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QSAR machine learning-guided
discovery of renieramycin right-half
derivatives with cytotoxic activity
against NSCLC cells

Ismail Dwi Putra®?3, Phornphimon Maitarad**", Masashi Yokoya®, Zin Zin Ei%7,
Daiki Hotta®, Liyi Shi**, Thanyada Rungrotmongkol®#*“ & Pithi Chanvorachote?’

This study explores the structure-activity relationships of renieramycin right-half and full-skeleton
compounds using quantitative structure-activity relationship (QSAR) modeling. Linear (Genetic
Algorithm-Multiple Linear Regression, GA-MLR) and non-linear machine learning approaches (Random
Forest, Support Vector Regression, and XGBoost) were employed to develop predictive models with
quantum chemical and molecular descriptors. The best-performing model, using Support Vector
Regressor (SVR), achieved a coefficient of determination (R?) of 0.946 for the training set and a root
mean square error (RMSE) of 0.246 for the test set. Key descriptors influencing cytotoxicity included
charges at C2 and C4, HOMO energy, and polarizability. External validation with newly synthesized
renieramycin right-half derivatives yielded an RMSE of 0.236. The machine learning-based QSAR
models demonstrated exceptional accuracy and reliability in cytotoxicity prediction, underscoring
their utility in guiding the design of novel renieramycin derivatives. The cytotoxicity test of the
newly synthesized renieramycin shows an anomaly than the previous experimental findings, i.e.,

the O-benzyl containing derivative was more cytotoxic than the hydroxyl or quinone containing
renieramycin derivatives. These findings highlight the potential of fine-tuned QSAR methodologies
to accelerate the development of highly effective anticancer agents based on renieramycin right-half
structures.

Keywords Renieramycin right-half, QSAR-Machine learning, Quantum chemical descriptor, Anticancer,
Rational design

Cancer remains one of the most significant causes of mortality globally, particularly affecting individuals below
the age of 70. In 2019, ASEAN countries reported cancer as the second leading cause of death overall, with
Thailand notably ranking it as the primary cause. Among the various cancer types, breast cancer was the most
frequently diagnosed malignancy among females, whereas lung cancer was the leading diagnosis among males.
In 2020, breast cancer accounted for 2,261,419 new cases, and lung cancer for 2,206,771 new cases worldwide.
Lung cancer also represented the highest cancer-related mortality, with 1,796,144 deaths reported globally in
the same year!.

Recent advancements have transformed cancer management strategies. For lung cancer, a combination
of thoracic surgery, radical radiotherapy, and radiofrequency ablation is now widely implemented. Systemic
therapies, particularly chemotherapy, remain a cornerstone in cancer treatment approaches. In non-small
cell lung cancer (NSCLC), therapeutic strategies have evolved to incorporate targeted and molecularly driven
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approaches, utilizing genetic insights to optimize treatment outcomes®. However, chemotherapy’s efficacy is
frequently compromised by the development of drug resistance. According to Su® mutations in the epidermal
growth factor receptor (EGFR) and KRAS genes, alongside immune checkpoint inhibitors (ICIs), are significant
contributors to NSCLC resistance mechanisms. Furthermore, dysregulation of the TP53, MDM2, and CDKN1A
genes has been identified as a key mechanism underlying cisplatin resistance in NSCLC*. This persistent
challenge highlights the urgent need for ongoing research into novel anticancer agents.

Renieramycins are a class of compounds originally isolated from marine sponges, extensively studied for their
bioactive properties. Various strategies have been explored to enhance their efficacy or simplify the complex
synthetic pathways required for their production. Among these, right-half renieramycins represent a particularly
intriguing group of truncated renieramycin derivatives. The initial synthesis of right-half renieramycin was
conducted by Matsubara, et al>. who developed a streamlined synthesis of epiminobenzo[d]azocine, the
tricyclic lactam core structure of renieramycins, from L—3-hydroxy-4-methoxy-3-methyl-phenylalanine and its
derivatives, which are themselves derivable from L-tyrosine. This tricyclic lactam structure contains an NH
group that can be functionalized with various alkyl groups, allowing for the generation of a diverse range of
right-half renieramycin compounds. While the cytotoxicity of these right-half renieramycins was found to be
comparable to that of full-skeleton renieramycins, it remains suboptimal for clinical applications, motivating
ongoing research into their synthesis®~?. However, current approaches to synthesizing these derivatives are still
largely exploratory and reliant on trial-and-error methods, which can be resource-intensive.

Computational chemistry has become an essential tool in modern drug design and discovery, primarily
employed to reduce the time and resources required to identify potent chemical agents. Computational or
in silico studies can be categorized based on the data available into four main types: studies with a known
receptor structure, known ligand structure, known ligand and receptor structure, and unknown ligand and
receptor structure'®-!2. Quantitative Structure-Activity Relationship (QSAR) modeling typically begins with
the generation or compilation of descriptors—variables that describe the structural, electronic, topological,
geometrical, or thermodynamic properties of active compounds in relation to their (biological) activities'3~16.
These descriptors form the basis of a dataset, to which various chemometric and machine-learning methods are
applied to develop predictive models that correlate compound descriptors with biological activity. Common
methods for model building include Multiple Linear Regression (MLR) and Genetic Algorithm-Optimized
Multiple Linear Regression (GA-MLR), as well as Principal Component Regression (PCR) and Orthogonal
Projections to Latent Structures (OPLS) for linear or assumed-linear relationships. For modeling non-linear
correlations, machine learning tools such as Random Forest (RF), Support Vector Regression (SVR), eXtreme
Gradient Boosting (XGBoost), and Artificial Neural Networks (ANN) are widely employed. These computational
approaches allow for more efficient exploration of chemical space and facilitate the rational design of novel
therapeutic agents!”!8,

QSAR modeling has been successfully applied to explore the biological activities, including anti-cancer or
cytotoxicity, of various chemical species. Rahmani, et al'®. demonstrated the development of a QSAR model
for xanthone derivatives as topoisomerase Ila inhibitors in breast cancer, using Genetic Algorithm Multiple
Linear Regression (GA-MLR) and Least Squares Support Vector Machine (LS-SVM) with comparable predictive
accuracy. Similarly, Eviana Kusuma Putri, et al?. constructed a QSAR model for 4-anilino coumarins, utilizing
descriptors derived from H-GGA DFT/BPV86 calculations combined with the 6-31G basis set in quantum
chemical modeling. Goudzal, et al?!. applied 2D-QSAR modeling for azacalix[2]arene[2]pyrimidine derivatives
as anticancer agents, using Multiple Linear Regression (MLR) and Multiple Non-Linear Regression (MNLR)
combined with descriptors generated from B3LYP/6-31G level calculations, yielding promising results. Nguyen
and Patuwo?? found that quantum chemical descriptors, even those generated at a lower level of theory such
as HF/3-21G, were effective for constructing QSAR models for anti-colorectal cancer agents. Nevertheless,
non-quantum chemical descriptors have also proven beneficial and reliable for anticancer QSAR modeling,
particularly when integrated with machine learning algorithms®*. However, despite extensive Structure-Activity
Relationship (SAR) analyses, no publications or studies have yet reported the development of a QSAR model
specifically for the anticancer activity of renieramycins.

Therefore, this study aimed to employ QSAR analysis to gain deeper insights into the relationship between
the structure of the right-half renieramycin derivatives and their anticancer activity, particularly against non-
small cell lung cancer (NSCLC). The resulting model was intended to guide the design of optimized right-
half renieramycin compounds. To develop the QSAR models, two types of descriptors—quantum chemical and
non-quantum chemical—were utilized, and two methodological approaches were applied: classical QSAR and
machine learning-based QSAR models. An overview of the study’s workflow is shown in Fig. 1.

Data set Preparation
The biological activity data for the compound set were obtained from multiple studies that employed the same
cell line (H460, ATCC HTB-177) and method (MTT cytotoxic assay). Cytotoxicity values were scaled to molar
concentrations (M) and transformed into pIC,; values (-log(IC,)). A total of twenty-eight compounds, along
with their corresponding biological activity data, were identified and tabulated. These data were obtained from
the works of Petsri, et al’., Chamni, et al>%,, Sinsook, et al?>., and Petsri, et al’. based on the same experimental
conditions. However, the dataset from Ej, et al®. did not include published cytotoxicity data for the H460 cell line.
Therefore, the MTT cytotoxicity assay was conducted to obtain the required data, and the results (Fig S1) were
integrated with the other datasets. Figure 2 illustrates the template skeleton of the right-half renieramycin along
with the structures of the compounds utilized in this study.

The molecular structures of the compounds were constructed and optimized using the DFT-B3LYP functional
with a 6-31G(d) basis set. The optimizations were performed using Gaussian 16%°, and the results were extracted
to derive the quantum chemical descriptors (denoted as X1 — X22, Table S1). Non-quantum chemical descriptors

Scientific Reports |

(2025) 15:43516 | https://doi.org/10.1038/s41598-025-26668-9 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

N \_ Ny 5 S . R, ©
o . Ry O . R, O E R, O . R O o X
/ 8 N R b3 N P N ! | >4<
— R Sl | R — —  [r pa Ra — —
4 N N— K N N— N N— N N— - N N 4
R, ; R, ; Ry B R, ; Ry =/ Y

/ 7 Vi Z

5 / Vi &
N N N N Y
& 4

(Petsri, Yokoya ~ (Chamni, (Ei, Racha et al. (Sinsook, (Petsri, Yokoya .
et al. 2020) Sirimangkalakitti et 2023) Buaban et al. et al. 2023) DeS|gn New .
al. 2020) 2023) Compounds Rationally
Designed RH-

Renieramycins

Descriptors SHAP Evaluated
Explanation Analysis Model

Data Set

80% Training Set H 20% Test Set |

Model evaluation

*MTT assay was performed in this work

Evaluation Set

NDH1 — NDH3
Q GA-MLR
Machine Learning RF
SVR Best Model(s)
XGB

Fig. 1. An overview of the study’s workflow, illustrating the key stages of developing the effective RH-
Renieramycins, which are composed of ligand-based QSAR machine learning and enzyme-based assay
Materials and Methods.

were generated using Materials Studio 8.0 software (denoted as M1 - M109, Table S2). Subsequently, the dataset
was divided into training and test sets using the Kennard-Stone algorithm implemented in Python®”. Given that
the target values exhibited a bimodal distribution, the training-test set division was conducted for each unimodal
subset to ensure a representative distribution across the datasets. From this division, the test set for this study
comprised Compounds 3 (DH_21), 9 (DH_22), 10 (DH_19), 19 (RT), 22 (RM_H5Pyr), and 26 (RM_5b).

QSAR-ML model Building and statistical evaluation

In this study, two approaches to construct the QSAR model, linear and non-linear, were employed. The linear
models were developed using the GA-MLR method in Materials Studio 8.0, which utilizes Genetic Function
Approximation (GA) to select optimal descriptors in conjunction with Multiple Linear Regression to construct
the model. When necessary, linear spline functions were incorporated to enhance model performance. For
model training, a maximum of four variables was permitted for each model, with the population and maximum
generations set to 1000 and 500, respectively.

For the construction of non-linear models, machine learning methods were employed. This study utilized
three distinct machine learning algorithms: Random Forest, XGBoost, and Support Vector Machine (SVM).
Before building the models, the hyperparameters for each method were optimized using Bayesian Optimization®.
All machine learning-based model development was conducted in Python, utilizing appropriate packages for
implementation.

To evaluate the model, several evaluation metrics were employed. The coefficient of determination (R?) was
utilized to assess the model’s ability to explain and predict the dependent variables (target values; y-values) based
on the independent variables (features; x-values). An R? value closer to 1.0 indicates a strong relationship and a
high capacity for predicting the target values from the features, whereas a value near 0.0 suggests a weak or non-
existent relationship. The mathematical formula for R? is as follows:

RP—1— Z 1 (yi — yi)2
N —\ 2 (1)
E 1 (yi_ y)
Where y, is actual y values, y, is predicted y values, and j is the mean of actual y values.

R? CV (LOO) is the coefficient determination of the cross-validation of a model using the Leave-One-Out
(LOO) method. The mathematical formula for R? CV (LOO) is:

_PRESS _ | 3 (i —w)’

R’CV (LOO) =1
TSS -\ 2 2
E 1 (yi_ y)
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Fig. 2. The molecular skeleton of right-half renieramycin and the structures of the compounds used in the
study.
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Where j_; is the predicted value of y, from the model built without y,. The root-mean-square error (RMSE) is
another parameter to measure the accuracy of the model built. It is the square root of mean-square error, which
in turn is the average of the sum of the square of residuals. The formula for RMSE is:

1 N
RMSE = \/n Z n (s — yi)Q (3)

The R? was used to evaluate both training and test set. RMSE was used to evaluate training, test, and validation
set. While the R CV (LOO) was carried out only to the training set.

To assess model robustness and quantify statistical significance and uncertainty, all models were retrained
using a bootstrapping method (n=1000 replicates). The bootstrap-derived evaluation metrics were used to
test significant differences between models, while the aggregated predictions from all replicates were used to
calculate 95% prediction intervals. Statistical significance was determined using ANOVA followed by Tukey’s
HSD post-hoc test at a 95% confidence level. Y-randomization was also used to monitor the overfitting of the
models, while standardized residuals plot and PCA plot with Mahalanobis were used to show the Applicability
Domain (AD) of the chosen model.

Chemistry and cytotoxicity assessment of evaluation set
Synthesis of (1R,55)-10-(benzyloxy)—9-methoxy-8,11-dimethyl-3-phenethyl-2,3,5,6-tetrahydro-1,5-
epiminobenzo[d]azocin-4(1 H)-one (30).

To a solution of NaH (60% oil dispersion, 172 mg, 4.26 mmol) in DHF (6.0 mL) was slowly added lactam
1 (308 mg, 851 umol) in DHF (6.0 mL) over 10 min at 0 °C. The reaction mixture was stirred for 30 min at 0
°C, after which a solution of (2-iodoethyl)benzene? (1.02 g, 4.26 mmol) in DHF (6.0 mL) was added dropwise
over 10 min. The reaction mixture was stirred for 14 h at 100 °C. The reaction mixture was diluted with H,0
(50 mL) and extracted with CHCI, (3 x 100 mL). The combined extracts were washed with brine (50 mL),
dried over Na,SO,, and concentrated in vacuo to give a residue. The residue was purified by SiO, flash column
chromatography (CHCL,:MeOH = 49:1) to afford compound 2¢ (173 mg, 58%) as a colorless gummy.

2¢: [a] = 97.2 (¢ 0.12, CHCL,). 'H-NMR (400 MHz, CDCL,) 6: 7.41-7.31 (5 H, m), 7.15-7.12 (3 H, m),
6.98-6.96 (2 H, m), 6.70 (1H, s), 5.07 (1H, d, J = 11.4 Hz), 497 (1H, d, ] = 11.4 Hz), 3.95 (1H, d, ] = 4.3 Hz),
3.82(3H,s),3.76 (1H, dd, J=11.9, 4.3 Hz), 3.57 (1H, d, ] = 6.6 Hz), 3.53-3.35 (2 H, m), 3.10 (1H, dd, ] = 17.3,
6.6 Hz),2.93 (1H,d, J=11.9Hz),2.77 (1H, d, J = 17.3 Hz), 2.67 (2 H, dt, J = 11.2, 3.5 Hz), 2.29 (3 H, 5), 2.26 (3
H, s). 3*C-NMR (100 MHz, CDCI3) 0: 165.4, 149.4, 148.2, 138.7, 137.5, 131.5, 128.7, 128.6, 128.3, 128.2, 128.2,
126.1, 125.8, 125.8, 74.3, 60.1, 59.1, 51.9, 51.3, 48.3, 39.6, 33.1, 27.2, 15.8. IR (KBr) cm™ ': 2934, 1644, 1494, 1454,
1336, 1061, 753, 699, 666, 406. EI-MS m/z (%): 456 (M*, 25), 365 (11), 295 (24), 294 (100), 204 (30), 203 (35).
HR-EI-MS m/z: 456.2409 (M, calcd for C,;H, N, O,, 456.2413). 'H- and'3C-NMR spectra are shown in Fig S2
and S3, respectively.

Synthesis of (1R,4R,58)-10-(benzyloxy)—-9-methoxy-8,11-dimethyl-3-phenethyl-1,2,3,4,5,6-hexahydro-1,5-
epiminobenzo[d]azocine-4-carbonitrile [3c (NDH_1)]

To a solution of lactam 2c¢ (18.1 mg, 39.6 umol) in THF (1.0 mL) at 0 °C was slowly added LiAIH,(OEt),
(1.0 mol/L in CH,Cl,, 476 uL, 476 umol, 12 equiv.) over 10 min. The reaction mixture was stirred at 0 °C for
3 h. The reaction mixture was quenched with AcOH (47.5 uL, 832 umol, 21 equiv.), followed by the addition
of KCN (17.3 mg, 238 umol, 6.0 equiv.) in H,O (120 pL), and stirring was continued for 14 h at 25 °C. The
reaction mixture was neutralized with 5% NaHCO, solution and diluted with saturated Rochell’s salt aq., and the
mixture was stirred for 1 h. The reaction mixture was extracted with CHCI, (3 x 30 mL). The combined extracts
were washed with brine (30 mL), dried over Na,SO,, and concentrated in vacuo to give a residue. The residue
was purified by SiO, flash column chromatography (n-hexane: EtOAc=4:1) to afford compound 3¢ (NDH_1,
12.9 mg, 70%) as a colourless oil.

3¢ (NDH_1): [a] — 28.3 (¢ 0.37, CHC13). 'H-NMR (400 MHz, CDCI3) 8:7.38-7.26 (5 H, m), 7.09-7.02 (3 H,
m), 6.75-6.73 (2 H, m), 6.60 (1H, s), 5.07 (2 H, s), 3.92 (1H, s), 3.84 (3 H, s), 3.64 (1H, d, ] = 2.1 Hz), 3.21 (1H,
d, J=7.7Hz),2.97 (1H, dd, J = 17.8, 7.7 Hz), 2.78 (1H, dd, J = 11.1, 2.9 Hz), 2.70-2.48 (5 H, m), 2.32 (3 H, s),
2.22 (1H, d, J = 17.8 Hz), 2.12 (3 H, s). 1*C-NMR (100 MHz, CDC]S) 0: 148.9, 148.1, 139.8, 137.5, 130.1, 130.0,
128.7, 128.6, 128.5, 128.2, 127.9, 126.5, 125.7, 124.7, 116.7, 74.5, 60.2, 60.1, 56.4, 55.3, 53.4, 52.7, 41.2, 32.6, 25.0,
15.9. IR (KBr) cm™': 2935, 1484, 1454, 1322, 1229, 1159, 1065, 901, 754, 699, 667, 483. EI-MS m/z (%): 467 (M*,
0.8), 295 (29), 294 (100), 204 (26), 203 (18). HR-EI-MS m/z: 467.2571 (M*, calcd for C,,H;;N,0,, 467.2573).
"H- and'*C-NMR spectra are shown in Fig S$4 and S5, respectively.

Synthesis of (1R/4R,55)—10-hydroxy-9-methoxy-8,11-dimethyl-3-phenethyl-1,2,3,4,5,6-hexahydro-1,5-
epiminobenzo[d]azocine-4-carbonitrile [4c (NDH_2)]

To a solution of 3¢ (37.7 mg, 80.6 pmol) and pentamethylbenzene (125 mg, 806 umol, 10 eq.) in CH,CI, (9.5
mL) was added BCl3 (1.0 mol/L in CHZCIZ, 403 uL, 403 pmol, 5.0 eq.) over 30 min at — 78 °C and the mixture was
stirred for 2 h. The reaction mixture was diluted with CH,Cl, (10 mL) and quenched with saturated NaHCO,
solution (50 mL) at 0 °C. The mixture was extracted with CH,Cl, (3 x50 mL). The combined extracts were
dried over Na,SO, and concentrated in vacuo to give a residue. The residue was purified by SiO, flash column
chromatography (n-hexane: EtOAc=2:1) to afford compound 4c (27.3 mg, 90%) as a colourless amorphous.

4c (NDH_2): [a] - 62.0 (c 0.10, CHCL,). 'H-NMR (400 MHz, CDCl,) 6 7.26-7.03 (3 H, m), 6.79 (2 H, dd, ]
=7.8,1.5 Hz), 6.39 (1H, s), 5.60 (1H, brs), 4.07 (1H, s), 3.78 (3 H, 5), 3.69 (1H, d, J = 2.4 Hz), 3.26 (1H, d, J = 7.8
Hz),3.01 (1H, dd, ] = 17.6, 7.8 Hz), 2.89-2.82 (2 H, m), 2.73-2.52 (4 H, m), 2.35 (3 H, 5), 2.31 (3 H, 5), 2.24 (1H,
d,J=17.6 Hz). ®*C-NMR (100 MHz, CDCl,) 8 145.3, 142.8, 139.8, 130.6, 128.7, 128.0, 127.9, 125.7, 120.8, 119.4,
116.7, 60.8, 60.1, 56.4, 55.5, 52.7, 52.4, 41.5, 32.7, 25.0, 15.8. IR (KBr) cm™ !: 3420, 2934, 1586, 1498, 1455, 1328,
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1230, 1158, 1061, 755, 700. EI-MS m/z (%): 377 (M*, 1), 205 (25), 204 (100). HR-EI-MS m/z: 377.2101 (M*, calcd
for C,;H,.N,0,, 377.2103). 'H- and"*C-NMR spectra are shown in Fig S6 and S7, respectively.

Synthesis of (1R,4R,5S)-9-methoxy-8,11-dimethyl-7,10-dioxo-3-phenethyl-1,2,3,4,5,6,7,10-octahydro-1,5-
epiminobenzo[d]azocine-4-carbonitrile [5¢ (NDH_3)]

To a solution of phenol 4a (8.4 mg, 22.3 pmol) in THF (0.6 mL) was added salcomine (9.5 mg, 22.3 pmol,
1.0 eq.) at rt, and the reaction mixture was stirred for 3 h under O, atmosphere. The reaction mixture was filtered
through a cellulose pad and washed with CH,Cl,. The filtrate was concentrated in vacuo to give a residue. The
residue was purified by SiO, flash column chromatography (n-hexane: EtOAc=2:1) to afford compound 5¢
(NDH_3) (6.7 mg, 77%) as a yellow gummy.

5¢ (NDH_3): [a] - 16.5 (c 0.26, CHCL,). "H-NMR (400 MHz, CDCL,) § 7.13-7.05 (3 H, m), 6.98 (2 H, dd,
J=74,19Hz),3.99 (3H,s),3.77 (1H, s), 3.65 (1H, d, ] = 1.6 Hz), 3.25 (1H, d, ] = 6.9 Hz), 2.86-2.76 (3 H, m),
2.67-2.55 (4 H, m), 228 (3 H, 5), 1.95 (3 H, 5), 1.94 (1H, d, ] = 20.6 Hz). *C-NMR (100 MHz, CDCL,) § 186.6,
182.3,155.0, 140.8, 139.0, 136.8, 128.7, 128.3, 128.2, 126.0, 116.1, 60.9, 59.2, 54.9, 54.5, 51.2, 50.8, 41.4, 32.6, 20.8,
8.7.1R (KBr) cm™': 2942, 1651, 1454, 1372, 1308, 1236, 1158, 949, 867, 758, 699. EIMS m/z (%) 391 (M*, 13), 301
(13), 300 (74), 220 (22), 219 (100), 204 (31), 201 (11), 176 (13), 105 (13). HREIMS m/z 391.1896 (M*, calcd for
C,,H,.N,0,, 391.1896). 'H- and'*C-NMR spectra are shown in Fig S8 and S9, respectively.

Cytotoxicity assay

Cytotoxic assay of untested compounds. The cytotoxicity of the untested compounds was evaluated against the
NCI-H460 (ATCC HTB-177) human large-cell lung cancer line using the MTT assay. Cells were cultured in
RPMI-1640 medium (Thermo Fisher, USA) supplemented with 10% fetal bovine serum, L-glutamine, penicillin,
and streptomycin. All untested compounds were initially dissolved in 100% DMSO to prepare stock solutions,
which were subsequently diluted to the desired concentrations with culture medium immediately before use.
The final DMSO concentration in each well was maintained below 0.5% v/v. Reduced MTT (insoluble formazan)
was dissolved in DMSO prior to absorbance measurement using a microplate spectrophotometer.

Results and discussions

Anticancer activity of Renieramycins and Renieramycin right-half compounds against H460
NSCLC cell line

The cytotoxicity of renieramycin right-half compounds was compiled from four distinct research reports that
utilized the same method, specifically the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2 H-tetrazolium
bromide) assay, against the NCI-H460 lung cancer cell line. All studies were conducted in the same laboratory, the
Centre of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn
University. Therefore, it is expected that the testing conditions will be consistent, yielding reliable and comparable
results. The MTT assay is widely regarded as the gold standard for cytotoxicity assessment>.

Compounds 1, 2, 3, 4, 5, and 7, which were previously reported®, had not been tested against the H460 cell
line. To establish a comprehensive dataset with IC, values against H460, these compounds were subsequently
evaluated using the same assay method (Fig S1). The results indicated a trend consistent with previous findings,
where DH_32 exhibited the lowest IC,; (indicating the highest cytotoxicity) and DH_35 demonstrated the
lowest cytotoxicity among the tested compounds. Given that both the prior report and the current study focused
on NSCLC cell lines, it is reasonable to infer that the cytotoxicity profiles across different cell lines are likely to
be highly correlated.

Feature selection

Prior to constructing the QSAR model, the dataset underwent a comprehensive preparation process. This
involved the removal of descriptors with non-numerical values that could not be converted to a numeric format,
as well as those exhibiting low variability (Var(Descriptors) = 0) and inter-correlation coefficients or Pearson
correlation exceeding + 0.9 (Jr| > 0.9) with other descriptors. One descriptor from each pair with |r| > 0.9 was
discarded based on its variance (lower variance was discarded), correlation with the target (lower correlation
was discarded), and biological and chemical interpretability. Such measures were implemented to mitigate
multicollinearity, which can inflate the biases in the dataset and compromise the generalization capabilities of
the regression model, ultimately reducing its predictive accuracy for unseen data®'.

To select features within each feature set—quantum chemical (QC) and non-quantum chemical (MS)—
genetic algorithms (GA) and Random Forest-based variable importance (VI) assessments were employed.
The GA feature sets were derived from the genetic algorithm-multiple linear regression fitting conducted in
Materials Studio, while the VI feature sets were obtained through Random Forest regression using default
hyperparameters. Figure 3A and B illustrate the variable importance of the top 20 features from each feature
set, along with the correlation heatmap (Fig. 3C) of the features utilized in this study. All the chosen quantum
descriptors are electronic descriptors, while the non-quantum descriptors are combination of constitutional,
geometrical, and electro-topological descriptors. Observing the correlation coefficients of selected descriptors in
Fig. 3C, it is evident that all the descriptors, in each set, are not highly inter-correlated. The selected feature sets
employed for the QSAR model development are summarized in Fig. 3D as well.

Classical QSAR

Genetic Algorithm - Multiple Linear Regression (GA-MLR) is a statistical approach that integrates the genetic
algorithm, an evolutionary optimization technique inspired by natural selection and genetics, with multiple
linear regression. In this method, the genetic algorithm is employed to select the descriptors that will be utilized
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Fig. 3. Top 20 most important features for the (A) quantum chemical (QC; green) and (B) non-quantum
chemical (MS; pink) feature sets; (C) correlation heatmap of the selected features used in the QSAR modelling
to ensure low multicollinearity as well as the (D) summary of descriptors used in this study.

to train the linear regression model®2. Table S3 presents the QSAR model for renieramycin right-half compounds
developed using the GA-MLR method in Materials Studio 8.0. The linear equations for both models are:
pIC,,=7.224* X2-21.541 * X4 +0.003 * X15-1.748 * X16-6.165 (GA-QC-MLR).
pIC,,=1.674* M2+0.105 * M52 +4.975 * M67 +15.166 * M102-2.013982 (GA-MS-MLR).

Scientific Reports|  (2025) 15:43516

| https://doi.org/10.1038/s41598-025-26668-9 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

The R? values of the models are more than 0.9, indicating their reliability. The R> CV values of both models are
reasonably close to the R? values (0.869 and 0.880 for GA-QC-MLR and GA-MS-MLR, respectively), suggesting
that the models demonstrate stability and generalization capabilities. For the quantum chemical descriptor
model, the charge of C2 (X2) and polarizability (X15) showed positive correlations with pIC,, while the charge
of C4 (qC4) and the energy of the highest occupied molecular orbital (HOMO) were negatively correlated. This
suggests that to increase the pIC,, it is advantageous to have a more positively charged atom at the C2 position,
higher polarizability, a more negatively charged (or near-neutral) atom at C4, and lower HOMO energy.

In contrast, for the non-quantum chemical descriptor model, all descriptors were positively correlated with
pIC,,. Based on the coefficients, the most impactful descriptor was RPCG (M102), followed by the shadow area
fraction in the ZX plane (M67), the number of methoxy groups (M2), and E-state keys (sums) of an oxygen atom
with two single bonds (S_ssO, M52). To enhance the pIC, of right-half renieramycin compounds, strategies
may include increasing the number of methoxy groups (which affect M2 and M52), adding functional groups or
altering the conformation to expand the shadow area fraction in the xz plane (M67), and incorporating highly
positively charged atoms or reducing overall positive charge (M102). It is important to note that these coefficients
are based on unnormalized data, so the magnitude of each coeflicient is actually not directly proportional to each
other. The plot of experimental vs. predicted pIC,, of GA-MS-MLR model is presented in Fig. 4A.

Based on the evaluation metrics, it is evident that the non-quantum chemical descriptors (MS) yielded
a model with a lower root mean square error (RMSE) for both the training and test sets (0.411 and 0.264,
respectively). This finding suggests that, within the context of the linear model, the non-quantum chemical
descriptors are more effective in predicting and generalizing the structure-activity relationships of renieramycin
right-half compounds. The classical QSAR models resulted in the high predictive R2 and R2 CV, however, the
RMSE values of training and test set are still slightly high, therefore, the machine learning-based QSAR is
supposed to apply for enhancing model prediction.

Machine learning based QSAR

Machine learning is a statistical/data science method that was initially developed in the 1950s. This methodology
experienced a period of stagnation but saw a resurgence in the 1990s and gained increasing popularity in
contemporary times. Machine learning is extensively employed for the processing of big data, encompassing
both volumetric and intricate datasets®®. It has been also widely used to help build QSAR/QSPR models of
various compounds and materials®*-°,

Random Forest (RF) is an ensemble-type machine learning method that uses a combination of decision tree
predictors. Each decision tree has its strengths and errors, and random forest will use those to make stronger
predictors with lower errors. The trees are built using a random selection of features to split each node, and
because it uses a lot of “trees” like “forest”, hence the name Random Forest?”. RF has been widely used to build
QSAR/QSPR models*®* with notably good performance.
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Fig. 4. The experimental vs. predicted pIC,, of training (@) and test (x) set were obtained from the selected
QSAR models. The figure shows the top 5 models among all, i.e., (A) GA-QC-RE, (B) GA-QC-SVR, (C) GA-
MS-SVR, (D) GA-MS-XGB, and (E) GA-MS-MLR. RF: Random Forest, SVR: Support Vector Regression,
XGB: eXtreme Gradient Boosting/XGBoost, GA: genetic algorithm feature selection, VI: variable importance
feature selection, QC: quantum chemical descriptors, MS: non-quantum chemical descriptor.
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The machine learning methods to be used in this study to build the QSAR model were random forest (RF),
support vector regression (SVR), and eXtreme gradient boost (XGB). RF, as mentioned above, is one of the
developments of the decision tree method!”. It used randomized built trees (resembling “forest”) to overcome
the tendency of decision trees to overfit the test set. SVR is the extension regression method of VapniK’s support
vector machine’. It is based on the idea of fitting a hyperplane in high-dimensional space to represent the
relationship between features and target values in a mostly non-linear manner. Meanwhile, XGBoost is another
development of decision tree*!. Similar to the random forest, it is an ensemble learning algorithm. However,
instead of building a set of randomized trees, XGBoost combines the strength of gradient boosting and decision
tree algorithms. Boosting is a meta-algorithm that works by training a series of weak learners, and each focuses
on the mistakes or misclassifications made by the previous ones, hence, the final model will have strong predictive
accuracy*?.

Figure 4 illustrates the graphical representation of experimental versus predicted pIC,, values obtained from
the selected machinelearning-based QSAR model. Based on the evaluation metrics employed in this study, include
R?, R2CV (LOO), and RMSE, 5 models were chosen, namely GA-MS-MLR (Fig. 4A), GA-QC-RF (Fig. 4B), GA-
MS-SVR (Fig. 4C), GA-QC-SVR (Fig. 4D), and GA-MS-XGB (Fig. 4E). A superior model is expected to exhibit
a larger R? value (approaching 1.0), with a R? CV (LOO) value that is closely aligned R?, and a smaller RMSE for
both the training and test sets. Additionally, models exhibiting a more linear correlation between experimental
and predicted biological activity are more effective. Table S4 presents a comparison of QSAR models constructed
using machine learning-based evaluation methods. The R? values of all machine learning models range from
0.8 to 1.0, while the R? CV (LOO) values vary from 0.6 to 0.9, which are considered reasonable. Analysis of the
RMSE values indicates that the models employing the variable importance (VI) feature selection method in
conjunction with the XGBoost algorithm demonstrate the poorest predictive performance for the test set. This
observation suggests that the combination of VI feature selection and the XGBoost algorithm results in a model
that overfits the training data. In contrast, the genetic algorithm (GA) feature selection method combined with
the same algorithm yielded notably superior, if not the best, evaluation metrics.

When comparing all generated models, both from GA-MLR and machine learning-based methods, the
evaluation metrics demonstrate a high degree of comparability. Among these models, the one produced by
combining descriptors selected through a genetic algorithm and employing the XGBoost algorithm (GA-MS-
XGB, Fig. 4E) emerged as the superior model, exhibiting high R? values and low RMSE metrics. This observation
aligns with previous reports that advocate for the use of XGBoost and Support Vector Regression (SVR) when
training QSAR regression models with limited datasets*>.

QSAR model evaluation and applicability domain

To evaluate the predictive capability of the developed QSAR model, three novel renieramycin right-half
derivatives were synthesized and subsequently tested for cytotoxicity against H460 cells. These compounds,
designated as NDH_1, NDH_2, and NDH_3, share a common side group attached to the N-3 position of the
tricyclic tetrahydroisoquinoline framework but differ in their functional groups at the aromatic moiety. The
synthesis of these derivatives was conducted following the methodologies previously reported in the literature®=.
The synthesis pathway and the cytotoxicity results for the newly synthesized renieramycin right-half derivatives
are illustrated in Fig. 5.

The predicted pIC,, values for the three newly synthesized compounds indicate that the models using
non-quantum feature sets (MS) overestimate the activity of NDH_1, with a predicted pIC,, of approximately
7 compared to an experimental pIC,, of 5.311. This discrepancy suggests that the prediction models, which
were developed based on both right-half and full-skeleton renieramycins, may exhibit a bias towards the full-
skeleton derivatives. However, the MS feature sets provide predicted pIC, values that align with previous
findings, indicating that the O-benzyl substituted compound has the lowest pIC,, followed by the hydroxyl
(OH) substituted compound, while the quinone-containing compound exhibits the highest pIC, values>’.

Interestingly, the current results indicate a different trend: the O-benzyl substituted compound, NDH_1,
demonstrates a lower pIC,; compared to the other compounds. Based on the RMSE of the predicted values
from this additional validation set, the GA-QC based models (GA-QC-RF and GA-QC-SVR) were determined
to be the most effective among all the models evaluated. Furthermore, the trend observed in the predicted
values did not align with the experimental data, ranking the compounds as follows: O-benzyl > hydroxyl >
quinone, which differs from the trends reported in previous studies’. This anomaly may be attributed to the
increased molecular length and degree of freedom introduced by the addition of a methylene group at the N-3
atom compared to 11 and 12 from the training set, which may facilitate better interactions with the binding
site of its protein target that typically located deep within a hydrophobic pocket. This trend can be found as
well in the data set for QSAR training, particularly for the pyridine-containing derivatives, but from different
published reports”®. The pyridine-containing derivatives with O-benzyl moiety showed higher cytotoxicity than
their quinone counterparts. In addition, a report by Phookphan, et al*’. demonstrated a similar trend. This
publication was released after the present models had been finalized and deployed; therefore, its data were not
included in the training or validation sets. In that study, consistent with the results reported here, the compound
containing hydroxyl moiety exhibited higher cytotoxicity, followed by that with O-benzyl group, while the
quinone-containing compound (DH_32) showed the lowest activity. Notably, the quinone derivative displayed
significantly reduced cytotoxicity, with IC,, values up to 12-fold higher than those of the hydroquinone-based
analogues. These findings suggest that the current structure-activity relationship (SAR) assumptions regarding
the benzo-ring moiety in right-half renieramycins may need to be revisited and refined.

To further evaluate the robustness of the top five models against overfitting and their predictive performance,
we retrained them using bootstrap resampling (n = 1,000 replicates). Bootstrapping, a widely used resampling
technique in QSAR studies, enhances model validation by simulating dataset variability. This method generates

Scientific Reports |

(2025) 15:43516 | https://doi.org/10.1038/s41598-025-26668-9 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

1) LiAIH,(OEt),
THF

BnCH,Br Me  2) AcOH, KCN
NaH, DMF H,0O

OMe

BCl3, Ce(CHs)sH Me  salcomine

CH,CI, O,, THF
ANDH_1
100 A ¥ NDH_2
3 v *NDH_3
= 75
£
@
> 50
[0}
(6]
25

Predicted plCs,

0 T T ]
0.001  0.01 0.1 1 10 100 Model NDH_1 NDH_2 NDH_3 RMSE val
Concentration (uM)

GA-QC-RF 5313 4718 4.209 0.236

Compounds ICs5,+ S.E (uM) Exp. pICsp GA-QC-SVR 4974 5.060 5.295 0.469
NDH_1 4.89 % 1.01 5.311 GA-MS-SVR 7467 5740 5944 1.565
NDH_2 1667 +1.74 4778 GA-MSXGB 779 4758 4.979 1.384
NDH_3 2442+228 4612 GA-MS-MLR 7558 5504 5046 1.390

Fig. 5. Synthesis pathway and cytotoxicity results of the evaluation set of renieramycin right-half derivatives
(NDH_1, NDH_2, and NDH_3) tested against H460 cells.

new training sets of equal size to the original data by randomly selecting compounds with replacement, allowing
repeated instances of the same data point*>*®. Additionally, Y-randomization was performed to confirm that the
models’ performance was not attributable to chance correlations. Figure 6 compiles all the additional evaluation
metrics and plots.

From the statistical test of bootstrapped-models’ evaluation metrics (Fig. 6a), GA-QC-RF and GA-MS-MLR
are significantly better than the other models in terms of training and CV (LOO) metrics. Meanwhile, GA-MS-
MLR is significantly worse than the other model and no model is significantly better than the other in terms of
R?_ . GA-MS-XGB is significantly the best in terms of RMSE,_, while GA-QC-SVR is significantly the worst.
Nevertheless, it is worth noting that all the parameters still can be considered good (except for R? test of GA-MS-
MLR) and show robustness of the models.

The Y-randomization results (Fig. 6b) revealed notable trends. Across all models, except for GA-MS-
XGB, which consistently performed poorly across all Y-randomization metrics, the RMSE values following
randomization increased by approximately three- to four-fold compared to those from the original dataset. This
outcome indicates that the original models performed significantly better than those trained on randomized
responses, confirming that the models are not simply fitting noise.

However, the R? values for the Y-randomized GA-QC-RF and GA-MS-SVR models remained relatively high,
around 0.5-0.6. This suggests that part of their good performance in the original dataset may be attributed to
chance correlations. In contrast, the R* values for the Y-randomized GA-QC-SVR and GA-MS-MLR models
dropped to around 0.2, indicating a lower risk of overfitting due to random associations. Considering that GA-
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Fig. 6. (A) Evaluation metrics of the top five models retrained using bootstrap resampling. Different letter
annotations indicate statistically significant differences among models for each evaluation metric (p <0.05).
(B) Plot of R* and RMSE values from Y-randomization tests. (C) Experimental vs. predicted pICs, values from
bootstrap-resampled models. The grey area represents the 95% prediction interval (PI) based on ordinary least
squares (OLS) fitting, while the vertical bars represent 95% PlIs derived from bootstrap calculations.

MS-MLR exhibited poor predictive power based on bootstrapped R?_ and RMSE_, GA-QC-SVR emerges as
the most reliable model for predicting the cytotoxicity of right-half renieramycin derivatives. Furthermore, the
plots of experimental versus predicted pICs, values from the bootstrapped models show that the 95% prediction
intervals (PIs) for GA-QC-based models, particularly GA-QC-SVR, are visually narrower than those of GA-

MS-based models. This observation further supports the superior predictive precision and reliability of the GA-
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QC-SVR model. This finding consistent with the earlier recommendations suggesting that SVR or XGBoost
are preferable algorithms for QSAR regression modeling with small datasets*’. However, we also found that
XGBoost was not very suitable for small datasets, because it tends to overfit the model.

For the applicability domain (AD), two methods were used: standardized residuals plot and Mahalanobis
distance in principal component (PC) space (Fig. 7). The standardized residuals plot (Fig. 7a) show the
standardized residuals versus the predicted pIC,, allowing the identification of response outliers (standardized
residuals > + 3). The PC plot (Fig. 7b) shows the distribution of data points in the reduced multivariate space,
helping visualize the spread and clustering of compounds based on their descriptors. The Mahalanobis distances
in the PC plot show the statistical boundaries of the model’s chemical space, where compounds falling outside
the 95% confidence threshold are considered outside the model’s reliable prediction zone*”,

In Williams plot (Supplementary, Fig. S10a), one compound, DH_25, exceeds the leverage threshold,
indicating that it has a disproportionately large influence on the model due to its unique descriptor profile.
However, DH_25 does not exceed the standardized residual threshold (+3), suggesting that although it is
structurally influential, its predicted activity aligns well with the experimental value. This implies that the model
can still reliably predict its biological activity despite its outlier leverage value. In the principal component (PC)
space plot (Fig. S10b), two compounds, DH_25 and DH_38, fall outside the 95% Euclidean distance threshold,
which identifies structural outliers based on linear distance from the data centroid. Among the two, DH_38 is
located closer to the threshold, suggesting it is only marginally outside the domain. Importantly, both compounds
remain within the Mahalanobis distance threshold, which accounts for covariance among variables and offers a
more stringent, multivariate definition of the chemical space. This indicates that neither DH_25 nor DH_38 are
statistical outliers when descriptor correlation is considered, and thus their predictions are still considered to be
within a reliable domain. Further insight from the PC loading plots revealed that the HOMO (Highest Occupied
Molecular Orbital) energy was the most influential feature contributing to DH_25’s deviation from the rest of
the dataset. This suggests that DH_25 may possess a significantly different electronic property profile, potentially
affecting its interaction with the biological target. Such differences could be biologically relevant and may offer a
rationale for its strong influence on the model.

SHAP analysis and descriptors explanation

SHAP (SHapley Additive exPlanations) analysis was subsequently conducted to provide deeper insights into
the QSAR model output. SHAP is an algorithm grounded in game theory, designed to elucidate the effects and
significance of each feature or descriptor utilized in constructing a machine-learning model*’. The results of the
SHAP analysis for the GA-QC features employed in the GA-QC-SVR model are presented in Fig. 8.

The SHAP analysis indicates that a higher SHAP value for a descriptor correlates with a greater positive
contribution to the target value. In this analysis, the descriptor qC2 (X2) emerged as the most influential in
determining the pIC, of renieramycin right-half derivatives. A positive charge at position number 2 is associated
with an increase in pIC, up to 0.6 points. In contrast, a more negative charge at position number 4 is favorable for
achieving a higher pIC, . The charge of atom position number 4 should be less than — 0.06 to get increment up to
0.2 points in pIC50, bigger than that it will reduce pIC50 up to 0.6 instead. This suggests that functional groups
exhibiting a -I effect, or electronegative character, are more advantageous at C-2, while those with a + I effect, or
electropositive character, are preferable at C-4. However, it has been reported that electron-withdrawing groups,
such as hydroxyl or nitrile, play a significant role in the DNA-adduct mechanism of renieramycins®’. Thus, an
alternative strategy may be needed to achieve a more negative charge at C-4. Additionally, compounds with
higher polarizability and lower HOMO energy are predicted to exhibit higher pIC, values, to a certain degree.
The polarizability value of the compound should be around 500-600 to increase pIC,; up to 0.4 points, but if it
reaches 700 it will only add around + 0.2 points to the pIC,,.

Polarizability is a property of a molecule or atom that reflects its ability to become polarized in response to
an electric field. Experimentally, polarizability is typically determined through measurements of the dielectric
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Scientific Reports |

(2025) 15:43516

| https://doi.org/10.1038/s41598-025-26668-9 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

B
061 & * o S
A 0.2t * o E
: o |
0.4+ i 1 i
i ® '
0.2+ i 0.0
g i |
s 00 |
< i —0.2¢ :
T -02¢ i |
—0.4r . -0.4} oo -
J o !
~ ' a
—06r o . ; . E
' 0.6 ®
° -0.6f !
—0.8[ . * . . ! ‘ . . . . ‘ |®
-0.20 -0.15 -0.10 -0.05 0.00 0.05 -0.10 -0.08 -0.06 -0.04 -0.02 0.00
C2 (X2 C4 (X4
c qC2 (X2) D qC4 (X4)
i % o D i
0.4r | e ool K<) :
] L ] :
0.2r S ¢ o1l °
i o ® §
g | :
T T
> i Y i
o e _
§ i ° : ®
“ 0.2t ! -0l o
| [
.
-0.4f ! —0.21 .
)
L} ¢
.
i L] - g »
—-06F ! ® 0.3 :
0 100 200 300 400 500 600 700 -6 -5 -4 -3 -2 -1 0
Polarizability (X15) HOMO energy (eV, X16)

Fig. 8. SHAP (SHapley Additive Explanations) analysis of the GA-QC-SVR model’s descriptors/features. It
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C2 (qC2, X2), (B) Charge of C4 (qC4, X4), (C) Polarizability (X15), and (D) Energy of Highest Occupied
Molecular Orbital (HOMO, in eV, X16).

constant or refractive index®!. In this study, static polarizability is utilized, which is obtained via numerical
differentiation of field-dependent energy calculated by the quantum chemical software®2. Generally, molecules
or atoms with high electron density or a limited number of vacant orbitals exhibit lower polarizability™.
Thus, one approach to enhancing polarizability is by increasing the molecular volume and/or adding a side
group with a less-packed electron. Meanwhile, according to Koopman’s theorem, vertical ionization potential
corresponds to the energy of the first occupied orbitals which, in the case of Kohn-Sham DFT, is the same
as HOMO energy®*. Hence, the addition of electron-withdrawing groups can plausibly decrease the HOMO
energy. In terms of drug-target interactions, increased polarizability of a drug molecule generally enhances
its ability to engage in dipole-dipole or charge-dipole interactions with target biomolecules®*°. Additionally,
there is a known negative correlation between proton affinity and the absolute value of the HOMO energy:
as the HOMO energy becomes more extreme (either more negative or more positive), the molecule’s proton
affinity tends to decrease®’. According to SHAP analysis, the more cytotoxic right-half renieramycins tend to
exhibit both higher polarizability (up to a certain threshold) and more negative HOMO energies. This suggests
that right-half renieramycins are likely to preferentially interact with biological targets that possess electron-
deficient or partially positive regions, such as polar or positively charged amino acid residues, through favorable
charge-dipole or dipole-dipole interactions. Furthermore, the lower proton affinity and more negative HOMO
energy may facilitate electron donation in specific microenvironments, potentially influencing binding affinity
or redox-related mechanisms.

Rationally designing Renieramycin Right-Half compounds

The design of novel renieramycin right-half compounds will utilize retrosynthetic analysis. Figure 9illustrates
the retrosynthetic pathway for right-half renieramycin as described by Matsubara, et al®. The formation of the
tricyclic lactam involves the Pictet-Spengler cyclization of an N-protected amino aldehyde with L-tyrosine
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derivative, which can be readily synthesized following the method outlined by Liao et al*.. The amino aldehyde
employed by Matsubara et al®. was N-protected amino acetaldehyde 38, a derivative of glycine 39. Additionally,
the incorporation of the arylmethyl group onto the lactam nitrogen can be achieved through alkylation using
alkyl bromides.

According to the SHAP analysis of the selected QSAR model, modifications at C2 are essential for developing
more effective renieramycin right-half compounds. These modifications can be implemented by utilizing
different amino aldehydes and arylmethyl bromides, as suggested by the retrosynthetic analysis. Given that
aminoacetaldehyde is derived from glycine, it is feasible to synthesize other amino aldehydes from various
amino acids. Ivkovic, et al*’. reported that a-amino aldehydes can be synthesized through the reduction of
N-protected a-amino acids using CDI/DIBAL-H in a one-pot reaction. In their study, reductions of Cbz-alanine,
Cbz-leucine, and Cbz-phenylalanine achieved yields of up to 99% with enantiomeric excess (ee) exceeding 97%.
Another critical descriptor highlighted in the SHAP analysis is polarizability, which can potentially be enhanced
by incorporating elements with large van der Waals volumes and high electron counts, such as halogens
(excluding fluorine) and elements from periods 3 and above.

Based on the insights from the analyses, a series of novel renieramycin right-half compounds were designed
(Fig S11). The structures of these newly conceived compounds were prepared and optimized using the same
computational methods applied to the training set. The biological activity of the rationally designed renieramycin
right-half compounds was then predicted (Table S5) using the selected model, specifically the GA-QC-SVR. The
spread of predicted pIC, of rationally designed novel right-half renieramycins as well as the structure of the
compound with pIC,) more than 6.5 are presented in Fig. 10. The predicted pIC, values for the novel right-half
renieramycins ranged from 4.868 to 7.333, with the highest predicted pIC, of 7.333 associated with compound
REN3VNG6, which incorporates valine as the amino aldehyde, benzyloxy at the benzo-ring of main skeleton, and
dichlorobenzene as R3 substituents.

Notably, most of the compounds designed in this study exhibited pIC,, values higher than those of the
synthesized right-half renieramycins used in the QSAR model, and some even higher than those of the full-
skeleton renieramycins. Despite this, the synthesis of these rationally designed compounds is warranted to
enhance the understanding of the structure-activity relationship of right-half renieramycins.

Conclusions

This study successfully established quantitative structure-activity relationship (QSAR) models for right-half
renieramycin derivatives using both linear (GA-MLR) and non-linear machine learning techniques (Random
Forest, Support Vector Regression, and XGBoost), in combination with genetic algorithm-based feature selection.
Among these, the GA-QC-SVR model, which integrates quantum chemical descriptors, demonstrated the most
reliable predictive performance, with high R? values and low root mean square errors (RMSE) across training,
test, and validation datasets. Bootstrap resampling and Y-randomization further confirmed the robustness of
GA-QC-SVR, with narrower 95% prediction intervals and low susceptibility to chance correlation compared to
other models.

The integrated SHAP analysis revealed that polarizability, HOMO energy, and partial charges at C2 and C4
positions are key determinants of cytotoxicity. A moderate increase in polarizability and more negative HOMO
values were associated with enhanced activity, suggesting favorable dipole-related interactions with electron-
deficient targets. In particular, compounds with hydroxyl or O-benzyl substituents showed higher cytotoxicity,
while quinone-containing derivatives like DH_32 exhibited significantly lower potency, corroborating recent

Fig. 9. Retrosynthetic analysis of renieramycin right-half derivatives. Compound 36 is alkyl bromides, 40 is
Cbz-glycine, and compound 42 is (S)-tyrosine.
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Fig. 10. Spread of predicted pIC,, of rationally designed novel right-half renieramycins using GA-QC-SVR
model and structures of 9 compounds with highest predicted pIC,,.

independent reports. This phenomenon needs to be observed further in the future experiments. Applicability
domain (AD) analysis using William’s plot, Mahalanobis, and Euclidean distance metrics identified DH_25 as
an influential but well-modeled compound, with HOMO energy being a distinguishing factor. These analyses
validated the model’s generalizability and offered mechanistic insights into compound behavior within chemical
space.

Overall, the findings from this research not only advance the understanding of the structure-activity
relationships governing renieramycin derivatives but also establish a robust framework for the rational design
of novel compounds. Future studies aimed at synthesizing the proposed compounds are needed to contribute
to the development of more effective anticancer agents and enhance the therapeutic potential of renieramycins.

Data availability

All data generated or analyzed during this study are included in this published article and its supplementary
information files. The scripts and pre-trained models used and generated in this study can be found in https://g
ithub.com/imeldp96/gsar-renieramycin.
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