initial value 
state of index 5, the multilateral minimum value appears.

Figure 3 shows the trajectory curves of the two states of the system tracking the linear reference system 
state. Both methods achieve good tracking, and it is difficult to distinguish between them from the whole. The 
state tracking error of the system is plotted in Figs. 4 and 5, and there are obvious differences. Comparison 
with COM Method, the M7-COM method shows better transient performance, which is specifically reflected 
in smaller overshoot and shorter adjustment time, and the small neighborhood that has been approaching zero 
at the moment of 5s. The difference between the two is that the M7-COM control method has higher accuracy 
and stronger adaptability. As can be seen from Fig. 4, the AFTCFBC method converges the fastest, but there 
is a large amplitude of tracking error during the initial adjustment phase. Observing Fig. 5, it is evident that 
the composite learning-based method exhibits strong robustness in the later stages, particularly the proposed 
M7-COM method, while AFTCFBC shows significant fluctuations when faced with high-order discontinuous 
reference trajectory. It should be noted that, in order to effectively estimate the unknown parameters in the 

Index j Jf

1 64.6429

2 51.8073

3 44.0419

4 41.8478

5 40.6509

6 44.509

7 59.4054

Table 3.  Prediction error performance indexes of multiple composite learning processes.

 

COM AFTCFBC M7-COM

Jx1 0.63288 0.16128 0.26474

Jx2 1.6062 1.264 0.6537

J−
x1 0.078616 0.095065 0.0020011

J−
x2 0.055701 0.14484 0.0037014

Jf 54.2812 458.0228 21.2952

Table 2.  Comparison of error performance indexes of the three control methods.

 

Scientific Reports |        (2025) 15:42229 12| https://doi.org/10.1038/s41598-025-26366-6

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


system, composite learning-based control methods require error data of sufficient intensity in the early stages 
to construct the parameter adaptive update rate. Therefore, although the tracking error of M7-COM is greater 
than that of AFTCFBC during the transient phase, it maintains a sufficient excitation level to enable the rapid 
and accurate identification of unknown parameters, which is more conducive to dealing with high-order 
discontinuous reference trajectories. It can be observed from Fig. 6 that the control signals of the three control 
methods have similar amplitudes and variation trends.

Figure 7 reflects the parameter convergence of the three control methods. The black line represents the 
expected parameter values. The red dotted line, the green dot-dashed line, and the blue dashed line represent 
the parameter convergence trajectory of COM, AFTCFBC, and M7-COM, respectively. From the convergence 
states of the three parameters, the convergence accuracy of the M7-COM control method is highest, and the 
coincidence degree with the expected line is higher in the later stage. From the initial stage, the parameter error 
of M7-COM is greater than that of COM method at 0 3 s, but the principle of adaptive control by composite 
learning is not difficult to imagine, and the process generates a large amount of historical data, without a certain 
incentive strength, it is difficult to ensure that the parameter convergence to the desired value. Therefore, it 
can be seen that the M7-COM method stores a strong excitation level in this time period. At about 3 s, the 
parameters converge sharply to the true value, and the convergence speed and intensity are much greater than 
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Fig. 4.  System state tracking error.

 

0 5 10 15 20 25 30
-2

-1

0

1

0 5 10 15 20 25 30

-0.5

0

0.5

1

Fig. 3.  System state tracking curve.
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that of the COM control method. It can be seen from the figure that COM method is inferior to M7-COM 
control method in both the speed and accuracy of parameter convergence. Unlike composite learning-based 
methods, the green trajectory line of AFTCFBC consistently fails to align with the desired black line. This is 
because the controller’s parameter adaptive update rate relies solely on instantaneous data without leveraging 
historical information, preventing the excitation matrix from achieving full rank. It is evident that during the 
adaptive updates of Parameter 1 and Parameter 2, AFTCFBC approaches the reference line for a certain period; 
however, the adaptive update of Parameter 3 consistently deviates from the expected value line, an issue that is 
inevitable.

To a certain extent, the ability to approximate parameter uncertainty can also be seen through the transformed 
system uncertainty approximation curve, which has certain advantages when there are many unknown 
parameters. Figure 8 shows the fitting curves and fitting errors of the three methods for the transformed system 
uncertainty. On the whole, the M7-COM control method has better fitting effect and is closer to the real system 
uncertainty at the initial stage, and the fitting error quickly converges to near zero. Recalling the parameter 
convergence curves in Fig. 7, it is found that the parameter convergence error of the M7-COM control method 
is relatively large from 0 to 3 s, but the fitting error of the system uncertainty is relatively small in Fig. 8. It is 
not difficult to know that the M7-COM control method not only guarantees the incentive strength of historical 
stored data in the initial stage, but also realizes the optimal compensation for the overall uncertainty of the 
system. In the figure, as the reference trajectory undergoes abrupt changes, AFTCFBC deviates significantly 
from the actual uncertainties twice, once after 10 seconds and again after 15 seconds, which highlighting the 
inferior performance of this method compared to the M7-COM approach.

Figure 9 shows the change trajectory of multilateral weights. The initial values of 7 weights are all around 
0.143. Through adaptive learning, each weight is dispersed and finally converges to a certain value. These curves 
have a similar trend of change, and all tend to converge to the truth value at about 3s. Even if the reference 
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Fig. 6.  Control input signal.
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Fig. 5.  System state tracking error after 5s.
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trajectory still has a jump at the later moment, they do not show obvious waves, showing strong robustness. From 
the numerical point of view, all the 7 curves converge to a positive value greater than zero, and the largest weight 
converges near 0.3, indicating that the 7 parameter combinations of composite learning adaptive have a positive 
effect on the multilateral learning result. According to the phenomenon of multilateral weight stratification, 
different parameter combinations correspond to different weights and have different contribution degrees to the 
final adaptive term.

It can be seen from Fig. 10 that the variation curves of the Lyapunov energy function with respect to the 
tracking error for the two methods. Similarly, the red dotted line, the green dot-dashed line, and the blue dashed 
line represent COM, AFTCFBC, and M7-COM respectively. It can be observed that the line of M7-COM 
converges fastest and has smallest fluctuations in the initial stage. By observing the bottom subgraph, it can be 
seen that the AFTCFBC exhibits sharp spikes at the positions where the reference trajectory jumps. It is most 
sensitive to the sudden changes in the reference trajectory, which can be disadvantageous in certain scenarios.
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Fig. 8.  Fitting effect of system uncertainty.
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Fig. 7.  Convergence of the unknown parameters.
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In Fig. 11, the variation curves of the error norm of the estimated parameters in the three control methods 
and the approximation error norm curves of the transformed system uncertainty are depicted. Consistent with 
the previous figures, in the norm curve of the parameter estimation error, the value of the M7-COM method is 
relatively large in the initial stage, but it quickly drops to zero around 3 s, and then the norm of the parameter 
error remains almost continuously smallest. In terms of the approximation error norm of the system uncertainty, 
the M7-COM method has the best approximation effect, remaining at relatively small values throughout the 
process, which shows its superiority over the other two methods.

According to the above analysis, compared with the ordinary composite learning adaptive controller and 
the adaptive finite time command filtered backstepping controller, the multilateral composite learning adaptive 
controller not only guarantees the good tracking ability of the nonlinear system state, but also realizes the 
convergence of unknown parameters faster and more accurately, and has a better performance in the proposed 
performance index.

Conclusion
This paper addresses the trajectory tracking control and parameter convergence issues of affine nonlinear 
systems with parameter uncertainty. A multilateral composite learning adaptive controller is proposed based 
on the model reference adaptive control framework and composite learning adaptive principle, and verified 
in an inverted pendulum system. A combined feedforward-feedback controller is designed with adaptive term 
to compensate for the impact of uncertainties on trajectory tracking. An initial value assignment strategy for 
unknown parameters is presented, considering two distribution modes based on whether some initial values 
are known or completely unknown. Parameter update rates for both the composite learning adaptive loop and 
multilateral weights are designed, and a saturation conversion function is introduced to prevent rapid parameter 
changes from causing oscillations. The stability of the whole multilateral composite learning adaptive controller 
is analyzed using Lyapunov functions. In a trajectory tracking simulation experiment with an interval excitation 
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Fig. 10.  Stability convergence curve.
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Fig. 9.  Learning change curve of each weight of the multilateral composite learning adaptive mechanism.
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reference trajectory on the inverted pendulum system, compared with the conventional composite learning 
adaptive controller and the adaptive finite time command filtered backstepping controller, the proposed 
controller shows the best performance in tracking error and prediction error performance indices. The 
multilateral composite learning adaptive control strategy offers a new controller design pattern and a solution to 
parameter convergence problems.

The designed multilateral composite learning adaptive controller is based on the theory of linear 
parameterization of system uncertainties. This approach is applicable to many nonlinear systems, such as 
robotics, mechanical systems, and aircraft, where unknown parameters—including mass, inertia, and friction 
coefficients—can be linearly parameterized. However, linear parameterization often relies on approximations, 
and the system inherently retains nonlinear characteristics. Using nonlinear parameterization to describe 
the system can better model real-world dynamics, thereby yielding improved response outcomes. To extend 
this method to nonlinearly parameterized systems, two potential approaches are proposed. First, nonlinear 
neural networks can be employed to approximate arbitrary continuous uncertainties. The controller structure 
can be modified into a nonlinear form, and the multilateral mechanism can be utilized to configure diverse 
combinations, resulting in a highly robust nonlinear approximator. Second, integration with fuzzy logic 
systems can be explored, where adaptive fuzzy systems serve as nonlinear approximators and are combined 
with the multilateral learning framework. In both cases, new challenges arise: the introduction of nonlinear 
approximators complicates the Lyapunov stability proof, requiring more detailed analysis, and the conditions for 
parameter convergence may become more stringent, necessitating guaranteed uniform ultimate boundedness of 
the approximation error for the overall uncertainty.

Although the proposed controller demonstrates superior performance in simulations, this study still has 
certain limitations. The integration of the multilateral learning mechanism with the composite learning method 
introduces relatively high computational complexity, which affects the real-time execution efficiency of the 
controller. On embedded platforms with limited computational resources, the real-time performance of the 
controller requires further consideration. In the future, we plan to pursue lightweight improvements to the 
controller by optimizing its structure, so as to enhance the efficiency of parallel computing and increase the 
controller’s response speed. Additionally, an event-triggered parameter update strategy could be designed to 
reduce unnecessary computations during system response. Finally, to further extend the proposed controller, 
integration with state observers could be considered to handle control scenarios where system states are not 
directly measurable.

Data availability
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