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The long-term performance of levee infrastructure is increasingly threatened by environmental 
exposure and material degradation, underscoring the need for efficient, accurate inspection. 
Unmanned Aerial Vehicle (UAV)-based remote sensing offers a cost-effective solution, enabling 
rapid acquisition of high-resolution imagery over large surfaces; however, stains, occlusions, and 
illumination variability frequently degrade automated detection. To address these challenges, we 
propose a real-time semantic segmentation framework built on an optimized U-Net. The model 
integrates structured pruning to accelerate inference, a residual convolutional block attention module 
(ResCBAM) to suppress background interference and enhance defect saliency, and a multi-scale 
feature-fusion strategy with online feature distillation to strengthen fine-grained representations 
across resolutions. We evaluate the approach on UAV imagery collected from an aged levee section. 
The proposed method attains 90.05% accuracy, 88.94% recall, 89.22% precision, and 88.67% IoU, 
outperforming state-of-the-art baselines, while achieving a real-time processing rate of 57.74 FPS. 
These results demonstrate that the framework delivers a favorable speed–accuracy trade-off and is 
suitable for large-scale UAV-based levee monitoring. Overall, the experiments indicate strong potential 
for timely defect identification and proactive risk management in levee systems.
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Infrastructure plays a pivotal role in the functioning of modern societies, encompassing a wide range of physical 
assets such as embankments, bridges, roads, tunnels, dams, power grids, and communication networks1–3. These 
systems are essential for transportation, energy supply, water management, and communication, forming the 
backbone of economic activity and quality of life4. However, the longevity and reliability of infrastructure are 
continuously challenged by aging, environmental factors, and increased demand5. As infrastructure ages, it 
becomes more susceptible to deterioration, requiring regular maintenance and timely intervention to prevent 
failure. Traditionally, infrastructure inspection has relied heavily on manual labor, involving costly and time-
consuming processes, as well as significant risks to personnel6.

The rapid advancement of unmanned aerial vehicle (UAV) technology has revolutionized the field of 
infrastructure maintenance, offering a novel approach to the damage inspection of critical structures7–10. UAVs 
are particularly valuable for infrastructure maintenance because they can rapidly capture large volumes of data 
while minimizing human exposure to hazardous environments. The UAV-based damage inspection systems 
provide a safer, more efficient, and cost-effective alternative. These UAV-based systems are equipped with 
high-resolution cameras, sensors, and advanced imaging technologies, enabling precise data collection from 
difficult-to-reach areas11. Furthermore, the ability to operate autonomously and in real-time enhances both the 
frequency and quality of infrastructure inspections, leading to early detection of potential issues and reducing 
the likelihood of costly repairs or catastrophic failures.

In recent years, the integration of computer vision (CV) and artificial intelligence (AI) has further enhanced 
the capabilities of damage detection for civil infrastructures, enabling automated and highly accurate damage 
detection12–17. Convolutional neural networks (CNNs) and other DL-based techniques are particularly effective 
at recognizing subtle structural anomalies that may go unnoticed by human inspectors. For example, Li et al.18 
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developed a flexible crack identification system using a trainable context encoder network with neural blocks 
to enhance crack detection and segmentation. Liu et al.4 proposed a deep network combining 2D spatial and 
3D geometric feature extraction to address low-contrast crack segmentation and multi-scene compatibility. The 
model achieved accurate pixel-wise segmentation, enabling precise crack measurement and analysis. Zhang et 
al.19 proposed a crack detection system using fusion features and incremental learning for efficient training 
without GPU acceleration, which achieved comparable accuracy to leading CNNs while improving training 
speed by over 20 times. From the above-mentioned literature, it can be inferred that these existing studies have 
contributed to damage detection in civil infrastructure, but there is still a lack of targeted research on damage 
detection in complicated UAV aerial inspection scenarios for water-related civil infrastructure. Firstly, UAV 
inspections are conducted outdoors, where lighting conditions, shadows, weather, and background noise like 
vegetation or debris may significantly impact image quality and damage detection accuracy. Low-contrast 
damages, glare, or uneven illumination exacerbate detection difficulties20,21. Moreover, UAVs often capture 
images from different altitudes and angles, leading to variations in resolution, perspective distortion, and scale 
differences. In addition, the limited computational resources available on UAVs demand damage detection 
algorithms with high computational efficiency to ensure real-time processing and reliable results during aerial 
inspections of civil infrastructure.

To improve the inference efficiency of damage detection models for UAV inspection scenarios, researchers 
have focused extensively on model lightweight techniques22–24. These methods aim to reduce the computational 
complexity of deep learning models while maintaining high detection performance, making them suitable 
for real-time processing on UAVs with limited computational resources. For example, Xu et al.25 proposed a 
lightweight semantic segmentation method for bridge damage recognition, enhancing the DeepLabv3 + model 
with the MobileNetV2 backbone and refining the atrous spatial pyramid pooling module, which achieved high 
accuracy with reduced parameters and recognition time. Ye et al.26 proposed a lightweight two-stage AI model for 
underwater structural damage detection, which achieved significant improvements in accuracy and efficiency, 
outperforming existing methods. The first stage enhances images using an improved CycleGAN and Retinex, 
while the second stage employs a lightweight YOLOv5 model for damage detection. Wang et al.27 proposed 
a lightweight crack segmentation network using knowledge distillation. The student model is trained with 
the pre-trained teacher model via channel-wise distillation and Kullback–Leibler divergence minimization to 
improve crack localization. In UAV-based remote sensing of levee infrastructures, lightweight models have been 
increasingly adopted to improve detection efficiency28. While such approaches accelerate inference, they often 
compromise robustness when confronted with complex noise and heterogeneous field conditions. A central 
challenge, therefore, lies in achieving a balance between real-time efficiency and reliable defect recognition under 
diverse disturbances29–31. Effective methods must be capable of handling environmental variability, changes in 
imaging perspective, motion artifacts, and limited computational resources, thereby ensuring accurate and 
consistent detection in large-scale UAV inspection of levee surfaces.

To address the above challenges, this study proposes a real-time, lightweight damage detection framework 
tailored for UAV-based remote sensing of levee infrastructures. A U-Net-based semantic segmentation 
network is developed and pruned to accelerate inference while maintaining efficiency. To improve robustness 
in complex field environments characterized by stains, vegetation occlusion, and illumination variations, an 
enhanced residual convolutional block attention module (ResCBAM) is incorporated, enabling more reliable 
discrimination of true structural defects. In addition, the integration of online feature distillation with a multi-
scale feature fusion strategy strengthens the representation of fine-grained defect patterns across different 
resolutions. These improvements collectively enhance the performance of the lightweight model, ensuring 
accurate and robust defect recognition for large-scale levee monitoring.

The main contributions of this study can be attributed as follows.

	1.	 A lightweight U-Net–based semantic segmentation model was developed and structurally pruned to enable 
real-time UAV monitoring of levee surfaces, achieving efficient inference with significantly reduced compu-
tational and memory costs.

	2.	 An enhanced ResCBAM attention module combining both channel and spatial mechanisms was introduced 
to improve the recognition of levee surface defects under challenging conditions such as stains, vegetation 
occlusion, and illumination variations.

	3.	 An online feature distillation framework integrated with multi-scale feature fusion was designed to align 
structural representations across resolutions, thereby enhancing the accuracy and robustness of UAV-based 
levee defect detection.

The remainder of this paper is organized as follows. “Methodology” details the proposed lightweight U-Net 
framework, including structured pruning for efficiency, an enhanced ResCBAM attention module, online 
feature distillation, and a multi-scale feature fusion scheme. “Case study” outlines the engineering context 
and experimental protocol, covering the levee-UAV dataset, evaluation metrics, and implementation specifics. 
“Experimental result and discussion” reports and analyzes the results, highlighting detection accuracy, robustness 
under complex field conditions, and comparisons with state-of-the-art baselines. Finally, “Conclusions and 
discussion” concludes and sketches directions for future research.

Methodology
The lightweight U-Net-based network optimized by model pruning
U-Net is a convolutional neural network architecture primarily designed for semantic segmentation tasks. 
Figure 1 demonstrates the diagram of the U-Net-based network for crack pixel-wise segmentation. Its key feature 
is the encoder-decoder structure with skip connections, which enables the model to efficiently capture both low-
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level features (from the encoder) and high-level contextual information (from the decoder) to make pixel-wise 
predictions. This architecture allows the U-Net to produce accurate segmentation maps by maintaining fine-
grained spatial details while progressively refining the feature maps.

U-Net, while effective for crack detection, has several limitations, particularly related to its computational 
complexity. The deep architecture and pixel-wise predictions result in high memory usage and processing time, 
which can be problematic during both training and inference, especially with large-scale datasets or high-
resolution images from UAVs32. Additionally, the large number of parameters in the encoder-decoder structure 
leads to a substantial model size, which may limit its use in real-time applications on resource-constrained 
devices. Furthermore, due to their complexity, U-Net models are prone to overfitting, especially when training 
data is limited or lacks variability, which can impact their ability to generalize to new or unseen cracks.

In the DL-based semantic segmentation algorithm, the presence of multiple layers of nonlinear 
transformations often results in an immense computational burden, especially when handling large-scale data33. 
The computational complexity is exacerbated during both the training phase, which involves large matrix 
operations for backpropagation, and during inference in real-world applications, where the computational 
resources required for forward propagation can be substantial. This challenge becomes particularly acute in 
the context of UAV-based infrastructure inspection, where high-resolution images or videos of infrastructure 
structures are processed. The computational complexity increases when dealing with high-dimensional data and 
sophisticated models, which are common in UAV-based infrastructure inspection tasks34.

In such scenarios, optimizing DL models to handle these challenges efficiently becomes essential. The use 
of techniques such as model pruning, including global-local channel pruning, offers a solution to reduce the 
computational burden without sacrificing model performance35. By pruning less significant channels and 
reducing redundant computations, UAV-based infrastructure inspection systems can operate more efficiently, 
allowing for faster analysis of large-scale datasets collected from UAVs. This optimization is particularly 
important when operating in resource-constrained environments, such as on-board processing units or real-
time systems used in UAVs, where the processing power is limited.

To address these issues, this study develops a global-local channel pruning module, which helps reduce 
the computational load by selectively pruning certain channels, or features, from the network. The calculation 
diagram of the global-local channel pruning module can be seen in Fig. 2. The idea behind global-local channel 
pruning is to balance between preserving the most informative features and maintaining the important spatial 
details that are crucial for accurate fracture detection. In local channel pruning, selecting channels is suitable 
for pruning to retain more information. This section models the problem of fine crack segmentation in high-
resolution scenes as follows:
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Fig. 1.  The U-Net-based network for crack pixel-wise segmentation.
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 where N denotes the number of samples, n denote the Number of output channels.
Further combining the above formulas, we can simplify them to get:
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The above-mentioned equations collectively model the global-local channel pruning process. The framework 
minimizes the reconstruction error while ensuring sparsity and maintaining key structural information. The 
inclusion of constraints, such as sparsity and weight normalization, ensures that the network focuses on the 
most relevant channels for fine crack segmentation. This optimization is particularly valuable in high-resolution 
scenes, where computational efficiency and accuracy are crucial, especially for real-time UAV-based crack 
inspection for civil infrastructures.

The improved ResCBAM attention mechanism
The ResCBAM attention mechanism is a hybrid attention framework that integrates both residual learning and 
the Convolutional Block Attention Module (CBAM). Figure 3 shows the visual diagram of the ResCBAM module. 
The ResCBAM attention mechanism is highly feasible for detecting micro-cracks and mitigating the effects of 
complex noise interference in crack detection tasks. By jointly emphasizing fine-grained cues and suppressing 
irrelevant background signals, ResCBAM is well suited to the challenges of real-world inspection. Given 
adequate data quality and computational resources, it can substantially improve crack detection performance in 
infrastructure monitoring, where noise is prevalent and many cracks are subtle.

The formulas for the channel attention mechanism and spatial attention mechanism are as follows:

	 Mc(F ) = σ (W1 (W0 (Favg )) + W1 (W0 (Fmax)))� (4)

	 Ms(F ) = σ
(
f7×7 ([Favg ; Fmax])

)
� (5)

 where Favg and Fmax denotes the Feature map F undergoes global average pooling and global maximum 
pooling; W0 and W1 denotes the weight matrix of the fully connected layer; Mc(F ) and Ms(F ) represents 
channel attention map and spatial attention map, respectively.

The main calculation process of the ResCBAM module is as follows:

Fig. 2.  Schematic diagram of the global-local channel pruning module.
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Step 1  Apply max pooling and average pooling to the input feature map, concatenate the results, and pass them 
through a convolutional layer followed by a sigmoid activation to generate spatial attention weights that high-
light key regions.

Step 2  Multiply the spatial attention weights with the original feature map to enhance informative spatial areas 
and suppress irrelevant or noisy regions.

Step 3  Apply global max pooling and average pooling across spatial dimensions, feed the resulting vectors into 
shared fully connected layers with sigmoid activation to produce channel-wise attention weights, and multiply 
them with the feature map to emphasize important channels.

Online feature distillation and multi-feature fusion mechanism
The construction of an online feature distillation and multi-feature fusion mechanism for real-time crack 
detection under complex noise conditions is crucial for enhancing the robustness and accuracy of automated 
crack recognition systems. In real-world environments, the presence of various types of noise, such as image 
artifacts, varying lighting conditions, and background clutter, often degrades the performance of conventional 
crack detection models. Traditional methods may struggle to distinguish relevant features from irrelevant or 
misleading information introduced by such noise36.

To address these limitations, an online feature distillation mechanism is proposed to select the most 
informative features related to cracks during the training process, allowing the model to adapt in real-time to 
the specific characteristics of noisy data. Figure 4 demonstrates the schematic diagram of knowledge distillation 
and multi-feature fusion construction. It can be inferred that the developed dynamic adjustment improves the 

Fig. 4.  Schematic diagram of knowledge distillation and multi-feature fusion construction.

 

Fig. 3.  The diagram of the ResCBAM network.
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model’s ability to focus on critical patterns associated with cracks while filtering out noise that may lead to false 
positives or missed detections.

Supposing that the crack pixel-wise segmentation dataset can be expressed using X = {xi}N
i=1. The crack 

image annotations can be denoted using Y = {yi}N
i=1. The predicted probability of the student network and 

teacher networkP m
c (xi) and P m

t (xi) can be expressed using the following formulas:
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 where zm
1 denotes the output of the softmax layer in the student network, zm

2  denotes the output of the softmax 
layer in the teacher network.

Then, in this study, the Cross-Entropy loss was used as the supervision loss, which can be denoted as follows:
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 where Lce1and Lce2represents the supervision loss of the teacher and the student network.

	 Lfd = ∥Fs − Ft∥2
2� (10)

 where Fs  and Ft represent the corresponding feature layers of the student network and the teacher network 
respectively.

Figure 5 demonstrates the schematic diagram of the multi-scale heterogeneous feature fusion module. In 
summary, the student network can be guided by the implicit “dark knowledge” of the teacher network, thereby 
narrowing the semantic distance between heterogeneous features. Therefore, the network after distillation is 
used to obtain sufficient local feature information of cracks, which is convenient for constructing a fine crack 
segmentation model under complex noise.

Case study
Engineering description
The case study in this research is a long-service levee section, as illustrated in Fig.  6. The levee extends for 
approximately 1200 m along the riverbank, serving as a critical flood defense structure in the region. With an 
average height of 8 m and a crest width of 6 m, the levee is designed to resist high water levels and prolonged 
hydraulic loading. However, during field inspections, multiple surface cracks and localized concrete spalling 
were observed along the water-facing slope, raising concerns regarding the long-term stability and durability 
of the levee. Such defects may weaken the structural capacity of the levee to withstand extreme flood events, 

Fig. 5.  Multi-scale heterogeneous feature fusion module.
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underscoring the need for timely assessment and effective maintenance strategies to ensure reliable flood 
protection.

To comprehensively assess the service status of the project, a UAV-based inspection system, specifically the 
DJI Matrice 600 Pro, was deployed. The composition diagram of the UAV detection system is shown in Fig. 7. 
It can be inferred that at the core of the system is a UAV equipped with advanced payloads, including a high-
resolution camera and a gimbal for stabilized imaging. The UAV receives navigational inputs via satellite-based 
positioning systems, ensuring precise control and accurate localization during operations. Table 1 provides a 
detailed overview of the technical specifications for the UAV-based inspection system. The UAV has a maximum 
takeoff weight of 15.5 kg, with a service ceiling that varies depending on the type of propellers used. For standard 
propellers, the maximum service ceiling is 2500 m above sea level, while high-altitude propellers enable a ceiling 
of 4500 m. The system offers a maximum flight time of approximately 32 min and a maximum hovering time 
of 30 min under optimal conditions. Its maximum horizontal speed is 18 m/s in the absence of wind, and it can 
ascend at a rate of up to 5 m/s.

The working photos of the UAV-based inspection system applied to actual infrastructure inspection are 
shown in Fig. 8. It can be inferred that the UAV-based inspection system ensures real-time data acquisition, 
transmission, and processing to enhance the efficiency and accuracy of infrastructure monitoring. This integrated 
system ensures comprehensive and efficient inspection of infrastructure, reducing human risk and enabling 
predictive maintenance. The use of UAVs significantly improves the safety, accuracy, and cost-effectiveness of 
infrastructure monitoring and management.

The construction of the structural damage dataset
Figure 9 demonstrates the high-resolution cracks in the structure captured by the UAV inspection system. As 
can be seen from the figure, the concrete cracks collected by the UAV-based inspection system show typically 
small, narrow, and long characteristics. These cracks are generally linear or slightly curved, with widths often 
ranging from a few millimeters to less than a centimeter and lengths extending over several meters. The detailed 
imagery captured by the UAV inspection system highlights surface irregularities and fine-scale features of the 
cracks, making it possible to identify early-stage damage that may not be visible to the naked eye. This high-

Fig. 6.  Major infrastructure in service.
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resolution data provides valuable insights into the severity and progression of structural defects, enabling precise 
localization and classification of cracks for further analysis and maintenance planning.

To further analyze and utilize the captured images, the sliding window method was applied to divide the 
high-resolution images into smaller patches. The intuitive schematic diagram of the sliding window method is 
shown in Fig. 10. This approach allows for the systematic segmentation of the images into manageable blocks, 
which were subsequently used to construct a comprehensive concrete crack dataset. The dataset serves as a 
valuable resource for training and testing machine learning algorithms aimed at automated crack detection and 
classification, enhancing the efficiency and accuracy of structural health monitoring systems.

Experimental result and discussion
This experiment was conducted on a Windows 11 operating system. The hardware configuration includes 
an Intel Core i9-13900 K processor, 64 GB of memory, an NVIDIA GeForce RTX 4060 GPU, and 2 TB SSD 
storage. The software environment consists of Python 3.10, CUDA 12.2, and cuDNN 8.9. The deep learning 
framework employed in this study is PyTorch, with Visual Studio Code used as the primary platform for coding 
and implementation.

The training process is designed with 100 iterations and a batch size of 8. A cosine annealing learning rate 
schedule, a commonly used method for optimizing learning rate adjustment in deep learning models, is adopted 
in this study. Specifically, the initial learning rate of the model is set to 0.01. Throughout the remaining iterations, 
the learning rate is adjusted dynamically following a cosine function curve. This approach ensures a smooth 
decay of the learning rate, enhancing model convergence and reducing the risk of overfitting.

Devices Main indicator Parameter value

UAV system

Max takeoff weight 15.5 kg

Max service ceiling above sea level 2500 m (standard propellers); 4500 m (high-altitude propellers)

Max flight time Approx. 32 min

Max hovering time Approx. 30 min

Max horizontal speed 18 m/s (no wind)

Max ascend speed 5 m/s

Camera

Resolution 16 MP (4608 × 3456  pixels)

Sensor size 17.3 × 13.0 mm

Pixel size 3.75 μm

Lens focal length 15 mm

ISO range 100–25,600

Table 1.  Parameter of UAV inspection systems.

 

Fig. 7.  UAV systems for infrastructure inspection.
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Fig. 9.  Damage images collected by UAVs and their pixel-level annotation results.

 

Fig. 8.  Actual UAV engineering inspection scene.
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DL-based model training process.
Figure 11 demonstrates the training and validation performance of the proposed deep learning model over 
100 epochs, focusing on loss and mIoU metrics. Both training and validation losses decrease consistently, 
with validation loss showing smooth convergence, indicating effective learning and generalization. The mIoU 
improves steadily, with training mIoU fluctuating but stabilizing between 0.80 and 0.90, while validation mIoU 
reaches a stable plateau above 0.85, reflecting strong model performance on unseen data. However, a spike 
in training loss around the 80th epoch suggests potential instability or overfitting, which may benefit from 
techniques like early stopping or adaptive learning rate schedules to enhance robustness and stability.

Ablation experiment results
Table 2 demonstrates the contributions of various components in enhancing the detection performance of the 
proposed DL-based model. Figure 12 demonstrates the Radar chart visualization of the recognition effect of 
different methods in ablation experiments. It can be inferred from the figure and the table that the baseline U-Net-
based model achieves moderate accuracy (80.21%), precision (78.55%), and recall (77.15%), with a relatively 
low inference speed of 25.25 FPS. Model pruning significantly improves computational efficiency, increasing 
the inference speed to 69.36 FPS(nearly about approximately 2.7 times faster) though at the expense of a slight 
reduction in accuracy (78.54%) and precision (76.31%). The introduction of the ResCBAM attention mechanism 
enhances the model’s detection capabilities in complex environments, improving accuracy, precision, and recall 

Fig. 11.  Changes in loss values ​​and evaluation indicators for training and validation sets.

 

Fig. 10.  Schematic diagram of constructing damage data set using the sliding window method.
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Fig. 12.  Radar chart visualization of ablation experiment results.

 

Experiment Models Accuracy (%) Precision (%) Recall (%) Speed (FPS)

1 Baseline Model 80.21 78.55 77.15 25.25

2 Baseline + Model Pruning 78.54 76.31 76.84 69.36

3 Baseline + Model Pruning + ResCBAM Attention 84.13 83.73 83.22 58.71

4 Baseline + Model Pruning + Multi-Feature fusion 85.47 84.94 83.32 59.87

5 Baseline + Model Pruning + Online feature distillation 88.25 87.65 86.51 57.81

6 Full model(Proposed) 90.05 89.22 88.94 57.74

Table 2.  Ablation experimental results of the proposed DL-based method.
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to 84.13%, 83.73%, and 83.22%, respectively, while maintaining reasonable efficiency (58.71 FPS). Incorporating 
multi-feature fusion further boosts detection performance, achieving an accuracy of 85.47% and precision of 
84.94%, with minimal impact on speed (59.87 FPS). The addition of online feature distillation leads to even 
greater improvements, culminating in the full proposed model, which achieves the best performance across all 
metrics (90.05% accuracy, 89.22% precision, and 88.94% recall) while maintaining an efficient inference speed 
of 57.74 FPS. These experimental results indicate that the constructed DL-based model achieves an effective 
balance between structural damage detection accuracy and computational efficiency. The integration of model 
pruning, ResCBAM attention mechanism, and multi-feature fusion ensures robust performance even in noisy 
environments while maintaining the inference speed necessary for real-time applications. This highlights the 
model’s practical applicability in UAV-based structural damage inspections.

Comparative evaluation experiment.
To further verify and evaluate the effectiveness of the DL-based model constructed in this paper in damage 

identification of civil infrastructure structures, state-of-the-art semantic segmentation models, including 
Attention U-Net37, RefineNet38, High-resolution network(HRNet)39, DeepLab40, and SegNet41, are introduced. 
Each of these models brings unique features, including attention mechanisms, multi-scale context, boundary 
refinement, or high-resolution representation, that can be particularly beneficial for detecting cracks in real-
world infrastructure images with varying complexities and noise.

	1.	 Attention U-Net augments the classic U-Net with attention gates that highlight salient regions (e.g., cracks) 
and suppress background clutter. By filtering encoder features before skip connections, it improves discrim-
ination between damage and non-damage, boosting segmentation accuracy in noisy, real-world scenes.

	2.	 RefineNet is a multi-path refinement architecture that progressively polishes multi-level feature maps via 
residual refinement modules. Its precise boundary handling makes it well-suited to fine-grained tasks such 
as small-crack and subtle-defect delineation.

	3.	 HRNet maintains high-resolution representations throughout the network instead of heavily downsampling 
and then upsampling. This preserves fine detail while capturing global context, yielding strong performance 
on small cracks and localized structural damage.

	4.	 DeepLabv3 leverages atrous (dilated) convolutions and multi-scale context aggregation to segment objects 
across varied scales without sacrificing spatial resolution. It is robust in cluttered environments and effective 
for crack patterns with wide size variability.

	5.	 SegNet employs an encoder–decoder design that reuses max-pooling indices for efficient upsampling, lower-
ing computation while retaining spatial detail. Its efficiency makes it attractive for real-time UAV-based crack 
and defect segmentation.

Table 3 demonstrates the damage identification performance comparison of different algorithms. The superior 
performance of the proposed method can be attributed to its innovative design and optimization strategies 
tailored for UAV-based real-time structural damage detection. Unlike traditional approaches, the proposed 
method incorporates a lightweight U-Net-based semantic segmentation network optimized through model 
pruning. This significantly enhances inference speed, achieving an FPS of 57.74, far surpassing other methods 
like HRNet (22.34) and Attention U-Net (20.23). Furthermore, the integration of an improved residual 
convolutional block attention module (ResCBAM) effectively addresses challenges in complex and noisy 
environments, such as stains and obstacles, leading to improved recall (88.94%) and IoU (88.67%) compared to 
HRNet and Attention U-Net. Finally, the use of online feature distillation and a multi-feature fusion mechanism 
ensures the effective fusion of features at different scales, enhancing the model’s detection accuracy (90.05%) and 
precision (89.22%) in identifying subtle structural damage. These optimizations collectively enable the proposed 
method to outperform existing damage detection methods in both accuracy and real-time application scenarios.

The comparison of damage identification accuracy and inference efficiency of the proposed and other 
compared methods is shown in Figs.  13 and 14. The proposed method outperforms existing models across 
all metrics, achieving the highest accuracy (90.05%), recall (88.94%), precision (89.22%), and IoU (88.67%), 
while also demonstrating exceptional computational efficiency with an FPS of 57.74. Compared to HRNet 
and Attention U-Net, which achieve IoU values of 84.12% and 82.34% respectively, and FPS below 23, the 
proposed method leverages a lightweight U-Net architecture with model pruning, an improved ResCBAM for 
handling noisy environments, and multi-feature fusion mechanisms to enhance detection performance. These 
innovations enable superior damage identification accuracy and real-time applicability, making it ideal for UAV-
based inspections in complex scenarios.

Models Accuracy/% Recall/% Precision/% IOU/% FPS

Proposed method 90.05 88.94 89.22 88.67 57.74

Attention U-Net 87.23 85.67 86.45 82.34 20.23

RefineNet 86.45 84.23 85.34 81.45 18.12

HRNet 88.12 87.54 88.34 84.12 22.34

DeepLabv3 85.67 83.89 84.56 80.89 19.89

SegNet 82.34 80.12 81.23 77.34 18.67

Table 3.  Damage identification performance comparison of different algorithms.
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Fig. 14.  Comparison of inference efficiency between different methods.

 

Fig. 13.  Comparison of the detection performance of the proposed and other comparison methods.
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Figure 15 shows the visual comparison of damage identification results from different methods. It can be 
inferred that the proposed method accurately detects damaged regions even in scenarios with high noise, 
such as images with dense small holes. Unlike benchmark methods like attention U-Net, it minimizes false 
negatives, as evidenced by its ability to identify fine cracks and subtle features that are often missed. The 
proposed method demonstrates superior recognition performance, accurately detecting damaged regions even 
in high-noise scenarios. This advantage is primarily attributed to the improved ResCBAM attention mechanism, 
which enhances spatial and channel-wise focus on defect areas, and the online feature distillation and multi-
feature fusion mechanisms, which effectively combine global contextual and fine-grained local features. These 

Fig. 15.  Comparison of recognition effects of different damage detection methods.

 

Scientific Reports |        (2025) 15:42354 14| https://doi.org/10.1038/s41598-025-26431-0

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


innovations enable the proposed method to minimize false negatives, precisely identify subtle cracks and defects, 
and maintain robustness against complex noise, outperforming all benchmark methods.

Verification of damage recognition capability under noise interference scenarios
Figure 16 shows the comparison of structural damage identification effects under different complex noise 
detection conditions using the developed and benchmark methods. It can be inferred that the proposed method 
achieves superior recognition performance compared to the other five benchmark methods, including Attention 

Fig. 16.  Structural damage identification results under different noises.
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U-Net, RefineNet, HRNet, DeepLab, and SegNet. Specifically, the proposed method demonstrates significant 
advantages in damage identification under challenging conditions, such as dark lighting and high background 
roughness. In dark light environments, where traditional methods often struggle with low contrast and reduced 
texture visibility, the proposed lightweight U-Net with ResCBAM and distillation method effectively extracts 
crack features with clear boundaries, indicating strong sensitivity to edge and texture variations. Additionally, the 
results highlight the model’s robustness to noise, maintaining accurate and consistent detection of cracks despite 
poor illumination. Under high background roughness, the proposed method exhibits superior background 
suppression capabilities, effectively isolating crack patterns from complex and irregular surface textures, which 
traditional approaches may misinterpret as noise or irrelevant features. This robustness ensures reliable damage 
detection across varying environmental conditions.

Verification of defect images of different sizes
Figure 17 demonstrates the recognition results in processing high-resolution defect images with 1024 pixels 
acquired by UAVs. As shown in Fig.  17, the DL-based defect recognition method proposed in this study 
demonstrates a remarkable ability to accurately identify and segment the geometric structure of defects. This 
high performance can primarily be attributed to the integration of the online knowledge distillation and 
multi-feature fusion mechanisms within the model architecture. The online knowledge distillation mechanism 
allows the proposed DL-based model to learn effectively from both high-resolution and low-resolution feature 
representations in real-time, enabling a more robust understanding of complex defect patterns. Simultaneously, 
the multi-feature fusion mechanism enhances the model’s ability to combine contextual and fine-grained 
features, which is crucial for detecting subtle defect details and achieving higher precision in recognition. This 
synergy between feature extraction and fusion not only improves the segmentation accuracy but also ensures 
robustness when applied to diverse defect types in high-resolution images. Furthermore, the proposed method 
demonstrates a strong capability to process large-scale images, effectively handling the challenges associated 
with high-resolution defect recognition, such as intricate defect boundaries, small-scale variations, and complex 
background noise. This makes the proposed method particularly suitable for UAV-based inspections, where 
high-resolution imagery is critical for detecting fine-grained structural defects. Overall, the results in Fig. 17 
validate the efficacy and adaptability of the proposed DL-based approach in real-world applications requiring 
precise defect identification and segmentation.

Conclusions and discussion
Conclusions
Aging levee systems and escalating environmental pressures demand innovative inspection strategies to 
ensure long-term safety and reliability. Traditional methods are labor-intensive, costly, and limited in coverage, 
especially for large or hard-to-reach segments, hindering timely, comprehensive assessments. UAV-based 
remote sensing offers an efficient, high-resolution alternative, yet its practical value is curtailed by the lack of 
specialized **real-time** defect detection algorithms robust to stains, shadows, vegetation, and water reflections. 
To address this gap, we propose a real-time U-Net–based semantic segmentation framework tailored for UAV 
levee inspection. The model is optimized for high performance and deployment efficiency in noisy, complex 

Fig. 17.   Comparison of defect recognition effects of 1024-pixel resolution UAV images.
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field conditions. Ablation studies demonstrate that the ResCBAM attention module dynamically refines spatial 
and channel features, markedly improving detection under noise, while the multi-feature fusion mechanism 
integrates contextual and fine-grained cues across scales, enhancing robustness and accuracy.

These innovations collectively enable the proposed method to achieve superior performance in UAV-based 
levee inspections under complex environmental conditions. Comparative studies validate its advantages, 
attaining a detection accuracy of 90.05%, recall of 88.94%, precision of 89.22%, IoU of 88.67%, and an FPS of 
57.74, substantially outperforming existing methods in both accuracy and efficiency. The high FPS rate ensures 
real-time applicability for large-scale levee monitoring, while the balanced precision-recall performance confirms 
its reliability in identifying subtle and complex defects, even in challenging scenarios involving noise, shadows, 
water reflections, and vegetation interference. These results underline the method’s potential for safe, precise, and 
efficient real-time levee health assessments, supporting proactive maintenance and flood risk reduction. Future 
work will focus on broadening its applicability to diverse defect categories and further enhancing computational 
efficiency for deployment in UAV platforms with limited onboard resources.

Limitations and future discussion
This study primarily targets concrete defect detection for UAV-based levee inspection under complex field 
conditions. While UAV remote sensing enables efficient coverage of large levee surfaces, the proposed method 
still faces limitations in scenarios with extreme illumination, heavy occlusion (e.g., vegetation, debris), specular 
reflections from wet surfaces, and motion blur induced by flight dynamics. In future work, we will (i) investigate 
domain adaptation and synthetic-to-real transfer to improve generalization across sites, seasons, and sensors; 
(ii) integrate multimodal data (e.g., RGB, multispectral/thermal, LiDAR/DSM, and inertial/flight metadata) to 
enhance robustness against illumination and occlusion; and (iii) evaluate deployment feasibility on UAV edge 
devices by profiling latency, energy consumption, and thermals under real flight conditions. We also plan stress 
tests with controlled illumination/occlusion, uncertainty quantification to flag low-confidence predictions, and 
spatiotemporal modeling and multi-view/3D reconstruction to further stabilize real-time defect recognition in 
dynamic environments.

Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request.
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