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Karst reservoir Computed Tomography (CT) images exhibit blurred boundaries, scale variations, and 
complex structures. Existing 3D U-Net-based segmentation methods are inadequate in both detail 
recognition and overall structural representation. Therefore, this paper proposes an improved 3D 
U-Net architecture to adapt to the multi-scale and low-contrast characteristics of karst reservoirs. 
This paper introduces a multi-scale input path at the encoder end, extracting volumetric features at 
different resolutions in parallel to capture both fine-grained holes and large-scale channels. A spatial 
attention module is embedded in the skip connections to weight the encoded features to highlight 
boundaries and key regions. Multi-scale features are fused during the decoding phase to gradually 
reconstruct the three-dimensional space. Furthermore, the Dice loss is combined with the gradient-
based boundary-aware loss during training. The latter enhances boundary sensitivity by calculating the 
3D gradient difference between the predicted image and the label image. Experimental results show 
that the improved complete model achieves an 87.8% Dice coefficient and a 1.9-pixel boundary error in 
karst reservoir CT image segmentation, improving both regional overlap and boundary accuracy. This 
method effectively identifies karst structures at different scales, providing reliable data support for 
complex reservoir modeling and analysis.
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Karst reservoirs are widely found in carbonate rock regions. Their internal structure is typically composed 
of complex karst units such as fractures, caves, and pores. These structures directly determine the reservoir’s 
permeability and oil and gas accumulation patterns. With the increasing application of industrial CT technology 
in the geological field, the automatic identification and accurate modeling of three-dimensional karst structures 
based on CT images has become an important direction for complex reservoir research1,2. However, traditional 
image processing methods have difficulty in reliably extracting structural information3,4. Although voxel-
level segmentation models based on deep learning have certain advantages, they still face challenges in detail 
recognition, boundary preservation, and expression of spatial structural continuity5,6. While multi-scale 
architectures and attention mechanisms have been used in medical image segmentation, their applicability to 
complex geological structures, particularly karst reservoirs, faces unique challenges. While target structures 
in images typically have relatively regular boundaries and stable topology, karst structures exhibit strong 
heterogeneity, complex branching connectivity, and extreme scale variations, ranging from micron-scale pores 
to centimeter-scale caves.

Previous studies have attempted to use three-dimensional convolutional neural networks for semantic 
segmentation of geological CT data, and have achieved initial progress7,8. The standard 3D U-Net model, due 
to its end-to-end structure and multi-layer feature fusion capabilities, has been applied to voxel segmentation of 
geological data9,10. Although the standard 3D U-Net model has the advantages of end-to-end segmentation and 
multi-layer feature fusion, it still has limitations in preserving the fine pores and channel connectivity of karst 
reservoirs and boundaries. While single-scale 3D U-Nets perform well in medical and material 3D segmentation 
tasks, they lack sensitivity to scale variations and boundary details in complex spatial structures. Some work has 
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introduced attention mechanisms to improve the model’s responsiveness to key structures, while others have 
employed multi-scale feature extraction to enhance the recognition of karst morphologies at different scales11,12. 
However, these methods often fail to balance fine boundary recognition with overall structural integrity when 
processing karst structures, particularly in terms of karst channel connectivity and spatial geometric continuity. 
Consequently, an effective segmentation framework for identifying karst reservoir structures has yet to be 
established13,14.

To address these issues, this study proposes an improved 3D U-Net for karst reservoir CT images. Compared 
to traditional 3D U-Nets, this method employs multi-resolution input paths at the encoder end to extract 
volumetric features at different scales in parallel, adapting to the significant size differences of karst structures. 
The multi-scale input pathway and spatial attention module proposed in this paper are not simply transplanted, 
but are specifically optimized to maintain karst topological connectivity. The multi-scale pathway processes 
volume data of different resolutions in parallel, aiming to systematically capture the cross-scale network of pores, 
holes, and fractures, preventing small-scale channels from being overwhelmed by a single pathway. The spatial 
attention module is precisely embedded in skip connections, which strengthens the response to fuzzy boundaries 
and key connected nodes, which is crucial for maintaining the topological integrity of the karst network. In 
addition, although the boundary-aware loss is based on the Sobel operator, its selection is based on the voxel 
characteristics of the three-dimensional geological data. Compared with complex topological losses, this loss 
function is computationally efficient and can directly optimize the boundary gradient field. When combined 
with the Dice loss, it can effectively improve the geometric accuracy of structural edges while maintaining 
regional overlap. These collaborative designs targeting geological problems constitute the core innovation of 
this method.

Related works
Karst reservoirs, under long-term hydrogeological influences, have formed complex karst structures such as 
fractures, pores, and caves. These structures are characterized by strong heterogeneity, irregular topology, and a 
wide range of scales15,16. In CT images, these structures often exhibit discontinuous grayscale, blurred boundaries, 
and dense small-scale features, making it difficult to accurately separate the target area in the image17,18. In 
addition, karst structures of different scales exhibit significant differences in spatial distribution in volumetric 
images. Large-scale structures may span multiple slices, while small-scale structures are easily submerged by 
noise, increasing the difficulty of automatic 3D segmentation and spatial structure recognition19,20. In high-
resolution CT data, the complex channel connectivity and detail accuracy place higher demands on the model’s 
structural modeling capabilities. In recent years, with the widespread application of deep learning in three-
dimensional image processing21,22, automatic segmentation methods based on voxel-level neural networks have 
become a research hotspot. Among them, U-Net (Convolutional Networks for Biomedical Image Segmentation) 
and its three-dimensional variant, 3D U-Net, achieve a good balance between semantic understanding and 
detail restoration due to their encoder-decoder architecture and skip connection mechanism23,24. 3D U-Net 
can process three-dimensional volumetric data while preserving spatial structural features. It has been validated 
and promoted in multiple fields, becoming a foundational framework for geoscience image segmentation25,26. 
In geotechnical engineering, the network has been used for tasks such as core fracture extraction, pore structure 
identification, and sedimentary structure segmentation, demonstrating strong spatial modeling capabilities and 
adaptability.

However, the performance of U-Net in karst reservoir imagery remains challenging27,28. On the one hand, the 
multi-scale nature of karst structures makes it difficult for traditional single-scale input methods to capture the 
complete structure from microscopic pores to macroscopic caves, resulting in the neglect or misidentification of 
some small-scale structures29,30. On the other hand, karst boundaries appear fuzzy transitions or even fractures 
in images, and U-Net’s modeling capabilities at edge regions are insufficient, easily leading to structural adhesion 
or incomplete recognition31,32. Furthermore, because U-Net typically uses convolutional downsampling, it has 
inherent limitations in preserving boundary morphology and topological connectivity, which is a limiting factor 
for geological modeling tasks that require high-fidelity restoration of spatial structures33,34.

To improve the model’s adaptability in complex karst structure segmentation tasks, researchers have 
attempted to introduce improvements such as multi-scale mechanisms and attention mechanisms into the 3D 
U-Net framework35,36. One approach uses a pyramid structure or multi-path input to enhance the model’s multi-
scale perception capabilities, enabling it to simultaneously focus on feature information at different granularities. 
Another approach focuses on optimizing feature fusion methods to improve the recognition accuracy of small-
scale structures. Some approaches also incorporate boundary information or topological constraints into the 
loss function design to improve the completeness and edge accuracy of structural restoration37,38.

Despite some progress, current methods still have shortcomings in maintaining karst spatial connectivity, 
expressing structural integrity, and restoring boundary details. This is particularly true when dealing with the 
coexistence of micropores and large-scale caves in karst reservoirs. Model segmentation results often exhibit 
structural fractures, blurred edges, or spatial misjudgments. Therefore, constructing a three-dimensional 
segmentation network with strong multiscale perception capabilities, high boundary recognition accuracy, 
and a more complete representation of karst structural spatial characteristics is a key approach to achieving 
accurate automatic segmentation and structural recognition in karst CT images. This is also the starting point 
and research foundation for this work.

Table  1 compares the core design differences between our proposed method and standard 3D U-Net, 
Attention U-Net, and Multi-Scale Pyramid Network. This table compares the proposed method across five 
dimensions: multi-scale input, attention mechanism, design objectives, boundary optimization strategy, and 
geological adaptability. The table highlights the innovative features of our proposed method: the use of parallel 
multi-scale input pathways to capture cross-scale karst structure, the embedding of spatial attention modules at 
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skip connections to enhance boundary and connectivity responses, the core goal of maintaining karst topological 
connectivity, and the use of a strategy combining Dice and boundary-aware loss. This table clearly demonstrates 
the uniqueness and targeted nature of our proposed method compared to existing technologies for geological 
applications.

Multi-scale attention segmentation model for karst reservoir CT images
Overview of the overall network architecture
Figure 1 shows the architecture of a 3D U-Net model with a multi-scale attention mechanism for karst reservoir 
CT image segmentation. The model has three parallel input paths with different resolutions (1:1, 1:2, and 1:4), 
each of which feeds into a separate encoder path with a spatial attention module configured on a skip connection. 
The decoder processes these paths independently before fusing the multi-scale features. The final fusion module 
combines these features and produces a single-channel output using a 1 × 1 × 1 convolution. This output is then 
subjected to a sigmoid activation function to generate the final segmentation probability map. The figure clearly 
illustrates the data flow from multi-scale input to encoding, attention-weighted skip connections, decoding, and 
finally fusion to the output.

The segmentation model constructed in this paper is based on the 3D U-Net architecture with targeted 
structural improvements39,40. It adopts a symmetrical encoder-decoder structure. The network input consists of 
three sets of volumetric data at different scales, generated by multi-level downsampling of the original CT image. 
These data correspond to voxel images at the original resolution, half resolution, and quarter resolution41,42. The 
multi-scale input path introduces the encoder module in parallel, improving the network’s ability to respond to 
features of different spatial scales, such as small cracks and large caves, by capturing cross-scale information. 
Figure 2 shows the process from raw CT input to 3D label output.

The encoder architecture consists of multiple stacked convolutional layers within each path, enabling 
deep semantic feature extraction. Each scale path maintains its own voxel structure and spatial distribution 
characteristics, extracting hierarchical representations without losing detailed information. The output 3D label 
map has the same spatial dimensions (H × W × D) as the input CT volume but is a single-channel segmentation 
mask. A skip connection is established between the encoder and decoder, and a spatial attention mechanism is 
introduced within the connection channel to weight feature maps based on their importance, thereby improving 
the model’s sensitivity to complex boundary regions and subtle structures.

Fig. 1.  Improved multi-scale attention 3D U-Net model architecture.

 

Feature/method Standard 3D U-Net Attention U-Net Multi-scale pyramid networks Proposed method

Multi-scale input Single-scale Single-scale Serial or fused input Parallel multi-scale input paths

Attention mechanism None Channel/spatial attention Typically integrated into encoder Spatial attention embedded in skip connections

Core design objective General segmentation Enhance response to key regions Enhance multi-scale perception Preserve karst topological connectivity

Boundary optimization strategy Dice/cross-entropy Same as left Same as left Dice + boundary-aware loss (gradient L1)

Geological adaptability Limited Limited Moderate High (targeting karst scale and connectivity)

Table 1.  Comparison of methods.
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The decoder uses a multi-level upsampling mechanism to fuse feature maps from different scale paths 
according to their resolution and gradually restore them to the original voxel size. Each decoding unit receives 
multi-scale feature maps from the corresponding encoding layer and attention module. After alignment and 
concatenation, the features are fused to enhance the model’s ability to preserve overall morphology, channel 
connectivity, and boundary consistency. This feature fusion strategy further balances deep semantics with 
shallow details, improving modeling of the complex geometric features of karst structures.

The final network output is a 3D label map with the same voxel size as the original input. The modules in this 
architecture work collaboratively to maintain the integrity of segmentation details while improving boundary 
discrimination and structural restoration accuracy. This model boasts strong cross-scale modeling capabilities, 
accurate spatial focus, and good structural continuity, making it suitable for segmenting and identifying complex 
karst structures in high-resolution CT images.

Multi-scale volume input construction process
The multi-scale input consists of three sets of volumetric data: the original CT volume, the first-level downsampled 
volume, and the second-level downsampled volume. The original volume is a 3D CT scan image. After linear 
normalization, the original resolution is kept unchanged and the size is cropped to an integer multiple of eight. 
The cropping adopts the center cropping strategy. The normalization process is:

	 Vnorm
0 (x, y, z) =V0(x,y,z) - min(V0)

max(V0) - min(V0) � (1)

The first-level downsampling volume is generated using a three-dimensional average pooling operation with a 
pooling window size of 2 × 2 × 2, a stride of 2, and no padding, denoted as:

	
V1 (x, y, z) = 1

8

1∑
i = 0

1∑
j = 0

1∑
k = 0

Vnorm
0 (2x + i, 2y + j, 2z + k) � (2)

The secondary downsampling volume performs an average pooling operation with the same parameters on the 
basis of the primary level, and the result is:

	
V2 (x, y, z) = 1

8

1∑
i = 0

1∑
j = 0

1∑
k = 0

V1 (2x + i, 2y + j, 2z + k) � (3)

The three scales were maintained with spatial resolution ratios of 1:1, 1:2, and 1:4, respectively. All pooling 
operations were performed during preprocessing and fed into the network simultaneously as multi-scale tensors.

The three sets of volumetric data were structured as three input paths, each with its own encoding module 
within the network. The initial layer of each path consisted of two consecutive 3D convolutional layers with a 
kernel size of 3 × 3 × 3, a stride of 1, a padding of 1, and a ReLU activation function. The convolution output was 
defined as:

	
F(l) = ReLU

(
W(l)

2 ∗
(
ReLU

(
W(l)

1 *Vl

)))
, l = 0,1,2 � (4)

W(l)
1  and W(l)

2  are the convolution weights for the nth path.
Encoding paths do not share parameters and do not perform cross-fusion. Each scale path maintains feature 

isolation during the encoding phase and is only fused during the decoding phase. The number of channels per 
path is set to 32, 64, and 96, respectively, from smallest to largest scale. A batch normalization layer is used after 
the convolutional layer to stabilize the feature distribution.

To prevent feature dimensionality mismatches caused by multi-scale input, all input volumes are uniformly 
cropped to a fixed dimension during the loading phase. Input tensors are fixed to 1 channel and are not replicated, 
stacked, or expanded. All input operations are encapsulated in a custom Dataset class. During the data loading 
phase, tensors at three scales are generated and organized in a dictionary format. These are fed into the model 
as independent inputs during the forward propagation phase. The three-way data input structure is received 

Fig. 2.  Karst CT image segmentation framework based on multi-scale attention 3D U-Net.
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through the model-defined multi-input interface and processed synchronously during the network forward 
propagation. The tensor dimensions are aligned consistently and are not merged.

The multi-scale input paths are architecturally parallel. During the decoding phase, a scale alignment strategy 
is used to upsample feature maps at different resolutions to a uniform size to avoid information loss. The input 
paths do not dynamically change based on sample content. The number of paths and resolution settings are fixed 
in the model definition and do not include conditional branches or dynamic control logic. All dimensionality 
conversions, tensor concatenation, and pooling calculations are implemented using standard PyTorch modules, 
without external dependencies or custom operations.

Encoding-side feature extraction and spatial attention embedding
The encoder uses a five-layer symmetrical structure, with each layer consisting of two sets of three-dimensional 
convolutional units. The convolution kernel size is 3 × 3 × 3, the stride is 1, and zero padding is used to maintain 
the volume size. Each set of convolution operations is followed by three-dimensional batch normalization and a 
nonlinear activation function to improve the stability of feature expression and nonlinear modeling capabilities. 
The input voxel feature of layer  is X(l), and the convolution operation is:

	 F (l) = ReLU
(
BN

(
W(l)*X(l)))

� (5)

In order to enhance the depth of feature extraction and suppress gradient disappearance, a short-circuit structure 
is introduced between convolutional layers to add the input features and convolution output element by element:

	 F
(l)
res = F (l) + X(l) � (6)

This structure remains consistent across all scales, ensuring continuous feature transfer across different layers.
The five levels of downsampling are implemented using a combination of voxel average pooling and 3D 

convolution with a stride of 2, resulting in a proportional decrease in feature map size and a gradual increase in 
channel dimension. The pre-sampling feature is F(l), and the downsampling operation is expressed as:

	 F
(l+1)
↓ = Conv3Ds=2

(
AvgP ool2×2×2

(
F (l)))

� (7)

Figure 3 shows the multi-scale intermediate features extracted from the input CT image through each layer of 
the encoder, showing the single-channel feature map of the corresponding encoding layer and its size change. 
The red arrows indicate the direction of the jump connection. Each panel displays a representative 2D slice from 
the feature map. The number of channels increases with depth (e.g., 32, 64, 96, …), while spatial dimensions are 
downsampled.

During the downsampling process, uncompressed feature maps at each scale are retained as skip connection 
sources to support high-resolution reconstruction in the subsequent decoding stage.

Volume data of varying resolutions generated by the multi-scale input path is fed into its corresponding 
encoding branch, maintaining a consistent structure and performing independent processing. To integrate 
information at different scales, the output of each encoder layer is connected to the corresponding decoder layer 
via skip connections. A spatial attention module is inserted before each skip path to enhance the response of the 
target region and suppress background interference.

The spatial attention module consists of two parallel channel compression paths, performing global average 
pooling and max pooling in the voxel slice dimension and axial dimension, respectively. Assuming the encoded 
feature map is F, the pooled output is:

	
Favg (h,w,d) = 1

C

C∑
c = 1

F (c,h,w,d) � (8)

	
Fmax (h,w,d) = max

1≤c≤C
F (c,h,w,d) � (9)

The output feature maps of the two paths are concatenated and fed into a 3D convolutional layer with a kernel 
size of 7 × 7 × 7. A sigmoid function is then applied to generate a spatial attention weight map. This weight map 
is element-wise multiplied with the original encoded features from the skip connection to produce a weighted 
spatial feature response. The processed feature map maintains the same structure as the original feature map, 
without affecting dimensional alignment.

Fig. 3.  Schematic diagram of encoder intermediate features.
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All attention modules operate only within the skip connection, highlighting boundaries and structural details 
during cross-scale fusion. The weighted result is concatenated with the upsampled output of the decoder and fed 
into the subsequent decoding module for feature reconstruction.

Decoder structure and multi-scale fusion strategy
The decoder constructs a multi-layered progressive upsampling structure, corresponding to the encoder’s 
multi-scale outputs, to achieve step-by-step restoration of spatial dimensions. For each encoder scale output, a 
transposed convolution operation is used for spatial upsampling, with an upsampling step of 2. Assuming the 
encoder output of layer  is E(l), the upsampling process is defined as:

	 U(l) = ConvTranspose3Dk = 3,s = 2,p = 1

(
E(l)) � (10)

k, s, p are the convolution kernel size, stride, and padding, respectively.
After spatial alignment, the feature maps corresponding to the encoder scale are concatenated, with 

concatenation performed along the channel dimension:

	 F
(l)
concat = Concatchannel

(
U(l),S(l)) � (11)

Figure 4 shows the upsampled feature maps of the encoder, the feature maps of the corresponding layers of the 
decoder, and the feature distribution of the two after fusion via skip connections. The fusion result preserves the 
details of the encoded features in terms of spatial structure while introducing high-resolution information from 
the decoded features, demonstrating the integration of multi-scale information during the decoding process. 
Color variations represent the intensity of feature activations, with warmer colors indicating higher response 
values.

After concatenation, a 3D convolution module is used for fusion. The convolution kernel size remains at 
3 × 3 × 3, and the number of channels matches the number of channels in the concatenated features.

	
F

(l)
fuse = σ

(
BN

(
W (l) ∗ F

(l)
concat

))
� (12)

The decoder is designed with independent branches for multi-scale encoded outputs, each handling upsampling 
and fusion operations at the corresponding scale to avoid cross-scale interference. After decoding, each branch 
produces a feature map with a uniform spatial size. To achieve effective multi-scale feature fusion, the decoded 
outputs of all branches are concatenated along the channel dimension when the spatial dimensions are completely 
consistent. The concatenated multi-scale feature maps are input into multi-layer convolutional units for channel-
dimensional compression and feature fusion. The convolution kernel size remains at 3 × 3 × 3, with the number 
of channels gradually reduced. Nonlinear activations are added to the intermediate layers of the fusion module 
to improve feature recognition and spatial consistency.

For spatial alignment, a combination of nearest neighbor interpolation and trilinear interpolation is used for 
upsampling, ensuring a smooth transition in the spatial distribution of the upsampled feature maps. For the skip 
connection features at the encoder end, the spatial dimensions are cropped or padded based on the upsampling 
results to ensure that the sizes of the feature maps are fully matched during the splicing operation, avoiding 
fusion failures caused by inconsistent shapes. The post-splitting feature fusion module introduces depthwise 
separable convolution instead of standard convolution, reducing the number of parameters and computational 
burden while retaining the ability to extract spatial features.

A multi-scale fusion module is designed at the end of the decoder. This module receives multi-scale features 
from different branches, first integrates the number of channels through a series of convolutional layers, and 
then compresses the features into a single-channel prediction map using 1 × 1 × 1 convolution. This module uses 

Fig. 4.  Decoder multi-scale feature fusion diagram.
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group normalization instead of batch normalization to adapt to small-batch training environments and improve 
model stability. The fused feature map is mapped to the [0,1] interval by a sigmoid activation function to map 
the original feature value and generate the final single-channel probability map as the segmentation prediction 
output.

While maintaining a multi-scale parallel decoding structure, all decoding operations rigorously implement 
spatial scale alignment, channel fusion, and feature compression steps. This ensures effective integration of 
multi-scale information and maximizes the preservation of the rich spatial details extracted during the encoding 
phase, meeting the requirements for 3D karst spatial structure recognition.

Joint loss function implementation
The joint loss function consists of two parts: voxel-level region similarity measurement and boundary structure 
accuracy constraint. The region similarity part uses the Dice loss function, and the boundary accuracy part 
constructs a gradient-based boundary-aware loss function. The Dice loss function optimizes the overlap between 
the voxel label and the predicted map, and includes the product and square terms of the predicted map and the 
label map. The formula is:

	
LDice= 1−

2
∑

i
pigi+ε∑

i
p2

i
+

∑
i

g2
i

+ε
� (13)

pi is the predicted value, gi is the true label value, and ε is a constant. This loss function is highly sensitive to 
small objects and can improve recall of small structural areas such as karst channels.

The boundary-aware loss function uses voxel gradient fields as a guide to enhance the model’s sensitivity 
to changes in boundary position. This loss is based on the Sobel operator, which calculates the gradient image 
between the predicted image and the label image along three axes to obtain the boundary response value in three 
dimensions. The formulas for calculating the gradient image are:

	 Gx = Kx ∗ I � (14)

	 Gy = Ky ∗ I � (15)

	 Gz = Kz ∗ I � (16)

Kx, Ky , Kz  are Sobel kernels, and I  is the input image. This paper performs the above operations on the 
prediction image and the label image respectively, calculates the corresponding gradient magnitude map, and 
then solves the L1 loss between the two. The formula is:

	
LEdge = 1

N

N∑
i=1

|∇pi − ∇gi| � (17)

∇pi and ∇gi are the gradient magnitudes of the predicted and labeled images at the ith voxel, respectively, and 
N  is the total number of voxels.

The total loss function is a weighted combination of the Dice loss and the boundary loss. The weights are 
empirically set based on the difference between boundary error and voxel accuracy at the beginning of training. 
The joint loss function is defined as:

	 LT otal = λLDice + (1 − λ) LEdge � (18)

λ is a weighting factor, set to 0.6 in the experiment to strike a balance between region overlap and boundary 
accuracy. Figure  5 shows a comparison of the predicted results and the true labels in the gradient domain, 
including the predicted gradient, the label gradient, and their difference map. The gradient magnitude map of 
the predicted results reflects the location and strength of the predicted boundary; the difference between the 
two is visualized to intuitively reflect the deviation between the predicted boundary and the true boundary. The 
difference map magnifies the local deviation of the boundary position and is used to qualitatively evaluate the 
positioning accuracy of the model at the edge rather than reflecting the similarity of the overall structure.

This loss function performs loss calculation and backpropagation optimization on all predicted voxels in 
each training round. Boundary loss provides edge shape constraints in the early stages of model training, while 
Dice loss is used later to improve overall segmentation consistency and enhance the model’s adaptability to the 
complex boundary structures of karst. This loss function directly uses the Sigmoid probability map output by the 
network (rather than the binary map after threshold segmentation) and the label map for gradient calculation, 
avoiding the error caused by threshold segmentation and making the optimization target smoother.

3D structural evaluation metrics
To comprehensively evaluate the model’s ability to restore karst structures in 3D space, this paper defines three 
structural evaluation metrics: connectivity preservation rate, structural integrity, and spatial geometric accuracy.

Connectivity Preservation Rate: This metric measures the consistency of topological connectivity between 
the predicted structure and the true label. First, Connected Component Analysis (CCA) is performed on both 
the predicted results and the true label, using a 26-neighborhood (6-connectivity in 3D) rule to define voxel 
connectivity. Then, the maximum intersection over union (IoU) between each connected component in the 
predicted result and all connected components in the true label is calculated. If the maximum IoU exceeds 
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a preset threshold (set to 0.5 in this study), the predicted component is considered correctly identified. The 
connectivity preservation rate is defined as the ratio of the number of correctly identified predicted components 
to the total number of connected components in the true label.

Structural Integrity: This metric quantifies the proportion of voxels lost or incorrectly generated during the 
segmentation process. It is measured by calculating the volumetric difference between the predicted result and 
the true label. The specific calculation formula is as follows:

	
Integrity = 1 − |Vpred − Vgt|

Vgt
� (19)

where Vpred and Vgt represent the total volume (i.e., number of voxels) of the predicted segmentation result and 
the true label, respectively. This metric reflects the voxel-level fidelity of the model in reconstructing the overall 
shape of the structure.

Spatial Geometric Accuracy: This metric evaluates the average distance between the predicted and true 
boundaries. This study uses the Average Surface Distance (ASD) based on a distance transform as a metric. First, 
the boundary voxels of the true and predicted labels are extracted to generate a binary boundary map. Then, 
a three-dimensional distance transform is performed on one boundary map to obtain the shortest Euclidean 
distance from each boundary voxel to the other boundary map. Spatial Geometric Accuracy is defined as 
the average of these distances. This metric is sensitive to boundary deviation; smaller values indicate higher 
geometric accuracy.

Experimental design and setup
Dataset construction and preprocessing
The experimental core samples were collected from a typical karst region drilling project in Guizhou Province, 
with limestone as the predominant lithology. Eight core sections exhibiting karst pore structures were selected, 
each measuring 7.6 cm in diameter and 30 cm in length. Three-dimensional morphological analysis revealed that 
the voxel diameter distribution of karst structures in the samples ranged from 50 µm to 12 mm, with micro-pores 
(< 1 mm) accounting for approximately 68%, small cavities (1–5 mm) making up about 25%, and large cavities 
(> 5 mm) representing roughly 7%. Three-dimensional scanning was performed using a commercial micron-
class industrial CT system, with a resolution of 50 µm and an output reconstructed voxel size of 512 × 512 × 1024. 
Each core image was cropped to obtain a volumetric area of 512 × 512 × 512, with a voxel spacing of 0.05 mm 
(i.e., 50 μm). While publicly available datasets such as the Digital Porosity Medium Portal provide abundant 
carbonate rock samples, this study focuses on eight core samples from a single geological background to ensure 
consistent experimental conditions and comparable results. Future work will explore the model’s generalization 
capabilities across regional and multi-source datasets.

The image data was volumetrically cropped into non-overlapping sub-blocks of 128 × 128 × 64. A single core 
set generated approximately 256 samples, for a total of 2048 sub-block samples. To avoid data leakage due to 
spatially adjacent sub-blocks, this study adopted a core-wise partitioning strategy. Specifically, eight independent 
core samples were divided into training, validation, and test sets by number, ensuring that all sub-blocks from 
the same core belonged to only one set. The specific partitioning was as follows: the training set contained five 
cores (numbered #1, #2, #3, #4, and #5), totaling 1280 samples; the validation set contained two cores (numbered 
#6 and #7), totaling 512 samples; and the test set contained one core (numbered #8), totaling 256 samples. The 
partitioning ratio was approximately 7:1.5:1.5.

The ground-truth labels were manually drawn layer by layer by three experienced geological image annotators 
using ITK-SNAP software. All annotations were cross-verified twice, and consistent regions were selected as 
final labels. Cohen’s Kappa coefficient was used to assess annotation consistency, with an average value of 0.87. 
Labels were generated using binary voxel masks, with karst areas labeled as 1 and background as 0.

Fig. 5.  Visualization of prediction gradient, label gradient, and the difference between the two.
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During preprocessing, min–max normalization was used to adjust the CT value distribution of each image to 
the range [0, 1]. To ensure that feature map sizes remained integer after five times of downsampling by a factor of 
2, all input volumes were cropped or padded to an integer multiple of 8 spatial dimensions. The specific strategy 
is: for each dimension, if its length L satisfies L % 8 ! = 0, the required padding is calculated as pad = 8—(L % 
8), and zero padding of pad//2 and pad—pad//2 is evenly applied at the beginning and end of that dimension. 
This operation is uniformly performed during data loading using a custom PyTorch Dataset class, ensuring 
consistent spatial alignment and size processing for all samples (training, validation, and test). To improve the 
model’s generalization, only the training set was augmented with 3D data. This includes random rotation around 
an axis (angle range ± 15°), random scaling (ratio 0.9–1.1), voxel mirroring (random flipping along the x, y, and z 
axes), and the addition of random Gaussian noise (mean 0, standard deviation 0.01). These augmented samples, 
along with the original samples, form the training input set, which the model uses to learn the characteristics of 
karst structures at different scales and orientations.

Experimental platform and training parameter settings
The model was trained on an NVIDIA RTX A6000 GPU with 256 GB of host memory and Ubuntu 20.04. The 
training framework was built using PyTorch 1.12.1 and CUDA 11.6. The AdamW optimizer was used, with 
an initial learning rate of 1 × 10−4 and a weight decay factor of 1 × 10−5. A multi-step decay strategy was used, 
reducing the learning rate to 1/10 at epochs 60, 120, and 160, respectively. The training cycle was set to 200 
epochs, with a batch size of 2. All convolutional layers were initialized using the Kaiming Normal method, 
and the nonlinear activation function used was Leaky ReLU with a negative slope coefficient of 0.01. Group 
Normalization was used, with each group containing 8 channels to adapt to small-batch training conditions and 
suppress normalization fluctuations. The sigmoid activation function is used in the training to convert the single 
channel output into the probability distribution of foreground (karst).

Comparative models and experimental setup
For the comparative experiments, several existing 3D image segmentation network architectures were selected 
as baseline models, covering typical encoder-decoder architectures, attention mechanisms, and automatic 
configuration frameworks. Specifically, three mainstream models are included: 3D U-Net, Attention U-Net, and 
V-Net, representing a standard 3D convolutional architecture, an improved structure incorporating an attention 
mechanism, and a deep network design with residual connections, respectively. All comparison models maintain 
a standard architectural implementation, omitting the multi-scale input path and spatial attention module 
proposed in this paper. Each model uses the same training set, image preprocessing methods, and label format, 
and is trained using a unified joint loss function. The experimental setup maintains the same number of training 
rounds, learning rate scheduling strategy, optimizer type, and batch size, and models are trained on a consistent 
hardware platform to ensure that performance differences are not due to architectural design differences. After 
training, the output of each model is saved for subsequent performance comparison and analysis.

Karst structure recognition performance evaluation
Comprehensive comparison of segmentation accuracy and matching
For the task of 3D karst channel segmentation, this method was used to conduct comparative experiments on 3D 
U-Net, Attention U-Net, and V-Net. Evaluation metrics included the Dice coefficient, Intersection over Union 
(IoU), and Hausdorff distance. Through repeated experiments, the performance distribution of each model was 
obtained to reflect the stability and variability of the models under different evaluation dimensions. The results 
are shown in Fig. 6.

Figure 6 shows that proposed method achieves an average Dice coefficient of approximately 0.85 and an 
average Intersection over Union (IoU) of approximately 0.73. The method also exhibits a more concentrated data 
distribution and improved stability. The Hausdorff distance shows that proposed method achieves the lowest 
boundary error, averaging approximately 4.9. The advantages of proposed method stem from its multi-scale 
input and spatial attention mechanism. Multi-scale input (original, 1/2, and 1/4 resolution) improves the model’s 

Fig. 6.  Performance comparison of karst channel segmentation models.
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ability to recognize structures of varying sizes, and the spatial attention module enhances boundary response. 
Standard 3D U-Net suffers from large boundary errors due to its single-scale input and lack of an attention 
mechanism. The joint loss function further optimizes structural continuity, resulting in superior boundary 
errors for proposed method compared to other models.

Qualitative visualization analysis of slices
This study addresses the issues of blurred karst structure boundaries and scale variations in CT image 
segmentation of karst reservoirs. A 128 × 128 pixel region with typical vug features was selected for analysis. By 
comparing the segmentation performance of 3D U-Net, V-Net, Attention U-Net, and an improved model on 
eight karst vug structures, the accuracy of each model in identifying vug boundary locations and morphological 
features was examined. Figure  7 shows a comparison of the boundary matching between the four models’ 
predictions and the ground truth annotations.

As shown in Fig. 7, proposed method achieves the highest prediction accuracy, while 3D U-Net performs 
the worst. Proposed method’s advantages stem from its multi-scale input and spatial attention mechanism. The 
multi-scale path simultaneously captures karst structures of varying sizes, while the attention module enhances 
boundary feature responses, reducing boundary error to 1.9 pixels. In contrast, the standard 3D U-Net, due to 
its single-scale input and lack of an attention mechanism, struggles to process multi-scale features, resulting in 
significant offset.

To evaluate the model’s accuracy in identifying karst boundary features in karst reservoir CT image 
segmentation, this study used three metrics: boundary intersection over union (IoU), average boundary distance, 
and maximum boundary distance. This quantified the performance differences in boundary segmentation 
accuracy among 3D U-Net, V-Net, Attention U-Net, and an improved method. Table 2 presents the quantitative 
analysis results of each model’s boundary segmentation performance.

Proposed method achieved a boundary IoU of 77.8%, with an average and maximum boundary distance 
of 1.9 pixels and 6.5 pixels, respectively. Attention U-Net ranked second with an IoU of 71.2%, followed by 
V-Net and 3D U-Net, with the 3D U-Net achieving a maximum boundary deviation of 12.4 pixels. Proposed 
method effectively captures karst structures of varying sizes and enhances boundary features through multi-
scale feature fusion and a spatial attention mechanism, achieving optimal performance across all metrics. 3D 
U-Net performs poorly on complex boundaries due to its single-scale receptive field and lack of an attention 
mechanism. Although Attention U-Net incorporates an attention mechanism, its performance still lags behind 
improved methods due to its lack of multi-scale input.

Comparative analysis of 3D structure restoration ability
This study addresses key technical challenges in 3D reconstruction of karst reservoirs and systematically 
evaluates four mainstream deep learning models using three core evaluation metrics: connectivity preservation, 
structural integrity, and spatial geometric accuracy. The experiment used a connectivity assessment algorithm 
based on topological analysis to calculate the connectivity rate of the hole network, quantified structural integrity 
through voxel loss detection, and measured geometric accuracy using spatial error mapping based on distance 

Model name Boundary IoU (%) Average boundary distance (pixels) Maximum boundary distance (pixels) P-value(VS proposed method)

3D U-Net 62.5 ± 1.2 3.8 ± 0.05 12.4 ± 0.11 0.02*

V-Net 66.9 ± 1.7 3.2 ± 0.05 10.7 ± 0.08 0.003**

Attention U-Net 71.2 ± 1.2 2.6 ± 0.04 9.3 ± 0.07 0.04*

Proposed Method 77.8 ± 0.6 1.9 ± 0.02 6.5 ± 0.03 -

Table 2.  Quantitative Analysis of 2D Slice Segmentation Results and Boundary Details.  The impact of 
different modules on model performance (3 independent experiments, mean ± standard deviation). The 
significance of the performance differences between each ablation model and the full model (the proposed 
method) was assessed using an independent two-sample t-test. ** indicates a P-value < 0.01, indicating an 
extremely significant difference; * indicates a P-value < 0.05, indicating a significant difference.

 

Fig. 7.  Comparison of hole boundary matching performance using different segmentation models.
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transforms. Figure 8 shows a comparison of the comprehensive performance of each model on these three key 
indicators.

Proposed method leads in all metrics (connectivity 92.5%, completeness 88.9%, spatial accuracy 86.6%). 
Attention U-Net follows closely with 83.7% connectivity and 80.2% completeness. V-Net and 3D U-Net perform 
in descending order, with 3D U-Net performing the worst in spatial accuracy.

The performance differences primarily stem from the feature extraction mechanisms of each model. Proposed 
method effectively captures the topological connectivity of karst pores through multi-scale feature fusion and 
a 3D attention mechanism. Its deep feature aggregation strategy ensures the complete restoration of complex 
structures. In contrast, the 3D U-Net, limited by its single-scale receptive field, struggles to process multi-scale 
karst features, resulting in poor spatial accuracy. While the V-Net introduces residual connections to improve 
gradient flow, it still struggles to preserve fine-grained geometric features.

Ablation experiment evaluation
To analyze the contribution of key modules in the improved model, this study designed a systematic ablation 
experiment. By gradually removing the multi-scale input path, the spatial attention module, and the boundary-
aware loss function, the paper quantitatively evaluated the impact of each component on segmentation 
performance. Under fixed training strategies and test sets, the experiment measured the performance changes 

Fig. 8.  Multi-dimensional performance comparison of karst reservoir 3D reconstruction models.

 

Scientific Reports |        (2025) 15:39094 11| https://doi.org/10.1038/s41598-025-26802-7

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


of the full model and three simplified variants using the Dice coefficient, intersection-over-union ratio, and 
Hausdorff distance metrics. Table 3 presents the quantitative results of the impact of each module’s omission on 
model performance.

Ablation data show that the complete model achieves the best performance (Dice 87.8%, IoU 80.1%, Hausdorff 
3.2 mm). Removing the multi-scale input reduces the Dice by 3.3 percentage points to 84.5%. Disabling the spatial 
attention module reduces the IoU by 4.7 percentage points to 75.4%. Removing the boundary loss function 
increases the Hausdorff distance to 4.4 mm. The omission of the spatial attention module has the greatest impact 
on these metrics. Multi-scale input primarily improves the ability to recognize multi-scale structures, but its 
absence significantly impacts small pore detection. The spatial attention module contributes most to boundary 
accuracy, with its removal increasing the Hausdorff distance by 56%. Boundary loss primarily optimizes edge 
localization and has a relatively minor impact. Experiments confirm that multi-scale input and the spatial 
attention module are core components of the model, synergistically improving segmentation performance.

Error and error region analysis
To evaluate the error characteristics of the model in karst reservoir CT image processing, this study conducted 
five sets of repeated experiments, measuring the performance of four mainstream models on three key error 
metrics: false positive rate (FPR), false negative rate (FNR), and relative volume difference (RVD). By controlling 
the consistency of experimental conditions, the over-segmentation, under-segmentation, and volume estimation 
bias of the models in karst structure segmentation were systematically analyzed. Figure 9 shows a comparison of 
the error metrics of the various models across multiple experimental sets.

Based on the numerical distribution, the proposed method’s FPR ranges from 5.4–6.1%, FNR from 6.5–
7.2%, and RVD from 3.4–3.9%, lower than the other three methods. These differences are related to the model’s 
underlying representation and fusion mechanism. This method combines parallel multi-scale input with spatial 
attention on skip connections to generate a stronger saliency response at the encoder end for karst caves and 
fissures with varying sizes and blurred boundaries, suppressing background noise and thereby simultaneously 
reducing both FPR and FNR. Scale alignment and progressive fusion at the decoder enhance structural continuity 
and voxel consistency, reducing volumetric deviation, resulting in lower RVD. In contrast, 3D U-Net and V-Net 
are limited in cross-scale detail aggregation and boundary focus, prone to over- and under-segmentation, 
resulting in high false positives and false negatives. While Attention U-Net incorporates attention, it is limited by 
its multi-scale input and fusion strategy, resulting in a lower improvement in boundary and volume consistency 
than proposed method. Consequently, the overall performance of the three errors is intermediate.

Comparative experiments with advanced baseline models
To comprehensively evaluate the performance of the proposed method, this study further compared it with 
four state-of-the-art baseline models in the fields of medical and industrial image segmentation: 3D nnU-Net, 
3D UNet+ + , SwinUNETR, and UNETR. These models represent strong, competitive baselines with automated 
segmentation, deeply nested structures, and Transformer-based architectures. All comparison models were 
evaluated under the same experimental setup: using the same training, validation, and test sets as our method, 
the same image preprocessing pipeline (normalization and data augmentation), and running on the same 
hardware platform (NVIDIA RTX A6000). 3D nnU-Net, 3D UNet +  + , SwinUNETR, and UNETR were trained 

Fig. 9.  Comparison of error characteristics of karst reservoir segmentation models across multiple 
experimental groups.

 

Experimental setting Dice (%) IoU (%) Hausdorff distance (pixel) P-value(VS full model)

Full model 87.8 ± 1.2 80.1 ± 1.1 64.0 ± 0.5 –

Without multi-scale input 84.5 ± 1.7 76.0 ± 1.8 74.7 ± 1.5 0.002**

Without spatial attention module 83.9 ± 1.6 75.4 ± 1.6 85.0 ± 1.3 0.04*

Without boundary loss 85.1 ± 1.7 77.1 ± 1.8 74.4 ± 1.4 0.03*

Table 3.  Impact of different modules on model performance.
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using their official or widely recognized open-source implementations and their default or recommended 
hyperparameters to ensure fair comparison. All models were trained using the joint loss function proposed in 
this paper (Dice + boundary-aware loss) to eliminate the impact of different loss functions. Table 4 reports the 
performance comparison of the proposed method with these four advanced baseline models on the test set, 
including Dice coefficient, IoU and Hausdorff distance.

Table 4 compares the performance of our proposed method with four state-of-the-art baseline models: 3D 
nnU-Net, 3D UNet+ + , UNETR, and SwinUNETR, on a test set of karst reservoir CT images. All models were 
trained and evaluated using the same dataset, preprocessing pipeline, and joint loss function to ensure a fair 
comparison. Evaluation metrics include the Dice coefficient, intersection over union (IoU), and Hausdorff 
distance. The results show that our proposed method achieves optimal performance across all metrics, with 
a Dice coefficient of 87.8%, an IoU of 80.1%, and the smallest Hausdorff distance of 3.2 mm. SwinUNETR, 
the strongest baseline model, achieves a Dice coefficient of 86.2%. This comparison fully demonstrates the 
effectiveness and superiority of our proposed multi-scale input pathway, spatial attention mechanism, and 
boundary-aware loss function for the specific task of processing karst reservoirs, surpassing current mainstream 
automated and Transformer architecture models. The method’s advantages stem from its co-designed 
architecture tailored to geological data characteristics. The parallel multi-scale input pathway effectively captures 
cross-scale structures from micro-pores to large-scale caverns, while SwinUNETR and UNETR rely on global 
self-attention mechanisms that are prone to suppressing local details in high-resolution 3D volumetric data and 
lack sensitivity to small-scale structures. The spatial attention module with embedded skip connections precisely 
enhances fuzzy boundary responses. In contrast, UNet +  + ’ s nested architecture, though improving feature 
reuse, remains convolution-based with limited receptive fields. Additionally, incorporating boundary-aware loss 
further optimizes edge geometry accuracy. Therefore, this approach outperforms state-of-the-art architectures 
that prioritize generalization over task-specific adaptability in specific tasks.

Table 5 compares the computational efficiency and model complexity of the proposed method with current 
advanced 3D segmentation models. Evaluation metrics include single-iteration time, inference time per sample, 
and parameter count. The comparison includes 3D nnU-Net, 3D UNet+ + , UNETR, and SwinUNETR, all 
tested under identical hardware conditions. Results show that despite incorporating multi-scale inputs and 
spatial attention modules, the proposed method achieves a single-iteration time of 342.1 ms, inference time 
of 189.3  ms, and 27.8 million parameters. Its overall computational cost is lower than Transformer-based 
UNETR and SwinUNETR, while delivering faster inference speeds. These results demonstrate that the proposed 
method maintains high segmentation accuracy while offering excellent computational efficiency and practical 
deployment potential. This difference primarily stems from the architectural nature: Transformer-based models 
involve extensive self-attention computations, where time complexity grows quadratically with the number of 
voxels, resulting in significantly increased computational costs. In contrast, our approach employs a lightweight 
spatial attention module that operates exclusively at skip connections, achieving lower computational costs. 
Furthermore, the multi-scale path shares parts of the backbone structure, effectively controlling parameter 
proliferation. These findings demonstrate that our method achieves superior segmentation performance through 
targeted design while maintaining efficient inference.

Conclusions
This study addresses the issues of blurred boundaries and significant scale variations in karst structures in CT 
images of karst reservoirs by proposing an improved 3D U-Net segmentation method. By constructing a multi-
scale input path to concurrently extract volumetric features at different resolutions and embedding a spatial 
attention module within skip connections, the model’s ability to recognize complex karst structures is enhanced. 
Furthermore, the Dice loss and boundary-aware loss function are combined to optimize the boundary accuracy 

Model name Dice (%) IoU (%) Hausdorff distance (mm)

3D nnU-Net 85.5 ± 2.1 74.2 ± 1.5 7.1 ± 1.2

3D UNet+ +  84.8 ± 2.2 73.1 ± 2.2 7.5 ± 1.4

UNETR 83.9 ± 2.6 71.8 ± 2.3 7.5 ± 1.7

SwinUNETR 86.2 ± 2.3 75.6 ± 1.6 6.8 ± 1.7

Proposed method 87.8 ± 1.2 80.1 ± 1.1 6.4 ± 0.5

Table 5.  Comparison of model calculation efficiency and complexity.

 

Model name Dice (%) IoU (%) Hausdorff distance (pixel) P-value(VS proposed method)

3D nnU-Net 85.5 ± 2.1 74.2 ± 1.5 71 ± 1.2 0.002**

3D UNet+ +  84.8 ± 2.2 73.1 ± 2.2 75 ± 1.4 0.006**

UNETR 83.9 ± 2.6 71.8 ± 2.3 75 ± 1.7 0.003**

SwinUNETR 86.2 ± 2.3 75.6 ± 1.6 68 ± 1.7 0.002**

Proposed method 87.8 ± 1.2 80.1 ± 1.1 64.0 ± 0.5 –

Table 4.  Performance comparison with advanced baseline models.
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and structural continuity of the segmentation results. Experimental results demonstrate that this method 
outperforms competing models in metrics such as the Dice coefficient, Intersection over Union (IoU), and 
Hausdorff distance, with outstanding performance in terms of boundary error and 3D structural connectivity. 
Ablation experiments validate the key role of multi-scale input and the spatial attention module. This research 
provides effective technical support for high-precision modeling of karst reservoirs and has important application 
value in geological engineering.

While this study has achieved promising results, several limitations remain. First, the model may experience 
undersegmentation or incorrect connections in areas with extremely low CT image grayscale contrast or highly 
dense karst channel branches, indicating room for improvement in robustness for extreme complexity scenarios. 
Second, although the model outperforms advanced baselines in accuracy, the introduction of multi-scale paths 
and attention mechanisms increases computational overhead compared to standard 3D U-Net, which somewhat 
limits its real-time processing capability on large-scale datasets. Future work will focus on optimizing network 
lightweight design, exploring knowledge distillation or dynamic inference strategies to enhance efficiency, and 
constructing datasets with more challenging samples to further improve the model’s generalization ability and 
robustness.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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