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Dynamical phase diagram of the 
quantum Ising model with cluster 
interaction under noiseless and 
noisy driven field
S. Kheiri1,2, R. Jafari1,3, S. Mahdavifar2, E. Nedaaee Oskoee1 & A. Akbari4

In most lattice models, gap closing typically occurs at high-symmetry points in the Brillouin zone. In 
the transverse field Ising model with cluster interaction, the gap closes at high-symmetry points, as 
well as at the phase transition between paramagnetic and cluster phases, where the gap-closing mode 
can be moved by tuning the strength of the cluster interaction. We take advantage of this property to 
examine the nonequilibrium dynamics of the model in the framework of dynamical quantum phase 
transitions (DQPTs) after a noiseless and noisy ramp of the transverse magnetic field. The numerical 
results show that DQPTs always happen if the starting or ending point of the quench field is restricted 
between two critical points. In other ways, there is always critical sweep velocity above which DQPTs 
disappear. Our finding reveals that noise modifies drastically the dynamical phase diagram of the 
model. We find that the critical sweep velocity decreases by enhancing the noise intensity and scales 
linearly with the square of noise intensity for weak and strong noise. Moreover, the region with multi-
critical modes (MCMs) induced in the dynamical phase diagram by noise. The sweep velocity under 
which the system enters the MCMs region increases by enhancing the noise and scales linearly with the 
square of noise intensity.

Developing a comprehensive theoretical framework for nonequilibrium phenomena is a challenging problem 
in physics with an impact vastly surpassing this specific discipline1–5. A systematic understanding is crucial 
for many different areas such as many-body correlations6,7, quantum matter8,9, quantum simulations10,11, and 
quantum technologies,12,13, which require the control of many-body physical systems at the quantum level. This 
question has recently promoted experimental and theoretical studies of the out-of-equilibrium dynamics of 
many-body systems14–16.

Recent experimental advances in synthesizing various quantum platforms, including ultra-cold atoms in 
optical lattices17–21, trapped ions22–25, nitrogen-vacancy centers in diamond26, superconducting qubit systems27, 
and quantum walks in photonic systems28,29, provide a framework for experimentally studying the out-of-
equilibrium dynamics of many-body systems. Nevertheless, the simulation of the adapted time dependent 
Hamiltonian in any real experiment is imperfect and noisy fluctuations are imminent. In other words, the noises 
are ubiquitous and imperative in any physical system and the stability of a dynamical system can be strongly 
affected in the presence of uncontrolled perturbations such as random noise30–33.

Consequently, understanding the effect of noise on Hamiltonian evolution is crucial for correctly predicting 
the results of experiments and designing experimental setups robust against the effects of noise34.

Within this context, we investigate the effects of Gaussian white noise on the dynamical quantum phase 
transitions (DQPTs). Dynamical quantum phase transitions have become one of the focal points in the study of 
quantum matter out of equilibrium35–37. DQPT was theoretically proposed in nonequilibrium quantum systems, 
inspired by the concept of nonanalyticities associated with the free-energy density of a classical system at a finite-
temperature transition. The DQPT is signaled through the nonanalytical behavior of dynamical free energy38–52, 
where real time plays the role of the control parameter53–62. DQPT displays a phase transition between 
dynamically emerging quantum phases that takes place during the nonequilibrium coherent quantum time 
evolution under sudden quench and ramp protocols63–83 or time-periodic modulation of Hamiltonian26,84–90.
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It has been also established that there exists a dynamical topological order parameter (DTOP), similar to the 
order parameters at conventional quantum phase transition, which uncover DQPTs91,92. The presence of DTOP, 
which takes integer values as a function of time and jumps at the critical times, represents the emergence of a 
topological characteristic associated with the time evolution of nonequilibrium systems. Theoretical predictions 
of DQPT were confirmed experimentally in several studies21–23,27,28,93,94. Most of the research dedicated to 
deterministic quantum evolution induces by sudden quench or ramp of the Hamiltonian parameters. However, 
inadequate consideration has been associated with the stochastic driving of thermally isolated systems with 
noisy Hamiltonian95–101.

In this work we study DQPTs in the one-dimensional quantum Ising model with cluster interaction (three 
site spin)102–111 in the presence of the noiseless and noisy linear driven transverse field. The cluster interaction 
is generated in the first step of a real space renormalization group procedure108. In most lattice models, the 
gap closing typically occurs at the edges or center of the Brillouin zone (high-symmetry points). In the time-
independent transverse field Ising model with cluster interactions, beside the gap closing at the high-symmetry 
points in the Brillouin zone, the gap closing occurs at the quantum phase transition between the paramagnetic 
and cluster phases of the model which can be moved by tuning the cluster interaction strength.

Moreover, the cluster interaction breaks the usual symmetry of the transverse field Ising model phase diagram. 
We take advantage of this property to explore the nonequilibrium dynamics of the model using the notion of 
DQPTs following the noiseless and noisy ramping of the transverse field. The phase diagram symmetry breaking 
is dramatic, as the DQPTs features are distinct for ramp down and ramp up of the transverse magnetic field.

We show that, when the ramp field crosses the critical points (does not matter how many QCPs are crossed) 
there exist a critical sweep velocity above which DQPTs are whipped out, if the starting or ending point of the 
ramp field is not confined between two critical points. Otherwise, DQPTs always occur even for a sudden quench 
case. In addition, we discover that the sweep velocity above which DQPTs disappear decreases by enhancing 
the noise intensity and scales linearly with the square of noise intensity for both weak and strong noise, which 
support our previous observation112.

Further, noise induces MCMs region (continuous critical time) in the dynamical phase diagram of the model. 
The numerical results show that the sweep velocity below which the system enters the MCMs region enhances by 
increasing the noise intensity and also scales linearly with the square of noise intensity.

The paper is organized as follows. In Sect. 2, the dynamical free energy and dynamical topological order 
parameter of the two level Hamiltonians are discussed. In Sect. 3, we introduce the model along with its exact 
solution and equilibrium phase diagram. Section 4 is dedicated to the numerical simulation of the noiseless case 
based on the analytical result. Section 5 focuses on the numerical simulation of the model utilizing the exact 
noise master equation. Section 6 contains some concluding remarks.

Ramp protocol in an integrable model
Dynamical free energy
We adopt the terminology used in Refs.77,95,113 for all ramp schemes, which will be examined in the discussions 
that follow. Suppose we have an integrable model that can be reduced to a two-level Hamiltonian, denoted as 
Hk(h), for each momentum mode k. At the initial time (ti → −∞), the system is in the ground state |αi

k⟩ of 
the pre-quench Hamiltonian Hk(hi) for each mode. In the ramp protocol, the Hamiltonian is described by a 
parameter h, varies from an initial value hi at time ti, following the linear time driven scheme h(t) = vt, to a 
final value hf  at time tf  (Fig. 1). This is designed so that the system crosses the quantum critical point (QCP) 
at h = hc. Crossing the critical point (gap closing point) disrupts the adiabatic condition, leading to a non-
adiabatic transition. Therefore the final state |ψk(hf )⟩ = |ψf

k ⟩ (corresponding to the k-th mode) may not be the 
ground state of the post-quench Hamiltonian Hk(hf ) = Hf

k .
Consequently, the final state should be given as a linear combination of the ground and excited states 

|ψf
k ⟩ = ak|αf

k⟩ + bk|βf
k ⟩, (|ak|2 + |bk|2 = 1) where, |αf

k⟩ and |βf
k ⟩ are the ground and the excited states of the 

post-quench Hamiltonian Hf
k , respectively with the corresponding energy eigenvalues ϵf

k,1 and ϵf
k,2.

The probability of non-adiabatic transition resulting in the system being in the excited state at h = hf  is 
represented as pk = |bk|2 = |⟨βf

k |αi
k⟩|2. Consequently, the Loschmidt overlap and the associated dynamical 

free energy35,37, for mode k at t > tf  are specified by77,95,113

ℎ

ℎ

= 0

ℎ( )

Fig. 1.  A schematic representation of a linear ramp protocol accompanied by noise fluctuations. The 
quenching process starts at ti < 0 with the magnetic field h(t) set to hi and ends at tf , where h(tf ) = hf .
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Gk =⟨ψf
k | exp(−iHf

k t)|ψf
k ⟩ = |ak|2 exp(−iϵf

k,1t) + |bk|2 exp(−iϵf
k,2t),

g(t) = − 1
N

∑
k

gk(t), gk(t) = ln |Gk|2 � (1)

respectively, where N is the size of the system.
By summing the contributions from all modes and substituting the summation with an integral in the 

thermodynamic limit, one obtains77,95,113,114

	
g(t) = − 1

2π

ˆ π

0
ln

(
1 + 4pk(pk − 1) sin2

(
ϵf

k,2 − ϵf
k,1

2

)
t

)
dk� (2)

where the parameter t is defined as the time elapsed since the final state, |ψf
k ⟩, is achieved at the end of the ramp 

process (Fig. 1). The non-analyticities in g(t) occur at the values of the real time t∗
ns given by

	
t∗
n = π

ϵf
k∗,2 − ϵf

k∗,1

(2n + 1)� (3)

These are the critical times for the DQPTs, with k∗ the mode at which the argument of the logarithm in Eq. (2) 
vanishes for |bk∗ |2 = pk∗ = 1/2. For the case ϵf

k∗,2 = −ϵf
k∗,1 = ϵf

k∗ , Eq. (3) is simplified to

	
t∗
n = t∗

(
n + 1

2

)
, t∗ = π

ϵf
k∗

� (4)

In the following section, we revisit the phase diagram and exact solution of the one-dimensional transverse field 
Ising model with three spin interacting and also the noiseless DQPT.

Model and exact solution
The Hamiltonian system under investigation arises from hybridisation between quantum statistical mechanics 
with quantum computation. A reference system is established using cold atoms in a triangular optical lattice116. 
With an appropriate selection of parameters, this system can be modeled as a spin system exhibiting a specific 
ring-exchange interaction within the triangular lattice, which can subsequently be transformed into a ”zig-zag 
chain”. This setup creates a physical platform for a one-way route to quantum computation, where the algorithm 
involves specific measurements aimed at reconstructing the high degree of entanglement characteristic of 
the cluster state117. Interestingly, in addition to the three-spin ring-exchange interaction, various two-spin 
interactions can emerge in the system. Therefore, the cluster interaction competes with the exchange interaction 
by tuning a control parameter103,105–107,109,118,119.

The Hamiltonian of linear time dependent transverse field Ising model with cluster interaction105,107 is given 
as

	
H (t) = −J

N∑
j=1

σz
j−1σz

j − J3

N∑
j=1

σx
j σz

j−1σz
j+1 − h (t)

N∑
j=1

σx
j ,� (5)

where σα
j (α = x, z) represents the Pauli matrices that act on site j for a chain of length N with periodic boundary 

conditions (PBC) (σα
N+1 = σα

1 ), J denotes the strength of the nearest neighbor ferromagnetic interaction, J3 
indicates the strength of the three-spin interaction, and the transverse field h(t) = hf + vt ramping up from 
the initial value hi < 0 at time t = ti < 0 to the final values hf  at tf → 0−, with sweep velocity v (Fig. 1). For 
J3 = 0, the model reduces to the well-known transverse field Ising model.

By performing the Jordan-Wigner transformation120,121

	
σz

j = −
j−1∏
j=1

σx
j

(
c†

j + cj

)
, σx

j =1 − 2c†
jcj ,

and applying the Fourier transformation cj = (e−iπ/4/
√

N)
∑

k
exp (−ikj)ck , the Hamiltonian of Eq. (5) 

can be expressed as the sum of N/2 non-interacting terms, i.e., H(t) =
∑

k>0 Hk(t), with

	 Hk(t) = A (k, t)
(
c†

kck − c−kc†
−k

)
+ B (k)

(
c−kck + c†

kc†
−k

)
,

where A (k, t) = 2 (h (t) − J cos k − J3 cos 2k) and B (k) = 2 (J sin k + J3 sin 2k), and the summation 
over k is limited to positive k values in the form k = (2n − 1)π/N  with n = 1, ..., N/2. The Bloch single 
particle Hamiltonian Hk(t) can be expressed as:

	
Hk (t) =

(
A (k, t) B (k)
B (k) −A (k, t)

)
,� (6)
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with the instantaneous eigenvalues and eigenstates

	

ε±
k (t) = ± εk(t) = ±

√
A2(k, t) + B2(k),

|αk(t)⟩ = sin(θk(t))| ↑⟩ − cos(θk(t))| ↓⟩,
|βk(t)⟩ = cos(θk(t))| ↑⟩ + sin(θk(t))| ↓⟩,

� (7)

where

	
sin(θk(t)) =

√
1
2(1 − A(k, t)

εk(t) ), cos(θk(t)) =
√

1
2(1 + A(k, t)

εk(t) ).

Without loss of generality we set J = 1 as the energy scale and J3 > 0. For the time independent case 
(h(t) = h), the equilibrium phase diagram of the model can be constructed by identifying the regions of 
quantum criticality where the system becomes gapless in the thermodynamic limit (N → ∞). It can be shown 
that the gap of spectrum vanishes at h(1)

c = J3 − 1 and h(2)
c = J3 + 1, with ordering wave vectors k = π and 

k = 0, respectively. These two lines correspond to the quantum phase transitions from a quantum paramagnetic 
phase to a ferromagnetically ordered phase with the associated exponents being the same as the transverse field 
Ising model122. Moreover, there is an additional gap closing point at h(a)

c = −J3. This transition belongs to the 
universality class of the anisotropic transition observed in the transverse XY model dual to the Hamiltonian in 
Eq. (5)123. The phase boundary is surrounded by the incommensurate phases on either side with wave vector 
given by

	 ka = arccos ((J3 − h)/4hJ3).� (8)

Obviously, for J3 ≤ 1/2, the anisotropic phase transition can not occur. The equilibrium phase diagram of the 
model is depicted in Fig. 2. We will exploit an intriguing feature of the model: the movability of the gap-closing 
mode in the Brillouin zone, controllable by tuning the cluster interaction, to uncover the aspects of DQPTs, 
under linear time driven magnetic field.

The time-dependent Schrödinger equation of the Hamiltonian Eq. (6) with the linear time dependent 
transverse field, can be transformed into the Landau-Zener (LZ) problem (see Supplemental Material Sect. 1) 
which is exactly solvable124,125. If the system prepared initially in its ground state at hi = −10 (ti → −∞), 
the probability of the k:th mode being in the excited state at a finite time t is determined by the non-adiabatic 
transition probability124 (see Supplemental Material Sect. 1).

	
pk(τ) = eπγ2/2v

∣∣∣Diγ2/v

(√
ve3iπ/4τ

)
cos(θk(τ)) − γ√

v
e−iπ/4D−1+iγ2/v

(√
ve3iπ/4τ

)
sin(θk(τ)

∣∣∣
2

� (9)

where τ = 2(vt − cos k − λ2 cos 2k)/v , and γ = Bk/2, and Dν(z) is the parabolic cylinder function126,127. 
Furthermore, as tf → +∞ (hf ≫ hc), the probability of excitations pk , is represented by the LZ transition 
probability,

	 pLZ = e−2πγ2/v.� (10)

In the following section, we will study the dynamical phase diagram of the model for the passage of the noiseless 
transverse field through the critical points.

Fig. 2.  (Color online) The equilibrium phase diagram of the Ising model with cluster interaction. The blue line 
indicates the anisotropy transition which takes place between the paramagnetic and cluster phases. The red and 
yellow lines, represent the Ising like transition points. The black dashed lines indicate J3 = 1/4 and J3 = 5/2 
as reference lines to enhance the illustration of the critical points at h = −1/2 and h = 3/2.
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Noiseless numerical results
The results of our numerical simulations, conducted using an analytical approach, are presented in this section 
to analyze the dynamics of the model through the concept of DQPTs. For this aim, we consider three cases of 
the noiseless ramp protocol through the single, two and three critical points for quenches starting at hi = −10.

Quench across a single critical point (hf = −1/2)
When time driven magnetic field crosses a single critical point, i.e, hf = −1/2, we consider two cases J3 < 1/2 
and J3 > 1/2, respectively. 

	(i)	 In the case that J3 < 1/2, the ramp field crosses the Ising type single critical point h(1)
c , at kc = π, and the 

probability of excitation pk , depends on the value of k. As expected, when the system crosses the critical 
point, it undergoes non-adiabatic evolution due to the gap closing and yields maximum transition prob-
ability at the gap closing mode pk=π = 1. Nevertheless, far away from the gap closing mode, the system 
evolves adiabatically due to the non-zero energy gap and leads to small transition probability (pk=0 → 0
). Given these two cases and continuity of the transition probability as a function of allowed mode k in the 
thermodynamic limit, implies that there exist a critical mode k∗ at which pk∗ = 1/2 and consequently 
DQPTs always occur for a quench crosses a single critical point. The numerical simulation of transition 
probability has been plotted in Fig. 3(a) versus k for hf = −1/2 and J3 = 1/4, for various sweep velocities 
as the ramp field passes through the single critical point hc = −3/4. As seen, for a quench that crossing a 
single critical point, there is always a critical momenta k∗ and consequently those of t∗

n, given by Eq. (4).
	(ii)	 In the case that J3 > 1/2, the ramp transverse field crosses the single anisotropic transition point h(a)

c , 
where the band gap closes inside the Brillouin zone at ka given by Eq. (8). At this critical point, the system 
undergoes a phase transition from the paramagnetic phase to the cluster phase. We expect that, the system 
experiences non-adiabatic transition at the gap closing mode, i.e., pka = 1, and evolves adiabatically away 
from the gap closing mode (pk=0,π → 0). Since the gap closing occurs at interval 0 < ka < π, expect-
ed that two critical modes emerge in the system at which pk∗ = 1/2. Figure 3(b) displays the transition 
probability versus k for J3 = 1 and hf = −1/2, as the ramp field passages across the single critical point 

Fig. 3.  (Color plot) The transition probability pk  following the quench from the initial value of transverse 
field hi = −10 to the various values of quench field end hf  for various sweep velocities. (a) for J3 = 1/4 
and hf = −0.5 where the ramped quench crosses a single Ising like quantum critical point h(1)

c = −3/4, (b) 
for J3 = 1 and hf = −0.5 where the ramped quench crosses single quantum critical points h(a)

c = −1, (c) 
for J3 = 1/4 and hf = 1.5 where the quench crosses two Ising like quantum critical points h(1)

c = −3/4, 
and h(1)

c = 5/4 (d) for J3 = 1 and hf = 1.5 where the ramped quench crosses two quantum critical points 
h

(a)
c = −1 and h(1)

c = 0, (e) for J3 = 1 and hf = 10, where the ramped quench crosses three quantum 
critical points h(a)

c = −1, h(1)
c = 0, and h(2)

c = 2. (f) The dynamical phase diagram of the model in the 
(J3; v) plane in the absence of the noise for a quench from hi = −10 to hf = 1.5. The diagram is divided 
into three regions. The horizontal yellow dashed-dotted line represents J3 = 1/2 and J3 = 5/2. The blue solid 
line separates two regions where the system shows SCM and ThCMs. The red solid line shows the boundary 
between regions characterized by TwCMs and those with no-DQPTs. The blurred gray dashed-dotted curves 
represent the boundaries obtained from LZ transition formula.
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hc = −1 where the band gap closes at k = 2π/3. As seen, there are two critical modes k∗
α and k∗

β  at which 
pk∗

α
= pk∗

β
= 1/2. In other words, if the quench crosses a single critical point at which the energy gap 

closes inside the Brillouin zone, the system reveals two critical modes at which DQPTs happen. While, for 
a quench that crossing a single critical point where the gap closing occurs at high-symmetry points in the 
Brillouin zone (k = 0, π)77,113, the system includes only a single critical mode (similar to Fig. 3a).

Quench across the two critical points (hf = 3/2 )
For a quench crosses two critical points, i.e, hf = 3/2, we have considered once again two cases J3 < 1/2 and 
1/2 < J3 < 5/2, respectively. It should be mentioned that, for hf = 3/2 and J3 > 5/2, the quench transverse 
field crosses only a single anisotropic transition point and the dynamics of the system is similar to that of 
discussed in previous Sect. (4.1-(ii)).

Comparing these two cases reveals that the modes confined between two gap closing modes, can be easily 
excited to the upper level for large sweep velocity. However, the modes which do not restricted between two 
modes with maximum transition probability (pk = 1), prefer to stay at the lower level even for a sudden quench 
case. Although in both cases the quench field crosses two critical points, neither starting point nor ending point 
of the ramp field is confined between two critical point for J3 < 1/2 case. While for J3 > 1/2 case, ramp field 
end is restricted between two critical points. Therefore, we come to the conclusion that, DQPTs are always 
present if starting or ending point of the quench field is restricted between two critical points, even for sudden 
quench case. Otherwise, there is critical sweep velocity above which DQPTs are wiped out.

Quench across the three critical points (hf = 10 )
To perform a quench across three critical points, the quench field end should be larger than h(2)

c  and the cluster 
interaction J3 > 1/2. In such a case, the quench field is swept from one equilibrium paramagnetic phase to 
another one and passage through the critical points h(a)

c , h(1)
c  and h(2)

c  where the band gap closes at k = ka, 
k = π and k = 0. Thus, the transition probability is maximum at k = ka, k = π and k = 0 and pk  discloses 
two minimum between three gap closing modes. Appearance of DQPTs is required that the minimums of pk  
becomes less than 1/2. In this case, the system encompasses four critical modes (FCMs) and DQPTs is wiped out 
for a sweep velocity above the critical sweep velocity. Moreover, we expect that the system shows transition from 
FCMs case to two critical modes case for sweep velocity smaller than the critical sweep velocity.

For hf ≫ h
(2)
c , the transition probability is given as LZ transition probability and the critical sweep velocity 

above which DQPTs disappear can be obtained analytically. As mentioned, DQPTs appear if the condition 
pmin

LZ ⩽ 1/2 is satisfied. It is straightforward to show that, two minimum of the transition probability occurs at 
k = k±

m = arccos((−J ±
√

J2 + 32J2
3 )/8J3). More analysis manifest that, the minimum at k+

m is the global 
minimum of transition probability while the minimum at k−

m is the local minimum. Consequently, if both global 
and local minimums of pk  are less than 1/2 the system illustrates FCMs which yielding DQPTs. Further, the 
transition from FCMs case to two critical modes case occurs if the local minimum of pk  is greater than 1/2 while 
DQPTs are removed if the global minimum exceed 1/2.

Detailed analysis shows that, the condition pk+
m

⩽ 1/2 is satisfied if v ⩽ vc with vc = 2π(γg
m)2/ ln(2) 

where γg
m = J sin k+

m + J3 sin 2k+
m which results DQPTs. In addition,the system transits from FCMs case to 

two critical modes case for a sweep velocity v > vF T = 2π(γℓ
m)2/ ln(2) where γℓ

m = J sin k−
m + J3 sin 2k−

m.
The transition probability has been shown in Fig. 3(e) versus k, for hf = 10 and J3 = 1. As seen, pk  

represents two minimum at k+
m/π = 0.299 and k−

m/π = 0.819, and for sufficient slow sweep velocity system 
unveils FCMs at which pk∗ = 1/2. As the sweep velocity increases, the transition probability at k±

m enhances 
and p

k−
m

 exceeds 1/2 at vF T = 1.234, and hence system enters two critical modes case. Further increase of 

sweep velocity raises also the transition probability at global minimum 
(

pk+
m

)
 and DQPTs are wiped out for 

v > vc = 28.084.
As clear, for a quench crossing three critical points where the end of quench does not limited between two 

critical points, the system reveals critical sweep velocity above which DQPTs are disappeared. This behaviour 
is also observed for a quench that crossing two critical points for J3 < 1/2, where the ramp field end does not 
confined between two critical point (4.1-(i)).

Dynamical phase diagram
In Fig. 3(f), the dynamical phase diagram of the model has been displayed in v − J3 plane for hf = 1.5. The 
dynamical phase diagram represents dynamics of the system for three cases of quench: crosses two critical points 
where quench field end does not confined between two critical points (J3 < 1/2), across two critical points 
where quench field end limited between two critical points (1/2 < J3 < 5/2) and passage through a single 
anisotropic transition (J3 > 5/2). The phase diagram discloses five distinct regions, no-DQPTs, single critical 
modes (SCM), two critical modes (TwCMs) and three critical modes (ThCMs). As seen, for J3 < 1/2 where 
the quench crosses two Ising like transition points (h(1)

c , h
(2)
c ) and the end of quench is not restricted between 

two critical points (hf > h
(2)
c ), the system reveals critical sweep velocity (red solid line) above which DQPTs 

are disappeared. While for v < vc system experiences DQPTs with two critical modes. For 1/2 < J3 < 5/2 
although the quench passage through two critical points, the ramp field end is confined between two critical 
points (h(1)

c < hf < h
(2)
c ) and DQPTs always are present. In such a case, the system encloses three critical 

modes region which passes to single critical mode for v > vT  (blue solid line). As J3 exceeds 5/2 the quench 
from hi = −10 to hf = 1.5 crosses only a single anisotropic transition point (h(a)

c ) which displays two critical 
modes.
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Figure 4 represents the dynamical phase diagram of the model in the v − J3 plane for the quench to hf = 10, 
which crosses two critical points for J3 < 1/2 and passage through three critical points for J3 > 1/2. As seen, 
the dynamical phase diagram contains three distinct regions: FCMs, two critical modes (TwCMs), and no-
DQPTs regions. The red solid line in the dynamical phase diagram indicates the critical sweep velocity (vc) 
which separates no-DQPTs region from two critical modes region. The blue dashed-dotted line represents vT  
under which the system enters FCMs region which appears only for J3 > 1/2 where quench pass over three 
critical points.

From these observations, we come to the conclusion that, DQPTs always happen if the starting or ending 
point of the ramp field confined between two critical point, even for sudden quench case. While for a quench 
that starting or ending point of the ramp field does not restricted between two critical points, there exist critical 
sweep velocity above which DQPTs are wiped out.

Noisy ramp quench
As noted, noise is an unavoidable and inescapable in any physical system. Consequently, comprehending the exact 
effects of noise is crucial in both classical and quantum contexts95–99,128–130. Noise introduces randomness into 
the system, thereby disrupting coherent evolution. In this section, we investigate DQPTs in the one-dimensional 
quantum Ising model with cluster interaction, following a ramp protocol with fluctuations. To this end, we add 
uncorrelated Gaussian noise to the time dependent transverse field, expressed as h(t) = hf + vt + R(t), where 
R(t) represents a random fluctuation confined to the ramp interval [ti, tf = 0[, with a vanishing mean, ⟨R(t)⟩ = 0. 
We use white noise with Gaussian two-point correlations ⟨R(t)R(t′)⟩ = ξ2δ(t − t′) where ξ characterizes the 
strength of the noise ( ξ2 has units of time). It should be mention that, the state of system at the end of noisy ramp 
is mixed state (an ensemble of pure states) and has been shown that DQPTs disappear in the presence of noise95. 
Although it is feasible to construct a pure state in the experiment, creating a mixed state experimentally is not 
practical. Therefore, to investigate the impact of noise on DQPTs in an experimental setting, we have assumed 
the system’s state at t = tf  to be the noise-averaged pure state i.e., |ψ(tf )⟩ =

√
1 − pk|αk(tf )⟩ + √

pk|βk(tf )⟩, 
and the dynamical free energy is obtained based on this presumption; thus, the trustworthiness of our findings 
depends on this assumption.

To determine the transition probability in the presence of noise, we solve numerically the exact noise 
master equation95,96,131–134 for the averaged density matrix ρk(t) of the Hamiltonian which includes noise 
H

(ξ)
k = H

(0)
k (t) + R(t)H1; where H(0)

k (t) denotes noiseless Hamiltonian and R(t)H1 = 2R(t)σz  represents 
the added noise which appears during the ramp process where t ∈ [ti = hi/v, tf = 0) and the system prepared 
in its ground state at t = ti. The exact noise master equation in the presence of the uncorrelated Gaussian noise 
is given as follows95–98,128

	
d

dt
ρk(t) = −i

[
H

(0)
k (t), ρk(t)

]
− ξ2

2

[
H1,

[
H1, ρk(t)

]]
� (11)

By numerically solving the master equation, the transition probability in the presence of uncorrelated Gaussian 
noise is given as95–99

	 pk = ⟨βk(tf )|ρk(t)|βk(tf )⟩.� (12)

where, |βk(tf )⟩ is the excited state of the system at the end of quench (Eq. 7). The dynamical phase diagram 
of the model is characterized by the interplay of the near-adiabatic dynamics of the system’s gapped fermionic 
modes and the accumulation of noise-induced excitations during the evolution. Moreover, we expect that large 
values of the sweep velocity gives less time for the noise to be effective. In this section we have searched the 
effects of noise on transition probability and dynamical phase diagram of the model.

Transition probability
Without loss of generality and prevent complexity we suppose that in the presence of the noise h(t) altering from 
hi = −10 to hf = 10, which crosses all critical points. Therefore, the quench field end is not blocked between 
two critical points and the system shows transition from DQPTs region to no-DQPTs region. From a physical 
point of view, the influence of noise on transition probability and critical sweep velocity is an interesting open 

Fig. 4.  (Color online) The dynamical phase diagram of the model in the (J3; v) plane for a quench from 
hi = −10 to hf = 10 in the absence of the noise.
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question: Will noise reduce or enhance the critical sweep velocity or are DQPTs always possible? particular, we 
wish to determine how the dynamical phase diagram of the model is modified in the presence of noise.

Figure 5 illustrates the transition probability as a function of k for different values of sweep velocities and 
noise intensity for J3 = 1/4 and J3 = 1. As observed, for ξ/v ≪ 1 , the effect of noise is to displace the critical 
mode k∗, resulting in a sequence of DQPTs. The gradual increase in noise intensity, the effect of noise turns in an 
unanticipated direction for ξ/v ∼ O(1). In such a case, pk  curve is locked to the value 1/2 over a finite interval 
of momenta, leads to MCMs. This suggests that the noise behaves like a high-temperature source, leading to 
maximally mixed states unless the k-modes are too “light” (easily excited to the upper level by the Kibble-Zurek 
Mechanism97).

Moreover, the main effect of noise during ramping time is that the inequality pmin
km

< 1/2 fulfilled only for 
sufficiently low noise amplitudes. In other words, very strong noise (ξ/v ≫ 1) leads to non-adiabatic transitions 
of such high probability that a maximally mixed state (pk = 1/2) is not observed at the end of quench, 
consequently preventing the emergence of DQPTs even for v < vc. Therefore, the boundary between “DQPTs” 
and “no-DQPTs” regions is changed in the presence of noise. In the following, we will explore the dynamical 
phase diagram of the model for different noise intensity to clarify the process of noise effects on DQPTs.

Dynamical phase diagram and scaling of critical sweep velocity
The phase diagram of the model in the presence of noise has been plotted in Fig. 6(a)–(f) in v − ξ plane for 
J3 = 1/4 and J3 = 1.2. The numerical results indicate that, in the presence of noise the critical sweep velocity 
(v(ξ)

c ) above which the DQPTs disappear, decreases by enhancing the noise intensity ξ (red solid line in Fig. 
6a). These findings are consistent with our expectation that the noise induces non-adiabatic transitions and 
a maximally mixed state (pk = 1/2) does not occur at the end of quench, thus hindering the emergence of 
DQPTs.

As seen in the noiseless case for J3 < 1/2, there are two critical modes for v < vc at which DQPTs occur. 
Since in the presence of noise, the pk  curve locked to the value 1/2 over a finite interval of momenta, the DQPTs 
region is divided into two regions: MCMs and two critical modes regions. In Fig. 6(a), the left corner of the phase 
diagram marked MCMs represents the MCMs region, which is separated from the two critical modes (TwCMs) 
region by the dashed blue line.

On the other hand, when J3 > 1/2, in the noiseless phase diagram (Fig. 4) the DQPTs contains FCMs region 
for v < vF T  and two critical modes region for vF T < v < vc. In the presence of noise, the FCMs region splits 
into two regions: MCMs and FCMs regions. In Fig. 6(b) the left corner of the phase diagram marked MCMs 
represents the MCMs region which is separated from the FCMs region by the blue dashed line.

As seen, the sweep velocity below which the system enters the MCMs region vM  (blue dashed line) increases 
by enhancing the noise intensity while the critical sweep velocity vc (red solid line) reduces by increasing 
the noise. The numerical results indicate that the vM  converges with the critical sweep velocity vc curve, and 
consequently, both curves merge into a single line for very strong noise (ξ > 1).

Fig. 5.  (Color plot) The probability of excitations for a quench from hi = −10 to hf = 10 for different values 
of noise strength for J3 = 1/4: (a) v = 0.5, (b) v = 1, and (c) v = 4, as well as for J3 = 1: (d) v = 0.5, (e) 
v = 1, and (f) v = 4.
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Having established that the dynamical phase diagram of the model is modified in the presence of the noise, 
the question then arises, does the system show any scaling and universality in the presence of noise? To this end, 
the critical sweep velocity vc and vM  have been plotted in the v − ξ2 plane, as shown in Fig. 6(c) and (d).

The numerical analysis shows that, the critical sweep velocity scales linearly with the square of noise intensity 
for both weak (ξ ∼ O(10−2)) and strong (ξ ∼ O(10−1)) noise, i.e., v(ξ)

c = aξ2 + v
(0)
c  where v(0)

c  represents 
the critical sweep velocity for the noiseless case. Additionally, a similar linear scaling is observed for vM  under 
both weak and strong noise conditions, given by v(ξ)

M = ξ2/m.
A more detailed analysis shows that the slope of lines depicted in Fig. 6(c) and (d) also scales with γm (see 

Supplemental Material Sect. 2). The numerical results demonstrate that the slops a and m scale in a power law 
manner with γm with exponent α, i.e., {a, m} ∝ γ

|α|
m  with |α| = 1 ± 0.001 for {a, m}.

A more numerical examination for both weak and strong noise illustrate a potential extrapolation for a 
scaling behavior of v(ξ)

c  i.e., v(ξ)
c  is invariant under the scaling transformation v(ξ)

c → v
(ξ)
c /γ2

m and ξ → ξ/
√

γm. 
Moreover, the scaling function for multi-critical sweep velocity is vM → vM /γm.

The scaling of critical sweep velocity v(ξ)
c  corresponding to different values of J3, for both weak and strong 

noise, has been illustrated in Fig. 6(e) and (f) in which all curves collapse to a single graph under the scaling 
function. The scaling function for vM  below which the system reveals MCMs has been also displayed in the 
inset of Fig. 6(e) and (f). These scaling functions are the promised universality of DQPTs in the presence of the 
noise. It is essential to state that we presumed the system’s state following the quench to be the noise-averaged 
pure state, and the dynamical free energy is obtained based on this presumption; thus, the trustworthiness of our 
findings depends on this assumption.

Conclusions
We have studied the dynamical quantum phase transition (DQPTs) in the one dimensional Ising model with 
cluster interaction in the presence of the the linear time dependent transverse field. The usual symmetry in the 
equilibrium phase diagram of the transverse field Ising model is broken in the presence of the cluster interaction. 
In time-independent transverse field case, besides the two Ising like quantum phase transition points where 
gap closing occurs at high symmetry point in the Brillouin zone, there is a quantum phase transition between 
paramagnetic and cluster phases where the gap closing mode can be moved by tuning the cluster interaction 
strength. We have shown that, the modes which are confined between two gap closing modes (maximum 
transition probability (pk = 1)) can be easily excited to the upper level. While the transition probability of the 
farthest mode from the single gap closing mode remains zero even for a sudden quench case. Consequently, 
DQPTs always occur for a quench that starting or ending point of the quench is limited between two critical 
points. In other respects there is always a critical sweep velocity above which DQPts are wiped out. Moreover, 
our finding also confirmed in the presence of the noisy quench while the critical sweep velocity decrease in the 

Fig. 6.  (Color plot) The phase diagram in the v − ξ plane for (a) J3 = 1/4 and (b) J3 = 1.2. The phase 
diagram includes two regions: DQPTs, no-DQPT regions. DQPTs region is classified into two regions:MCMs 
(v < vM ) region and two critical modes (TwCMs) region. The phase diagram in the v − ξ2 plane for (c) 
J3 = 1/4 and (d) J3 = 1.2, represent linear scaling of vc and vM  with ξ2. (e) and (f) represent universal 
scaling function under which vc curves corresponding to the different values of J3 collapse on a single graph. 
Insets: the universal scaling function of vM .
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presence of the noise. In addition, a surprising result occurs when the noise intensity and sweep velocity are in 
the same order of magnitude where the transition probability is locked to 1/2 over a finite range of momentum. 
In such a case, the MCMs region and consequently multi-critical time scale is induced in dynamical phase 
diagram. The analysis shows that the critical sweep velocity above which DQPTs disappear scales linearly with 
the square of noise intensify. Furthermore, the sweep velocity below which the system enters the MCMs region, 
increase by enhancing the noise intensity and also scales linearly with the square of noise intensity.

Data availability
All data generated or analysed during this study are included in this published article.
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