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This study compared the performance of classical feature-based machine learning models (CMLs) and
large language models (LLMs) in predicting COVID-19 mortality using high-dimensional tabular data
from 9,134 patients across four hospitals. Seven CML models, including XGBoost and random forest
(RF), were evaluated alongside eight LLMs, such as GPT-4 and Mistral-7b, which performed zero-shot
classification on text-converted structured data. Additionally, Mistral-7b was fine-tuned using the
QLoRA approach. XGBoost and RF demonstrated superior performance among CMLs, achieving F1
scores of 0.87 and 0.83 for internal and external validation, respectively. GPT-4 led the LLM category
with an F1 score of 0.43, while fine-tuning Mistral-7b significantly improved its recall from 1% to
79%, yielding a stable F1 score of 0.74 during external validation. Although LLMs showed moderate
performance in zero-shot classification, fine-tuning substantially enhanced their effectiveness,
potentially bridging the gap with CML models. However, CMLs still outperformed LLMs in handling
high-dimensional tabular data tasks. This study highlights the potential of both CMLs and fine-tuned
LLMs in medical predictive modeling, while emphasizing the current superiority of CMLs for structured
data analysis.
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Abbreviations

LLM Large language model

CML Classical machine learning model
LR Logistic regression

SVM Support vector machine

DT Decision tree

KNN K-nearest neighbor

RF Random forest

XGBoost  Extreme gradient boosting

MLP Multilayer perceptron
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ZSC Zero-shot classification

LASSO Least absolute shrinkage and selection operator
SMOTE Synthetic minority oversampling technique
QLoRA Quantized low-lanking adaptation

MICE Multiple imputation by chained equations
ReLU Rectified linear unit

KBit Knowledge bit

CRP C-reactive protein

LDH Lactate dehydrogenase

NLP Natural language processing

CoT Chain-of-thought
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The rapid advancement of large language models (LLMs) has revolutionized their practical applications across

various domains, including medicine. These sophisticated models, trained on vast datasets, excel in a wide
array of natural language processing tasks, demonstrating remarkable adaptability in assimilating specialized
information from diverse medical fields'. While primarily designed for next-word prediction, LLMs have
emerged as powerful, evidence-based knowledge assistants for healthcare providers, offering valuable insights
and support in clinical decision-making processes?*. While their main training centers on predicting the next
word, LLMs can act as evidence-based knowledge helpers for healthcare providers, offering valuable insights
and assistance®.

In medical and clinical practice, machine learning models, particularly classical machine learning (CML)
models (i.e., feature-based algorithms that learn patterns from preprocessed data rather than raw inputs), have
gained significant traction in predicting patient outcomes, prognoses, and mortality rates. These models typically
employ supervised and unsupervised learning methods, which primarily utilize structured data®. However,
clinical datasets often present a complex interplay of structured and unstructured information, with clinical
notes serving as prime examples of the latter. Traditionally, patient information management via machine
learning has followed a two-step approach: transforming unstructured textual data into a structured format,
followed by training CML models on these structured datasets. This process, however, often leads to potential
information loss and introduces complexities in model deployment, hindering practical application in clinical
settings’.

While the efficacy of LLMs in handling unstructured text is well documented?, their performance in handling
structured data and their comparative effectiveness against CML models remain a critical area of investigation.
This is particularly relevant given that much of the historical medical data are stored in structured formats that
are often difficult to integrate®. Table 1 summarizes previous studies comparing the performance of LLMs and
CML approaches in medicine!%"'%. Studies reported varied results, primarily due to differences in evaluated
tasks (number of input features, sample size, and prediction complexity) and transformation techniques (e.g.,
transforming tables into textual prompts). However, they focus on tasks with a limited number of features (< 12),
fail to represent real-world medical decisions, and train instances for the models (< 1000), limiting the CMLs to
reach their maximum performance.

Our study aims to address this knowledge gap by evaluating LLMSs predictive capabilities in the context of
COVID-19 mortality prediction via a high-dimensional dataset and simple table-to-text transformation. By
utilizing a sufficient number of training instances, we provide the opportunity for CMLs to reach their maximum
performance, enabling a more robust comparison with LLMs. This investigation is designed to provide insights
into CML versus LLM comparisons in real-world, time-sensitive, and complex clinical tasks.

Methods

Ethical consideration

The study was approved by the Institutional Review Board (IRB) of Shahid Beheshti University of Medical
Sciences (IR.SBMU.RIGLD.REC.004 and IR.SBMU.RIGLD.REC.1399.058). The IRB exempted this study from
informed consent. Data were pseudonymized before analysis; patients’ confidentiality and data security were
prioritized at all levels. The study was completed under the Helsinki Declaration (2013) guidelines and all
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experiments were performed in accordance with Iran Ministry of Health regulations. Informed consents were
collected from all individuals or their legal guardians. During the generation of LLM predictions, using the
OpenAI API and Poe Web interface, we opted out of training on OpenAl and used no training-use models in
Poe to maintain the data safety of patient information.

Study aim and experimental summary

The objective of this research is to evaluate the efficacy of CMLs in comparison to LLMs, utilizing a dataset
characterized by high-dimensional tabular data. We employed a previously compiled dataset and focused
our experimental efforts on the task of classifying COVID-19 mortality. As illustrated in Fig. 1, the primary
experiment encompasses the following:

o Assessment of the performance of seven CML models on both internal and external test sets.
o The assessment of eight LLMs and two pretrained language models on the test set.
o Assessment of a trained LLM’s performance on both internal and external tests.

Additionally, we investigate the performance of models necessitating training (CML and trained LLM) across
varying sample sizes, coupled with an elucidation of model prediction mechanisms through SHAP analysis.

Study context, data collection, and dataset

This study was conducted as part of the Tehran COVID-19 cohort, which included four tertiary centers with
dedicated COVID-19 wards and ICUs in Tehran, Iran. The study period was from March 2020 to May 2023 and
included two phases of data collection. The protocol and results of the first phase have been published previously.
The four COVID-19 peaks during this period covered the alpha, beta, delta, and Omicron variants.

All admitted patients with a positive swab test during the first two days of admission or those with CT
scans and clinical symptoms were included in the study. A medical team collected the patients’ symptoms,
comorbidities, habitual history, vital signs at admission, and treatment protocol through the hospital information
system and reviewed the medical records. Laboratory values during the first and second days of admission were
collected and organized from the hospitals’ electronic laboratory records using pandas (v1.5.3), and NumPy
(v1.24.1). Patients with a negative PCR result in the first two days of admission or with one missing clinical
record in the HIS were excluded.

The dataset included the records of 9,134 patients with COVID-19. The data were filtered to include
demographic information, comorbidities, vital signs, and laboratory results collected at the time of admission
(first two days).

Computational environment
All classical machine learning (CML) experiments were performed on a workstation equipped with an Intel
Core 19-12900 K CPU, 64 GB of RAM, and an NVIDIA RTX 3090 GPU (24 GB VRAM), running Ubuntu 22.04
and Python 3.10. The primary packages utilized include scikit-learn (version 1.2.2), XGBoost (version 1.7.5),
pandas (version 1.5.3), and NumPy (version 1.24.1).

The fine-tuning of the Mistral-7b-Instruct model was conducted using an NVIDIA A100 80GB GPU via
a cloud-based environment (Google Cloud Platform), utilizing the transformers (v4.37.2), peft (v0.9.0), and
bitsandbytes (v0.41.1) libraries. The QLoRA fine-tuning procedure was implemented using 4-bit quantization,
gradient accumulation steps, and mixed-precision training to optimize memory usage and reduce computational
cost. All LLM zero-shot experiments were conducted via the OpenAI API and Poe interface under controlled
sessions to ensure reproducibility.

Data preprocessing
Supplementary Figure S1 illustrates summary of the pipeline from raw data preprocessing through feature
engineering and cleaning, to the final training-test data split used for model development and evaluation.

Imputing and normalization

The features in the dataset were divided into categorical and numerical categories. To address the missing values
in the numerical features, we used an iterative imputer from the scikit-learn library. This method employs
iterative prediction for each feature, considering the multiple imputation by chained equations (MICE) method
(16,17). Missing values in the categorical features were imputed via KNN from the scikit-learn library. For
optimal model performance, the dataset was normalized via a standard scaler (18). These preprocessing steps
were executed independently for the input features of the training, test, and external validation sets, ensuring
a consistent approach for handling missing values across the experimental sets without information leakage.

Feature selection

The dataset comprised 81 on-admission features. The dataset was separated into external and internal validations
using patient hospitals. Patients from Hospital-4 were used for external validation, whereas patients from the
remaining hospitals were used for internal validation. For internal validation, we split the data with a test size of
20% and allocated 80% for training.

The output features in this study include “in-hospital mortality,; “ICU admission,” and “intubation,” with a
focus solely on “hospital mortality” as the targeted feature, excluding other output features. Of the 81 features
initially available, 76 were employed for training, comprising 53 categorical features and the remaining numerical
values. During data wrangement, two duplicate features were dropped.
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Table 1. Summary of studies comparing the performance of large Language models and classical machine
learning methods in medicine using structured data. Cui et al’s and Nazary et al’s studies were preprint
publications

We strategically employed the lasso method for feature selection because of its effectiveness in handling high-
dimensional data. The Lasso method introduces regularization by adding a penalty term to the linear regression
objective function, which encourages sparsity in the feature coefficients!>!°. This approach proved to be superior
to alternative methods, facilitating notable enhancements in our results. Through the application of Lasso, we
derived a refined dataset that highlighted the most impactful features on the basis of their importance, aiding
dimensionality reduction. We subsequently ranked and selected the top 40 features for further analyses.

Oversampling

To address the issue of class imbalance in our dataset, we employed the synthetic minority oversampling
technique (SMOTE), a widely used method in machine learning, particularly for medical diagnosis and
prediction tasks!”. By applying SMOTE, we mitigated dataset imbalances, resulting in a more robust and reliable
analysis for predicting mortality. SMOTE works by creating synthetic samples for the minority class instead
of simply duplicating existing samples. It selects samples from the minority class and their nearest neighbors
and then generates new synthetic samples by interpolating between these samples and their neighbors. This
approach not only increases the number of samples in the minority class but also introduces new data points,
improving dataset diversity. In our experiments, the SMOTE technique was applied to the training set (X_train),
increasing the number of samples from 6118 to 9760.

Preparing data for the LLM

To prepare the data for input into the LLM, we completed all the previous steps for feature selection and sampling,
but normalization was not performed. As shown in Fig. 1, we converted the dataset into text. We categorized
the dataset features into symptoms, past medical history, age, sex, and laboratory data. For symptoms and
medical history, we considered only positive data. For age, we added ‘the patient’s age is’ before the age number.
For sex, we used ‘male’ and female] We used the normal range of laboratory data to classify the data into the
normal range, higher than the normal range, and lower than the normal range. For example, if blood pressure
and oxygen saturation were higher than the normal range, we used the sentence ‘blood pressure and oxygen
saturation are higher than the normal range’ We considered only laboratory data that were higher or lower than
the normal range. The exclusion of negative features in symptoms and past medical history, or the normal range
in laboratory data, is due to limitations in LLM context windows. We then concatenated the dataset into a single
paragraph for each patient, indicating their medical history.

CML predictive performance

We employed five CML algorithms: logistic regression (LR), support vector machine (SVM), decision tree (DT),
k-nearest neighbor (KNN), random forest (RF), multilayer perceptron neural network (MLP), and XGBoost.
The hyperparameters were optimized via a grid search and cross-validation. The full details of training and
hyperparameters are provided in Supplementary Sect. 1.

LLM predictive performance

We utilized open-source and proprietary LLMs to test their predictive power on clinical texts transformed
from tabular data. First, we tested different prompts to determine the most efficient prompt to use, as well as
the temperature (between 0.1 and 1). Full prompts are listed in Supplementary Table S1. We then sent clinical
text and commands, received the unstructured output, and extracted the selected outcome, which could be
either “survive” or “die” We used different sessions for each prediction, limiting the memory of the LLM to
remembering previous generations.

We tested open-source, open-weight models of Mistral-7b, Mixtral 8 x 7 B, Llama3-8b, and Llama3-70b via
the Poe Chat Interface. OpenAl models, including GPT-3.5T, GPT-4, GPT-4T, and GPT-4o, were utilized via the
OpenAlI API. We also tested the performance of two pretrained language models, BERT'® and ClincicalBERT,
which are fine-tuned versions of BERT on medical text. A list of all LLMs and times of use, as well as model
parameters, is available in Supplementary Table S2.
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Fig. 1. Study Design and Experimental Summary. Irmage caption: This figure illustrates the design and workflow
of the study, which compared large language models (LLMs) and conventional machine learning (CML)
approaches for the prediction of COVID-19 patient mortality. The patient data included demographics, symptoms,
past medical history, and laboratory results. The data undergo preprocessing before being structured into
input-output instances. The CML pipeline involves training and validation via various algorithms, such as logistic
regression, support vector machine, and random forest. Moreover, the LLM pipeline involves a prompt engineering
loop. We also fine-tuned one LLM, Mistral-7b, by giving the input and ground truth. The study aims to predict
patient outcomes (survival or death) on the basis of the provided information.
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Zero-shot classification

Zero-shot classification is an approach in prompt engineering in which the prompt is given to the model without
any training. This approach is used in transfer learning, where a model used for different purposes is employed
instead of fine-tuning a new model, thereby reducing the cost of training the new model. To perform zero-shot
classification, we used eight different LLMs and two LMs. We provided each patient’s history as input to predict
whether the patient would die or survive and then stored the results.

Fine-tuning LLM

We fine-tuned one of the open-source LLMs, Mistral-7b-Instruct-v0.2, which is a GPT-like large language
model with 7 billion parameters. It is trained on a mixture of publicly available and synthetic data and can be
used for natural language processing (NLP) tasks. It is also a decoder-only model that is used for text-generation
tasks. Fine-tuning an LLM is usually considered time-consuming and expensive; recently, several methods have
been introduced to reduce costs. We implemented the QLoRA fine-tuning approach to optimize the LLM while
minimizing computational resources®.

The model was configured for 4-bit loading with double quantization, utilizing an “nf4” quantization type
and torch.bfloat16 compute data type. A 16-layer model architecture with Lora attention and targeted projection
modules was employed. We used the PEFT library to create a LoraConfig object with a dropout rate of 0.1 and task
type ‘CAUSAL_LM:. The training pipeline, established via the transformer library, consisted of 4 epochs with a
per-device batch size of 1 and gradient accumulation steps of 4. We utilized the “paged_adamw_32bit” optimizer
with a learning rate of 2e-4 and a weight decay of 0.001. Mixed-precision training was conducted via fp16, with a
maximum gradient norm of 0.3 and a warm-up ratio of 0.03. A cosine learning rate scheduler was employed, and
training progress was logged every 25 steps and reported to TensorBoard. This methodology, which combines
QLoRA with the Bitsandbytes library, enables efficient enhancement of our language model while significantly
reducing resource requirements, demonstrating superior performance across various instruction datasets and
model scales. A more detailed description is provided in Supplementary Section S2.

CML and LLM performance on different sample sizes

To investigate the influence of training sample sizes on model performance, we conducted a series of experiments
using varying sample sizes: 20, 100, 200, 400, 1000, and 6118. Multiple models were trained using these sample
sizes, and their performance was evaluated on the basis of the F1 score and accuracy metrics via an internal test
set. The objective of this exploration was to gain valuable insights into the correlation between the volume of
training data and the accuracy of predictive models.

Evaluation and cross-validation

The accuracy of the outputs was assessed by comparing them against a ground truth that categorized outcomes
as either mortality or survival. Outputs from the LLM were similarly classified. If an LLM initially produced
an undefined result, the prompt was repeatedly presented up to five times to elicit a defined prediction; these
instances are documented in Supplementary Table S2. We evaluated the models’ performance via five critical
metrics: specificity, recall, accuracy, precision, and F1 score. To optimize our models, we employed a grid search
strategy with accuracy as the primary criterion.

We further implemented 5-fold cross-validation on the training dataset (n=6,118). The training data were
randomly partitioned into five equal-sized subsets. For each fold, four subsets were used for training while the
remaining subset served as a validation set. This process was repeated five times, with each subset serving as the
validation set once. We calculated performance metrics (accuracy, precision, recall, specificity, F1 score, and
AUC) for each fold and reported the mean and standard deviation across all five folds.

Statistical analysis

Baseline characteristics were compared between patients who died and those who survived using appropriate
statistical tests based on variable type and distribution. Continuous variables were analyzed using the Mann-
Whitney U test (chosen over parametric alternatives due to non-normal distributions typical of clinical data)
and presented as mean +standard deviation. Categorical variables were compared using Pearson’s chi-square
test. The area under the receiver operating characteristic curve (AUC) was used to illustrate the predictive
capacity of each model. All statistical tests were two-sided with significance set at P<0.05. Statistical analyses
were performed using Python 3.12 with SciPy (v1.16.2).

Explainability

In our study, we employed SHAP (SHapley Additive exPlanations) values to examine both the total (global) and
individual (granular) impacts of features on model predictions. We normalized the numerical data via a standard
scaler and adopted a model-agnostic methodology. Our model-agnostic approach involved employing XGBoost
as the explainer model for LLMs prediction, which was chosen for its robust performance, as demonstrated in
prior research and our own findings. SHAP values provide a clear, quantitative assessment of how each feature
influences individual predictions, enhancing transparency in the model’s decision-making process.

For our analysis, we used the test set for each model, generated SHAP values for every prediction, and
computed the mean and standard deviation of the absolute SHAP scores. We then converted SHAP scores from
arange of 0 to 1 into “global impact percentages” by dividing each feature’s score by the total score of all features
and multiplying by 100. We calculated the average impact percentages for both CMLs and LLM:s by first averaging
the SHAP scores and then determining the impact percentages. To compute the standard deviation of the impact
percentages, we adjusted the average standard deviation of CML/LLM via a multiplication factor derived from
the ratio of the impact score to the SHAP mean. The global impact percentage represents the proportion of each
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feature’s impact on the predicted class across the entire dataset. A violin plot visually represents the variability of
each input feature’s effect on the output.

Results

Our study initially included a dataset of 9,057 patients, with a mean age of 58.40 + 19.81 years and a male-female
ratio of 1.19. The overall mortality rate in this group was 25.11% (N=1818). Table 2 shows the distribution of
variables and missing data for both the survived and mortality cohorts. We utilized an internal validation test
set and an external validation set comprising 2,470 and 2,248 participants, respectively, each with a mortality
rate of 50%. Additionally, the validation set for zero-shot classification included 590 patients randomly selected
from the internal validation test set, with a mean age of 63.85+ 18.37 years, a male-to-female ratio of 355:255,
and a mortality rate of 50% (mortality count=295). Table 3 details the performance metrics of all models across
internal, external, and cross-validation.

Classic machine learning predictive performance

As shown in Fig. 2, XGBoost and RF were the top-performing models in terms of accuracy, achieving scores
of 86.28% and 86.52%, respectively. These models also excelled in precision, recall, specificity, and F1 scores,
all surpassing 85%. The MLP also delivered an acceptable performance, with an accuracy of 75.87%. When
the models were applied to the external validation set, a slight decline in the AUC of 2-5% was observed.
Supplementary Figures S2 and S3 depict the confusion matrix of the CMLs on the internal validation test set
and the external validation set, respectively. SVM, KNN, and DT showed consistent performance across both
validation sets, confirming their reliability in generalizing to unseen data.

LLM: zero-shot classification and fine-tuned mistral-7b

The zero-shot classification results showed variability among the models, with GPT-4 outperforming the other
models by achieving an accuracy of 0.62 and an F1 score of 0.43 and recording the highest recall at 0.28 among
the LLMs. Generally, LLMs exhibited low recall rates, predominantly classifying predictions as “mortality” The
open-source models, including Llama-3-70B, Llama-3-8B, Mistral-7b-Instruct, and Mistral-8 x 7b-Instruct-v0.1,
had F1 scores ranging from 0.03 (Mistral-7b) to 0.15 (Llama3-8B and Llama3-70b). Notably, the gpt-40 model
showed limited effectiveness, with an F1 score of 0.01, indicating a challenge in distinguishing between true
positives and true negatives. The pretrained language models - BERT and ClinicalBERT - also labeled all
outcomes as dies, failing to provide predictive power. Supplementary Figure S4 shows confusion matrix of LLM
and language models.

Fine-tuning Mistral-7b significantly improved its performance, increasing the F1 score from 0.03 to 0.74 in
the internal test set and to 0.69 in the external test set. This fine-tuned version also demonstrated a high recall
rate of 78.98%, a substantial increase from 1% in zero-shot classification, showing its ability to accurately identify
a greater proportion of actual survival instances. This consistency between internal and external validations
highlights the generalizability of the fine-tuned Mistral-7b in mortality prediction. The confusion matrix of fine-
tuned and zero-shot Mistral-7b is presented at Supplementary Figure S5.

Comparing models on different training sample sizes

To evaluate the impact of training sample size on model efficacy, experiments were conducted across various
sample sizes. Figure 3 shows that the performance of all CMLs increased as the size of the training set increased.
XGBoost demonstrated the strongest performance across all categories: small (100 samples), medium (400-1000
samples), and full training set sizes (6118 samples). Notably, the MLP neural network and SVM exhibited the
most significant performance improvements, with accuracies increasing from 55% with 20 training samples to
73% and 77%, respectively.

In contrast, while the zero-shot performance of GPT-4 reached an F1 score of 0.43, CMLs still surpassed
both zero-shot classification and fine-tuned LLMs in predicting COVID-19 mortality. During the fine-tuning of
Mistral-7b, notable performance degradation occurred in scenarios with small training sizes, leading to a loss of
broader model understanding, an effect termed “negative transfer”

Explainability: impact of features on prediction

As shown in Supplementary Figure S5 while the global impact of features among CMLs exhibits similar patterns,
with many of the top 10 impactful features being consistent, the granular impact differs significantly. For example,
in the context of O2 saturation levels in patients, XGBoost, RE, DT, and MCP consider both high (increasing
mortality risk) and low (increasing survival chance) levels to be significant, whereas KNN and LR focus only
on low saturation levels. According to Fig. 4.a, the most influential features are age (11.18%) and O2 saturation
(9.89%), followed by LOC (4.83%), lymphocyte count (4.79%), dyspnea (3.76%), and sex (3.68%).

Conversely, the influence of features in LLMs, particularly in lower-performing models such as Mistralb-
7b and GPT4o, appears less coherent, as illustrated in Supplementary Figures S6 and S7. This inconsistency
contributes to noise in the average feature impact among LLMs (Fig. 4.d). Nonetheless, age (6.58%) and O2
saturation (5.51%) remained the most significant features, with a series of laboratory tests, including neutrophil
count, PT, ALP, MCV, K, Na, ESR, and Cr, revealing impacts in the 4%—5% range.

When comparing the top performers among CMLs and LLMs—XGBoost and GPT4—the patterns of global
(Fig. 4.b and Fig. 4.e) and granular (Fig. 4.c and Fig. 4.f) impacts diverge, with XGBoost displaying more specific
impacts and GPT4 showing broader ranges of impact.

Figure 5 illustrates how fine-tuning Mistral-7b altered the impact of features at both the global and granular
levels. This refinement in prediction logic aligned the top 10 most important features more closely with those of
CMLs, resulting in more equitable impact percentages among features and enhanced granularity.
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Variable Total Mortality Survived

Demographics (N=9,057) (n=1,818) (n=7,239) P-value
Age (years) 58.4+19.8 69.9+£23.5 555+17.6 <0.001***
Male gender 54.5% (4,932) | 59.3% (1,078) | 53.2% (3,854) | <0.001***
Vital signs

Diastolic BP (mmHg) 753+11.7 74.1+14.2 75.6+10.8 <0.001***
02 Saturation without support (%) | 85.1+17.0 79.2+18.1 86.6+16.4 <0.001***
Pulse rate (bpm) 88.0+15.5 90.6+19.3 87.3+14.2 <0.001***
Respiratory rate (breaths/min) 19.3£5.1 20.6+6.9 19.0+4.4 <0.001*%*
Systolic BP (mmHg) 120.4+18.8 119.9+£23.4 120.6+£17.3 0.003**
Temperature (°C) 37.1+1.3 37.1+1.5 37.1+1.3 0.334
Symptoms

Abdominal pain 5.5% (502) 5.2% (94) 5.6% (408) 0.473
Anorexia 16.1% (1,456) | 15.6% (284) | 16.2% (1,172) | 0.579
Chest pain 8.9% (810) 6.8% (124) 9.5% (686) <0.001***
Chills 26.6% (2,409) | 22.0% (400) 27.8% (2,009) | <0.001***
Cough 48.0% (4,344) | 42.6% (774) | 49.3% (3,570) | <0.001***
Diarrhea 9.3% (842) 7.3% (132) 9.8% (710) <0.001***
Dyspnea 58.1% (5,260) | 63.2% (1,149) | 56.8% (4,111) | <0.001***
Ear Pain 0.1% (12) 0.1% (1) 0.2% (11) 0.480
Fever 42.4% (3,843) | 38.4% (699) 43.4% (3,144) | <0.001***
Headache 10.5% (949) 6.0% (109) 11.6% (840) <0.001***
Hemiparesis 0.7% (48) 1.1% (15) 0.6% (33) 0.097
Hemorrhage 0.4% (33) 0.8% (14) 0.3% (19) 0.003**
Joint pain 1.0% (87) 1.0% (19) 0.9% (68) 0.780
Loss of consciousness 8.0% (726) 22.6% (410) 4.4% (316) <0.001*%*
Myalgia 29.0% (2,628) | 19.6% (356) 31.4% (2,272) | <0.001%**
Nausea/vomiting 20.8% (1,888) | 17.1% (311) 21.8% (1,577) | <0.001***
Olfactory dysfunction 1.2% (112) 0.4% (7) 1.5% (105) <0.001***
Rhinorrhea 0.9% (86) 0.9% (16) 1.0% (70) 0.837
Seizure 0.5% (49) 0.8% (15) 0.5% (34) 0.095
Skin lesion 0.2% (21) 0.6% (11) 0.1% (10) <0.001***
Sore throat 2.5% (224) 1.5% (27) 2.7% (197) 0.003**
Weakness 36.7% (3,326) | 41.9% (762) 35.4% (2,564) | <0.001***
Comorbidities

Alcohol use 0.6% (53) 0.9% (16) 0.5% (37) 0.095
Alzheimer’s disease 1.9% (170) 5.0% (90) 1.1% (80) <0.001*%*
Anemia 1.0% (94) 1.3% (24) 1.0% (70) 0.231
Asthma 24% (221) | 2.3% (42) 2.5% (179) 0.752
COPD 1.6% (144) 2.4% (43) 1.4% (101) 0.004**
Cancer 4.9% (446) 8.8% (160) 4.0% (286) <0.001***
Chronic kidney disease 3.7% (331) 6.4% (116) 3.0% (215) <0.001*%*
Current smoker 5.0% (453) 5.9% (107) 4.8% (346) 0.061
Diabetes mellitus 26.3% (2,384) | 35.3% (642) 24.1% (1,742) | <0.001%**
Fatty liver disease 0.7% (61) 0.5% (9) 0.7% (52) 0.379
GI disorder 1.3% (115) 1.7% (31) 1.2% (84) 0.082
Heart failure 1.6% (146) 2.9% (53) 1.3% (93) <0.001***
Hepatitis C 0.1% (11) 0.2% (4) 0.1% (7) 0.248
Hookah use 0.6% (53) 0.4% (7) 0.6% (46) 0.280
Hyperlipidemia 4.6% (421) 4.4% (80) 4.7% (341) 0.618
Hypertension 32.0% (2,899) | 44.3% (806) 28.9% (2,093) | <0.001***
Immunocompromised 0.2% (19) 0.1% (2) 0.2% (17) 0.399
Ischemic heart disease 13.5% (1,224) | 21.1% (384) 11.6% (840) <0.001%**
Opium use 3.9% (352) 5.5% (100) 3.5% (252) <0.001***
Parkinson’s disease 0.8% (76) 2.0% (37) 0.5% (39) <0.001*%*
Pregnancy 0.6% (38) 0.1% (2) 0.7% (36) 0.033*
Prior CABG 3.5% (316) 5.9% (108) 2.9% (208) <0.001***
Continued

Scientific Reports |

(2025) 15:42712

| https://doi.org/10.1038/s41598-025-26705-7

nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Variable Total Mortality Survived

Demographics (N=9,057) (n=1,818) (n=7,239) P-value
Prior pneumonia 0.4% (39) 0.9% (17) 0.3% (22) <0.001*%*
Prior stroke 4.5% (404) | 9.9% (180) 3.1% (224) | <0.001%*
Psychiatric disorder 1.7% (156) 2.5% (46) 1.5% (110) 0.004**
Rheumatoid arthritis 0.9% (82) 1.3% (24) 0.8% (58) 0.051
Seizure disorder 1.3% (114) 1.4% (26) 1.2% (88) 0.538
Thyroid disorder 4.5% (405) 4.1% (75) 4.6% (330) 0.462
Tuberculosis 0.3% (23) 0.2% (4) 0.3% (19) 1.000
Laboratory values

Alkaline phosphatase (U/L) 226.4+181.4 |264.1+223.4 |215.5£165.7 | <0.001***
CPK (U/L) 333.2+£996.3 | 505.5+1668.4 | 283.7+£683.7 | <0.001***
Creatinine (mg/dL) 1.9+25 26132 1.7+2.3 <0.001*%*
ESR (mm/hr) 58.1+1387.2 | 40.7+26.8 62.9+1567.8 0.027*
Hemoglobin (g/dL) 12.4+22 11.9+25 12.5+2.1 <0.001***
INR 54+22.1 7.4+25.7 4.9+20.8 <0.001***
Lymphocytes (%) 17.6+10.7 13.0+9.8 18.8+10.6 <0.001%%*
MCV (fL) 84.7+7.4 85.7+8.0 84.4+7.2 <0.001***
Neutrophils (%) 77.8+12.0 83.2+10.5 76.4+12.0 <0.001***
PT (seconds) 19.1+£27.1 2291324 17.9+£25.3 <0.001***
PTT (seconds) 45.1+61.7 51.8+77.2 43.1£56.0 <0.001***
Platelets (x10°/L) 201.9+91.2 193.2+£96.2 204.2+89.6 <0.001***
Potassium (mmol/L) 7.0+£17.8 8.3+£22.0 6.7+16.5 <0.001*%*
Sodium (mmol/L) 137.3+£5.7 137.7+£7.3 137.2+£5.2 0.025*
WBC (x10°/L) 83+7.0 10.5+£7.5 7.7+6.8 <0.001
Outcomes and treatment

Symptom to referral time (days) 6.9+8.7 6.5+8.0 7.0+8.8 <0.001+%*
Dialysis 3.3% (303) 10.1% (183) 1.7% (120) <0.001***
ICU admission 16.3% (1,474) | 48.2% (876) 8.3% (598) <0.001***
Mechanical ventilation 9.7% (876) 41.7% (758) 1.6% (118) <0.001*%*

Table 2. Data are presented as mean + standard deviation for continuous variables and n (%) for categorical
variables. P-values were calculated using Mann-Whitney U test for continuous variables and chi-square test for
categorical variables. BB, Blood pressure CABG, Coronary artery bypass grafting CKD, Chronic kidney disease
COPD, Chronic obstructive pulmonary disease CPK, Creatine phosphokinase ESR, Erythrocyte sedimentation
rate GI, Gastrointestinal ICU, Intensive care unit INR, International normalized ratio MCV, Mean corpuscular
volume PT, Prothrombin time PTT, Partial thromboplastin time WBC, White blood cell

Pipeline validation

Supplementary Table S3 presents the XGBoost model’s F1 scores for external validation, showing a result of 0.82
(AUC: 0.92) with imputation and 0.89 (AUC: 0.60) without imputation. Supplementary Table S4 presents data
on external and internal validation using SMOTE to address class imbalance in CMLs. Application of SMOTE
resulted in increased performance metrics for both validation sets across CMLs; for example, the XGBoost AUC
rose from 0.60 to 0.92 in external validation.

Discussion

Our study reveals a notable performance gap between CML models and LLMs in predicting patient mortality
via tabular data. RF and XGBoost emerged as the top CML performers, achieving over 80% accuracy and an
F1 score of 0.86. In contrast, the best-performing LLM, GPT-4, achieved 62% accuracy and an F1 score of 0.43
in zero-shot classification. This disparity highlights the challenges LLMs face when dealing with purely tabular
data. Notably, increasing our sample size from 5,000 patients in our previous study to 9,000 patients in this
study significantly improved the performance of CML models. The AUC of RF improved from 0.82 to 0.94,
underscoring the importance of large and diverse datasets in realizing the full potential of CMLs in medical
tasks.

LLM performance heavily relies on the knowledge embedded within model weights, the complexity of
input data, and the table-to-text transformation technique. Our approach, which uses a simple prompt and
transformation to resonate with current clinical use, achieved results comparable to those of similar studies, with
F1 scores of 0.50-0.60 across different medical tasks using LLMs such as the GPT-4 or GPT-3.5'%11:21, However,
in line with many previous studies, we found that CMLs can outperform this zero-shot performance with even
fewer than 100 training samples!®13.
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Approach Model Accuracy | Precision | Recall Specificity | F1 AUC
Cross validation

CML LR 0.74+0.02 | 0.91+0.01 | 0.75+0.03 | 0.71+0.03 | 0.82+0.02 | 0.73+0.02

CML SVM 0.75+£0.02 | 0.91+£0.0 |0.76+0.02 | 0.72+0.02 | 0.83+0.01 | 0.74£0.02

CML DT 0.72+0.01 | 0.86+0.01 | 0.77+0.01 | 0.49+0.03 | 0.81+£0.01 | 0.63+0.01

CML KNN 0.65+0.02 | 0.88+0.01 | 0.64+0.02 | 0.67+0.03 | 0.74+0.02 | 0.65+0.01

CML RF 0.82+0.01 | 0.88+0.01 | 0.90+0.02 | 0.50+0.04 | 0.89+0.01 | 0.70+0.01

CML Xgboost 0.80+0.01 | 0.88+0.01 | 0.86+0.02 | 0.55+0.03 | 0.87+0.01 | 0.71+0.01

CML MLP 0.77+0.02 | 0.88+0.01 | 0.83+0.02 | 0.53+0.05 | 0.85+0.01 | 0.68+0.02
Internal validation

CML LR 0.74 0.74 0.75 0.74 0.74 0.82

CML SVM 0.76 0.73 0.81 0.71 0.77 0.85

CML DT 0.76 0.76 0.76 0.76 0.76 0.76

CML KNN 0.69 0.71 0.66 0.72 0.68 0.74

CML RF 0.86 0.84 0.89 0.83 0.87 0.94

CML Xgboost 0.87 0.88 0.84 0.89 0.86 0.95

CML MLP 0.76 0.73 0.81 0.70 0.77 0.83

Fine-tuned LLM | Fine-tuned mistral-7b | 0.72 0.69 0.79 0.65 0.74 0.72
External validation

CML LR 0.73 0.73 0.74 0.72 0.73 0.80

CML SVM 0.74 0.73 0.75 0.72 0.74 0.81

CML DT 0.73 0.72 0.73 0.72 0.73 0.72

CML KNN 0.68 0.71 0.62 0.75 0.66 0.73

CML RF 0.82 0.79 0.86 0.77 0.83 0.91

CML Xgboost 0.82 0.85 0.78 0.86 0.82 0.92

CML MLP 0.71 0.69 0.76 0.67 0.72 0.79

Fine-tuned LLM | Fine-tuned mistral-7b | 0.69 0.69 0.68 0.69 0.69 0.67
ZSC validation*

LLM Mistral-7b 0.51 0.80 0.01 1.00 0.03 0.51

LLM Mixtral-8 x 7b 0.52 0.94 0.05 1.00 0.10 0.52

LLM Llama-3-8b 0.54 1.00 0.08 1.00 0.15 0.54

LLM Llama-3-70b 0.54 0.89 0.08 0.99 0.15 0.54

LLM gpt-3.5-turbo 0.50 0.49 0.17 0.83 0.25 0.50

LLM gpt-4 0.62 0.84 0.28 0.95 0.43 0.62

LLM gpt-4-turbo 0.57 0.82 0.19 0.96 0.31 0.57

LLM gpt-40 0.50 1.00 0.00 1.00 0.01 0.50

LM BERT 0.50 1.00 0.00 1.00 0.01 0.50

LM Clinical BERT 0.50 1.00 0.00 1.00 0.01 0.50

Table 3. Model results on the internal validation test set, external validation dataset and cross validation (The
result for cross validation shows average and standard deviation across five models). * ZSC validation dataset
was created using a random sample of the internal validation dataset. AU-ROC, Area under the receiver
operating characteristic curve ZSC, Zero-shot classification CML, Classical machine learning LLM, Large
language model LR, Logistic regression SVM, Support vector machine DT, Decision tree KNN, K-nearest
neighbors RF, Random forest XGBoost, eXtreme gradient boosting MLP, Multilayer perceptron

Given the performance gap between CMLs and LLMs, researchers have explored two main approaches for
improving LLM performance: pipeline improvements and fine-tuning. Previous studies have shown that LLMs
can close the gap in CML performance via pipeline improvements such as prompt engineering techniques
(XAT4LLM), few-shot approaches (XAI4LLM, EHR-CoAgent, TabLLM), multiple runs of LLM to double-check
results (EHR-CoAgent), the addition of a tree-based explainer alongside the LLM (XAILLM), or novel LLM-
based text-to-table transformation (Medi-TAB, TabLLM)?'~%*. However, many of their evaluated tasks may not
resonate with real-world use, as they have low-dimensional datasets (8-15 features) that do not reflect real-world
complex medical data and limited sample sizes (< 500 instances in rare classes) that restrict CMLs from reaching
their maximum performance.

The alternative approach, fine-tuning or in-context learning, aims to modify the model weights to teach the
model a new task, which has been evaluated on name entity recognition and text extraction?*?>. We validated
this approach in our high-dimensional task, where fine-tuning Mistral increased the F1 score from 0.03 to 0.69,
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Fig. 2. ROC curves and AUC scores for COVID-19 mortality prediction models in internal and external
validation. Caption: Models include fine-tuned LLM (Mistral 7b) and seven classical machine learning
algorithms: logistic regression (LR), support vector machine (SVM), decision tree, k-nearest neighbors
(kNN), random forest, neural network, and XGBoost. Upper panel: internal validation; Lower panel: external

validation. Curves show true positive rate (TPR) versus false positive rate (FPR). AUC scores indicate each
model’s discriminative power.
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Fig. 3. Performance comparison of classical machine learning (CML) models and fine-tuned large language
models (LLMs) in COVID-19 mortality prediction across varying sample sizes. F1 scores and accuracy

are shown for seven CML models (logistic regression, support vector machines, decision trees, k-nearest
neighbors, random forests, XGBoost, and neural networks) and a fine-tuned LLM. Training sample sizes range
from 20 to 2047. XGBoost consistently outperforms other models, with performance improving as sample size
increases.

even with a resource-efficient QLoRa method. Our SHAP analysis provides initial evidence of an improved
rationale after fine-tuning, as the top 10 features more closely align with XGBoost and clinician decision-making.

Despite these advancements, LLMs still face significant limitations that affect their applicability in medical
settings. Their vulnerability to hallucination raises concerns about producing harmful information?’, whereas
computational constraints impose token limits that can truncate responses and diminish interaction quality?”-3..
Data privacy is another crucial concern, particularly in medical contexts, as many powerful LLMs are proprietary
or require cloud-based computations, increasing the risk of data leaks?®. Moreover, the cost of using LLM APIs
for large clinical databases can disproportionately impact low- and middle-income communities?. While open-
source models present a more affordable alternative, they may not match the capabilities of proprietary models.

In light of these challenges, alternative approaches have emerged, including the use of small pretrained
language models and rule-based systems. These offer resource-efficient alternatives to large LLMs. Previous
studies have shown that rule-based and gradient boosting algorithms can achieve strong overall performance in
specific tasks, such as extracting physical rehabilitation exercise information from clinical notes®**!. Additionally,
fine-tuning pretrained BERT-like models has yielded promising results in some medical applications. However,
our brief experiment with the zero-shot performance of pretrained models (BERT and Clinical BERT) revealed
their limitations, suggesting that further research is needed to optimize these approaches for complex medical
tasks.

It is important to acknowledge several limitations of our study. Although the fine-tuning method used was
resource efficient, it may not have been the most effective for achieving maximum performance. Fine-tuning
for conversational responses instead of classification tasks with models similar to BERT may result in less
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Fig. 4. SHAP analysis comparing feature importance in COVID-19 mortality prediction models. (a) Average
global feature impact for classical machine learning (CML) models. (b) Global impact scores for XGBoost
(best-performing CML). (¢) SHAP score distribution for XGBoost. (d) Average global feature impact for

large language models (LLMs). (e) Global impact scores for GPT-4 (best-performing LLM). (f) SHAP score
distribution for GPT-4. Key features include age, O2 saturation (VS - O2 Sat), and creatinine (Cr) levels. In
panels c and f, red indicates higher feature values; positive SHAP values increase mortality prediction, negative
values decrease it. VS: vital sign.

reliable predictions; however, this approach mirrors how clinicians interact with Al tools. Future research could
investigate ways to balance conversational accessibility and prediction accuracy. Our fine-tuned model was a
small LLM with the lowest performance among our eight tested LLMs, indicating that fine-tuning larger and
more accurate models could yield better results. Furthermore, our table-to-text transformation and prompts
were designed to resonate with a medical user context, but more robust approaches (e.g., few-shot learning,
advanced prompt engineering, and sophisticated transformation techniques) may achieve higher accuracies,
especially in zero-shot classification!>. Although our sample size was substantial, the retrospective nature
of our investigation necessitates prospective validation to confirm the generalizability of these findings. As all
participating hospitals operated within our specific resource context, variations in healthcare access and quality
may have influenced the generalizability of the models to other countries and settings.

Our findings highlight several critical areas for future research in the application of LLMs to medical data
analysis. We propose the following research questions to advance the field:

o Does the LLM explanation of the prediction (death or survival) in human language align with the feature
importance analysis? Can LLMs accurately explain their rationale?

« What would be the performance of fine-tuning pretrained models and large LLMs compared to small LLMs?

o Could we create a model to distinguish correct answers from incorrect answers via LLM output? How can we
measure the certainty of the given answer?
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Fig. 5. SHAP analysis for Mistral-7b and fine-tuned Mistral-7b models in COVID-19 mortality prediction.
(a) Global feature impact for base Mistral-7b, with alkaline phosphatase (ALP), prothrombin time (PT), and
sodium (Na) as top features. (b) SHAP score distribution for base Mistral-7b, showing individual feature value
influences. (c) Global feature impact for fine-tuned Mistral-7b, highlighting age and creatinine (Cr) as most
influential. (d) SHAP score distribution for fine-tuned Mistral-7b, emphasizing the impact of age, Cr, and
lymphocyte count. In panels b and d, higher SHAP values indicate increased mortality prediction.
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Conclusion

The efficacy of LLMs versus CML approaches in medical tasks appears to be contingent upon data dimensionality
and data availability. In low-dimensional scenarios with limited samples, LLM-based methodologies may offer
superior performance; however, as dimensionality increases and diverse sample sizes become available, CML
techniques tend to outperform the zero-shot capabilities of LLMs. Notably, fine-tuning LLMs can substantially
enhance their pattern recognition and logical processing, potentially achieving performance levels comparable
to those of CMLs. The potential of LLMs to process both structured and unstructured data may outweigh
marginally lower performance metrics than CMLs do. Ultimately, the choice between LLMs and CMLs should
be guided by careful consideration of task complexity, data characteristics, and clinical context demands, with
further research warranted to elucidate the precise conditions under which each methodology excels.

Data availability

The code and information for generating the output are available at https://github.com/mohammad-gh009/Larg
e-Language-Models-vs-Classical-Machine-Learning and https://github.com/Sdamirsa/Tehran_COVID_Cohor
t. The datasets generated during and/or analyzed during the current study are available from the corresponding
author on reasonable request (sdamirsa@ymail.com). We would welcome researchers to build upon our evalua-
tion of LLMs in the context of using structured tabular dataset.
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