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Optimization of cable tension in
large-span cable-stayed bridges
based on RBF neural network and
iImproved sea-gull algorithm

Dan Zhao!, Hua Wang?3"“ & Mengsheng Yu3*

To enhance the reliability of cable force optimization in large-span cable-stayed bridges, this study
presents a force optimization model that considers reliability indicators specific to these types of
bridges. A structural surrogate model was established by employing a Radial Basis Function Neural
Network (RBFNN) to accurately capture the mapping relationship between random variables and the
structural response. Enhancements were introduced to address the limitations of the standard Seagull
Optimization Algorithm (SOA) through refracted backpropagation learning and nonlinear convergence
strategies. A combined force optimization method was devised by integrating the RBFNN and the
improved SOA. An empirical analysis was performed on a large-span cable-stayed bridge to validate
the feasibility of the proposed approach. The results demonstrated the RBFNN's ability to effectively
capture the nonlinear mapping between structural random variables and dynamic responses. The
enhanced seagull algorithm exhibited substantial performance improvements compared to the original
algorithm, providing better solutions for force optimization considering reliability indicators. Following
optimization, although the overall trend of tension distribution remained similar to the original
distribution, adjustments were made to specific tension points to varying degrees. Notably, the
deflection of the main beam in the middle span was significantly improved, with a maximum reduction
of approximately 36.21%. Furthermore, there was a slight improvement in the reliability indicators for
tension, with a maximum increase of approximately 9%.

Keywords Large-span cable-stayed bridge, Cable force optimization, Radial basis function neural network,
Seagull optimization algorithm, Refraction-based reverse learning, Nonlinear convergence

Effective control of cable forces is crucial in the design, construction, and operation of large-span cable-stayed
bridges'. Proper distribution of cable forces is essential to meet the stress and linearity requirements of the
main beam in these structures’. Various methods have been proposed to adjust cable forces®. For example,
researchers have developed the “feasible region” approach, which uses the stresses of the top and bottom plates to
calculate cable forces and determine the optimal bridge configuration®. Other techniques include the influence
matrix method®, positive installation iterative method®, stress balance method’and stress-free state method?.
However, for large-span cable-stayed bridges with many cables or asymmetric heterogeneous structures, the
computational complexity of these methods becomes prohibitively high® limiting their practical application'.
Fortunately, advances in computer technology have introduced new ways to adjust cable forces swiftly using
optimization algorithms®. Current leading approaches for cable force optimization include simulated annealing
algorithm!!,genetic algorithms'?, particle swarm optimization!?, response surface methodology'* and neural
networks'®. These techniques convert the cable force optimization problem into a mathematical model'
considering various objective functions such as bending strain energy, linear elevations, tower deflection, and
stress. Computers then rapidly solve these objective functions and decision variables!”.

Current research primarily focuses on adjusting cable forces to meet construction safety requirements
and ensure that stress and shape parameters align with the main bridge state'®. These studies typically rely on
deterministic models, often overlooking the uncertain factors present during the construction of cable-stayed
bridges. During construction, these bridges remain in a cantilever state, exhibiting significantly lower stiffness
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compared to their fully completed form!°. The construction force conditions are complex and characterized
by numerous uncertainties. Consequently, the risk associated with cable stayed bridges during construction
generally exceeds that during the operational phase, affecting both bridge completion and operational safety.
Therefore, considering cable force reliability is crucial during cable optimization for cable-stayed bridges. This
consideration helps achieve construction safety control goals, reduces the probability of structural failure,
enhances bridge operational reliability, and lowers operational maintenance costs. To address these issues, this
paper presents a cable optimization method that incorporates cable force reliability indicators. This method uses
the Radial Basis Function Neural Network (RBFNN) to capture the structural response relationship and solves
the cable optimization problem using the enhanced seagull optimization algorithm. Thus, the proposed method
offers a novel solution to the cable optimization problem commonly encountered in cable-stayed bridges.

Solution of reliability index based on RBFNN

Implicit function fitting based on RBFNNs

Due to the structural complexity of large-span cable-stayed bridges, their functional functions often exhibit
nonlinearity and multimodality, posing challenges in providing an explicit expression for the limit state
equation. Existing first-moment and second moment methods are incapable of directly calculating the reliability
of implicit functions. Although the Monte Carlo method is independent of explicit functions, it suffers from
inefficiency in computing the reliability of complex structures due to the requirement of a significant number of
data samples. As a result, it lacks practical value in engineering applications®. To tackle this issue, the present
study employs the radial basis function neural network (RBFNN) to fit the response surface of the function.
By eliminating the reliance on structural, functional functions, this method constructs a surrogate model of
the function through training samples, demonstrating promising applicability in high-dimensional nonlinear
models of complex structures?!.

RBENN is a neural network architecture with three layers of feedforward, including the input layer, hidden
layer, and output layer??. In this architecture, the in-put layer transmits variables to the hidden layer, where they
undergo a nonlinear transformation before being propagated to the output layer. Subsequently, the output layer
is subjected to a normalization process?. The architecture diagram is shown in Fig. 1.

The accuracy of data fitting in the hidden layer of the RBFNN heavily relies on the choice of the mapping
function. This paper employs the Gaussian radial basis function as the mapping function in the hidden layer, as
it effectively addresses the challenge of “dimension catastrophe” that emerges when fitting intricate functions,
thereby decreasing the computational burden. The Gaussian radial basis function finds extensive application
in various areas like image recognition, damage modeling, and model prediction. Equation (1) presents its
mathematical representation.
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Where, u,(x) is the output function of the hidden layer nodes; c; represents the center vector group of the
Gaussian function; x is a set of input vectors; ¢ denotes the variance of the radial basis function.

To minimize the workload associated with neural network training, it is crucial to carefully select training data
of superior quality. This study employed the uniform design function integrated within the DPS(Data Processing
System)to iteratively generate more refined and consistent experimental design variables, as the uniform design
method offers increased dimensionality and improved data uniformity. Within the MATLAB environment, the
newrb function is specifically employed for the construction of the RBFNN, as demonstrated in Eq. 2.

[net, tr] = newrb(P,T,GOAL,SPREAD, MN,DF) )

Where,net’ refers to the output radial basis function network object, while ‘tr’ represents the training record
structure containing relevant information about the training process. P represents the input vector matrix; T
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Fig. 1. RBFNN Network structure.
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represents the output vector matrix; GOAL represents the mean squared error of the neural network; SPREAD
is the spreading constant of the neural network, which controls the width of the Gaussian kernel function. The
default value for SPREAD is 1, but it can be adjusted based on the desired mean squared error target, typically
ranging from 0.5 to 4. MN represents the maximum number of neurons in the neural network. DF represents
the number of neurons added between displays, with a default value of 25 in newrb.

The process of fitting the RBFNN function proceeds as follows: Initially, Latin hypercube sampling was
applied to the initial finite element model to generate the initial training samples. Subsequently, the data was
preprocessed to obtain input-output variable samples for the RBFNN. Finally, the RBFNN was utilized to fit
the hidden function of the structure, and the resultant RBFNN structural surrogate model was outputted upon
reaching the desired accuracy. If the desired accuracy was not achieved, training was continued for further
fitting.

Solving the structural reliability index based on RBFNN

Reliability quantifies the probability of a structure successfully performing its intended function within a given
time and space. Under specific circumstances, the reliability of a structure can serve as a quantitative measure
of engineering structural safety. Introducing the concept of the structure’s functional function is essential for
describing the reliability index of an engineering structure. Due to diverse main failure modes encountered by
different structures under varying loading conditions, the corresponding functional functions vary accordingly.
Assuming the presence of random variables X b Xpeoos X which exert an influence on the structural reliability,
the functional function of the structure can be defined as Z = G(X), as indicated in Eq. (3).

Z=G(X)=G(X1,Xa2,.., Xn) 3)

Based on the definition provided in Eq. (3), a structural function G(X) =0 indicates that the structure is in a state
of limit. On the other hand, when G(X) >0, the structure is deemed to be in a state of reliability. Conversely, when
G(X) <0, the structure is considered to be in a state of failure.

Based on the principles of probabilistic statistics, the failure probability of the structure, denoted as P, is
defined. The reliability index of the structure is then derived from the distribution function associated with this
failure probability. Assuming that the random variables influencing the structural function are governed by a
probability density function, f,(x), along with a cumulative distribution function, f,(x), the failure probability of
the structure can be mathematically expressed as Eq. (4).

Pf :/Zg()de(:L') :/,../Zgofx(ml,l'g,...,:En)dx1dl'2,..dmn (4)

Obtaining the probability density function of the random variables that impact engineering structures is often
difficult. Consequently, estimating the failure probability of a structure using Eq. (4) becomes challenging. To
address this issue, the structural function is assumed to adhere to a normal distribution, namely Z~N(y,, 0,).
Hence, the re-liability index is defined by Eq. (5).
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Where, 8 represents the reliability index; 4, denotes the mean value; 0, corresponds to the variance.

In accordance with the aforementioned theory, the RBFNN algorithm is employed to approximate the
implicit function of the structure during its normal operational limit state. Subsequently, the reliability index
of the structure is determined through an optimization process and the evaluation of unresolved data points.
Figure 2 visually illustrates the procedure for calculating the structural reliability using RBFNN. The specific
steps are as follows:

a. Utilizing the original finite element model of the structure, the Latin hypercube sampling method was em-
ployed to generate a training dataset that encompasses both random variables and the corresponding struc-
tural response.

b. The training samples of RBFNN were preprocessed to learn and fit the nonlinear mapping relationship be-
tween random variables and the structural response.

c. The RBFNN model was evaluated to verify its adherence to the desired accuracy requirements for fitting. If
the model meets the specified criteria, it is outputted. However, if the model failed to meet the requirements,
additional training was performed to improve the fitting performance.

d. The Monte Carlo simulation method was employed to perform importance sampling near the validation
points and calculate the reliability index of the structure.

Seagull optimization algorithm based on Opposition-Based learning
Standard seagull optimization algorithm (SOA)
SOA is an intelligent optimization algorithm that leverages the migratory and foraging behaviors of seagulls
within a population. Initially introduced by Gaurav Dhiman, this algorithm has undergone subsequent
enhancements and refinements by numerous experts and scholars?.

SOA employs two fundamental processes in its evolution: global development and local search. Global
development is achieved through the migration behavior observed in the seagull population. To prevent
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Fig. 2. Flow of structural reliability calculation based on RBFENN.

collisions during the migration process, an additional variable, SA, is introduced to update the positions of
individual seagulls within the search space, denoted as Ps(t). This update is represented by Eq. (6):

Cs(t) = Sa x Ps(t) (6)

SAICfX(l— (7)

tmax

Where, CS( t) is the new position of an individual seagull; C, is a constant additional variable; ¢ represents the
current iteration number of the algorithm; ¢, is the maxi-mum iteration number set for the algorithm.

In addition to mitigating position collisions, each seagull within the population strives to relocate toward a
more advantageous position for improved survival. This entails determining the direction between the seagull
individual and the best performing individual. This relative direction, denoted by M (t), is precisely depicted by
Eq. (8).

M;(t) = O x (Phs(t) — Ps(1)) (8)
Cg =2 x S’ x rand|0, 1] )

Where, C, is a random variable that balances global and local search; P, (t) represents the position of the best
individual at the current iteration. rand[0,1] denotes a random number uniformly distributed between 0 and 1.

Once the relative direction between the best and current individuals has been determined, each seagull
within the population can update its initial position based on the optimal position direction. Consequently, it
becomes crucial to ascertain the relative distance between the current and best individuals. This relative distance
is represented by D (1), as illustrated below:

Ds(t) = |Cs(t) + Ms(2)] (10)

Seagull populations exhibit spiraling movements during seasonal migration and engage in predatory behavior
towards other birds or organisms during flight. This predatory behavior is incorporated into the algorithm as a
local search process, as depicted in Fig. 3.

This behavior can be represented in Cartesian coordinates as Eq. (11).

av
r=u-e

z =1 cos(a) (11)
y=r-sin(a)
z=r-«

Where, r represents the motion radius of seagulls during spiral flight; & denotes the attack angle, with values
uniformly distributed between [0, 27]; u, v are constant parameters defining the shape of the seagull’s spiral
flight.

Based on the principles, the final position of the seagull can be derived, as shown in Eq. (12).

Pi(t) = Ds(t) - -y - 2+ Pos(t) (12)
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Fig. 3. Aggressive behavior of seagull population.

0:

‘@ =
*

S @ mmrmmemm e mam s

~e

.
v

Fig. 4. Initialization Strategy Based on Refraction Opposition-based Learning.

Seagull optimization algorithm based on reverse Learning(RSOA)
Population diversity is a crucial factor influencing the performance of the intelligent swarm optimization
algorithm, particularly during population initialization. Inadequate initialization strategies may necessitate
more iteration steps in the algorithm’s early stages to achieve global development. The random nature of
global development increases the likelihood of converging on local extrema, thereby impacting the algorithm’s
subsequent local search capability. To circumvent the reduced convergence accuracy resulting from inappropriate
population initialization strategies in the seagull optimization algorithm, this study proposes an Improved
Seagull Optimization Algorithm Based on Reverse Learning (RSOA).The fundamental principle is illustrated
in Fig. 4.

In Fig. 4, u and I represent the upper and lower boundaries of the search range symmetrically centered around
the origin. If a scaling factor k is set as k = h/h*, then according to the principle of refraction and antagonistic

learning, the positions of the new population can be expressed by Eq. (13)%.
* _l]'—FUj l]' +Uj Tij
=t T e (13)
Rl +u)/2—x
,_ Il w/2—a] ”

hlz* — (1 + u)/2]

Where, x, represents the position of the i-th individual seagull in the j-th dimension; x,* represents the new
position of the i-th individual seagull in the j-th dimension after refraction and antagonistic learning; U and l]
are the upper and lower bounds of the search space in the j-th dimension.

The procedure for initializing the population using reverse refraction learning is as follows: firstly, randomly
initialize the positions of seagull individuals within the search space; secondly, generate seagull population
positions based on reverse refraction learning using Eq. (13); finally, calculate the fitness of both the new and
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old positions. The individuals with the highest fitness from the original seagull population are selected as the
initial population.

In the standard SOA, the additional variable SA is a first order function that linearly decreases throughout
the algorithm cycle. However, for high-dimensional optimization problems, there is a risk of insufficient early
convergence speed, reducing the efficiency of the algorithm execution, as well as excessively fast convergence
in later stages, which affects the local search capability. To address this, this paper introduced a non-linear
convergence method based on sine improvement to enhance the additional variable SA of the SOA?S. The
improved formula is given by Eq. (15).

C — Ct,mi
Sa—[1-sin(Z 4 )] [Crpax — - — X Ztmin (15)
max Tmax
Where, C and C, . are the upper and lower limits of the control factor for the additional variable. In this

paper, C m:luzlnd C fi ‘are set as 2 and 0, respectively.

The curves representlng the additional variable before and after improvement are illustrated in Fig. 5. From
the figure, it was evident that during the early stages of algorithm iteration, the enhanced non-linear convergence
curve, which is based on the sine function, achieved a quicker convergence. However, in the later stages of
the algorithm, when the seagull population began to congregate around local extreme points, the non-linear
additional variable reduced the convergence speed of the algorithm. The control algorithm emphasized local
search to prevent the seagull flock from becoming trapped in local optima. The improved nonlinear additional

variable significantly enhanced the algorithm’s search efficiency and convergence accuracy.

Algorithm performance testing

To verify the effectiveness of RSOA, we conducted algorithm performance testing by comparing it with the
standard SOA and Improved Particle Swarm Optimization (IPSO)?. The population size (N) was set to 30, the
algorithm dimensionality (D) was set to 30, and the maximum number of iterations (T, ) was set to 500. The
algorithm was independently executed 50 times. The central processor is an Intel Core {5-12400 F CPU@2.50
GHz, and the RAM is 16GB.

The performance of each algorithm was tested using 10 benchmark functions selected from CEC2019, with
the basic information of these test functions shown in Table 1%%.

Table 2 presents the optimization results of the algorithms after 50 independent runs. From Table 2, it can
be observed that for the unimodal test function F1, all algorithms converge to the theoretical optimal value,
demonstrating high optimization stability. For the multimodal and multidimensional test function F2, as well
as the hybrid and composite functions F3 to F10, the multi-strategy improved RSOA algorithm exhibits higher
convergence accuracy and stronger optimization stability compared to other algorithms of the same type. This
validates the effectiveness of the improvement strategies proposed in this study.

For a visual comparison of algorithm performance, Fig. 6 presents the convergence curves of each algorithm
under different test functions.

From Fig. 6(a), it was observed that the IPSO exhibited slightly better convergence efficiency and accuracy
than the SOA in the Sphere test function. However, the difference is not significant. All standard algorithms
demonstrated similar convergence speeds throughout the algorithm iteration cycle. By observing the
convergence curve of the improved hybrid strategy-based RSOA, a significant enhancement in its optimization
capability was evident. Compared to other standard algorithms, the RSOA achieved the theoretical optimum
after approximately 250 iterations, demonstrating significantly higher optimization speed and accuracy.
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Fig. 5. Change curve of nonlinear additional variables.
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Function number | Function name The theoretical optimal solution

F1 Sphere 0

F2 Rastrigin 0

F3 Ackley 0

F4 Weierstrass 0

F5 Griewank 0

F6 Hybrid Composition Function 1 | 0

F7 Hybrid Composition Function 2 | 0

F8 Composite Function 1 0

F9 Composite Function 2 0

F10 Composite Function 3 0

Table 1. Test function basic information.

Function number | Algorithm | AVG BEST STD
IPSO 0.00 0.00 0.00

F1 SOA 0.00 0.00 0.00
RSOA 0.00 0.00 0.00
IPSO 457x107% | 6.34x1071 | 7.27x 1077

F2 SOA 2.84x1073 | 5.75x10712 | 7.13x107°
RSOA 1.78x 10718 | 9.14x 1072 | 3.47x 1072
IPSO 3.35x10717 | 6.64x 1071 | 5.67x 1071

F3 SOA 425x1071% | 6.68x10720 | 3.27x 10714
RSOA 4.91x1073 | 594x 10738 | 4.28x 1073
IPSO 1.52x10°% | 6.51x1071 | 1.98x 1078

F4 SOA 2.08x107% | 9.36x1071 | 6.54x 1077
RSOA 1.27x1071* | 4.83x107% | 7.02x 107 1%
IPSO 321x10717 [ 7.98x1072* | 5.85x 1077

F5 SOA 6.22x10718 | 9.81x10°% | 2.56x 1071
RSOA 4.09%1073! | 1.63x 10737 | 7.44x 1073
IPSO 4.96x107° | 7.71x107'¢ | 2.86x 1078

F6 SOA 9.07x107° | 6.84x10718 | 7.08x107°
RSOA 5.64x10712 | 8.19x107" | 3.05x10°13
IPSO 6.34x10717 | 4.67x107% | 5.95x107%°

F7 SOA 1.20x 10718 | 457x1072! | 7.84x 10720
RSOA 5.43x107% | 8.90x1073 | 3.65x10°%
IPSO 8.04x107% | 8.69x1071 | 3.65x1077

F8 SOA 1.76x1077 | 4.21x107! | 7.59x 1077
RSOA 5.97x10712 | 831x10716 | 3.86x 107!
IPSO 5.49x107¢ | 7.78x107% |6.31x107°

F9 SOA 1.18x1077 | 4.74x10™° |7.20x10°¢
RSOA 526x107!! | 8.53x1071 | 3.10x107°
IPSO 2.08x107° | 9.89x10710 | 3.12x10°¢

F10 SOA 4.48x107% [ 7.93x107!! | 5.70x10°¢
RSOA 825x10712 [ 3.69x107"7 | 6.58x 10!

Table 2. Test function basic information.

As shown in Fig. 6(b), for the multimodal test function Restringing, there was little difference in convergence
accuracy and speed between the IPSO and SOA. Despite SOA getting entrapped in local optima prematurely,
IPSO displayed a slower convergence speed. However, the RSOA demonstrated superior optimization stability.
Initially, the algorithm swiftly converged to the global optimum with remarkable efficiency and eventually

reached the theoretical optimum after approximately 400 iterations.

After analyzing the convergence curves of diverse test functions, it became apparent that the integration of
mixed strategies exerted a positive influence on enhancing the SOA. The RSOA consistently upheld exceptional
optimization performance across a range of test functions, surpassing comparable algorithms, thereby

substantiating the efficacy of the improvement strategies.
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Fig. 6. Test the function convergence curve. (a) Test function F1 convergence curve; (b) Test function F2
convergence curve.

Cable force optimization method based on RBFNN-RSOA under re-liability index
control

Mathematical model of force optimization considering reliability index

During the construction phase, cable-stayed bridges experience a combination of tensile, compressive, and
bending forces. Excessive bending moments can adversely affect the structural linearity and stress distribution,
emphasizing the importance of care-fully managing cable tensile forces. The bending strain energy of the main
beam in cable-stayed bridges can be calculated using Eq. (16).

Zi=U= Z BT (Mg,? + Mg,?) (16)
i=1

Where, I, represents the unit length; E, denotes the elastic modulus; I, is the moment of inertia; M;; and M,
correspond to the bending moments at the left and right ends of the differential element, respectively.

While adjusting the cable force, it is also necessary to control the deflection of the towers in cable-stayed
bridges. The deflection objective function of the tower is represented by Eq. (17).

Zy=D=) ¢ (17)
=1

Where, D represents the longitudinal displacement of the bridge; m is the number of offset measurement points
on the bridge tower; d signifies the displacement of the bridge tower.

Fluctuations in cable force exert a substantial influence on both the overall reliability of cable-stayed bridges
and the reliability of their individual components. Focusing solely on the safety or uniformity of cable force
in optimization does not provide an accurate portrayal of structural risks. To address this, the present study
incorporates reliability as a constraint, requiring that the minimum reliability value of either the entire bridge
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or its individual components must meet prescribed criteria throughout the construction process. By referencing
relevant codes and research findings, the constraint condition is expressed as Eq. (18). with the specific value f
set at 3.7%8,

Minﬁ(m)min 2 60
on < on]
om < [om]
of < oy]

(18)

Where, 0, 0, , and o, represent the stress values of the main beam, bridge tower, and cables, respectively. [, ],
[0,,], and [0,] denote’the stress limits of the main beam, bridge tower, and cables, respectively. [af] represents the
cable force value considering a safety factor of 2.5%.

The optimization model, derived from the objective function and constraints, can be defined as follows:
minimize the bending strain energy of the main beam and the deflection of the bridge tower in a cable-stayed
bridge, while simultaneously ensuring the reliability of the structural system, the stress reliability of the cables,
and compliance with the stress limits of the cables. This mathematical formulation is expressed as Eq. (19).

ﬁndX = [X1,X2,X3 ...... X"}
{ minZ; = min U

min Z> = min D (19)

Minﬂ(x)min 2 60
on < [on]
om < [Um]
of < [oy]

st.

Where, X represents the optimal combination solution for cable force.

Cable force optimization model based on RBFNN-RSOA

The optimization of cable force in long-span cable-stayed bridges was approached through the combined
utilization of RBFNN and RSOA algorithms. The process for calculating the cable force optimization model
based on RBFNN-RSOA is depicted in Fig. 72°-3L.

a. Aninitial dataset was generated by constructing a finite element model of the structure in ANSYS. Following
data preprocessing, the RBFNN model was trained on the MATLAB platform to yield a network model that
achieves the desired accuracy.

b. Parameters related to the seagull optimization algorithm were initialized. The cable force combination vector
was transformed into positional coordinates within the search space, and the population size and the maxi-
mum number of iterations were determined.

c. Employing the RBFNN surrogate model, the fitness value of each seagull individual was computed, thus
allowing for the recording of the global optimal position within the seagull population.

Initialize the relevant parameters of
gull optimization algorithm

The seagull position is initialized
based on refraction reverse learning

Calculate fitness and retain global ¢
RBFNN optimality

Seagull migration and attack

Output the optimal position

Decompiled optimal cable force
combination

Fig. 7. Cable force optimization process based on RBFENN-RSOA.
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//Pseudo code for cable force optimization of cable-stayed bridge based on RBF neural
network and reverse learning seagull optimization algorithm

1 Data preparation and RBF neural network modeling
2 Initialization of Seagull Optimization Algorithm Based on Reverse Learning (RSOA)
3 Multi objective optimization iteration

3.1 Parameter Setting: Maximum Iteration Times T, Current Iteration t=1
3.2 | whilet<Tdo

3.2.1 | For each individual seagull X ;:Calculate fitness value

3.2.2 | Update seagull location

3.2.3 | Apply reverse learning mutation

3.2.4 | Constraint handling: If the cable force exceeds, map back to the feasible domain
325 | t=t+1
3.3 | end while

4 Output optimization results

Table 3. Pseudo code for cable force optimization model of cable-stayed bridge.

Fig. 8. Bridge type layout.

. Seagull migration and attack operations were subsequently executed.
e. The algorithm verified whether the termination condition had been met. If this condition was satisfied, the
global optimal position was output and decoded into the optimal combination of cable force. If not, the al-
gorithm returned to step c.

Partial pseudocode is shown in Table 3:

Engineering case study

Engineering overview and the finite element model

With the Nan Dongting Lake Bridge as the backdrop, the main span of the bridge measures (182 +450+ 182)
meters, making it a cable-stayed bridge featuring a double-tower, double-cable-plane semi-floating system. A
total of 136 parallel inclined cables, made of steel wire with a tensile strength of 1770 MPa, are installed on the
bridge. The inclined cables come in various specifications: PES7-85, PES7-109, PES7-127, PES7-151, and PES7-
187. The main beam is an orthogonal anisotropic bridge deck pan-el shaped like a flat steel box beam, with a
central height of 3 m and a width of 30.5 m (including the wind nozzle width). U-shaped stiffeners are positioned
on the top and bot-tom plates of the bridge. The steel box beam is constructed with Q345D material, while the
bridge towers are built using reinforced concrete with a concrete grade of C50. The layout of the bridge is shown
in Fig. 8.

A parameterized finite element model was created using ANSYS software, while the Link10 finite element
software was employed to simulate the cable system. The main beam was modeled using the BEAM188 element,
and the bridge tower was represented by the SOLID65 element. To connect the cable and the “fishbone” main
beam, a rigid MPC184 element was established. The constraints applied in other locations were implemented in
accordance with the design drawings. The structure of the finite element model is depicted in Fig. 9. The ANSYS
calculation results outlined in this paper primarily served to extract the structural response values of random
variables.

Selection of random variables and determination of failure modes
Taking displacement failure as the main mode, the structural function of a long-span cable-stayed bridge was
established. The function in the normal use limit state is shown in Eq. (20).

z = [u] — u(z) (20)
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Fig. 9. Finite element model.

Random variable types Mean Value | Coefficient of variation | Distribution type
Elastic modulus of stay cable (MPa) 1.95x10° 0.1 Normal

Elastic modulus of steel box girder (MPa) 1.95x10° 0.1 Normal

Bulk density of steel box girder (kg/m?) 7885 0.05 Normal

Elastic modulus of concrete for bridge tower (MPa) | 3.45x 10* 0.1 Normal

Concrete bulk density of bridge tower (kg/m?) 2600 0.05 Normal

Vehicle load(kg/m) 55 0.13 Extreme value type I

Table 4. RBFNN specifies the value of a random variable.

Parameter Value

Number of Hidden Layer Neurons | 50

Basis Function Width 2.0
Error Threshold 0.001
Maximum Iterations 200

Table 5. Parameter selection for RBFNN.

Where, [u] represents the displacement limit of the structure under the normal service limit state; U(x) denotes
the maximum displacement response of the structure corresponding to the random variable.

Uncertain factors, such as material properties, load conditions, and construction errors, can impact the
calculation results of the function. In this study, the elastic modulus of the inclined cable, the elastic modulus
of the steel box beam, the weight, and the elastic modulus of the bridge tower concrete were treated as random
variables, with structural deflection response as the output variable. The design variable ranges for the RBFNN
are shown in Table 4.The parameter settings of the RBFNN are shown in Table 5.

Result analysis

To validate the fitting accuracy of the RBENN, the finite element software was used to compute the response
results of 20 validation samples. Figure 10 shows the fitting results of the RBFNN for 10 validation samples.To
evaluate the accuracy of different surrogate models, the root mean square error (RMSE), mean absolute error
(MAE), and mean relative error (MRE) were employed to assess the predictive performance of each model. The
calculation formulas for these evaluation metrics are given in Eqs. (21)-(23).

n

rusE= | L3 (w-5) e

=1
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Fig. 10. RBFNN test set prediction accuracy.

Accuracy metrics | RMSE | MAE | MRE
RBFNN 0.39 030 |[2.16%
BPNN 0.89 0.78 | 5.80%
SVM 1.29 1.15 |8.55%

Table 6. Prediction accuracy of different models.

1 — _

MAE = — E s
n 2 Yi — Y, (22)

T
MRE = — 271 m (23)

Where,n is the total number of samples; y, is the true value; ¥/, is the predicted value.

Within the statistical parameter interval, 20 validation samples were randomly selected. As shown in Fig. 10,
the prediction results of the RBFNN demonstrate close agreement with the finite element computation results,
while both the BP neural network and SVM model exhibit significant prediction deviations.Table 6 presents the
accuracy validation results of different models. The data indicate that the RBFNN achieves a root mean square
error (RMSE) of only 0.39, a mean absolute error (MAE) of 0.30, and a mean relative error (MRE) of 2.16%. All
accuracy metrics surpass those of comparable machine learning algorithms. From the accuracy indicators, it
can be seen that RBFNN has achieved good fitting results, and the fitting accuracy can meet the requirements of
acting as a surrogate model for cable force optimization.

Figure 11 shows the locally fitted response surface of the RBFNN surrogate model. From Fig. 11, it can be
observed that the response surface is relatively smooth. As the elastic modulus of the stay cable or steel box
girder increases, the attenuation of the main girder’s deflection deformation gradually decreases, revealing the
coupled influence of their elastic module on the structural stiffness. The RBFNN surrogate model effectively
captures the structural response patterns, providing a precise basis for response prediction in the optimization
of cable forces for cable-stayed bridges.

By utilizing the response surface fitted by RBFNN as a surrogate model, the RSOA was employed to determine
the optimal combination of cable forces based on the previously constructed optimization model for long-span
cable-stayed bridges. The population size was set to 30, and the maximum number of iterations was set to 500
in the algorithm. The Pareto frontier distributions of the dual objectives are presented in Fig. 12. From Fig. 12, it
can be observed that RSOA exhibited higher convergence accuracy in the Pareto distribution compared to both
the original and improved SOA. This validates the effectiveness of the implemented improvement measures.

Table 7 presents a comparison of the efficiency of different models in cable force optimization. From Table 7,
it can be seen that under the premise of using the RSOA algorithm for cable force optimization, the single
iteration time of the RBFNN-based model is only 12.54 s, which is 86% lower than that of the FEM-based model.
This demonstrates a significant improvement in the efficiency of cable force optimization.

Since the left and right pylons of the cable-stayed bridge are symmetrically arranged along the mid-span,
and the mechanical characteristics of the front and rear double cable planes are identical, the structural analysis
is conducted for the left single cable plane. The initial cable forces are determined based on the principle of
minimizing the bending moment of the main girder under dead load. A finite element model of the cable-stayed
bridge is established to simulate the structural dead load, and the cable forces are iteratively adjusted until the
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Fig. 12. Pareto frontier distribution.

Calculation model | Time consumption per iteration/
RBFNN 12.54
FEM 89.64

Table 7. Optimization efficiency of different models.

bending moment distribution at the mid-span section of the main girder becomes uniform. The optimized
cable forces obtained through the RSOA algorithm are shown in Fig. 13.From Fig. 13, it is evident that the
distribution trend of the optimized cable forces closely aligns with the original distribution. The maximum cable
force decreased from 3266 kN to 3105 kN, while the minimum cable force increased from 1311 kN to 1350 kN.
The cable force range decreased from 1955 kN to 1755 kN, indicating enhanced uniformity in cable forces.

The changes in the deflection of the main beam before and after optimization are depicted in Fig. 14. It is
evident that the deflection of each controlled section significantly decreased after optimization, leading to a
noticeable improvement in the overall profile of the main beam. The most substantial reduction in deflection
was observed at the midspan of the main beam, where the deflection peak decreased from 0.116 m to 0.074 m,
representing a maximum reduction of approximately 36.21%. Similarly, at the midspan of the edge span, the
deflection was reduced from 0.089 m to 0.059 m, with a maximum reduction of approximately 33.71%. By
observing the change pattern and distribution of the overall deflection of the main beam before and after
optimization, it was concluded that increased tension after optimization exhibited a good control effect on the
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Fig. 14. Optimization results of vertical deflection of main beam.

deflection of the main beam. This verifies the effectiveness of the linear control objective function in controlling
the deflection of the main beam.

Due to the symmetrical distribution of the bridge structure, Fig. 15 presents the tower displacement results
before and after optimization on one side of the bridge tower. As shown in Fig. 15, the tower displacement
increases with the height of the tower. However, the tower displacement calculated based on the optimized cable
forces is significantly improved. The displacement at the top of the tower is reduced from 35.91 cm to 16.64 cm,
a decrease of approximately 53.67%, which verifies the effectiveness of the tower displacement control objective
function.

The calculation results of the reliability indices for stay cables before and after optimization are shown in
Fig. 16. As can be observed from Fig. 16, the reliability indices of most stay cables have improved to varying
degrees after optimization. Specifically, the reliability index of stay cable L9 increased from 4.21 to 4.59,
representing an improvement of 9.0%. On average, the reliability of each stay cable increased by approximately
3%, with mid-span cables showing significant improvement, while the reliability of support-point cables only
slightly increased. These results verify the effectiveness of the cable force optimization scheme considering
reliability indices, thereby enhancing the overall safety margin of the cable-stayed bridge structure.

Table 8 presents the measured results of the first four modal shapes of the bridge after cable force
optimization. As can be seen from Table 8, as the modal order increases, the bridge’s vibration modes
transition from longitudinal floating to vertical and lateral bending, with the vibration frequency gradually
increasing. This reflects the vibration characteristics and frequency distribution patterns of the bridge’s
various modal orders.
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Fig. 16. Reliability optimization results of cable-stayed cables.

Vibration mode order | Vibration mode characteristics | frequency(Hz)
1 First-order longitudinal drift 0.215
2 First-order vertical bend 0.352
3 First-order transverse bend 0.410
4 Second-order vertical bend 0.430

Table 8. Optimized Bridge natural frequency results.

Discussion

Based on the improved seagull optimization algorithm and RBF neural network, this paper proposes a cable
force optimization method for long-span cable-stayed bridge, which effectively improves the efficiency of
solving the cable force optimization problem of cable-stayed bridge, and ensures that the internal force and
linear distribution of the optimized cable-stayed bridge are more reasonable. However, at present, the modeling
process of RBF neural network is a little cumbersome, and a more convenient proxy model construction method

of cable-stayed bridge can be sought in the future.
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Conclusions

This paper presents a force optimization model that considers the reliability index for cable-stayed bridges.
The model is based on the RBFNN response surface method and the improved seagull algorithm. It effectively
addresses the force optimization problem in symmetrical large-span cable-stayed bridges. In the specific
context of a symmetrical large-span cable-stayed bridge project, an implicit functional approximation model is
established using the RBFNN. The cable forces of the cable-stayed bridge are then optimized using the improved
seagull mixed strategy optimization algorithm. The findings of this research can be summarized as follows:

(1) A method for establishing a proxy model for large-span cable-stayed bridges based on RBFNN is proposed.
This method accurately approximates the hidden function of the structure. Compared to the actual finite
element model, the maximum relative error of the 20 test sets is only 1.32%, indicating good fitting perfor-
mance.

(2) The Seagull Optimization Algorithm (SOA) is enhanced by incorporating refraction reverse learning for
initializing the population and employing a non-linear flight strategy. The effectiveness of the improved
strategy is verified through tests using the Sphere and Restringing benchmark functions. The test results
demonstrate that the RSOA outperforms both SOA and IPSO in terms of convergence speed and accuracy,
validating the effectiveness of the proposed approach.

(3) RSOA demonstrates good adaptability in solving force optimization problems for cable-stayed bridges.
Compared to SOA, RSOA exhibits better convergence effectiveness on the Pareto front and successfully
addresses the force optimization problem for cable-stayed bridges while considering the reliability index.

(4) Based on the engineering context of the long-span cable-stayed bridge, the findings indicate that the opti-
mized combination of cable forces for the bridge exhibits some level of fluctuation compared to the orig-
inal combination. However, the overall distribution trend of the cable forces remains largely consistent.
Following the optimization process, a notable improvement in the vertical deflection of the main beam is
observed. Specifically, the peak deflection at the midspan is reduced from 0.116 m to 0.074 m, representing
a reduction of approximately 36.21%. Moreover, the reliability of the mid-span cable stays has significantly
increased, while the improvement in the reliability of the anchor cable stays is relatively modest, with an
average increase of about 3% for each cable stay. These outcomes affirm the effectiveness of the employed
method.

Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable
request.
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