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To enhance the reliability of cable force optimization in large-span cable-stayed bridges, this study 
presents a force optimization model that considers reliability indicators specific to these types of 
bridges. A structural surrogate model was established by employing a Radial Basis Function Neural 
Network (RBFNN) to accurately capture the mapping relationship between random variables and the 
structural response. Enhancements were introduced to address the limitations of the standard Seagull 
Optimization Algorithm (SOA) through refracted backpropagation learning and nonlinear convergence 
strategies. A combined force optimization method was devised by integrating the RBFNN and the 
improved SOA. An empirical analysis was performed on a large-span cable-stayed bridge to validate 
the feasibility of the proposed approach. The results demonstrated the RBFNN’s ability to effectively 
capture the nonlinear mapping between structural random variables and dynamic responses. The 
enhanced seagull algorithm exhibited substantial performance improvements compared to the original 
algorithm, providing better solutions for force optimization considering reliability indicators. Following 
optimization, although the overall trend of tension distribution remained similar to the original 
distribution, adjustments were made to specific tension points to varying degrees. Notably, the 
deflection of the main beam in the middle span was significantly improved, with a maximum reduction 
of approximately 36.21%. Furthermore, there was a slight improvement in the reliability indicators for 
tension, with a maximum increase of approximately 9%.

Keywords  Large-span cable-stayed bridge, Cable force optimization, Radial basis function neural network, 
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Effective control of cable forces is crucial in the design, construction, and operation of large-span cable-stayed 
bridges1. Proper distribution of cable forces is essential to meet the stress and linearity requirements of the 
main beam in these structures2. Various methods have been proposed to adjust cable forces3. For example, 
researchers have developed the “feasible region” approach, which uses the stresses of the top and bottom plates to 
calculate cable forces and determine the optimal bridge configuration4. Other techniques include the influence 
matrix method5, positive installation iterative method6, stress balance method7and stress-free state method8. 
However, for large-span cable-stayed bridges with many cables or asymmetric heterogeneous structures, the 
computational complexity of these methods becomes prohibitively high9,limiting their practical application10.
Fortunately, advances in computer technology have introduced new ways to adjust cable forces swiftly using 
optimization algorithms8. Current leading approaches for cable force optimization include simulated annealing 
algorithm11,genetic algorithms12, particle swarm optimization13, response surface methodology14 and neural 
networks15. These techniques convert the cable force optimization problem into a mathematical model16 
considering various objective functions such as bending strain energy, linear elevations, tower deflection, and 
stress. Computers then rapidly solve these objective functions and decision variables17.

Current research primarily focuses on adjusting cable forces to meet construction safety requirements 
and ensure that stress and shape parameters align with the main bridge state18. These studies typically rely on 
deterministic models, often overlooking the uncertain factors present during the construction of cable-stayed 
bridges. During construction, these bridges remain in a cantilever state, exhibiting significantly lower stiffness 
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compared to their fully completed form19. The construction force conditions are complex and characterized 
by numerous uncertainties. Consequently, the risk associated with cable stayed bridges during construction 
generally exceeds that during the operational phase, affecting both bridge completion and operational safety. 
Therefore, considering cable force reliability is crucial during cable optimization for cable-stayed bridges. This 
consideration helps achieve construction safety control goals, reduces the probability of structural failure, 
enhances bridge operational reliability, and lowers operational maintenance costs. To address these issues, this 
paper presents a cable optimization method that incorporates cable force reliability indicators. This method uses 
the Radial Basis Function Neural Network (RBFNN) to capture the structural response relationship and solves 
the cable optimization problem using the enhanced seagull optimization algorithm. Thus, the proposed method 
offers a novel solution to the cable optimization problem commonly encountered in cable-stayed bridges.

Solution of reliability index based on RBFNN
Implicit function fitting based on RBFNNs
Due to the structural complexity of large-span cable-stayed bridges, their functional functions often exhibit 
nonlinearity and multimodality, posing challenges in providing an explicit expression for the limit state 
equation. Existing first-moment and second moment methods are incapable of directly calculating the reliability 
of implicit functions. Although the Monte Carlo method is independent of explicit functions, it suffers from 
inefficiency in computing the reliability of complex structures due to the requirement of a significant number of 
data samples. As a result, it lacks practical value in engineering applications20. To tackle this issue, the present 
study employs the radial basis function neural network (RBFNN) to fit the response surface of the function. 
By eliminating the reliance on structural, functional functions, this method constructs a surrogate model of 
the function through training samples, demonstrating promising applicability in high-dimensional nonlinear 
models of complex structures21.

RBFNN is a neural network architecture with three layers of feedforward, including the input layer, hidden 
layer, and output layer22. In this architecture, the in-put layer transmits variables to the hidden layer, where they 
undergo a nonlinear transformation before being propagated to the output layer. Subsequently, the output layer 
is subjected to a normalization process23. The architecture diagram is shown in Fig. 1.

The accuracy of data fitting in the hidden layer of the RBFNN heavily relies on the choice of the mapping 
function. This paper employs the Gaussian radial basis function as the mapping function in the hidden layer, as 
it effectively addresses the challenge of “dimension catastrophe” that emerges when fitting intricate functions, 
thereby decreasing the computational burden. The Gaussian radial basis function finds extensive application 
in various areas like image recognition, damage modeling, and model prediction. Equation  (1) presents its 
mathematical representation.

	
ui(x) = exp

[
− (x − ci)T (x − ci)

2σ2
i

]
� (1)

Where, ui(x) is the output function of the hidden layer nodes; ci represents the center vector group of the 
Gaussian function; x is a set of input vectors; σ denotes the variance of the radial basis function.

To minimize the workload associated with neural network training, it is crucial to carefully select training data 
of superior quality. This study employed the uniform design function integrated within the DPS(Data Processing 
System)to iteratively generate more refined and consistent experimental design variables, as the uniform design 
method offers increased dimensionality and improved data uniformity. Within the MATLAB environment, the 
newrb function is specifically employed for the construction of the RBFNN, as demonstrated in Eq. 2.

	 [net, tr] = newrb(P, T, GOAL, SP READ, MN, DF )� (2)

Where,‘net’ refers to the output radial basis function network object, while ‘tr’ represents the training record 
structure containing relevant information about the training process. P represents the input vector matrix; T 

Fig. 1.  RBFNN Network structure.
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represents the output vector matrix; GOAL represents the mean squared error of the neural network; SPREAD 
is the spreading constant of the neural network, which controls the width of the Gaussian kernel function. The 
default value for SPREAD is 1, but it can be adjusted based on the desired mean squared error target, typically 
ranging from 0.5 to 4. MN represents the maximum number of neurons in the neural network. DF represents 
the number of neurons added between displays, with a default value of 25 in newrb.

The process of fitting the RBFNN function proceeds as follows: Initially, Latin hypercube sampling was 
applied to the initial finite element model to generate the initial training samples. Subsequently, the data was 
preprocessed to obtain input-output variable samples for the RBFNN. Finally, the RBFNN was utilized to fit 
the hidden function of the structure, and the resultant RBFNN structural surrogate model was outputted upon 
reaching the desired accuracy. If the desired accuracy was not achieved, training was continued for further 
fitting.

Solving the structural reliability index based on RBFNN
Reliability quantifies the probability of a structure successfully performing its intended function within a given 
time and space. Under specific circumstances, the reliability of a structure can serve as a quantitative measure 
of engineering structural safety. Introducing the concept of the structure’s functional function is essential for 
describing the reliability index of an engineering structure. Due to diverse main failure modes encountered by 
different structures under varying loading conditions, the corresponding functional functions vary accordingly. 
Assuming the presence of random variables X1, X2,…, Xn, which exert an influence on the structural reliability, 
the functional function of the structure can be defined as Z = G(X), as indicated in Eq. (3).

	 Z = G(X) = G(X1, X2, ..., Xn)� (3)

Based on the definition provided in Eq. (3), a structural function G(X) = 0 indicates that the structure is in a state 
of limit. On the other hand, when G(X) > 0, the structure is deemed to be in a state of reliability. Conversely, when 
G(X) < 0, the structure is considered to be in a state of failure.

Based on the principles of probabilistic statistics, the failure probability of the structure, denoted as Pf, is 
defined. The reliability index of the structure is then derived from the distribution function associated with this 
failure probability. Assuming that the random variables influencing the structural function are governed by a 
probability density function, fX(x), along with a cumulative distribution function, fX(x), the failure probability of 
the structure can be mathematically expressed as Eq. (4).

	
Pf =

ˆ
Z⩽0dFX(x) =

ˆ
...

ˆ
Z⩽0fX(x1, x2, ..., xn)dx1dx2...dxn� (4)

Obtaining the probability density function of the random variables that impact engineering structures is often 
difficult. Consequently, estimating the failure probability of a structure using Eq. (4) becomes challenging. To 
address this issue, the structural function is assumed to adhere to a normal distribution, namely Z ~ N(µz, σz). 
Hence, the re-liability index is defined by Eq. (5).

	
β = µz

σz
� (5)

Where, β represents the reliability index; µz denotes the mean value; σz corresponds to the variance.
In accordance with the aforementioned theory, the RBFNN algorithm is employed to approximate the 

implicit function of the structure during its normal operational limit state. Subsequently, the reliability index 
of the structure is determined through an optimization process and the evaluation of unresolved data points. 
Figure 2 visually illustrates the procedure for calculating the structural reliability using RBFNN. The specific 
steps are as follows:

	a.	 Utilizing the original finite element model of the structure, the Latin hypercube sampling method was em-
ployed to generate a training dataset that encompasses both random variables and the corresponding struc-
tural response.

	b.	 The training samples of RBFNN were preprocessed to learn and fit the nonlinear mapping relationship be-
tween random variables and the structural response.

	c.	 The RBFNN model was evaluated to verify its adherence to the desired accuracy requirements for fitting. If 
the model meets the specified criteria, it is outputted. However, if the model failed to meet the requirements, 
additional training was performed to improve the fitting performance.

	d.	 The Monte Carlo simulation method was employed to perform importance sampling near the validation 
points and calculate the reliability index of the structure.

Seagull optimization algorithm based on Opposition-Based learning
Standard seagull optimization algorithm (SOA)
SOA is an intelligent optimization algorithm that leverages the migratory and foraging behaviors of seagulls 
within a population. Initially introduced by Gaurav Dhiman, this algorithm has undergone subsequent 
enhancements and refinements by numerous experts and scholars24.

SOA employs two fundamental processes in its evolution: global development and local search. Global 
development is achieved through the migration behavior observed in the seagull population. To prevent 
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collisions during the migration process, an additional variable, SA, is introduced to update the positions of 
individual seagulls within the search space, denoted as Ps(t). This update is represented by Eq. (6):

	 Cs(t) = SA × Ps(t)� (6)

	
SA = Cf × (1 − t

tmax
)� (7)

Where, Cs(t) is the new position of an individual seagull; Cf is a constant additional variable; t represents the 
current iteration number of the algorithm; tmax is the maxi-mum iteration number set for the algorithm.

In addition to mitigating position collisions, each seagull within the population strives to relocate toward a 
more advantageous position for improved survival. This entails determining the direction between the seagull 
individual and the best performing individual. This relative direction, denoted by Ms(t), is precisely depicted by 
Eq. (8).

	 Ms(t) = CB × (Pbs(t) − Ps(t))� (8)

	 CB = 2 × SA
2 × rand[0, 1]� (9)

Where, CB is a random variable that balances global and local search; Pbs(t) represents the position of the best 
individual at the current iteration. rand[0,1] denotes a random number uniformly distributed between 0 and 1.

Once the relative direction between the best and current individuals has been determined, each seagull 
within the population can update its initial position based on the optimal position direction. Consequently, it 
becomes crucial to ascertain the relative distance between the current and best individuals. This relative distance 
is represented by Ds(t), as illustrated below:

	 Ds(t) = |Cs(t) + Ms(t)|� (10)

Seagull populations exhibit spiraling movements during seasonal migration and engage in predatory behavior 
towards other birds or organisms during flight. This predatory behavior is incorporated into the algorithm as a 
local search process, as depicted in Fig. 3.

This behavior can be represented in Cartesian coordinates as Eq. (11).

	

r = u · eαv




x = r · cos(α)
y = r · sin(α)
z = r · α

� (11)

Where, r represents the motion radius of seagulls during spiral flight; α denotes the attack angle, with values 
uniformly distributed between [0, 2π]; u, v are constant parameters defining the shape of the seagull’s spiral 
flight.

Based on the principles, the final position of the seagull can be derived, as shown in Eq. (12).

	 Ps(t) = Ds(t) · x · y · z + Pbs(t)� (12)

Fig. 2.  Flow of structural reliability calculation based on RBFNN.
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Seagull optimization algorithm based on reverse Learning(RSOA)
Population diversity is a crucial factor influencing the performance of the intelligent swarm optimization 
algorithm, particularly during population initialization. Inadequate initialization strategies may necessitate 
more iteration steps in the algorithm’s early stages to achieve global development. The random nature of 
global development increases the likelihood of converging on local extrema, thereby impacting the algorithm’s 
subsequent local search capability. To circumvent the reduced convergence accuracy resulting from inappropriate 
population initialization strategies in the seagull optimization algorithm, this study proposes an Improved 
Seagull Optimization Algorithm Based on Reverse Learning (RSOA).The fundamental principle is illustrated 
in Fig. 4.

In Fig. 4, u and l represent the upper and lower boundaries of the search range symmetrically centered around 
the origin. If a scaling factor k is set as k = h/h*, then according to the principle of refraction and antagonistic 
learning, the positions of the new population can be expressed by Eq. (13)25.

	
x∗

ij = lj + uj

2 + lj + uj

2kη
− xij

kη
� (13)

	
η = h∗[(l + u)/2 − x]

h[x∗ − (l + u)/2] � (14)

Where, xij represents the position of the i-th individual seagull in the j-th dimension; xij* represents the new 
position of the i-th individual seagull in the j-th dimension after refraction and antagonistic learning; uj and lj 
are the upper and lower bounds of the search space in the j-th dimension.

The procedure for initializing the population using reverse refraction learning is as follows: firstly, randomly 
initialize the positions of seagull individuals within the search space; secondly, generate seagull population 
positions based on reverse refraction learning using Eq. (13); finally, calculate the fitness of both the new and 

Fig. 4.  Initialization Strategy Based on Refraction Opposition-based Learning.

 

Fig. 3.  Aggressive behavior of seagull population.
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old positions. The individuals with the highest fitness from the original seagull population are selected as the 
initial population.

In the standard SOA, the additional variable SA is a first order function that linearly decreases throughout 
the algorithm cycle. However, for high-dimensional optimization problems, there is a risk of insufficient early 
convergence speed, reducing the efficiency of the algorithm execution, as well as excessively fast convergence 
in later stages, which affects the local search capability. To address this, this paper introduced a non-linear 
convergence method based on sine improvement to enhance the additional variable SA of the SOA26. The 
improved formula is given by Eq. (15).

	
SA=[1-sin(

π

2

√
t

Tmax
)] · [Cf,max − t ·

Cf,max − Cf,min
Tmax

]� (15)

Where, Cf, max and Cf, min are the upper and lower limits of the control factor for the additional variable. In this 
paper, Cf, max and Cf, min are set as 2 and 0, respectively.

The curves representing the additional variable before and after improvement are illustrated in Fig. 5. From 
the figure, it was evident that during the early stages of algorithm iteration, the enhanced non-linear convergence 
curve, which is based on the sine function, achieved a quicker convergence. However, in the later stages of 
the algorithm, when the seagull population began to congregate around local extreme points, the non-linear 
additional variable reduced the convergence speed of the algorithm. The control algorithm emphasized local 
search to prevent the seagull flock from becoming trapped in local optima. The improved nonlinear additional 
variable significantly enhanced the algorithm’s search efficiency and convergence accuracy.

Algorithm performance testing
To verify the effectiveness of RSOA, we conducted algorithm performance testing by comparing it with the 
standard SOA and Improved Particle Swarm Optimization (IPSO)27. The population size (N) was set to 30, the 
algorithm dimensionality (D) was set to 30, and the maximum number of iterations (Tmax) was set to 500. The 
algorithm was independently executed 50 times. The central processor is an Intel Core i5-12400 F CPU@2.50 
GHz, and the RAM is 16GB.

The performance of each algorithm was tested using 10 benchmark functions selected from CEC2019, with 
the basic information of these test functions shown in Table 128.

Table 2 presents the optimization results of the algorithms after 50 independent runs. From Table 2, it can 
be observed that for the unimodal test function F1, all algorithms converge to the theoretical optimal value, 
demonstrating high optimization stability. For the multimodal and multidimensional test function F2, as well 
as the hybrid and composite functions F3 to F10, the multi-strategy improved RSOA algorithm exhibits higher 
convergence accuracy and stronger optimization stability compared to other algorithms of the same type. This 
validates the effectiveness of the improvement strategies proposed in this study.

For a visual comparison of algorithm performance, Fig. 6 presents the convergence curves of each algorithm 
under different test functions.

From Fig. 6(a), it was observed that the IPSO exhibited slightly better convergence efficiency and accuracy 
than the SOA in the Sphere test function. However, the difference is not significant. All standard algorithms 
demonstrated similar convergence speeds throughout the algorithm iteration cycle. By observing the 
convergence curve of the improved hybrid strategy-based RSOA, a significant enhancement in its optimization 
capability was evident. Compared to other standard algorithms, the RSOA achieved the theoretical optimum 
after approximately 250 iterations, demonstrating significantly higher optimization speed and accuracy.

Fig. 5.  Change curve of nonlinear additional variables.
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As shown in Fig. 6(b), for the multimodal test function Restringing, there was little difference in convergence 
accuracy and speed between the IPSO and SOA. Despite SOA getting entrapped in local optima prematurely, 
IPSO displayed a slower convergence speed. However, the RSOA demonstrated superior optimization stability. 
Initially, the algorithm swiftly converged to the global optimum with remarkable efficiency and eventually 
reached the theoretical optimum after approximately 400 iterations.

After analyzing the convergence curves of diverse test functions, it became apparent that the integration of 
mixed strategies exerted a positive influence on enhancing the SOA. The RSOA consistently upheld exceptional 
optimization performance across a range of test functions, surpassing comparable algorithms, thereby 
substantiating the efficacy of the improvement strategies.

Function number Algorithm AVG BEST STD

F1

IPSO 0.00 0.00 0.00

SOA 0.00 0.00 0.00

RSOA 0.00 0.00 0.00

F2

IPSO 4.57 × 10− 8 6.34 × 10− 19 7.27 × 10− 17

SOA 2.84 × 10− 3 5.75 × 10− 12 7.13 × 10− 9

RSOA 1.78 × 10− 18 9.14 × 10− 29 3.47 × 10− 22

F3

IPSO 3.35 × 10− 17 6.64 × 10− 19 5.67 × 10− 14

SOA 4.25 × 10− 18 6.68 × 10− 20 3.27 × 10− 14

RSOA 4.91 × 10− 34 5.94 × 10− 38 4.28 × 10− 32

F4

IPSO 1.52 × 10− 8 6.51 × 10− 14 1.98 × 10− 8

SOA 2.08 × 10− 8 9.36 × 10− 15 6.54 × 10− 7

RSOA 1.27 × 10− 14 4.83 × 10− 25 7.02 × 10− 15

F5

IPSO 3.21 × 10− 17 7.98 × 10− 24 5.85 × 10− 17

SOA 6.22 × 10− 18 9.81 × 10− 25 2.56 × 10− 19

RSOA 4.09 × 10− 31 1.63 × 10− 37 7.44 × 10− 30

F6

IPSO 4.96 × 10− 9 7.71 × 10− 16 2.86 × 10− 8

SOA 9.07 × 10− 9 6.84 × 10− 18 7.08 × 10− 9

RSOA 5.64 × 10− 12 8.19 × 10− 19 3.05 × 10− 13

F7

IPSO 6.34 × 10− 17 4.67 × 10− 22 5.95 × 10− 20

SOA 1.20 × 10− 18 4.57 × 10− 21 7.84 × 10− 20

RSOA 5.43 × 10− 25 8.90 × 10− 34 3.65 × 10− 27

F8

IPSO 8.04 × 10− 8 8.69 × 10− 10 3.65 × 10− 7

SOA 1.76 × 10− 7 4.21 × 10− 11 7.59 × 10− 7

RSOA 5.97 × 10− 12 8.31 × 10− 16 3.86 × 10− 11

F9

IPSO 5.49 × 10− 6 7.78 × 10− 8 6.31 × 10− 6

SOA 1.18 × 10− 7 4.74 × 10− 9 7.20 × 10− 6

RSOA 5.26 × 10− 11 8.53 × 10− 15 3.10 × 10− 9

F10

IPSO 2.08 × 10− 5 9.89 × 10− 10 3.12 × 10− 6

SOA 4.48 × 10− 6 7.93 × 10− 11 5.70 × 10− 6

RSOA 8.25 × 10− 12 3.69 × 10− 17 6.58 × 10− 11

Table 2.  Test function basic information.

 

Function number Function name The theoretical optimal solution

F1 Sphere 0

F2 Rastrigin 0

F3 Ackley 0

F4 Weierstrass 0

F5 Griewank 0

F6 Hybrid Composition Function 1 0

F7 Hybrid Composition Function 2 0

F8 Composite Function 1 0

F9 Composite Function 2 0

F10 Composite Function 3 0

Table 1.  Test function basic information.
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Cable force optimization method based on RBFNN-RSOA under re-liability index 
control
Mathematical model of force optimization considering reliability index
During the construction phase, cable-stayed bridges experience a combination of tensile, compressive, and 
bending forces. Excessive bending moments can adversely affect the structural linearity and stress distribution, 
emphasizing the importance of care-fully managing cable tensile forces. The bending strain energy of the main 
beam in cable-stayed bridges can be calculated using Eq. (16).

	
Z1 = U =

n∑
i=1

li

4EiIi
(MLi

2 + MRi

2)� (16)
 

Where, li represents the unit length; Ei denotes the elastic modulus; Ii is the moment of inertia; MLi and MRi 
correspond to the bending moments at the left and right ends of the differential element, respectively.

While adjusting the cable force, it is also necessary to control the deflection of the towers in cable-stayed 
bridges. The deflection objective function of the tower is represented by Eq. (17).

	
Z2 = D =

m∑
i=1

δ2� (17)
 

Where, D represents the longitudinal displacement of the bridge; m is the number of offset measurement points 
on the bridge tower; δ signifies the displacement of the bridge tower.

Fluctuations in cable force exert a substantial influence on both the overall reliability of cable-stayed bridges 
and the reliability of their individual components. Focusing solely on the safety or uniformity of cable force 
in optimization does not provide an accurate portrayal of structural risks. To address this, the present study 
incorporates reliability as a constraint, requiring that the minimum reliability value of either the entire bridge 

Fig. 6.  Test the function convergence curve. (a) Test function F1 convergence curve; (b) Test function F2 
convergence curve.
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or its individual components must meet prescribed criteria throughout the construction process. By referencing 
relevant codes and research findings, the constraint condition is expressed as Eq. (18). with the specific value β0 
set at 3.728.

	





Minβ(x)min ≥ β0
σn ≤ [σn]
σm ≤ [σm]
σf ≤ [σf ]

� (18)

 

Where, σn, σm, and σf represent the stress values of the main beam, bridge tower, and cables, respectively. [σn], 
[σm], and [σf] denote the stress limits of the main beam, bridge tower, and cables, respectively.[σf] represents the 
cable force value considering a safety factor of 2.528.

The optimization model, derived from the objective function and constraints, can be defined as follows: 
minimize the bending strain energy of the main beam and the deflection of the bridge tower in a cable-stayed 
bridge, while simultaneously ensuring the reliability of the structural system, the stress reliability of the cables, 
and compliance with the stress limits of the cables. This mathematical formulation is expressed as Eq. (19).

	 findX = [X1, X2, X3......Xn]

	

{ minZ1 = min U
min Z2 = min D � (19)

 

	

st.




Minβ(x)min ≥ β0
σn ≤ [σn]
σm ≤ [σm]
σf ≤ [σf ]

Where, X represents the optimal combination solution for cable force.

Cable force optimization model based on RBFNN-RSOA
The optimization of cable force in long-span cable-stayed bridges was approached through the combined 
utilization of RBFNN and RSOA algorithms. The process for calculating the cable force optimization model 
based on RBFNN-RSOA is depicted in Fig. 729–31.

	a.	 An initial dataset was generated by constructing a finite element model of the structure in ANSYS. Following 
data preprocessing, the RBFNN model was trained on the MATLAB platform to yield a network model that 
achieves the desired accuracy.

	b.	 Parameters related to the seagull optimization algorithm were initialized. The cable force combination vector 
was transformed into positional coordinates within the search space, and the population size and the maxi-
mum number of iterations were determined.

	c.	 Employing the RBFNN surrogate model, the fitness value of each seagull individual was computed, thus 
allowing for the recording of the global optimal position within the seagull population.

Fig. 7.  Cable force optimization process based on RBFNN-RSOA.
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	d.	 Seagull migration and attack operations were subsequently executed.
	e.	 The algorithm verified whether the termination condition had been met. If this condition was satisfied, the 

global optimal position was output and decoded into the optimal combination of cable force. If not, the al-
gorithm returned to step c.

Partial pseudocode is shown in Table 3:

Engineering case study
Engineering overview and the finite element model
With the Nan Dongting Lake Bridge as the backdrop, the main span of the bridge measures (182 + 450 + 182) 
meters, making it a cable-stayed bridge featuring a double-tower, double-cable-plane semi-floating system. A 
total of 136 parallel inclined cables, made of steel wire with a tensile strength of 1770 MPa, are installed on the 
bridge. The inclined cables come in various specifications: PES7-85, PES7-109, PES7-127, PES7-151, and PES7-
187. The main beam is an orthogonal anisotropic bridge deck pan-el shaped like a flat steel box beam, with a 
central height of 3 m and a width of 30.5 m (including the wind nozzle width). U-shaped stiffeners are positioned 
on the top and bot-tom plates of the bridge. The steel box beam is constructed with Q345D material, while the 
bridge towers are built using reinforced concrete with a concrete grade of C50. The layout of the bridge is shown 
in Fig. 8.

A parameterized finite element model was created using ANSYS software, while the Link10 finite element 
software was employed to simulate the cable system. The main beam was modeled using the BEAM188 element, 
and the bridge tower was represented by the SOLID65 element. To connect the cable and the “fishbone” main 
beam, a rigid MPC184 element was established. The constraints applied in other locations were implemented in 
accordance with the design drawings. The structure of the finite element model is depicted in Fig. 9. The ANSYS 
calculation results outlined in this paper primarily served to extract the structural response values of random 
variables.

Selection of random variables and determination of failure modes
Taking displacement failure as the main mode, the structural function of a long-span cable-stayed bridge was 
established. The function in the normal use limit state is shown in Eq. (20).

	 z = [u] − u(x)� (20) 

Fig. 8.  Bridge type layout.

 

//Pseudo code for cable force optimization of cable-stayed bridge based on RBF neural 
network and reverse learning seagull optimization algorithm

1 Data preparation and RBF neural network modeling

2 Initialization of Seagull Optimization Algorithm Based on Reverse Learning (RSOA)

3 Multi objective optimization iteration

3.1 Parameter Setting: Maximum Iteration Times T, Current Iteration t = 1

3.2 while t ≤ T do

3.2.1 For each individual seagull X i:Calculate fitness value

3.2.2 Update seagull location

3.2.3 Apply reverse learning mutation

3.2.4 Constraint handling: If the cable force exceeds, map back to the feasible domain

3.2.5 t = t + 1

3.3 end while

4 Output optimization results

Table 3.  Pseudo code for cable force optimization model of cable-stayed bridge.

 

Scientific Reports |        (2025) 15:42725 10| https://doi.org/10.1038/s41598-025-26763-x

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Where, [u] represents the displacement limit of the structure under the normal service limit state; U(x) denotes 
the maximum displacement response of the structure corresponding to the random variable.

Uncertain factors, such as material properties, load conditions, and construction errors, can impact the 
calculation results of the function. In this study, the elastic modulus of the inclined cable, the elastic modulus 
of the steel box beam, the weight, and the elastic modulus of the bridge tower concrete were treated as random 
variables, with structural deflection response as the output variable. The design variable ranges for the RBFNN 
are shown in Table 4.The parameter settings of the RBFNN are shown in Table 5.

Result analysis
To validate the fitting accuracy of the RBFNN, the finite element software was used to compute the response 
results of 20 validation samples. Figure 10 shows the fitting results of the RBFNN for 10 validation samples.To 
evaluate the accuracy of different surrogate models, the root mean square error (RMSE), mean absolute error 
(MAE), and mean relative error (MRE) were employed to assess the predictive performance of each model. The 
calculation formulas for these evaluation metrics are given in Eqs. (21)–(23).

	

RMSE =

√√√√ 1
n

n∑
i=1

(
yi − ⌢

y i

)2
� (21)

 

Parameter Value

Number of Hidden Layer Neurons 50

Basis Function Width 2.0

Error Threshold 0.001

Maximum Iterations 200

Table 5.  Parameter selection for RBFNN.

 

Random variable types Mean Value Coefficient of variation Distribution type

Elastic modulus of stay cable (MPa) 1.95 × 105 0.1 Normal

Elastic modulus of steel box girder (MPa) 1.95 × 105 0.1 Normal

Bulk density of steel box girder (kg/m3) 7885 0.05 Normal

Elastic modulus of concrete for bridge tower (MPa) 3.45 × 104 0.1 Normal

Concrete bulk density of bridge tower (kg/m3) 2600 0.05 Normal

Vehicle load(kg/m) 55 0.13 Extreme value type I

Table 4.  RBFNN specifies the value of a random variable.

 

Fig. 9.  Finite element model.
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MAE = 1

n

n∑
i=1

∣∣∣yi − ⌢
y i

∣∣∣� (22)
 

	
MRE = 1

n

n∑
i=1

∣∣∣∣
yi − ⌢

y i

yi

∣∣∣∣� (23)
 

Where,n is the total number of samples; yi is the true value; ⌢y i is the predicted value.
Within the statistical parameter interval, 20 validation samples were randomly selected. As shown in Fig. 10, 

the prediction results of the RBFNN demonstrate close agreement with the finite element computation results, 
while both the BP neural network and SVM model exhibit significant prediction deviations.Table 6 presents the 
accuracy validation results of different models. The data indicate that the RBFNN achieves a root mean square 
error (RMSE) of only 0.39, a mean absolute error (MAE) of 0.30, and a mean relative error (MRE) of 2.16%. All 
accuracy metrics surpass those of comparable machine learning algorithms. From the accuracy indicators, it 
can be seen that RBFNN has achieved good fitting results, and the fitting accuracy can meet the requirements of 
acting as a surrogate model for cable force optimization.

Figure 11 shows the locally fitted response surface of the RBFNN surrogate model. From Fig. 11, it can be 
observed that the response surface is relatively smooth. As the elastic modulus of the stay cable or steel box 
girder increases, the attenuation of the main girder’s deflection deformation gradually decreases, revealing the 
coupled influence of their elastic module on the structural stiffness. The RBFNN surrogate model effectively 
captures the structural response patterns, providing a precise basis for response prediction in the optimization 
of cable forces for cable-stayed bridges.

By utilizing the response surface fitted by RBFNN as a surrogate model, the RSOA was employed to determine 
the optimal combination of cable forces based on the previously constructed optimization model for long-span 
cable-stayed bridges. The population size was set to 30, and the maximum number of iterations was set to 500 
in the algorithm. The Pareto frontier distributions of the dual objectives are presented in Fig. 12. From Fig. 12, it 
can be observed that RSOA exhibited higher convergence accuracy in the Pareto distribution compared to both 
the original and improved SOA. This validates the effectiveness of the implemented improvement measures.

Table 7 presents a comparison of the efficiency of different models in cable force optimization. From Table 7, 
it can be seen that under the premise of using the RSOA algorithm for cable force optimization, the single 
iteration time of the RBFNN-based model is only 12.54 s, which is 86% lower than that of the FEM-based model. 
This demonstrates a significant improvement in the efficiency of cable force optimization.

Since the left and right pylons of the cable-stayed bridge are symmetrically arranged along the mid-span, 
and the mechanical characteristics of the front and rear double cable planes are identical, the structural analysis 
is conducted for the left single cable plane. The initial cable forces are determined based on the principle of 
minimizing the bending moment of the main girder under dead load. A finite element model of the cable-stayed 
bridge is established to simulate the structural dead load, and the cable forces are iteratively adjusted until the 

Accuracy metrics RMSE MAE MRE

RBFNN 0.39 0.30 2.16%

BPNN 0.89 0.78 5.80%

SVM 1.29 1.15 8.55%

Table 6.  Prediction accuracy of different models.

 

Fig. 10.  RBFNN test set prediction accuracy.
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bending moment distribution at the mid-span section of the main girder becomes uniform. The optimized 
cable forces obtained through the RSOA algorithm are shown in Fig.  13.From Fig.  13, it is evident that the 
distribution trend of the optimized cable forces closely aligns with the original distribution. The maximum cable 
force decreased from 3266 kN to 3105 kN, while the minimum cable force increased from 1311 kN to 1350 kN. 
The cable force range decreased from 1955 kN to 1755 kN, indicating enhanced uniformity in cable forces.

The changes in the deflection of the main beam before and after optimization are depicted in Fig. 14. It is 
evident that the deflection of each controlled section significantly decreased after optimization, leading to a 
noticeable improvement in the overall profile of the main beam. The most substantial reduction in deflection 
was observed at the midspan of the main beam, where the deflection peak decreased from 0.116 m to 0.074 m, 
representing a maximum reduction of approximately 36.21%. Similarly, at the midspan of the edge span, the 
deflection was reduced from 0.089  m to 0.059  m, with a maximum reduction of approximately 33.71%. By 
observing the change pattern and distribution of the overall deflection of the main beam before and after 
optimization, it was concluded that increased tension after optimization exhibited a good control effect on the 

Calculation model Time consumption per iteration/

RBFNN 12.54

FEM 89.64

Table 7.  Optimization efficiency of different models.

 

Fig. 12.  Pareto frontier distribution.

 

Fig. 11.  RBFNN surrogate model fitting local response surface.
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deflection of the main beam. This verifies the effectiveness of the linear control objective function in controlling 
the deflection of the main beam.

Due to the symmetrical distribution of the bridge structure, Fig. 15 presents the tower displacement results 
before and after optimization on one side of the bridge tower. As shown in Fig.  15, the tower displacement 
increases with the height of the tower. However, the tower displacement calculated based on the optimized cable 
forces is significantly improved. The displacement at the top of the tower is reduced from 35.91 cm to 16.64 cm, 
a decrease of approximately 53.67%, which verifies the effectiveness of the tower displacement control objective 
function.

The calculation results of the reliability indices for stay cables before and after optimization are shown in 
Fig. 16. As can be observed from Fig. 16, the reliability indices of most stay cables have improved to varying 
degrees after optimization. Specifically, the reliability index of stay cable L9 increased from 4.21 to 4.59, 
representing an improvement of 9.0%. On average, the reliability of each stay cable increased by approximately 
3%, with mid-span cables showing significant improvement, while the reliability of support-point cables only 
slightly increased. These results verify the effectiveness of the cable force optimization scheme considering 
reliability indices, thereby enhancing the overall safety margin of the cable-stayed bridge structure.

Table  8 presents the measured results of the first four modal shapes of the bridge after cable force 
optimization. As can be seen from Table 8, as the modal order increases, the bridge’s vibration modes 
transition from longitudinal floating to vertical and lateral bending, with the vibration frequency gradually 
increasing. This reflects the vibration characteristics and frequency distribution patterns of the bridge’s 
various modal orders.

Fig. 14.  Optimization results of vertical deflection of main beam.

 

Fig. 13.  Cable force optimization results.
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Discussion
Based on the improved seagull optimization algorithm and RBF neural network, this paper proposes a cable 
force optimization method for long-span cable-stayed bridge, which effectively improves the efficiency of 
solving the cable force optimization problem of cable-stayed bridge, and ensures that the internal force and 
linear distribution of the optimized cable-stayed bridge are more reasonable. However, at present, the modeling 
process of RBF neural network is a little cumbersome, and a more convenient proxy model construction method 
of cable-stayed bridge can be sought in the future.

Vibration mode order Vibration mode characteristics frequency(Hz)

1 First-order longitudinal drift 0.215

2 First-order vertical bend 0.352

3 First-order transverse bend 0.410

4 Second-order vertical bend 0.430

Table 8.  Optimized Bridge natural frequency results.

 

Fig. 16.  Reliability optimization results of cable-stayed cables.

 

Fig. 15.  Optimization results of tower displacement.
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Conclusions
This paper presents a force optimization model that considers the reliability index for cable-stayed bridges. 
The model is based on the RBFNN response surface method and the improved seagull algorithm. It effectively 
addresses the force optimization problem in symmetrical large-span cable-stayed bridges. In the specific 
context of a symmetrical large-span cable-stayed bridge project, an implicit functional approximation model is 
established using the RBFNN. The cable forces of the cable-stayed bridge are then optimized using the improved 
seagull mixed strategy optimization algorithm. The findings of this research can be summarized as follows:

	(1)	 A method for establishing a proxy model for large-span cable-stayed bridges based on RBFNN is proposed. 
This method accurately approximates the hidden function of the structure. Compared to the actual finite 
element model, the maximum relative error of the 20 test sets is only 1.32%, indicating good fitting perfor-
mance.

	(2)	 The Seagull Optimization Algorithm (SOA) is enhanced by incorporating refraction reverse learning for 
initializing the population and employing a non-linear flight strategy. The effectiveness of the improved 
strategy is verified through tests using the Sphere and Restringing benchmark functions. The test results 
demonstrate that the RSOA outperforms both SOA and IPSO in terms of convergence speed and accuracy, 
validating the effectiveness of the proposed approach.

	(3)	 RSOA demonstrates good adaptability in solving force optimization problems for cable-stayed bridges. 
Compared to SOA, RSOA exhibits better convergence effectiveness on the Pareto front and successfully 
addresses the force optimization problem for cable-stayed bridges while considering the reliability index.

	(4)	 Based on the engineering context of the long-span cable-stayed bridge, the findings indicate that the opti-
mized combination of cable forces for the bridge exhibits some level of fluctuation compared to the orig-
inal combination. However, the overall distribution trend of the cable forces remains largely consistent. 
Following the optimization process, a notable improvement in the vertical deflection of the main beam is 
observed. Specifically, the peak deflection at the midspan is reduced from 0.116 m to 0.074 m, representing 
a reduction of approximately 36.21%. Moreover, the reliability of the mid-span cable stays has significantly 
increased, while the improvement in the reliability of the anchor cable stays is relatively modest, with an 
average increase of about 3% for each cable stay. These outcomes affirm the effectiveness of the employed 
method.

Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request.
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