
Classifying the tumor immune 
microenvironment in cervical 
cancer based on nuclear 
cytoplasmic consistent genes
Jiawei Wang1,2,4, Anji Chen1,4, Qiuling Chen1,4, Haoting Niu2,4, Ying Mao2, Xiang Hu2, 
Shuanglin Xiang3 & Jun He1,2

Treatment options for advanced or recurrent cervical cancer (CC) remain limited, highlighting the 
urgent need for effective molecular biomarkers and therapeutic strategies. This study investigates 
nuclear-cytoplasmic consistent genes (NCCGs) in CC and other epithelial-derived malignancies, 
exploring their potential in molecular subtyping, prognosis evaluation, and therapeutic response 
prediction. NCCGs were identified using single-cell sequencing and single-nucleus RNA sequencing 
data. Through Cox regression and single-sample gene set enrichment analysis, TCGA-CESC cohort were 
stratified into high-risk (HRG) and low-risk (LRG) groups. Pan-cancer analysis of 14 TCGA epithelial-
derived malignancies, including BLCA and BRCA, validated the classification capability and prognostic 
relevance of NCCGs. Clinical utility in predicting chemotherapy and immunotherapy responses was 
assessed using GSE168009 and IMvigor210CoreBiologies cohorts. NCCGs effectively stratified CC 
cohort into HRG and LRG. LRG demonstrated significantly better survival (HR = 3.24, 95% CI 1.57–6.7) 
and higher immune scores, including elevated CD8+ T and memory CD4+ T cell levels. Pan-cancer 
analysis confirmed NCCGs’ ability to differentiate HRG and LRG and associate with overall survival. 
LRG also showed greater sensitivity to PD-1/CTLA4 inhibitors and chemotherapeutic agents (e.g., 
Panobinostat and Doxorubicin). The NCCG-based risk score showed robust accuracy in predicting 
chemotherapy and immunotherapy efficacy. This study reveals the molecular mechanisms and clinical 
significance of NCCGs in CC and epithelial-origin cancers. NCCGs hold value in molecular classification, 
prognostic assessment, and predicting therapeutic responses, offering new markers and targets for 
precision medicine.
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ssGSEA	� Single-sample gene set enrichment analysis
irGSEA	� Iterative ranking-based gene set enrichment analysis
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TCIA	� Cancer immunome atlas
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GDSC	� Genomics of drug sensitivity in cancer
IC50	� Half-maximal inhibitory concentration
FBS	� Fetal bovine serum
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Background
Cervical cancer (CC) is the fourth most common malignancy among women worldwide and poses a significant 
threat to women’s health1. In 2020, an estimated 604,127 new cases and 341,831 deaths from CC were reported 
globally2. The incidence of CC has declined significantly with improvements in the Human Development Index 
(HDI); however, the incidence in low-HDI countries remains three times higher than that in high-HDI countries, 
highlighting a pronounced socioeconomic disparity2. Cervical squamous cell carcinoma (SCC), accounting for 
approximately 75% of all cases, is the most common subtype and is strongly associated with high-risk human 
papillomavirus (HPV) infection3. Although the widespread implementation of HPV vaccination and screening 
technologies has markedly improved the prognosis of early-stage CC patients4,5, treatment options for advanced 
or recurrent CC remain limited. Moreover, the response rates to immunotherapy and targeted therapies are 
suboptimal6–8, underscoring the urgent need for the development of more effective molecular biomarkers and 
therapeutic strategies.

The exchange of materials and signaling between the nucleus and cytoplasm is a critical process for 
maintaining normal cellular functions. Previous studies have shown that nuclear-cytoplasmic transport is 
frequently disrupted in various cancers, affecting biological processes such as tumor growth, inflammatory 
responses, cell cycle regulation, and apoptosis9,10. However, research on nuclear-cytoplasmic dysfunction in CC 
remains largely unexplored, and most existing studies focus on whole-cell analyses, specifically lacking detailed 
investigation of specific cellular subpopulations.

Nuclear-cytoplasmic consistent genes (NCCGs) refer to those genes whose expression and function are 
simultaneously influenced by multiple regulatory mechanisms within both the nucleus and cytoplasm during 
tumor initiation and progression. This study is the first to investigate NCCGs in CC. These genes exhibit stable 
expression and are less likely to be influenced by external factors, suggesting their potential critical roles in 
cellular functions. Using single-cell sequencing (scRNA-seq) and single-nucleus RNA sequencing (snRNA-
seq) techniques combined with TCGA cohort, we identified NCCGs from CC cohort and conducted molecular 
subtyping. The results showed that NCCGs effectively stratified CC cohort into HRG and LRG, which exhibited 
significant differences in immune infiltration characteristics, tumor mutation burden (TMB), and sensitivity to 
both immunotherapy and chemotherapy. Moreover, these genes demonstrated potential discriminatory power 
in other epithelial-origin cancers.

Methods
Data download and preparation
RNA sequencing (RNA-seq) data and somatic mutation data for TCGA-CESC, along with RNA-seq data for 
14 epithelial-derived malignancies (including TCGA-HNSC, TCGA-BLCA, and TCGA-BRCA), were obtained 
using the TCGAbiolinks R package (version 2.28)11. The HPV+ TCGA-CESC cohort data were retrieved from 
previously published literature6. CC scRNA-seq data and chemoradiotherapy-related cohort were retrieved from 
the GEO database (https://www.ncbi.nlm.nih.gov/geo/), including GSE208653, GSE197461, GSE168652, and 
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GSE168009. CC snRNA-seq data (SCP1950) were downloaded from the Single Cell Portal ​(​​​h​t​t​p​s​:​/​/​s​i​n​g​l​e​c​e​l​l​.​b​
r​o​a​d​i​n​s​t​i​t​u​t​e​.​o​r​g​/​s​i​n​g​l​e​_​c​e​l​l​​​​​)​. Additionally, an immunetherapy-related cohort for bladder cancer was accessed 
from the IMvigor210CoreBiologies R package (​h​t​t​p​:​​​/​​/​r​e​s​e​a​r​c​​h​-​p​u​​b​.​g​e​​​n​e​.​c​​o​​m​/​I​M​v​i​​g​o​r​2​1​0​​C​o​r​e​B​i​​o​l​o​g​i​e​s).

scRNA-seq and snRNA-seq data processing
The scRNA-seq and snRNA-seq data, which had undergone upstream processing (including quality control 
and genome alignment), were analyzed using the Seurat R package (version 4.3)12. Cells were filtered according 
to the following criteria: UMI counts > 1,000, UMI counts below the 97th percentile of total UMI counts, gene 
counts > 200, and mitochondrial UMI percentage < 10% (snRNA-seq: < 1%). Normalization of gene expression 
for each cell was performed using the “LogNormalize” method implemented in the NormalizeData function, 
where expression values were scaled by the total expression, multiplied by a scaling factor of 10,000, and log-
transformed. Highly variable genes were identified using the FindVariableFeatures function, with the top 2000 
genes retained for downstream analysis. The selected genes were then centered and scaled using the ScaleData 
function, and dimensionality reduction was performed using principal component analysis (PCA).

Based on the PCA results, a shared-nearest neighbour graph was constructed using the FindNeighbors 
function, and cells were clustered using the FindClusters function. To enhance visualization, the RunTSNE 
function was applied. Differentially expressed gene markers for each cluster were identified using the 
FindAllMarkers function, which compares gene expression in a given cluster with that of all other clusters. To 
mitigate technical artifacts, DoubletFinder R package (version 2.0)13 was used to identify and remove putative 
doublets, improving data quality. Batch effects across samples were corrected using the Harmony R package 
(version 1.2)14, ensuring effective integration and consistency across data.

Cell type and gene annotation
The SingleR R package (version 2.2)15 was used to assign cell types to each cluster based on reference datasets. 
These initial annotations were subsequently validated and refined by comparing them with manually curated 
gene markers from published literature16–20, ensuring the accuracy and biological relevance of the identified cell 
clusters.

Copy number alteration inference
The inferCNV R package (version 1.16, https://github.com/ broadinstitute/infercnv) was used to infer copy 
number variation (CNV) in the cell clusters. Genes were organized according to their chromosomal positions, 
and initial CNV were assessed based on gene expression levels, providing insights into genomic alterations 
within these cell populations.

Cell stemness analysis
The runStemness function from the scCancer R package (version 2.2)21 was used to evaluate stemness scores 
for individual cells within cell clusters, providing a quantitative measure of their stem cell-like properties. This 
analysis facilitated the identification and characterization of cellular subpopulations with potential stem-like 
features.

Differentially expressed gene
Differentially expressed genes (DEGs) between cell clusters in scRNA-seq and snRNA-seq data were identified 
using the FindMarkers function in the Seurat software. DEGs were selected based on the following criteria: 
expression in at least 25% of cells in either sample group, |log2FoldChange|> 0.25, and an adjusted p value < 0.05. 
For bulk RNA-seq data, DEGs were identified using the DESeq2 R package (version 1.40)22. The selection criteria 
were set to |log2FoldChange|> 1 and an adjusted p value < 0.05.

Functional enrichment analyses
Functional enrichment analysis was performed using the clusterProfiler R package (version 4.8)23 to identify 
enriched Gene Ontology (GO) biological processes and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathways24,25. Enrichment results with an adjusted p value < 0.05 were considered statistically significant.

Gene Set Enrichment Analysis (GSEA) was conducted using the gsea function, with gene sets achieving an 
adjusted p value < 0.05 considered as significantly enriched.

Single-sample gene set enrichment analysis
Single-sample Gene Set Enrichment Analysis (ssGSEA) was performed using the GSVA R package (version 
1.53)26. Risk-associated genes from NCCGs were used to distinguish between HRG and LRG.

Iterative ranking-based gene set enrichment analysis
Iterative ranking-based gene set enrichment analysis (irGSEA) was conducted using the irGSEA R package 
(version 3.3)27 to compute differential pathways across cell clusters. The robust rank aggregation (RRA) algorithm 
implemented in the irGSEA package was used to compute differential pathways, providing a statistically robust 
method for identifying significant gene sets. Gene sets were obtained from the MSigDB database ​(​​​h​t​t​p​s​:​/​/​w​w​w​
.​g​s​e​a​-​m​s​i​g​d​b​.​o​r​g​/​g​s​e​a​/​m​s​i​g​d​b​/​​​​​) to ensure a comprehensive and high-quality resource for pathway enrichment 
analysis.

Survival analysis
Kaplan–Meier survival curves were constructed using the survival R package (version 3.6) and the survminer R 
package (version 0.4)28 to visualize survival differences across groups within the cohort. Cox regression analysis 
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was subsequently performed using the coxph function to identify risk-associated genes. Hazard ratios were 
calculated to quantify the relative risk, with genes showing a p value < 0.05 considered as significant risk factors.

Somatic mutation analysis
Somatic mutation data for were analyzed using the maftools R package (version 2.16)29. Differentially mutated 
genes between HRG and LRG were identified, alongside the calculation of TMB for each group. Furthermore, 
differences in pathway-specific gene mutations were assessed to explore functional alterations associated with 
risk stratification.

Tumor Microenvironment landscape
The stromal and immune (ESTIMATE) score were calculated using the ESTIMATE algorithm30 to characterize 
the tumor microenvironment (TME). To gain deeper insights into the immune infiltrating landscape, the 
abundance of tumor-infiltrating immune cells (TIICs) within the TME was assessed using the xCell R package 
(version 1.1)31 and the second module (Impute Cell Fractions) of the CIBERSORTx database ​(​​​h​t​t​p​s​:​/​/​c​i​b​e​r​s​
o​r​t​x​.​s​t​a​n​f​o​r​d​.​e​d​u​/​​​​​)​. Additionally, the Tracking Tumor Immunophenotype (TIP) database ​(​​​h​t​t​p​:​/​/​b​i​o​c​c​.​h​r​b​m​
u​.​e​d​u​.​c​n​/​T​I​P​/​​​​​) was utilized to analyze the immune dynamics of cancer cohorts, providing a comprehensive 
understanding of the immune landscape within the TME.

Risk model construction and validation
The risk model was constructed using the caret R package (version 6.0)32, with cohort-specific risk-associated 
genes as input parameters. In the GSE168009 cohort, patients with durable clinical benefit (DCB; progression-
free period > 5 years) were classified as the LRG, while those with no durable benefit (NDB; progression-free 
period < 3 years) were classified as the HRG.

Immunotherapy prediction
Immunophenoscore (IPS) data were obtained from The Cancer Immunome Atlas (TCIA, https://tcia.at/home), 
and tumor immune dysfunction and exclusion (TIDE) scores were retrieved from the TIDE ​(​​​h​t​t​p​:​/​/​t​i​d​e​.​d​f​c​i​.​
h​a​r​v​a​r​d​.​e​d​u​​​​​) database. These datasets were integrated to comprehensively evaluate the potential therapeutic 
response of cancer samples to immune checkpoint inhibitors targeting PD-1 and CTLA-4.

Chemotherapy prediction
The Genomics of Drug Sensitivity in Cancer (GDSC) database (https://www.cancerrxgene.org/), a widely 
utilized resource for identifying molecular markers of drug sensitivity in cancer, was employed to assess the 
drug response in CC samples. The half-maximal inhibitory concentration (IC50) values, a key indicator of 
drug efficacy, were calculated using the R package oncoPredict33, which enables systematic prediction of drug 
sensitivity based on transcriptomic data.

Cell culture, RNA isolation, and quantitative real-time polymerase chain reaction
Two CC cell lines, HeLa and SiHa, were used in this study, both obtained from Zhongqiao Xinzhou Company. 
HeLa cells were cultured in Dulbecco’s Modified Eagle Medium (DMEM, Gibco, USA) supplemented with 
10% fetal bovine serum (FBS) and 1% penicillin–streptomycin at 37  °C in a humidified incubator with 5% 
CO2. SiHa cells were cultured under identical conditions but in Minimum Essential Medium (MEM, Gibco, 
USA) supplemented with 10% FBS and 1% penicillin–streptomycin. When the cells reached approximately 90% 
confluence, both cell lines were seeded into 6-well plates and further cultured until the cell density exceeded 
90%. Nuclear fractions of HeLa and SiHa cells were extracted using a nuclear extraction kit (Solarbio, China) 
following the manufacturer’s instructions, and the isolated nuclei were stored at − 80 °C for subsequent analysis. 
Total RNA was extracted from HeLa cells, SiHa cells, and their nuclear fractions using Trizol reagent (Takara, 
Japan). Complementary DNA (cDNA) was synthesized according to the protocol provided with the cDNA 
reverse transcription kit (Novoprotein, China). The specific primer sequences for target gene amplification are 
provided in the supplementary materials (Supplementary file 1, Table S1). Quantitative real-time polymerase 
chain reaction (qRT-PCR) was performed using a real-time fluorescence PCR system (ABI, USA), and data were 
analyzed accordingly.

Statistical analysis
Statistical analyses and data visualization in this study were conducted using R software (version 4.3). Unless 
otherwise specified, continuous data were analyzed using the Wilcoxon test or Student’s t test. Survival differences 
between groups were assessed using the log-rank test. All statistical tests were two-tailed, and a p value < 0.05 
was considered statistically significant across all analyses. Ns, *, **, *** and **** indicate not Significant, p < 0.05, 
p < 0.01, p < 0.001 and p < 0.0001, respectively.

Results
Construction of the scRNA-seq and snRNA-seq Atlas for CC
We collected a total of 15 samples from public databases (Fig.  1A), including 3 SCC samples, 3 cervical 
adenocarcinomas (ADC) samples, and 3 HPV+ normal control (NC) samples analyzed through scRNA-seq, as 
well as 6 SCC samples (from CCI and CCII stages) analyzed through snRNA-seq. After stringent quality control, 
a total of 39,823 cells and 29,827 nuclei were identified. Based on the differential expression of characteristic 
marker genes, six cell clusters were manually annotated (Fig. 1B): lymphocytes (Lym) expressing CD3E, CD3D, 
and CD2; epithelial cells (Epi) expressing KRT5 and KRT8; myeloid cells (Mye) expressing ITGAX and LYZ; 
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fibroblasts (Fb) expressing DCN; endothelial cells (Ec) expressing VWF and CDH5; and smooth muscle cells 
(Smc) expressing ACTG2 and MYH11.

Analysis of the proportional distribution of these cell clusters across the sample groups (Fig. 1C) revealed 
the presence of all six cell clusters in SCC, ADC, NC, CCI, and CCII samples, but with significant differences in 
their proportions. Pairwise comparisons of cell cluster proportions among the three groups (Fig. 1D) indicated 
a reduction in the proportion of lymphocytes in both SCC and ADC group compared to NC group. However, 
the remaining five cell clusters (Epi, Mye, Fb, Ec, Smc) showed opposing trends between SCC and ADC group, 
underscoring significant differences in cellular composition between these two cancer types.

Further analysis of CCI and CCII group revealed (Fig. 1D) a notable increase in the proportion of Epi in 
CCII group, consistent with the characteristic expansion of Epi during cancer progression. Conversely, Lym 
and Mye showed a significant decrease in CCII group, potentially reflecting immune suppression or immune 
evasion mechanisms. Additionally, the reduced proportions of Fb and Ec in CCII group may indicate impaired 
tissue repair capacity or abnormalities in vascular remodeling. The decrease in Smc could be associated with the 
degradation of vascular or smooth muscle structures. These findings highlight significant differences in cellular 
composition between different cancer types (SCC and ADC) and cancer progression stages (CCI and CCII), 
which may reflect the heterogeneity of the TME and its potential role in disease progression.

Identification and functions of NCCGs in CC
Clustering analysis was performed on 34,293 Epi (Fig. 2A), resulting in the identification of eight distinct Epi 
subclusters. Most cells were distributed in clusters 0 and 1, while clusters 6 and 7 were specifically enriched in 
CCII group (Fig. 2B).

To confirm malignant Epi, CNV scores of Epi clusters relative to Lym were calculated using inferCNV 
analysis (Figs. 2C, D). Clusters 0, 3, 4, 5, and 7 exhibited higher CNV scores, with significant CNV alterations 
predominantly located in 1q, 3q, and 18q chromosomal regions. Stemness analysis (Fig.  2E) revealing that 
clusters 0, 3, 4, and 7 exhibited strong stemness characteristics, which are closely associated with tumor cell 
proliferation and survival advantages. Additionally, genes associated with malignant Epi, including KRT6A, 
KRT15, KRT17, CDKN2A, and ERBB2, were highly expressed in clusters 0, 3, 4, 5, and 7 (Fig. 2F). irGSEA 

Fig. 1.  Tumor heterogeneity of CC at single-cell and single-nucleus resolution. (A) t-Distributed Stochastic 
Neighbor Embedding (t-SNE) plot showing 79,020 individual cells, colored by sample, sample group, 
technology type, and cell type distribution. Each point represents a single cell. (B) Violin plots depicting the 
marker genes for different cell types. (C) Proportional distribution of each cell type across different samples. 
(D) Volcano plots illustrating differential cell type distributions between SCC and NC, ADC and NC, and CCII 
and CCI. The density plots (top) display the t-SNE distribution of the corresponding sample groups.
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analysis of the HALLMARK pathways (Fig. 2G) showed that the p53 signaling pathway, closely linked to cancer 
progression, was significantly upregulated in clusters 0, 4, and 5. The mTORC1 signaling pathway, which 
regulates metabolism and cell growth, was highly expressed in cluster 5. Additionally, pathways associated with 
tumor proliferation and cell cycle regulation exhibited distinct patterns among clusters. Specifically, E2F targets 
were highly expressed in clusters 0, 3, and 4; G2M checkpoint genes were primarily upregulated in cluster 3; 

Fig. 2.  Identification and functional characterization of Epi and NCCGs. (A) t-SNE plot depicting 34,293 
Epi, colored according to eight distinct Epi clusters. (B) Proportional distribution of each Epi cluster across 
different sample groups. (C) Heatmap showing large-scale CNVs in single cells and single nuclei, inferred 
from scRNA-seq and snRNA-seq data, with Lym treated as the reference (top). Large-scale CNVs are observed 
in the Epi clusters (bottom). (D) Violin plot comparing the CNV values between Lym cells and Epi clusters. 
(E) Violin plot comparing the stem cell scores between Lym cells and Epi clusters. (F) Violin plots depicting 
the marker genes for different Epi clusters. (G) Heatmap showing the top 20 HALLMARK pathways across 
Epi clusters. (H) Venn diagram illustrating the overlap of differential genes identified in cancerous Epi versus 
normal cells from scRNA-seq and snRNA-seq, revealing the NCCGs. (I) Bubble diagram depicting the top 8 
KEGG pathways and GO biological processes (bp) terms identified in NCCGs.
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and the mitotic spindle pathway was prominently expressed in clusters 3 and 7. These findings indicate that 
cluster 3 exhibited comprehensive activation of cell cycle pathways, suggesting enhanced proliferative and 
division capacity, while clusters 0, 4, 5, and 7 displayed unique pathway characteristics. The high expression 
of proliferation-related genes (MKI67 and TOP2A) in clusters 3, 4, and 5 further supports these observations. 
Integrating results from multiple analyses, clusters 0, 3, 4, 5, and 7 were ultimately identified as malignant Epi 
clusters.

Differential gene expression analysis was performed by comparing single-cell and single-nucleus malignant 
Epi with their normal epithelial counterparts. This analysis identified 361 and 1,140 DEGs (Supplementary file 
2, Table S2, S3), respectively, with 46 overlapping genes defined as NCCGs (Fig. 2H, Chi-Square Test < 0.05, 
Supplementary file 2, Table S4). GO functional enrichment analysis (Fig.  2I) revealed that these genes were 
significantly involved in three major biological processes: protein processing and homeostasis regulation (e.g., 
“protein folding” and "protein folding in the endoplasmic reticulum"), immune-related functions (e.g., "antigen 
processing and presentation" and “negative regulation of immune effector process”), and cellular differentiation 
and apoptosis (e.g., “monocyte differentiation” and "intrinsic apoptotic signaling pathway").

KEGG pathway analysis (Fig. 2I) further demonstrated that these genes participated in several key pathways, 
including protein processing and folding, cytoskeletal dynamics (e.g., " Cytoskeleton in muscle cells " and 
"Regulation of actin cytoskeleton "), immune regulation, and cellular senescence (e.g., "antigen processing 
and presentation" and “cellular senescence”). Interestingly, certain pathways (e.g., "pathogenic Escherichia coli 
infection") may influence CC development and progression by modulating the TME and inflammatory signaling.

Collectively, these findings highlight the critical roles of NCCGs in immune responses, protein homeostasis, 
cytoskeletal dynamics, and cellular senescence, shedding light on their potential contributions to CC 
pathogenesis.

Expression and prognostic significance of NCCGs in CC
To explore the biological significance of NCCGs in CC, we first performed Cox regression analysis in the HPV+ 
TCGA-CESC cohort (n = 153). Genes significantly associated with overall survival (OS) were identified (Fig. 3A, 
Supplementary file 3, Figure S1), including TTC3 (HR = 2.74, 95% CI 1.16–6.47), TMSB4X (HR = 0.46, 95% 
CI 0.22–0.98), MGST1 (HR = 13.49, 95% CI 1.83–99.31), DNAJC3 (HR = 2.46, 95% CI 1.11–5.45), and ACTR3 
(HR = 3.16, 95% CI 1.20–8.32). Based on ssGSEA scores derived from these five genes, patients were stratified 
into HRG and LRG. Survival analysis (Fig. 3B) revealed that HRG had significantly poorer survival compared to 
LRG (HR = 2.37, 95% CI 1.09–5.16).

To validate the universality of the biological significance of NCCGs, we repeated the analysis (Fig.  3C, 
D, Supplementary file 3, Figure S2) in the complete TCGA-CESC cohort (n = 233). Similarly, LRG exhibited 
significantly better survival outcomes than HRG (HR = 3.24, 95% CI 1.57–6.7). Further analysis identified eight 
genes significantly associated with OS, including ZFP36L1 (HR = 2.04, 95% CI 1.01–4.14), TTC3 (HR = 2.12, 
95% CI 1.02–4.39), TPT1 (HR = 2.23, 95% CI 1.08–4.61), TPM3 (HR = 2.11, 95% CI 1.04–4.28), TM9SF2 
(HR = 2.78, 95% CI 1.31–5.89), P4HB (HR = 2.00, 95% CI 1.01–3.99), MGST1 (HR = 4.73, 95% CI 1.45–15.42), 
and ACTR3 (HR = 2.40, 95% CI 1.16–4.96). A comparison of the risk genes between the two cohorts revealed 
that TTC3, MGST1, and ACTR3 were consistently associated with OS in both cohorts. ssGSEA analysis (Fig. 3E, 
F) based on these three genes yielded consistent results, further demonstrating their strong ability to distinguish 
HRG from LRG.

We also analyzed the expression of NCCGs in CC cohorts (Fig. 3G). Compared with NC group, only a small 
number of NCCGs, such as ANXA1, TPM3, and TPT1, exhibited significant differential expression in CC group. 
However, nearly 70% of these genes showed significant differences between HRG and LRG, indicating strong 
inter-gene associations, even though some may not be direct risk factors for CC.

To further validate the expression of NCCGs in both whole cells and nuclei, we used the Human Protein 
Atlas (HPA, https://www.proteinatlas.org/) database to analyze the similarity in gene expression between the 
TCGA-CESC cohort and CC cell lines. The analysis revealed that HeLa and SiHa cell lines exhibited 75% and 
77% similarity, respectively, to the TCGA-CESC cohort. Thus, these two cell lines were selected for experimental 
validation. qRT-PCR analysis (Fig. 3H) showed that TTC3, MGST1, and ACTR3 were expressed in both the 
nuclei and whole cells. Notably, the nuclear expression of TTC3 in HeLa cells was significantly higher compared 
to its expression in whole cells. In SiHa cells, the nuclear expression levels of ACTR3 and TTC3 were also 
significantly higher than their corresponding levels in whole cells.

In summary, the expression patterns of TTC3, MGST1, and ACTR3 were highly consistent across the 
two TCGA-CESC cohorts and CC cell lines, highlighting their critical role in OS among CC patients. These 
findings lay a solid foundation for further investigation into their underlying mechanisms and potential clinical 
applications.

Immunological characteristics of the LRG reveal antitumor activity and TME 
advantages
To investigate the differences between the HRG and LRG, differential gene expression analysis (Fig. 4A) was 
performed on the HPV+ TCGA-CESC cohort and the TCGA-CESC cohort. A total of 591 and 609 DEGs were 
identified (Supplementary file 2, Table S5, S6), respectively. In the HRG, tumor suppressor genes such as BPIFB1 
and MS4A8, as well as hypoxia response-related genes like EGF, were significantly upregulated. In contrast, the 
LRG demonstrated significant upregulation of pro-inflammatory genes (FOSB, LTB, CXCL10, CXCL11, CXCL9, 
CCL5), immune checkpoint genes (except HHLA2, such as IDO2, PDCD1, LAG3, and CD200R1), antigen 
presentation genes (HLA-DQB2, HLA-DQA2), T cell cytotoxicity-related genes (NKG7, GZMH, GZMK, GNLY, 
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GZMB, IFNG), T cell exhaustion markers (LAG3), and immunosuppressive T cell-associated genes (CCL19). 
These findings suggest that the LRG exhibits stronger pro-inflammatory and immune activity features.

Subsequent analyses were all conducted based on the TCGA-CESC cohort. GSEA analysis further validated 
these findings (Fig.  4B), showing significant downregulation of immune-related pathways (e.g., “humoral 
immune response” and “adaptive immune response”) in the HRG, indicating reduced immune activity in this 
group.

We further evaluated the differences in tumor immunological characteristics and TME between the two 
groups. Cancer immunity cycle analysis (Fig.  4C) revealed that the LRG had significantly higher scores in 
immune cell trafficking to the tumor (Step 4), including migration of CD4+ T cells, CD8+ T cells, monocytes, 

Fig. 3.  Identification of NCCGs expression patterns in CC. (A, C) Forest plots showing NCCGs associated 
with OS in the HPV+ TCGA-CESC cohort (A) and the TCGA-CESC cohort (C). (B, D–F) Kaplan–Meier 
survival curves comparing OS between HRG and LRG in the HPV+ TCGA-CESC cohort (B, E) and the 
TCGA-CESC cohort (D, F). (G) Box plots showing the differential expression of NCCGs between CC and NC 
group in the TCGA-CESC cohort (top), and between HRG and LRG (bottom). (H) Bar chart depicting the 
relative expression levels of TTC3, MGST1, and ACTR3 in the nucleus and whole cells of Hela and Siha cell 
lines.
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Fig. 4.  Relationship between NCCG clusters and the TME. (A) Volcano plot showing the distribution of DEGs 
between HRG and LRG in the HPV+ CESC cohort and the TCGA-CESC cohort. (B) GSEA plot illustrating the 
enrichment of immune-related GO terms in DEGs between HRG and LRG. (C) Box plot showing differences 
in cancer immune cycle step scores between HRG and LRG. (D, F) Box plots showing differences in the 
enrichment of TIICs as assessed by CIBERSORT (E) and Xcell (F) between HRG and LRG. (E) Box plot 
showing differences in stromal score, immune score, and ESTIMATE score between HRG and LRG. (G, H) 
Box plots showing differences in the expression of immune checkpoint genes (G) and antigen-presenting genes 
(H) between HRG and LRG.
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NK cells, Th1 cells, and T cells, while neutrophil migration scores were significantly lower. Similarly, the LRG 
exhibited higher scores in immune cell infiltration into tumors (Step 5). Consistent with these findings, the LRG 
also showed elevated immune and ESTIMATE scores (Fig. 4E). XCell and CIBERSORT analyses (Fig. 4D, F) 
further revealed significantly increased levels of TIICs in the LRG, particularly CD8+ T cells and CD4+ memory 
T cells, with a corresponding increase in ImmuneScore further supporting these observations.

We also analyzed the expression of immune checkpoint and antigen presentation genes (Fig. 4G, H) in the 
two groups. In the LRG, immune checkpoint genes such as BTLA, CD48, CD80, CTLA4, and PDCD1 were 
significantly upregulated, while CD200 and HHLA2 were downregulated. Antigen presentation genes also 
showed an overall upregulation trend in the LRG, with significant increases in HLA-B, HLA-DPA1, HLA-DPB1, 
HLA-DQB1, and HLA-DRB1 expression.

In summary, these findings suggest that the LRG is characterized by stronger immune activity, higher levels 
of TIICs, and more robust antigen presentation and immune checkpoint gene expression profiles. These features 
collectively highlight the superior antitumor immune response and favorable TME observed in the LRG.

Association of NCCGs with genomic mutation characteristics
To explore the genomic mutation differences between the HRG and LRG, we conducted a somatic mutation 
analysis and found 35% of the top 20 mutated genes differed between the two groups (Fig.  5A). Then, we 
compared the gene mutation frequencies between the two groups (Fig.  5B) and identified 30 genes with 
significantly different mutation frequencies. Among them, seven genes were specific to the HRG. Using Cox 
regression analysis (Fig. 5C), we evaluated the relationship between these mutated genes and OS. Three genes 
showed significant associations with OS: SI (HR = 0.19, 95% CI 0.06–0.63), EZR (HR = 2.45, 95% CI 1.18–5.06), 
and DAAM1 (HR = 2.51, 95% CI 1.24–5.09).

TMB is closely linked to immune cell infiltration and immune activity. Although the LRG exhibited a slightly 
higher overall TMB compared to the HRG (Fig. 5D), the difference was not statistically significant. Furthermore, 
no significant correlation was observed between TMB and key NCCGs (TTC3, MGST1, and ACTR3). However, 

Fig. 5.  Genomic alterations in CC associated with NCCG clusters. (A) Waterfall plot showing the top 20 
mutated genes between HRG and LRG. (B, C) Forest plots depicting differential mutated genes between HRG 
and LRG (B) and those associated with OS in the TCGA-CESC cohort (C). (D) Box plot showing differences 
in TMB between HRG and LRG. (E) Waterfall plot displaying the differences in immune-related GO term gene 
mutations between HRG and LRG.
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an analysis of immune-related GO term mutations (Fig. 5E) revealed that the LRG harbored a higher number of 
immune-related gene mutations compared to the HRG. This included a greater frequency of mutations in genes 
associated with immune activity and OS.

In summary, despite the lack of significant differences in overall TMB between the HRG and LRG, the LRG 
exhibited a higher frequency of immune-related gene mutations and included more OS-associated mutated 
genes. These findings suggest that the LRG may exhibit stronger immune activity, potentially contributing to its 
improved prognosis compared to the HRG.

Predictive role of NCCGs in tumor immunotherapy and chemotherapy response
We extracted the IPS of the HRG and LRG from the TCIA database. The results showed that LRG had significantly 
higher IPS for PD-1 inhibitors and combined PD-1 and CTLA4 inhibitors compared to the HRG (Fig. 6A). 
Additionally, predictions from the TIDE database supported this trend. The proportion of immune checkpoint 
inhibitor (ICI) responders was significantly higher in the LRG, and these patients exhibited superior cytotoxic 
T lymphocyte (CTL) infiltration levels compared to the HRG (Fig. 6C). However, the LRG demonstrated higher 
T-cell dysfunction scores, while the HRG had significantly elevated T-cell exclusion scores and overall TIDE 
scores (Fig. 6B). These findings suggest that LRG may have a higher potential response to ICI therapy.

We then utilized the oncoPredict R package to predict chemotherapy drug sensitivity in the two groups 
(Fig.  6D) and identified representative drugs with lower IC50 values. The results revealed that LRG were 
significantly more sensitive to several classical chemotherapeutic agents, including Panobinostat (LBH589), 
Doxorubicin, Flavopiridol (Alvocidib), Bardoxolone Methyl, AZD7762, and Obatoclax (GX15-070), compared 
to HRG. These drugs, supported by existing clinical or experimental studies, represent promising candidates for 
further investigation into precise treatment strategies.

Furthermore, we developed a chemotherapy risk prediction model using TTC3, MGST1, and ACTR3 as 
parameters (Fig. 6E). With 70% of the TCGA-CESC cohort used as a training set, we applied logistic regression, 
linear regression, random forest, naive Bayes, and other algorithms to construct the model. The model was 
validated on the remaining 30% of the TCGA-CESC cohort and an external cohort, GSE168009. The naive Bayes 
algorithm demonstrated the best predictive performance, achieving AUC values consistently above 86% across 
all datasets. This indicates high robustness and potential clinical utility of the model in predicting chemotherapy 
response.

Fig. 6.  Immune and chemotherapy risk prediction and model construction based on NCCG clusters. (A, B) 
Box plots showing differences in IPS scores (A) and Dysfunction, Exclusion, and TDE scores (B) between HRG 
and LRG. (C) Stacked bar chart illustrating the predicted differences in ICI responders, and CTLs between 
HRG and LRG. (D) Box plot showing differences in the predicted IC50 values for the top 20 drugs between 
HRG and LRG. (E) ROC curves and AUC values for different algorithm models in the TCGA-CESC and 
GSE168009 cohorts.
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In summary, our findings suggest that LRG exhibit superior responsiveness to immunotherapy and 
chemotherapy, while the proposed predictive model based on NCCGs shows promise for guiding precision 
treatment in CC.

Predictive role of NCCGs in epithelial-derived malignancies
To evaluate the prognostic value of NCCGs in HPV-associated cancers, we performed Cox regression analysis 
in the TCGA-HNSC (n = 437) cohort (Fig.  7A). The results identified 13 genes significantly associated with 
OS. Among these, TM9SF2, ACTR3, TPT1, TPM3, and P4HB overlapped with the risk genes identified in 
the TCGA-CESC cohort, all showing HR values greater than 1, further supporting their critical role in HPV-
associated cancers.

Based on ssGSEA scores calculated from these 13 genes, patients were stratified into HRG and LRG. Survival 
analysis (Fig. 7B) revealed that the LRG exhibited significantly better survival compared to the HRG (HR = 2.02, 
95% CI 1.46–2.78). Further investigation of the tumor immunological characteristics and TME differences 
between the two groups showed that the LRG had significantly higher immune scores and ESTIMATE composite 
scores than the HRG (Fig. 7C). This finding was validated through CIBERSORT analysis. Additionally, XCell 
and CIBERSORT analyses (Fig. 7D, E) indicated that TIICs, including CD8+ T cells, CD4+ memory T cells, and 
B cells, were significantly upregulated in the LRG. These results suggest that the LRG is associated with stronger 
antitumor immune activity, further emphasizing the predictive value of NCCGs in HPV-associated cancers.

To assess the prognostic utility of NCCGs in other epithelial-derived malignancies, we extended the analysis 
to 13 TCGA cancer cohorts, including TCGA-BLCA, TCGA-BRCA, and TCGA-COAD, employing the same 
methodology (Fig. 7H). The results demonstrated that these genes could robustly stratify patients into HRG 
and LRG across various cancer types, with the LRG consistently showing higher levels of immune infiltration. 
Additionally, certain genes, such as B4GALT1, HLA-E, and PABPC1, were found to be significantly associated 
with OS in multiple cancers, suggesting their pivotal roles in immune regulation across different cancer types.

To further validate the predictive capability of NCCGs, we performed an independent validation using 
the IMvigor210CoreBiologies R package bladder cancer cohort (n = 195). The results confirmed the findings 
(Fig. 7F, G) from the TCGA-BLCA cohort: LRG had a significantly higher proportion of complete response/
partial response (CR/PR) to immunotherapy and improved survival compared to HRG (HR = 1.63, 95% CI 1.14–
2.34). These findings indicate that immune risk scores based on NCCGs not only effectively stratify prognostic 
risk across various cancer types but also distinguish treatment efficacy in immunotherapy cohorts, highlighting 
their potential for clinical application.

Discussion
The boundary region between different Epi types (e.g., squamous epithelium and columnar epithelium), known 
as the transitional zone, is characterized by unique biological properties, making it particularly susceptible 
to infections and tumorigenesis. It is also considered a potential source of cancer-initiating cells34,35. In this 
study, we identified five malignant Epi clusters through preliminary analyses. Among them, clusters 4, 5, and 
7 exhibited high expression of both the squamous epithelial marker KRT5 and the columnar epithelial marker 
KRT8, reflecting molecular characteristics consistent with the transitional zone. Additionally, clusters 0, 3, 4, 
and 7 showed high expression of KRT5 and TP63, suggesting that these cells may originate from the primitive 
squamous cell lineage of the ectocervix16. Notably, clusters 4 and 5 demonstrated significantly upregulated 
expression of proliferation-associated genes, indicating a high proliferative potential. Based on these findings, 
we hypothesize that clusters 4 and 5 represent the cancer-initiating cells of CC. Furthermore, we propose that 
the differentiation trajectory of malignant squamous cell clusters likely follows the path of 4-7-0/3. This study 
provides new insights into the mechanism underlying the origin of CC and highlights the critical role of the 
transitional zone in tumorigenesis.

In the HSIL (high-grade squamous intraepithelial lesion) stage of CC, a transient amplifying cell, which exists 
in an intermediate state between cancer stem cells and their derived tumor cells, has been identified36–38. In this 
study, through in-depth characterization of malignant Epi, we identified similar cell clusters in NC group. These 
clusters were closely associated with clusters 0, 3, 4, and 5, suggesting a potential connection with malignant Epi. 
This finding provides critical insights into the key molecular events underlying CC precancerous lesions and 
suggests that HPV infection may promote lesion progression by enhancing stemness or conferring a proliferative 
advantage to certain cells within the microenvironment, thereby driving disease progression.

Using Cox regression and ssGSEA analyses of the TCGA-CESC and HPV+ TCGA-CESC cohorts, this study 
identified 10 NCCG-based risk genes (TTC3, TMSB4X, MGST1, DNAJC3, ACTR3, ZFP36L1, TPT1, TPM3, 
TM9SF2, and P4HB). Among these, TTC3, a critical E3 ubiquitin ligase, promotes cell cycle progression and 
tumor cell proliferation in gastric cancer by mediating the ubiquitination and degradation of 14–3-3σ39. In cardiac 
tissue, circ-Ttc3 protects cardiomyocytes from apoptosis through miRNA regulatory mechanisms40. TMSB4X 
functions as a multifunctional regulatory factor, playing a crucial role in CC by modulating the cytoskeleton 
and autophagy. Additionally, in non-small cell lung cancer, TMSB4X promotes immune evasion by regulating 
dendritic cell activity and the tumor immune microenvironment41,42. MGST1, which possesses glutathione 
transferase and peroxidase activities, plays a multifaceted role in tumorigenesis, particularly by influencing 
cancer cell survival and proliferation through antioxidant, anti-apoptotic, and drug-resistance mechanisms43. 
DNAJC3, an important member of the heat shock protein family, exhibits bidirectional regulatory effects and 
plays a role in tumor cell proliferation, apoptosis, autophagy, and drug resistance. Its regulation by miRNAs and 
non-coding RNAs makes it a significant gene for studying treatments for CC and other cancers44–47. ACTR3 has 
been identified as a potential biomarker in oral squamous cell carcinoma48. ZFP36L1, an RNA-binding protein, 
suppresses the cell cycle by degrading mRNAs such as Cyclin D1, thereby exerting tumor-suppressive effects. 
It also regulates immune factors, including TNF-α and VEGF-A, influencing the TME. The loss of ZFP36L1 
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Fig. 7.  Identification of NCCG expression patterns in other epithelial-derived malignancies. (A) Forest plots 
showing NCCGs associated with OS in the TCGA-HNSC cohort. (B) Kaplan–Meier survival curves comparing 
OS between HRG and LRG in the TCGA-HNSC cohort. (C) Box plot showing differences in stromal score, 
immune score, and ESTIMATE score between HRG and LRG. (D, E) Box plots showing differences in the 
enrichment of TIICs as assessed by CIBERSORT (D) and xCELL (E) between HRG and LRG. (F) Kaplan–
Meier survival curves comparing OS between HRG and LRG in the IMvigor210CoreBiologies-bladder cohort. 
(G) Stacked bar chart showing the proportion of CR/PR between HRG and LRG as predicted by the model. 
(H) Heatmap displaying NCCGs associated with OS in other epithelial-derived malignancies.

 

Scientific Reports |        (2025) 15:42703 13| https://doi.org/10.1038/s41598-025-26740-4

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


enhances drug resistance, highlighting its potential therapeutic value in cancer treatment49–51. TPT1, a pro-
oncogenic protein, promotes proliferation, migration, and invasion in CC cells by regulating the PI3K/AKT 
signaling pathway and epithelial-mesenchymal transition. Both TPT1 and its antisense RNA TPT1-AS1 may 
play critical roles in CC progression, with significant diagnostic and therapeutic potential52–54. TPM3 is highly 
expressed in CC and plays a dual role in promoting tumor progression. It not only facilitates cell proliferation, 
migration, and invasion but also regulates the immune microenvironment through pathways such as PI3K/
AKT. The downregulation of miR-377-5p, which targets TPM3, exacerbates tumor malignancy, making TPM3 
a promising diagnostic and therapeutic target55,56. TM9SF2 is highly expressed in colorectal cancer and is 
associated with tumor invasion, metastasis, and poor prognosis57. P4HB is overexpressed in various cancers and 
is involved in collagen metabolism, hypoxic responses, and TME regulation. Its high expression is associated 
with advanced tumor stages and poor prognosis. P4HB promotes tumor growth and migration, making it a 
potential diagnostic and therapeutic target in CC58–60. In summary, these risk genes exhibit diverse oncogenic 
or tumor-suppressive functions across multiple cancers, suggesting their involvement in CC development and 
progression through mechanisms such as cell cycle regulation, signaling pathways, autophagy, and the immune 
microenvironment. Notably, genes such as TTC3, TMSB4X, MGST1, DNAJC3, and P4HB are closely linked to 
cancer cell proliferation and migration and may serve as key regulators of CC progression. Meanwhile, genes 
like TPM3 and TPT1 exhibit specific oncogenic roles in CC, particularly influencing invasion and metastasis via 
critical signaling pathways such as PI3K/AKT. The overexpression or specific regulatory functions of these genes 
provide new perspectives on the molecular mechanisms of CC and offer potential directions for the development 
of diagnostic biomarkers and targeted therapies.

CC exhibits significant heterogeneity in both clinical manifestations and molecular characteristics. The team 
led by Xiaojun61 performed clustering analyses on HPV+ CC cohort and identified two subtypes: HPV+G1 and 
HPV+G2. HPV+G1 was characterized by higher immune infiltration levels, greater stromal content, and better 
disease-free survival outcomes, while HPV+G2 exhibited lower tumor purity and higher stemness scores. In our 
differential analysis of HRG and LRG, we observed that highly expressed genes such as MUC13, TFF3, PIGR, 
MUC5B, AGR3, TSPAN8, and PROM1 overlapped significantly with marker genes of the HPV+G1 subtype. 
Conversely, highly expressed genes in the HRG, including MAGEA4, KRT1, NTS, IRX4, CRNN, and SBSN, 
were consistent with certain molecular features of the HPV+G2 subtype. Additionally, the teams led by Li Jun62 
and Jin63 independently performed clustering analyses of CC cohort based on ferroptosis-related genes and 
double-stranded RNA-binding proteins, respectively, to identify molecular subtypes. These subtypes exhibited 
differences in immune infiltration, gene mutations, and drug sensitivity. Notably, one of the risk genes identified 
by Li Jun’s team, MGST1, was also identified in our analysis. However, these studies rely heavily on algorithm-
driven approaches, which limit their direct application in clinical practice. By directly associating molecular 
features with subtype classification, our study provides an easily applicable framework for CC risk stratification 
and precision treatment. This gene-based classification strategy not only enables more accurate guidance for 
clinical decision-making but also provides a robust basis for developing personalized therapeutic approaches 
tailored to different molecular subtypes. Ultimately, this approach advances the practical implementation of 
precision medicine in CC.

Despite the achievements of this study, several limitations remain to be addressed. First, the mechanistic 
exploration in this study is not sufficiently in-depth, particularly regarding the specific roles of core genes in 
the HRG and LRG in regulating immune responses, the TME, and tumor progression. The precise regulatory 
mechanisms of these genes within key molecular pathways remain unclear and require further investigation. 
Additionally, although suspected transient amplifying cell clusters were identified in NC group, their functional 
characteristics and specific connections to precancerous lesions or malignant transformation have not been 
thoroughly explored. This may limit a comprehensive understanding of the role of these cells in CC initiation and 
progression, as well as their clinical significance. These limitations provide clear directions for future research 
and lay the foundation for a deeper understanding of the molecular mechanisms underlying CC development.

Conclusion
This study systematically investigates the expression patterns, biological functions, and clinical significance of 
NCCGs in CC and other epithelial-derived malignancies by integrating scRNA-seq and snRNA-seq, public 
databases, and multiple analytical approaches. By constructing comprehensive scRNA-seq and snRNA-seq 
atlases of CC, significant heterogeneity in the TME was revealed across different CC subtypes (e.g., SCC and 
ADC) and stages of progression (e.g., CCI and CCII), with dynamic changes observed in the proportional 
distribution of key cellular clusters, including Lym, Fb, and Ec. Using various validation methods, malignant Epi 
clusters and their specific signaling pathways were precisely identified, elucidating the pivotal role of NCCGs in 
regulating tumor cell proliferation, immune evasion, and TME remodeling. Furthermore, leveraging data from 
the TCGA database and external validation cohorts, this study confirmed the prognostic value of NCCGs in 
predicting OS and uncovered their potential applications in assessing immune infiltration, TMB, and responses 
to immunotherapy and chemotherapy.

Based on these findings, our study highlights the potential of NCCGs as biomarkers for predicting patient 
outcomes and responses to specific treatments, such as immunotherapy and chemotherapy. The identification of 
these genes and their associated signaling pathways opens new avenues for the development of targeted therapies 
aimed at modulating tumor cell proliferation, immune evasion, and TME remodeling. These discoveries not 
only enhance our understanding of the molecular mechanisms underlying CC but also provide a foundation for 
advancing personalized treatment strategies in clinical practice.
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Data availability
All computational codes used in the analyses are available on GitHub at ​h​t​t​p​s​:​/​/​g​i​t​h​u​b​.​c​o​m​/​W​j​w​1​5​7​5​7​8​7​2​9​3​1​/​
N​C​C​G​s​​​​​.​​
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