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The study aimed to investigate the spatial correlation network of carbon emissions from cultivated 
land use in the Yellow River Basin(YRB) and its driving factors, which is conducive to promoting 
collaborative carbon emission reduction in cultivated land use across the region. The study utilized 
the carbon emission coefficient method to calculate carbon emissions from cultivated land use in the 
YRB between 2008 and 2022. A modified gravity model and social network analysis method were then 
employed to analyze the characteristics of the spatial correlation network of carbon emissions from 
cultivated land use in the YRB. Additionally, the Quadratic Assignment Procedure (QAP) method was 
utilized to identify driving factors. The research findings indicate that: (1) Between 2008 and 2022, the 
overall carbon emissions from cultivated land use in the YRB increased by 27.6%. The proportion of 
carbon emissions from different sources, from largest to smallest, was as follows: straw burning (over 
60%), agricultural inputs (over 20%), and crop cultivation (around 13%). (2) According to the overall 
network characteristics, the spatial correlation network underwent an evolution from dispersion to 
concentration and then to adjustment. The network connectivity was good, efficiency fluctuated 
and rose to stability, centrality showed an inverted "U" shaped change, with Shandong and Henan 
remaining at the core of the network throughout. (3)Based on individual network characteristics, the 
network structure showed a core-periphery hierarchy, with Gansu and Inner Mongolia identified as the 
core provinces. (4) QAP analysis indicated that factors such as geographical proximity, urbanization 
levels, and agricultural machinery input intensity positively influenced the spatial correlation network, 
while factors like agricultural economic levels, farmer income levels, and environmental regulations 
had negative effects. Based on the findings of this study, feasible pathways are proposed from aspects 
including the three sources of carbon emissions, regional cooperation within the YRB, and policy 
optimization.
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Over the past century, the accelerated process of global industrialization has driven rapid economic 
development, but has also brought serious environmental issues. The emissions of a large amount of greenhouse 
gases, especially carbon dioxide (CO₂), have led to an increasingly significant greenhouse effect. According to 
the Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment Report, the global average surface 
temperature has risen by 1.09℃ from 1850-1900 to 2011-2020, and is projected to exceed 1.5℃ by 20501. This 
change not only has profound implications for the global climate system, but also presents serious challenges to 
the sustainable development of human society.

China, as a traditional agricultural nation, accounts for approximately 24% of total carbon emissions from 
agriculture2, representing about 12% of global agricultural emissions and making it the world’s second largest 
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agricultural emitter3. In recent years, in order to support carbon emissions reduction in agricultural production, 
China has issued a series of policy documents to support green development in agriculture. In 2024, the Ministry 
of Agriculture and Rural Affairs issued the "Guiding Opinions on Accelerating the Comprehensive Green 
Transformation of Agricultural Development and Promoting the Ecological Revitalization of Rural Areas", 
proposing to "implement rural carbon emission reduction and carbon sequestration actions, and strengthen the 
carbon sequestration functions of farmland and soil"4. In 2025, the State Council issued the "Rural Revitalization 
Comprehensive Plan (2024-2027)", which proposed to "steadily advance agricultural carbon emission reduction 
and carbon sequestration, popularize no-till or reduced-till seeding technologies"5.By properly utilizing and 
protecting arable land, it not only can improve agricultural production efficiency but also enhance carbon sink 
capacity effectively, making contributions to addressing climate change.

The Yellow River Basin (YRB) is an important grain producing region in China with abundant arable 
land resources, but currently faces significant carbon emission pressure from its land use. Specifically, carbon 
emissions from land use in the YRB stem from three areas.

The first is carbon emissions from agricultural inputs. Taking fertilizers as an example, in 2022, the nitrogen 
fertilizer usage per hectare of farmland in the United States was 59.07 kg, compared to China’s high usage of 
191.55 kg/ha6, this not only caused resource waste, but also increased carbon emissions. In addition to fertilizers, 
inputs such as pesticides, plastic film and other elements also generate a large amount of carbon emissions.

The second is the carbon emissions during the cultivation process of crops. The vast agricultural land in 
the YRB has significant differences in nitrous oxide (N2O) emissions flux from different crops. Studies have 
found that soil N2O emissions account for 38% of agricultural greenhouse gas emissions7, and N2O has a global 
warming potential 310 times higher than CO2

8. Therefore, in this study, we focus on this key greenhouse gas 
-"N2O".

Third, carbon emissions from straw burning. In 2021, the comprehensive utilization rate of crop straw in 
China reached 88.1%9, indicating that straw resources have been relatively fully utilized. However, there is 
still a large amount of straw accumulating in the fields or being burned in concentrated areas, leading to the 
production of significant carbon emissions.

In order to study the carbon emissions from cultivated land use, it is first necessary to quantify it. Scholars in 
existing literature have calculated the carbon emissions from cultivated land use at different times and spaces. 
Scholars in China have conducted research at the provincial10, municipal11, county levels12, as well as in different 
river basins at different time periods13. Foreign scholars have also conducted relevant research. For example, 
Sha et al. (2022) found that optimizing land management can increase land vegetation carbon sinks by 3.5–4 
billion tons on a global scale14. Ning et al. (2023) identified the sources, directions, and spatial changes of carbon 
emissions from land use in Nepal, using ESA/CCI (European Space Agency/Climate Change Initiative) data 
for their analysis15. These studies had all revealed that carbon emissions from cultivated land use cannot be 
ignored, provided theoretical support for subsequent scholars to conduct research. In their research process, 
they innovatively applied many research methods. The methods for calculating carbon emissions from land use 
mainly include carbon emission coefficient method16, remote sensing assessment17, and model calculation18. 
When studying the spatiotemporal distribution characteristics of carbon emissions from land use, scholars mainly 
use spatial correlation analysis, LISA temporal path analysis19, spatiotemporal transition methods20, standard 
deviation ellipses21, and centroid migration22. In the research on influencing factors of carbon emissions from 
land use, methods such as the Kaya constant equation23, Logarithmic Mean Divisia Index (LMDI) model24, and 
GTWR25 analysis are mainly used. Scholars have further advanced research in this field using these methods, 
and research results can be presented in a more intuitive way through numbers, tables, images, and soon. At 
the same time, it can also make people realize that the issue of greenhouse gas emissions from cultivated land 
use under different time and space conditions cannot be ignored. In order to improve this situation, researchers 
have conducted studies on the driving factors of carbon emissions from cultivated land use, aiming to pinpoint 
the reasons and address the issue effectively. Aziz et al. (2023) believed that demographic, socioeconomic, and 
technological factors in the agricultural sector are positively correlated with the emissions of CO₂, CH₄, and 
N₂O26. Lu et al. (2023) has found that the impact of open agricultural product trade on agricultural carbon 
emissions exhibits a significant environmental regulation threshold effect27. Li et al. (2025) found that Green 
finance policies play an important role in promoting regional carbon reduction28.

In conclusion, existing literature has explored carbon emissions from land use in China, but most studies 
focus on static analysis of the spatial relationships of carbon emissions from land use, neglecting the structural 
evolution of spatially related carbon emissions from land use, and failing to discuss the driving factors of the 
spatially related structural evolution of carbon emissions from land use. Therefore, the overall objective of this 
paper is to analyze the spatial correlation network characteristics of carbon emissions from land use in the YRB 
from 2008 to 2022 and their driving factors, and provide relevant suggestions for carbon reduction from land 
use in the YRB.

This paper has numerous innovative aspects, mainly reflected in the following areas. First, innovation in 
the research subject. Although existing literature on carbon emissions is quite extensive, it mostly focuses on 
other regions and industries. This study is the first to take carbon emissions from cultivated land use in the 
YRB as an independent research subject, filling a gap in this field. Second, innovation in methodology. Existing 
research in this region has concentrated on the spatiotemporal variation of carbon emissions and efficiency, 
with little discussion on inter-regional carbon flow and spatial correlation. This paper innovatively applies a 
combined SNA and QAP approach in this region for the first time, systematically depicting the spatial network 
characteristics of carbon emissions from cultivated land use in the YRB, and deeply analyzing influencing 
factors, providing a scientific basis for formulating regional collaborative carbon reduction strategies. Third, 
innovation in the indicator system. In the process of constructing the modified gravity model, this paper fully 
considered the actual conditions of the YRB, incorporating cultivated land use carbon emissions into the key 
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indicator system. This innovation not only enhances the model’s explanatory power but also provides a new 
perspective for accurately assessing regional carbon emissions.

The specific objectives of this paper are as follows: (1) Calculate the carbon emissions from land use in 
the YRB from 2008 to 2022 using the carbon emission coefficient method; (2) Analyze the spatial correlation 
network characteristics of carbon emissions from land use in the YRB using a modified gravity model and social 
network analysis methods; (3) Identify the driving factors of the spatial correlation network of carbon emissions 
from land use in the YRB using the Quadratic Assignment Procedure (QAP) method; (4) Provide relevant 
suggestions for carbon reduction from land use in the YRB.

Materials and methods
Overview of the study area
The Yellow River is the second longest river in China, originating in Qinghai Province and flowing through 
Sichuan, Gansu, Ningxia, Inner Mongolia, Shaanxi, Shanxi, Henan, and Shandong, ultimately emptying into the 
Bohai Sea. The YRB is not only a core area for China’s food security but also one of the most carbon emission-
intensive regions in global agriculture. In 2022, the cultivated land area in the YRB was 446 million hectares, 
with significant differences in spatial distribution among provinces (see Fig. 1). The upper and middle reaches 
of the YRB are characterized by widespread plateau and mountainous areas, making them prone to soil erosion, 
with fragile ecological environments and limited arable land, posing significant constraints on agricultural 
production and economic development29.Henan and Shandong, two major agricultural provinces, are located in 
the lower reaches of the Yellow River with natural geographic and climatic conditions suitable for crop growth. 
However, the high degree of intensive agriculture and dense population in these two provinces result in relatively 
high total agricultural carbon emissions. Currently, the conflict between environmental protection and economic 
development in the YRB is particularly prominent, with economic growth still to some extent coming at the 
expense of sacrificing the ecological environment. Data shows that for every 1% increase in per capita output, 
ecological efficiency decreases by 0.54%30. Therefore, research on carbon emissions in the YRB contributes 
to a deeper understanding of the impact of agricultural activities on climate change, proposes corresponding 
emission reduction strategies, and thus promotes sustainable agricultural development.

Methodology
This study constructs an analytical framework for the spatial correlation network and driving factors of cultivated 
land use carbon emissions in the YRB, and the research framework is illustrated in Fig. 2.

Fig. 1.  Geographical location of the study area. Note: The base map is produced using the standard map from 
the Ministry of Natural Resources, with a map approval number of GS(2024)0650, and no modifications were 
made to the base map boundaries, the same as below.
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Carbon emission coefficient method
Currently, the most commonly used method for calculating carbon emissions from land use is the emission 
coefficient method. The carbon emission coefficient method can directly quantify the carbon emissions of 
different energy sources, numericalize them in terms of energy units, has clear calculation methods and data 
sources, making the results more objective and comparable, and more accurate and reliable compared to other 
methods. The core process of this method is to determine the main sources of carbon emissions from land use, 
multiply relevant data by emission coefficients, calculate the emissions of various greenhouse gases, and then 
calculate the carbon emission equivalents using conversion factors31. Land use carbon emissions mainly include 
three aspects: agricultural input carbon emissions, crop growth carbon emissions, and straw burning carbon 
emissions. The formula for calculating total carbon emissions is as follows:

	 CE = CEInputs + CEGrowth + CEBurning � (1)

In the equation: CE represents total carbon emissions (t); CEInputs represents agricultural input carbon 
emissions (t); CEGrowth represents crop growth carbon emissions (t); and CEBurning represents straw 
burning carbon emissions (t).

Carbon emissions from agricultural input  Inputs of agricultural elements are one of the main sources of ag-
ricultural carbon emissions. These elements release greenhouse gases during their utilization, and to a certain 
extent, they also affect the efficiency and structure of land use, thereby influencing carbon emissions. The calcu-
lation formula is as follows:

	
CEInputs =

∑
M
m=1

∑
I
i=1Emi · δ i� (2)

Fig. 2.  Geographical location of the study area.
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In the equation: CEInputs represents the carbon emissions from agricultural inputs (t); Emi represents the 
amount of the i-th agricultural input in the m province, including pesticides, fertilizers (classified as N fertilizer, 
P fertilizer, K fertilizer, compound fertilizer), agricultural film, agricultural diesel, irrigation, and tillage; and 
δ i represents the carbon emission coefficient of the i-th agricultural input (Table 1). When calculating carbon 
emissions, it is necessary to convert various agricultural inputs into equivalent units based on the units of 
different carbon emission coefficients, and then multiply these coefficients with the corresponding indicators 
and sum them up.

Carbon emissions from crop cultivation  In the process of crop cultivation, in addition to the carbon emissions 
produced by agricultural inputs, crops also release certain greenhouse gases during their growth, with a focus 
on N2O in this study. Based on the agricultural statistical yearbooks of provinces in the Yellow River basin and 
actual planting conditions, seven crops including rice, wheat, corn, soybeans, potatoes, vegetables, and oilseeds 
are selected as research subjects to calculate carbon emissions from crop cultivation. The calculation formula is 
as follows:

	
CEGrowth =

∑
M
m=1Cropmi · θ mi · 298� (3)

In the equation: CEGrowth represents carbon emissions from crop growth (in tons); Cropmi represents the 
area of the i-th crop in province m (in hectares); θ mi represents the N2O baseline emission flux of the i-th crop 
in province m. After calculating the N2O emissions, it needs to be converted into CO2 equivalent emissions. 
According to the Intergovernmental Panel on Climate Change (IPCC) data, typically has a Global Warming 
Potential (GWP) of 298 over a 100-year timeframe35. Different types of crops have different N2O baseline 
emission fluxes (as shown in Table 2). For example, wheat can be divided into winter wheat and spring wheat 
based on the growing season, with N2O baseline emission fluxes of 1.75 and 0.4, respectively. Based on the 
characteristics of wheat cultivation in the YRB and historical data, this study obtained the N2O baseline emission 
flux of wheat in each province using a weighted average method.

Carbon emissions from straw burning  Currently, in China, a large amount of straw is still disposed of by 
burning, which generates a significant amount of greenhouse gases such as CO2, CH4, and N2O. This not only 
pollutes the ecological environment but also poses health risks to humans. In this study, when calculating car-
bon emissions from land use, straw burning is taken into account. The specific calculation method is as follows:

	
CEBurning =

∑
M
m=1

∑
N
n=1Burningmn

Province Rice Wheat Corn Soybeans Potatoes Vegetables Oilseeds

Shanxi 0.24 1.30 2.53 2.29 0.950 4.94 0.95

Inner Mongolia 0.24 0.50 2.53 2.29 0.950 4.94 0.95

Shandong 0.24 1.75 2.53 2.29 0.950 4.94 0.95

Henan 0.24 1.75 2.53 2.29 0.950 4.94 0.95

Sichuan 0.24 0.40 2.53 2.29 0.950 4.94 0.95

Shaanxi 0.24 1.20 2.53 2.29 0.950 4.94 0.95

Gansu 0.24 0.80 2.53 2.29 0.950 4.94 0.95

Qinghai 0.24 0.40 2.53 2.29 0.950 4.94 0.95

Ningxia 0.24 0.60 2.53 2.29 0.950 4.94 0.95

Table 2.  N2O background emission fluxes of various crops (kg/hm2). Note: Data sourced from Min(2012)36.

 

Carbon emission sources Carbon emission coefficient Coefficient source

Pesticides 4.943 kg/kg Oak Ridge National Laboratory32

N Fertilizer 1.53 kg/kg CLCD

P Fertilizer 1.63 kg/kg CLCD

K Fertilizer 0.65 kg/kg CLCD

Compound Fertilizer 1.77 kg/kg CLCD

Agricultural Film 5.18 kg/kg Oak Ridge National Laboratory32

Agricultural Diesel 0.593 kg/kg IPCC

Agricultural Irrigation 266.48 kg/hm2 Duan et al33.

Agricultural Tillage 312.6 kg/km2 Wu et al34.

Table 1.  Carbon emission coefficients of agricultural factor inputs.
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Burningmn = π n ·

∑
I
i=1β in · pmi · α mi · γ m · ϵ � (4)

In the formula, CEBurning  represents the carbon emissions from straw burning (t); Burningn represents 
the carbon emissions of the nth greenhouse gas generated from straw burning in province m; π n represents 
the conversion coefficient of the nth greenhouse gas to carbon dioxide, with CH4 needing to be converted to 
N2O first, and N2O being taken as 298; β in represents the combustion carbon emission coefficient of the 
nth greenhouse gas for the i-th crop (Table 3); pmi represents the yield of the i-th crop in province m; α mi 
represents the grass-to-grain ratio of the i-th crop in province m (Table 4); γ m and ϵ  respectively represent 
the percentage of open-field burning and the combustion efficiency of straw in province m. Both CH4 and N2O 
need to be converted to carbon dioxide emissions based on conversion coefficients, with related coefficients and 
calculation methods referring to the "Provincial Greenhouse Gas Inventory Compilation Guide". The open-field 
burning percentages for Shanxi, Shandong, Henan, Shaanxi, Gansu, Qinghai, and Ningxia are taken as 18.2%, 
with Inner Mongolia at 31.9% and Sichuan at 9.1%, while the combustion efficiency is set at 0.9 for all37.

Modified gravity model
Before conducting spatial correlation network analysis, it is necessary to first build a gravity model. The 
gravitational values calculated through this model are used to construct a spatial correlation matrix, allowing 
for the analysis of factors influencing spatial correlation networks. Existing research on carbon emission spatial 
correlations has primarily utilized traditional spatial econometric methods (such as VAR models40 and gravity 
models. However, conclusions from VAR models often focus on geographically adjacent or close regions, 
neglecting potential correlations between non-adjacent regions, which may lead to biased results41. In contrast, 
the gravity model is not only suitable for aggregate data but also better at capturing spatial dynamic trends.

Given that cropland carbon emissions are influenced by multiple factors and interstate carbon emission 
interactions vary, this study introduces a carbon emission proportional coefficient into the gravity model42, 
constructing a modified gravity model:

	
Qij = Kij ·

3√Gi · Ci · Pi · 3
√

Gj · Cj · Pj

D2
ij/(gi − gj)2 � (5)

	
Kij = Ci

Ci + Cj

In the equation, Qij represents the gravitational value of cropland carbon emissions between province i and 
province j; Kij  is the weight coefficient used to adjust the strength of the connection between region i and 
region j, reflecting the relative attractiveness of region i in the two regions; Gi and Gj respectively represent 
the GDP of province i and province j (in hundred million yuan); Ci and Cj respectively represent the cropland 
carbon emissions of province i and province j (in ten thousand tons); Pi and Pj  respectively represent the 
population of province i and province j (in ten thousand people); Dij represents the geographical distance (in 
kilometers) between the capital cities of province i and province j; gi and gj  respectively represent the per capita 
GDP of province i and province j (in yuan).

For the convenience of subsequent research, when constructing the spatial correlation matrix based on the 
gravitational values, calculate the row average of the original gravitational matrix. Using the row average value as 
the threshold. When the gravitational value is greater than the threshold, assign a value of 1 to indicate a carbon 

Province Rice Wheat Corn Soybeans Potatoes Oilseeds

Shanxi、Inner Mongolia、Shandong、Henan 0.85 1.34 1.73 1.57 1 1.5

Sichuan 1 1.31 1.29 1.05 0.6 1.5

Shaanxi、Gansu、Qinghai、Ningxia 1.23 1.23 1.52 1.07 1.22 1.5

Table 4.  Grass-to-grain ratios of various crops. Note: Data sourced from Office of the National Development 
and Reform Commission39.

 

Crop categories CO2 CH4 N2O

Rice 1.11 0.0058 0.00007

Wheat 1.47 0.0034 0.00007

Corn 1.35 0.0044 0.00014

Soybeans 1.58 0.0058 0.00007

Potatoes 1.58 0.0058 0.00007

Oilseeds 1.58 0.0058 0.00007

Table 3.  Greenhouse gas emission factors from straw combustion. Note: Data sourced from Du(2019)38.
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emission correlation relationship between the two cities; when it is less than the threshold, assign a value of 0 to 
indicate no carbon emission correlation relationship between the two cities.

Spatial correlation network analysis method
Social network analysis is an interdisciplinary analysis method aimed at “relationship data” and has been widely 
applied in multiple fields. This article aims to study the temporal and spatial distribution characteristics of carbon 
emissions from land use in the YRB, and based on this, propose regional carbon reduction paths. The Spatial 
Correlation Network Analysis Method, by taking into account spatial correlations, can more accurately reveal 
the relationships between different regions, thus providing more comprehensive references and decision support 
for regional development planning. Compared to other methods, it is more comprehensive and practical. The 
description of overall characteristics selects four indicators: network density, network connectivity, network 
efficiency, and network centrality, while individual characteristics are reflected through node degree centrality, 
closeness centrality, and betweenness centrality.

Overall network characteristics indicators  Network density is the ratio of the actual number of connections in 
the network to the theoretical maximum number of connections, ranging from 0 to 1. A value closer to 1 indi-
cates a tighter spatial correlation among the nodes in the network. Network connectivity measures the strength 
of connections between nodes through the average degree of nodes. A higher degree implies a tighter connec-
tion, and a value of 1 indicates that there are no unreachable points between cropland carbon emissions nodes 
in the YRB, making the spatial correlation network more robust. Network efficiency reflects the efficiency of 
information transmission, with higher efficiency indicating more effective information transmission. Network 
centrality, based on node centrality (such as degree centrality and betweenness centrality), shows the hierarchi-
cal structure of the network. Nodes with higher centrality levels have a greater impact on the entire network, 
potentially leading to network instability. Therefore, a lower network centrality indicates a more stable spatial 
correlation network of cropland carbon emissions in the YRB.

Individual network characteristics indicators  Node degree centrality reflects the direct number of connections 
a node has. A higher value indicates wider direct connections, making the node more likely to be a core node in 
the network. Closeness centrality calculates the reciprocal of the average shortest path length from a node to all 
other nodes, with a higher value indicating closer proximity to other nodes in the network, promoting economic 
and cultural exchanges between regions. Betweenness centrality measures the frequency of a node acting as an 
intermediary in the shortest paths between nodes. A higher value indicates the importance of the node as an in-
termediary in connecting different regions. To standardize the measurement of node importance in the network, 
this study normalized degree centrality, closeness centrality, and betweenness centrality, scaling their values to 
between 0 and 1 for easier comparison and analysis.

QAP regression analysis
The impact variables studied in this paper are relational data, which can easily lead to multicollinearity issues. 
This may affect the estimation results of regression models, rendering significance tests meaningless and causing 
bias in the estimation results of variables. Therefore, this paper employs the Quadratic Assignment Procedure 
(QAP) method, where the explanatory variables are “difference matrices” rather than original numerical vectors, 
significantly reducing the risk of multicollinearity compared to traditional Ordinary Least Squares (OLS).The 
QAP model, which does not require parameter setting, can perform pairwise comparisons and permutations 
of elements in matrices in social networks, revealing potential associations or patterns between two or more 
matrices through similarity comparison43. Furthermore, this model does not require explanatory variables 
to meet the assumption of independence, allowing for effective treatment of potential multicollinearity and 
endogeneity issues between variables44. Regarding the selection of influencing factors, Wei et al. (2024) found that 
geographical proximity, economic development level, urbanization rate, industrial configuration, technological 
innovation level, and the intensity of environmental protection significantly impact the spatial correlation 
network45. Shan et al. (2025) discovered that geographical proximity and economic development have a notable 
influence on the spatial association network of agricultural carbon emissions46. Yang et al. (2025) believed 
that geographical proximity, economic development level, openness level, industrial structure, and population 
density are all related to spatial carbon emissions47. Tian et al.(2024)48, Qiu et al.(2025)49 and others argued that 
the scale of farmland management, level of land transfer, level of agricultural mechanization, and environmental 
regulations also affect carbon emissions and their spatial correlation. Combining the above studies, the study 
focuses primarily on three dimensions: natural, economic and social, selected 8 factors to investigate the driving 
factors of spatial correlation of carbon emissions from cultivated land use in the YRB (Table 5).

①Geographical proximity: Directly influences the diffusion of agricultural technology, resource flow and 
policy coordination between regions, promoting convergence of carbon emission patterns between adjacent 
regions;②Agricultural economic level: Regions with different agricultural economic levels will also have 
varying levels of agricultural development and production methods, leading to differentiated carbon emission 
levels;③Farmers’ income level: Farmers’ income level affects the cost of their investments in agricultural 
production, thus influencing carbon emission levels;④Farmland circulation: Land circulation can improve land 
management practices, thereby affecting carbon emission levels;⑤Urbanization level: Urban areas have richer 
human capital and other resources compared to rural areas, and urbanization can affect land use through labor 
force migration and industrial substitution;⑥Farmland management scale: Large-scale operation is conducive to 
the promotion of low-carbon technologies, but excessive scale may lead to ecological damage;⑦Mechanization 
intensity of agriculture: The level of mechanization directly affects energy consumption and carbon 
emissions;⑧Environmental regulations: Environmental policies influence agricultural behavior through 
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constraints or incentives, strict environmental regulations may push farmers to adopt low-carbon technologies, 
but regions with weak enforcement may lack substantive implementation. Based on these indicators, the QAP 
model was constructed:

	 Qij = f(X1 + X2 + X3 + X4 + X5 + X6 + X7 + X8)

In the equation, Qij represents the spatial network relationship matrix of carbon emissions from cultivated 
land use in the YRB; X1 is the spatial adjacency matrix, with adjacent provinces labeled as 1 and non-adjacent 
provinces labeled as 0; X2, X3, X4, X5, X6, X7, X8 respectively represent the difference matrices of each 
driving factor. The specific operational steps are as follows: First, the study selects data from 2008 to 2022 as 
samples, due to the long time span of the samples, the method of taking the average value is used to eliminate 
some associated effects50.Second, a difference matrix is constructed based on inter-provincial differences, which 
is then binarized into a 0-1 adjacency matrix to reduce numerical multicollinearity among variables. Finally, 
Ucinet 6 software is used to conduct QAP analysis on each influencing factor with 5,000 random permutations, 
a process that does not rely on the assumption of independence of explanatory variables, thus fundamentally 
avoiding multicollinear interference in traditional regression and ensuring robust estimation.

In summary, this paper employs the "carbon emission coefficient method-SNA-QAP" combined model to 
deeply study the spatial correlation characteristics of cultivated land use and carbon emissions in the YRB, but 
this method combination still has some limitations. Firstly, the carbon emission coefficient method has certain 
applicability restrictions. Since carbon emission coefficients may vary across different regions, time periods, and 
even activities, using them may introduce errors. Moreover, the update speed of carbon emission coefficients 
may not keep pace with technological and policy changes, leading to inaccurate estimations. Secondly, SNA has 
certain constraints at the provincial scale. Although SNA is commonly used to study relationships and influences 
between individuals or organizations, at the provincial scale, the larger scale of research subjects and social 
network structure may be influenced by factors such as geography and culture, increasing the challenge of the 
research. Lastly, QAP is more sensitive to non-linear relationships. As QAP is mainly used for linear relationship 
testing, there is a problem of not being able to accurately capture complex non-linear relationships. At this 
time, it is necessary to combine non-parametric statistical methods or machine learning algorithms, etc., to 
better understand the associations between data. Future research needs to optimize these issues to improve the 
accuracy and applicability of the study, providing certain references for agricultural carbon emission reduction.

Data source
The main focus of this study is the spatial correlation network characteristics and driving factors of carbon 
emissions from land use in the YRB from 2008 to 2022. Various agricultural input elements, crop planting areas, 
crop yields, and other data sources are from the "China Statistical Yearbook", "China Environmental Statistical 
Yearbook", "China Agricultural Statistical Yearbook", as well as provincial statistical yearbooks and statistical 
bulletins. The Geospatial Data Cloud Platform provides DEM data with a spatial resolution of 30 m ​(​​​h​t​t​p​:​/​/​w​w​
w​.​g​s​c​l​o​u​d​.​c​n​/​​​​​, accessed on 13 May 2025). In cases where data are missing, linear interpolation method was used 
for supplementation.

Analysis of results
Temporal and Spatial evolution characteristics of carbon emissions from land use in the YRB
Trends in carbon emissions from land use in the YRB as a whole
Table 6 presents the changes in carbon emissions from land use in the YRB from 2008 to 2022, as well as their 
composition. From an overall perspective, carbon emissions from land use in the YRB showed a fluctuating 
upward trend from 2008 to 2022, forming an "N" shape. In 2008, carbon emissions from land use in the YRB 
were 204.87 million tons, reaching a peak in 2017, slightly decreasing in 2018 and 2019, but starting to rise 
again in 2020 and 2021, reaching the highest value of 261.46 million tons in 2022, with an overall increase of 
27.6% over the entire study period. The reason for this trend is mainly that in 2016, the State Council issued 
the "13th Five-Year Plan for Controlling Greenhouse Gas Emissions" and made specialized deployment for the 
development of low-carbon agriculture, after which the carbon emissions in the basin as a whole tended to 
stabilize.

Type Driving factors Indicators

Natural Geographic proximity Spatial adjacency matrix

Economic

Agricultural economic level Agricultural output growth rate

Farmer’ income level Rural per capita disposable income growth rate

Land transfer Land transfer rate

Social

Urbanization level Urbanization rate

Agricultural operating scale Cultivated land area/agricultural population

Agricultural machinery input intensity Total agricultural machinery power/crop planting area

Environmental regulation Investment completion of industrial pollution control

Table 5.  Driving factors of the spatial correlation network of carbon emissions from cultivated land use in the 
YRB.
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From different components, the largest source of cultivated land use carbon emissions in the YRB is straw 
burning, which has consistently been the largest source of carbon emissions over the 15-year period, with its 
proportion increasing from 60.4% in 2008 to 66.5% in 2022, with an average annual growth rate of 2.1%, reaching 
17,380.58 million tons in 2022. The second is agricultural input carbon emissions, which increased continuously 
from 2008 to 2015, remained almost stable in 2016, and then continued to decline. This may be because in 2015, 
the Ministry of Agriculture and Rural Affairs of China issued the "Action Plan for Zero Growth of Fertilizer Use 
by 2020" and launched a series of reduction plans for other agricultural production factors, which improved the 
utilization efficiency of various agricultural inputs and reduced their usage. The third is crop planting carbon 
emissions, Subject to the constraints of relatively stable crop structure and area in various regions, it shows a slow 
rising trend, with a cumulative increase of 19.4% over 15 years.

Temporal and Spatial evolution characteristics of carbon emissions from land use in various provinces in the YRB
The study period in this paper is from 2008 to 2022. During the study period, in 2015, the signing of the Paris 
Agreement and the introduction of China’s overall plan for ecological civilization reform provided a policy 
basis for carbon emissions control, while in 2020, China’s goal of "peak carbon emissions and achieve carbon 
neutrality" further accelerated the process of emission reduction. With the introduction of these important 
policy objectives, the spatial and temporal distribution of carbon emissions from cultivated use in the YRB has 
also changed. Based on this, using ArcGIS software, distribution maps of carbon emissions from land use in 
the YRB for the years 2008, 2015, 2020, and 2022 were plotted (Fig. 3), providing a visual representation of the 
changes in carbon emissions from land use in the YRB.

According to Fig. 3, Henan and Shandong are at the forefront of carbon emissions from land use, belonging 
to the highest emission level in the first tier. This study result is consistent with Ren’s (2023) study result51, 
mainly due to the high agricultural population and large farmland area in these two regions, which consume a 
large amount of energy in the process of farmers’ production and daily life, thereby driving carbon emissions. 
Gansu, Qinghai, and Ningxia are located in the northwest region of China with low population, arid climate, and 
predominant land types such as deserts, Gobi, and alpine meadows, with a relatively low proportion of farmland 
area. Therefore, the carbon emissions from cultivated use in these regions have always been at a low level. The 
carbon emissions from cultivated use in other provinces fluctuated, with Shaanxi and Shanxi showing small 
changes in carbon emissions from cultivated use. From 2008 to 2015, Inner Mongolia’s carbon emissions from 
cultivated use showed a significant increase, rising from 34.19 million tons to 54.08 million tons, an increase of 
58.2%, and remained at a high level in subsequent years.

Spatial correlation network of carbon emissions from land use in the YRB
Characteristics of the overall network structure
Using ArcGIS software, the spatial correlation strength of carbon emissions from land use in the YRB for the 
years 2008, 2015, 2020, and 2022 was visualized based on gravity values, as shown in Fig. 4.

From 2008 to 2022, the spatial correlation network of carbon emissions from cultivated use in the YRB has 
exhibited a continuously changing multi-centric distribution. The correlation network, initially centered around 
"Henan-Shandong", gradually evolved into a high-intensity triangular relationship involving "Henan-Shandong-
Shanxi", and then returned to being centered around "Henan-Shandong" in2020.By 2022, in addition to the 
original centers, Inner Mongolia and Sichuan have emerged as new hub regions. Henan and Shandong have 
maintained their high-intensity central positions due to their geographical advantages and abundant resources, 
while Qinghai has consistently shown weaker correlations with other regions. These changes are influenced by the 
improvement of infrastructure and the rapid agricultural and rural development in various regions. Significant 

Year Agricultural input carbon emissions Straw burning carbon emissions Crop planting carbon emissions Cultivated land utilization carbon emissions

2008 5284.95 12378.59 2823.92 20487.47

2009 5416.85 12574.57 2889.83 20881.25

2010 5552.79 13100.42 2937.57 21590.78

2011 5697.27 13749.62 2983.44 22430.34

2012 5839.72 14274.56 3032.68 23146.96

2013 5934.59 14960.37 3085.78 23980.74

2014 5973.20 15172.31 3124.86 24270.37

2015 6030.19 15638.85 3158.21 24827.25

2016 6033.32 16153.56 3277.01 25463.88

2017 5915.56 16106.01 3254.05 25275.63

2018 5775.93 16558.03 3249.55 25583.51

2019 5589.24 16646.78 3245.91 25481.92

2020 5487.25 16916.23 3272.44 25675.93

2021 5471.09 16961.73 3312.77 25745.59

2022 5393.38 17380.58 3372.11 26146.07

Table 6.  Carbon emissions from cultivated land use in the YRB and their composition from 2008 to 2022 
(in 10,000 tons).
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differences in correlation strength between different regions are evident, and the evolution of network centers 
reflects the complexity and dynamics of the spatial correlation network of carbon emissions from cultivated use 
in the YRB. In future development, it is crucial to further enhance cooperation and communication between 
regions to promote the sustainable development of the entire area.

Using “Ucinet” software, characteristic indicators of the overall network structure of carbon emissions from 
land use in the YRB for the years 2008, 2015, 2020, and 2022 were calculated, as shown in Table 7. Overall, the 
network structure of carbon emissions from land use in the YRB underwent significant changes from 2008 to 
2022, displaying a trend of dispersion, then concentration, and adjustment. Fluctuations in network density, 
efficiency, and degree centrality reflect the dynamic evolution of interregional correlations and hierarchical 
patterns.

First, between 2008 and 2022, the spatial correlation network density of carbon emissions from cropland 
use in the YRB experienced fluctuations. From 2008 to 2013, the network density hovered around 0.333. In 
November 2013, the Third Plenary Session of the 18th Central Committee of the Communist Party of China 
proposed deepening the reform of the ecological civilization system. This policy direction demonstrated positive 
effects in 2014, when the network density rose to 0.375, the highest point during the study period. However, due 
to significant disparities in agricultural development levels within the YRB and the lagging effects of industrial 
restructuring, the network density dropped to 0.278 in 2015, the lowest value in the study period. Subsequently, 
from 2016 to 2022, with the implementation of the 13th Five-Year Plan, policies related to ecological protection 
and sustainable agricultural development in the YRB were successively introduced. These policies promoted the 

Fig. 3.  Evolution of carbon emissions from cultivated land use in the YRB (in 10,000 tons). (a) 2008, (b) 2015, 
(c) 2020, (d) 2022.
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widespread adoption of agricultural technologies and carbon emission control in the region, leading to a gradual 
recovery in network density.

Secondly, the stability of the spatial correlation network of carbon emissions from cropland use in the YRB 
exhibits fluctuations. The network centrality has consistently remained at 1, indicating strong connections 
among various regions in terms of land use carbon emissions, with significant spatial correlations and spillover 
effects. However, from 2008 to 2014, the network hierarchy level fluctuated between 0.2222 and 0.4, without 
forming a distinct hierarchical structure. In 2015, influenced by a series of policies, the network hierarchy level 
reached 0.818, suggesting the emergence of core provinces in carbon emissions within the YRB, particularly 
Henan and Shandong. Subsequently, as provinces such as Inner Mongolia and Shanxi became secondary centers, 
the network hierarchy level returned to its original range.

Thirdly, the efficiency of the spatial correlation network of carbon emissions from cropland use in the YRB 
experienced a fluctuating trend, initially decreasing and then increasing, reflecting the influence of different 
factors during various periods. In 2008, the network efficiency was 0.6071. After fluctuations, it increased to 
0.7143 in 2015 and further improved to 0.75 in 2020, indicating a significant enhancement in information flow 

Fig. 4.  Evolution of the spatial correlation network of carbon emissions from cultivated land use in the YRB. 
(a) 2008, (b) 2015, (c) 2020, (d) 2022.
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and resource allocation efficiency. However, due to the adaptation period required for policy adjustments during 
the "14th Five-Year Plan" period, the network efficiency dropped to 0.6429 in 2022, showing a decline during 
the policy transition phase.

Individual characteristics of the Spatial correlation network
Using “Ucinet” software, individual characteristics indicators of the carbon emissions spatial correlation network 
associated with land use in the YRB for the years 2008, 2015, 2020, and 2022 were calculated, as shown in Table 8.

Overall, from 2008 to 2022, the changes in the degree of out-degree centrality and in-degree centrality of 
provinces in the YRB varied, and the carbon emission network associated with land use in the YRB exhibited a 
clear core-periphery structure.

Gansu and Inner Mongolia occupy important geographical positions in the network in the YRB. With 
the support of the Western Development Policy, they have formed connections with other regions, holding 
core positions and possessing strong comprehensive influence. Additionally, Inner Mongolia’s abundant coal 

Province

Point out degree centrality Point in degree centrality Intermediary centrality

2008 2015 2020 2022 2008 2015 2020 2022 2008 2015 2020 2022

Gansu 0.5 0.375 0.5 0.375 0.625 0.625 0.625 0.75 0.455 0.345 0.686 0.357

Henan 0.125 0.125 0.25 0.375 0.25 0.375 0.375 0.5 0.009 0.024 0.193 0.369

Inner Mongolia 0.5 0.375 0.375 0.375 0.75 0 0.5 0.75 0.482 0 0.383 0.488

Ningxia 0.375 0.125 0.25 0.25 0.125 0.125 0.125 0.125 0 0 0 0

Qinghai 0.375 0.375 0.375 0.375 0 0 0 0 0 0 0 0

Shandong 0.25 0.25 0.25 0.125 0.875 0.625 0.375 0.375 0.411 0.214 0.131 0.012

Shanxi 0.375 0.125 0.25 0.5 0.25 0.375 0.375 0.125 0.366 0.024 0.193 0.06

Shaanxi 0.375 0.375 0.375 0.25 0.25 0.375 0.375 0.5 0.036 0.143 0.288 0.143

Sichuan 0.375 0.375 0.25 0.5 0.125 0 0.125 0 0.027 0 0.055 0

Province

Out-degree centrality In-degree centrality

2008 2015 2020 2022 2008 2015 2020 2022

Gansu 0.533 0.421 0.533 0.4 0.667 0.471 0.667 0.727

Henan 0.308 0.296 0.4 0.4 0.571 0.571 0.615 0.667

Inner Mongolia 0.533 0.471 0.5 0.421 0.727 0.25 0.615 0.8

Ningxia 0.5 0.348 0.444 0.381 0.421 0.381 0.421 0.444

Qinghai 0.615 0.471 0.571 0.471 0.2 0.25 0.2 0.2

Shandong 0.4 0.308 0.364 0.32 0.889 0.727 0.533 0.5

Shanxi 0.5 0.296 0.4 0.444 0.571 0.571 0.615 0.471

Shaanxi 0.5 0.421 0.5 0.381 0.471 0.421 0.571 0.667

Sichuan 0.471 0.471 0.471 0.533 0.444 0.25 0.421 0.2

Table 8.  Network centrality of carbon emissions from cultivated land use in the YRB.

 

Year Network density Network centrality Network efficiency Network degree centrality

2008 0.361 1 0.6071 0.222

2009 0.333 1 0.6429 0.400

2010 0.319 1 0.7143 0.222

2011 0.361 1 0.6071 0.222

2012 0.333 1 0.6786 0.222

2013 0.333 1 0.6429 0.400

2014 0.375 1 0.5714 0.400

2015 0.278 1 0.7143 0.818

2016 0.333 1 0.6429 0.400

2017 0.319 1 0.6786 0.400

2018 0.347 1 0.7143 0.222

2019 0.347 1 0.7143 0.222

2020 0.319 1 0.7500 0.222

2021 0.333 1 0.7143 0.400

2022 0.347 1 0.6429 0.400

Table 7.  Characteristics of the overall network structure of carbon emissions from cultivated land use in the 
YRB.
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resources further promote its connections with other regions. Shandong has higher in-degree centrality and 
closeness centrality than other nodes, indicating that it is most influenced by other provinces.

As a downstream province in the YRB, Shandong plays a significant role in regional economic cooperation 
due to its relatively developed economy, making it susceptible to the carbon emissions of other provinces. 
Furthermore, Shandong also has a high out-closeness centrality, suggesting a high level of closeness to other 
provinces, likely related to its economic development level and strong external connections.

Henan has lower out-degree centrality and out-closeness centrality, but performs well in in-degree centrality 
and in-closeness centrality, indicating a greater influence from other provinces but weaker influence on other 
nodes. Being a densely populated province, Henan may face significant pressure in agricultural development and 
land use carbon emissions, making it more susceptible to the influence of other provinces.

Qinghai performs best in out-closeness centrality but worst in in-degree centrality and intermediary centrality, 
indicating it is more likely to influence other provinces but is less influenced by them with limited intermediary 
effects, possibly due to its lower participation in the carbon emission network based on its geographic location 
and economic development level, relatively independent.

Shanxi and Shaanxi also have higher out-degree centrality, exerting strong influence on other provinces. As 
midstream provinces in the YRB, they play crucial roles in regional economic cooperation and carbon emissions.

Analysis of driving factors of carbon emission Spatial correlation network
By utilizing the QAP method with 5000 random permutations, the driving factors of the carbon emission spatial 
correlation network associated with land use in the YRB from 2008 to 2022 were studied, as shown in Table 9. In 
the regression results, the adjusted R2 is 0.251, significant at the 1% level, indicating that the selected influencing 
factors in this study can explain 25.1% of the spatial correlation relationship of carbon emissions associated with 
land use in the YRB.

The impact of natural factors on the Spatial correlation network of carbon emissions from cultivated land use in 
the YRB
Geographic proximity represents a natural factor, with a standardized coefficient of 0.394, which is significant at 
the 1% level. This indicates that spatial correlation between neighboring provinces can promote communication 
and cooperation between regions, thereby facilitating the formation of the spatial correlation network of carbon 
emissions from cultivated land use in the YRB.

The impact of economic factors on the Spatial correlation network of carbon emissions from cultivated land use in 
the YRB
The agricultural economic level and farmer income level are significantly negatively correlated with the formation 
of the spatial correlation network of carbon emissions from cultivated land use in the YRB at a significance 
level of 1%. The smaller the difference in economic development levels between different regions, and the more 
similar the farmer income situation, the more similar the factors needed for agricultural production, which 
is conducive to communication and joint development between the two areas. In this case, it is conducive to 
promoting the formation of the spatial correlation network of carbon emissions from cultivated land use in the 
YRB. Land circulation does not have a significant role in this regard.

The impact of social factors on the Spatial correlation network of carbon emissions from cultivated land use in the 
YRB
The urbanization level and agricultural machinery input intensity are both significantly positively correlated 
with the formation of the spatial correlation network of carbon emissions from cultivated land use in the YRB 
at a significance level of 1%. The greater the difference in urbanization levels between two regions, the more 
likely, based on spatial spillover effects, it is to promote the flow of various resource elements between regions, 
thereby promoting the formation of the spatial correlation network of carbon emissions from cultivated land use 
in the YRB. Generally, areas with higher levels of urbanization also have higher agricultural technology levels 

Variables Non-standardized Coefficients Standardized Coefficients P-Value Probability1 Probability2

Geographical proximity matrix 0.419 0.394*** 0.006 0.006 0.994

Agricultural economic level −0.092 −0.504*** 0.009 0.992 0.009

Farmer income level −0.147 −0.302*** 0.001 0.999 0.001

Agricultural land transfer −0.007 −0.125 0.151 0.849 0.151

Urbanization level 0.035 0.580*** 0.000 0.000 1.000

Farm operating scale −0.355 −0.484*** 0.003 0.997 0.003

Agricultural machinery input intensity 0.018 0.107** 0.033 0.033 0.967

Environmental regulation −0.016 −1.025*** 0.000 1.000 0.000

R2 0.335
0.000

Adj-R2 0.251

Table 9.  QAP regression results of the driving factors of the Spatial correlation network of cultivated land use 
carbon emissions in the YRB. Note: *** indicates significance at the 1% level; ** indicates significance at the 5% 
level; * indicates significance at the 10% level.
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and surplus agricultural machinery resources. In such cases, the flow of agricultural machinery equipment from 
high-level areas to low-level areas occurs, leading to seasonal "cross-regional operations" and further promoting 
the formation of the spatial correlation network of carbon emissions from cultivated land use in the YRB.

The scale of agricultural land management and environmental regulations are both significantly negatively 
correlated with the formation of the spatial correlation network of carbon emissions from cultivated land 
use in the YRB at a significance level of 1%. Large-scale agricultural production helps unify cultivation and 
management. At an appropriate scale, a scientifically unified production method helps reduce carbon emissions. 
However, excessive large-scale management may lead to excessive land use further increasing carbon emissions. 
The smaller the differences in the scale of agricultural land management between regions, the more conducive 
it is for mutual learning and exchange, thereby promoting the formation of the spatial correlation network of 
carbon emissions from cultivated land use in the RB. In the developmental process environmental regulations 
will also affect carbon emission levels. The greater the differences in environmental regulations between regions, 
the more likely it is to increase the difficulty of cooperation in environmental governance, which is detrimental 
to the formation of spatial correlation networks.

Discussion
This study focuses on the YRB, employing the carbon emission coefficient method and Social Network Analysis 
(SNA) to construct a modified gravity model, analyzing the spatiotemporal characteristics of carbon emissions 
from cropland use in the YRB from 2008 to 2022.Additionally, this research applies QAP regression to examine 
the driving factors of spatial correlation of cultivated land use carbon emissions in the YRB, aiming to enhance 
the objectivity of variable selection and provide references for carbon emission reduction in cultivated land use 
in the YRB.

Spatiotemporal characteristics of cultivated land use carbon emissions in the YRB
The YRB spans a large distance from east to west. Spatially, due to differences in rural development levels, arable 
land areas, and cropping structures between the eastern and western regions, research findings indicate that 
overall, cultivated land use carbon emissions are higher in the east and lower in the west, which is consistent 
with existing research results52. Temporally, in line with the findings of Li et al.(2024), emissions have shown 
a declining trend after 2016 and gradually stabilized53, following an "N"-shaped pattern of first rising, then 
falling, and rising again. This is primarily because, in the early stages, China’s agricultural production model was 
generally extensive, characterized by high usage of various polluting agricultural inputs and a high rate of straw 
burning, leading to increases year by year in carbon emissions from cultivated land use. In recent years, with the 
promotion of agricultural technology and the implementation of relevant carbon emission reduction policies, 
the overall growth rate of carbon emissions has slowed down and shown fluctuations. In terms of emission 
sources, the proportion of various carbon emissions from largest to smallest is as follows: straw burning > 
agricultural inputs > crop planting. This result differs from the study by Cao et al. (2025) on the Yangtze River 
Economic Belt54,mainly due to differences in crop planting structures and straw disposal methods between the 
two basins. Overall, carbon emissions from cultivated land use in the YRB remain at a relatively high level.

Spatial correlation network characteristics of cultivated land use carbon emissions in the 
YRB
Henan and Shandong are the most populous and transportation-developed provinces in the YRB. To promote 
the improvement of the ecological environment in the YRB, these two provinces have taken on corresponding 
social responsibilities. According to the results of social network analysis, Henan and Shandong have always 
been at the center of the spatial correlation network of cultivated land use carbon emissions in the YRB due to 
their geographical advantages and resource endowments. Over time, Shanxi, Inner Mongolia, and Sichuan have 
successively become sub-centers, but the level of association has fluctuated. Based on the overall and individual 
characteristics of the network, the network is fully connected and effective. However, during different time 
periods, the stability and efficiency of the network are in a state of fluctuation. Therefore, in the future process 
of cultivated land use carbon emission reduction in the YRB, Henan and Shandong need to further strengthen 
their connections and cooperation with other provinces to jointly promote low-carbon development in the YRB 
across various industrial fields.

Driving factors of the spatial correlation network of cultivated land use carbon emissions in 
the YRB
QAP analysis revealed that the geographical proximity matrix, agricultural economic level, farmer income 
level,urbanization level, farm operating scale, agricultural machinery input intensity, and environmental 
regulation have significant impacts on the spatial correlation network of carbon emissions from cultivated land 
use in the YRB. Geographical proximity and urbanization level show a positive correlation with the spatial 
correlation network of carbon emissions, which is consistent with the findings of Chen et al. (2024)55.However, 
urbanization level is positively correlated with the spatial correlation network of carbon emissions, this finding 
is contrary to the research results of Huang et al. (2025)56. This discrepancy is primarily due to their study area 
being Hubei Province, where the overall urbanization differences within the province are relatively small and the 
initial urbanization level is higher than that of the YRB.Therefore, when formulating carbon emission reduction 
strategies, it is necessary to take into account the dynamic changes of these factors to achieve more effective 
carbon emission control and regional coordinated development.
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Optimize path
The above conclusions provide a reference path for carbon emission reduction in the YRB’s agricultural land 
utilization.

Promote comprehensive utilization of straw
Straw burning accounts for a significant proportion of total carbon emissions in the YRB. In accordance with 
the goals outlined in the YRB Ecological Protection and High-Quality Development Plan, the comprehensive 
utilization rate of straw in the YRB should exceed 90% by 203057. Therefore, the government should provide various 
subsidies, technical support, and training to encourage farmers to participate in straw utilization initiatives. 
Additionally, research institutions across the YRB should strengthen collaboration with enterprises to develop 
and promote efficient straw utilization technologies, such as converting straw into bioenergy, producing organic 
fertilizers, or using it as animal feed. Finally, infrastructure for straw collection, transportation, and processing 
should be established to reduce logistical costs associated with straw utilization. Through these measures, the 
YRB can not only reduce carbon emissions from straw burning but also improve soil physicochemical properties, 
increase soil organic matter content58, and promote green agricultural development.

Reduce the use of agricultural inputs
Currently, agricultural production in the YRB still heavily relies on inputs such as pesticides and chemical 
fertilizers. While these inputs enhance agricultural productivity, they also contribute significantly to carbon 
emissions. As China approaches the "16th Five-Year Plan" period, local governments in the YRB should refer to 
the National Agricultural Green Development Pioneer Zone Implementation Plan for Comprehensive Prevention 
and Control of Agricultural Non-Point Source Pollution when formulating their next five-year plans, further 
promoting the reduction of agricultural input usage. Specific measures include promoting precision fertilization 
and pesticide application technologies to improve the efficiency of input use and reduce overapplication. A 
strict monitoring and evaluation system should be established to ensure the achievement of reduction targets. 
Furthermore, farmers should be encouraged and supported to adopt eco-friendly agricultural practices, such as 
crop rotation, intercropping, and organic farming, to promote sustainable agricultural development and reduce 
carbon emissions during agricultural production.

Optimize crop planting structure
Existing research has shown that adjusting crop planting structures can effectively enhance the net carbon sink 
of farmland59. Therefore, the planting structure can be optimized according to local conditions in different 
regions of the YRB. For example, in arid areas of the basin, drought-tolerant crops such as rapeseed and wheat 
can be appropriately increased to reduce irrigation water demand and lower carbon emissions. In regions with 
humid climates, the cultivation of rice can be expanded to increase soil organic matter content and enhance 
carbon storage. Additionally, farmers can be guided to adopt suitable farming models that not only increase the 
diversity of farmland ecosystems but also improve soil carbon storage capacity, thereby contributing to carbon 
emission reduction.

Establish a regional carbon trading market
China began preparing for carbon trading in 2011 and officially launched the national carbon market on July 
16, 2021. In 2023, the national carbon emission allowance trading volume reached 212 million tons, with a 
transaction value of RMB 14.444 billion60. This demonstrates the strong feasibility and significant economic 
potential of carbon trading markets. Given the regional disparities and spatial correlations of carbon emissions 
in the YRB, a cross-provincial carbon trading market can be established. This market would allow high-emission 
provinces to purchase carbon sinks from less developed regions, incorporating technology transfer clauses to 
facilitate the diffusion of emission reduction technologies. Blockchain technology can be employed to monitor 
data in real time and record it on the chain, while smart contracts can automatically execute quota settlements 
and penalize violations, ensuring transparency and credibility in transactions.

Improve farmland transfer policies
According to existing research, farmland transfer can, to some extent, promote agricultural carbon emissions61. 
Therefore, it is necessary to further refine farmland transfer policies, standardize land transfer practices, and 
promote green agricultural development. On one hand, a robust contract system for land transfer should be 
established to clarify the rights and responsibilities of both parties involved62, ensuring rational land use and 
environmental protection. This would mitigate the negative environmental externalities of farmland transfer 
and enhance its stability and green sustainability. On the other hand, strengthened supervision and evaluation of 
transferred land are essential to ensure that post-transfer farmland management and operations do not increase 
carbon emissions. Through these optimized measures, the management level of agricultural carbon emissions 
can be improved, driving agriculture toward a more environmentally friendly and sustainable development path.

Future research directions
Although this study has achieved certain results, it still has limitations, including insufficiently comprehensive 
analysis of influencing factors, lack of concrete feasibility in carbon emission reduction strategy recommendations, 
and inadequate consideration of carbon sink effects. To address these shortcomings, future research needs to be 
optimized in the following aspects.

First, expand the scope of influencing factors. Subsequent studies should further quantify potential 
influencing factors such as human capital, financial support for agriculture, and natural disasters, and use QAP 
analysis to more comprehensively evaluate the impact of these factors on carbon emission reduction.
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Second, develop practical and feasible emission reduction strategies. Focusing on carbon emission reduction 
from cultivated land use in the YRB, in-depth analysis should be conducted to propose more targeted and 
actionable emission reduction measures.

Third, incorporate carbon sink mechanisms. Integrating carbon sinks into the research framework, key crops 
should be studied in terms of their economic coefficients, carbon absorption rates, moisture content, and other 
parameters to calculate carbon sink capacity, thereby enhancing the comprehensiveness of carbon emission 
reduction analysis.

Through these systematic improvements and in-depth analyses, future research will provide more scientific, 
rigorous, and feasible recommendations for regional collaborative emission reduction in the YRB, thereby 
promoting green transformation and sustainable development in the region.

Conclusions
The carbon emission coefficient method was used to calculate the carbon emissions from agricultural land use 
in the YRB from 2008 to 2022. Based on this, a modified gravity model and social network analysis method were 
used to analyze the spatial correlation network characteristics of carbon emissions from agricultural land use in 
the YRB. Furthermore, the QAP method was used to identify the driving factors. The study found that:

(1) The overall carbon emissions from agricultural land use in the YRB showed an increasing trend, with 
straw burning being the main source of carbon emissions. The total carbon emissions from agricultural land use 
in the YRB from 2008 to 2022 showed an overall increasing trend, with an increase of 27.6%. Straw burning was 
the largest source of carbon emissions, with its proportion increasing from 60.4% to 66.5%. Carbon emissions 
from each province showed an increasing trend, especially significant growth in Inner Mongolia, while Henan 
and Shandong, despite minor fluctuations, still had the highest carbon emissions levels in the region.

(2)The overall characteristics of the spatial correlation network of carbon emissions from agricultural 
land use in the YRB showed a trend of initial dispersion, followed by concentration and then adjustment. The 
connectivity within the network was good, with network efficiency fluctuating upward and gradually stabilizing, 
while the network hierarchy exhibited an inverted U-shaped pattern. Throughout the evolution of the spatial 
relational network, Shandong and Henan consistently remained at the center of the network.

(3) Individual characteristics of the spatial correlation network of carbon emissions from agricultural land 
use in the YRB show that the network exhibits a core-periphery structure. Provinces such as Gansu and Inner 
Mongolia played core roles in the network due to factors such as their geographical location, policy orientation, 
and economic development level, showing strong influence and intermediary roles. Shandong, due to its 
developed economy and high level of openness, became the province most influenced by other provinces in the 
network. Conversely, provinces like Qinghai and Ningxia displayed limited influence and intermediary roles in 
the network, showing lower participation and independence.

(4) The QAP analysis results showed that geographic proximity, differences in urbanization levels, and 
variations in agricultural machinery input intensity promote the formation of the spatial correlation network 
of carbon emissions from agricultural land use in the YRB. Differences in agricultural economic levels, farmer 
income levels, agricultural land operation scale, and environmental regulations inhibit the formation of the 
spatial correlation network of carbon emissions from agricultural land use in the YRB, while land transfer had 
no significant impact.

Data availability
The datasets used and analyzed during the current study are available from the corresponding author upon 
reasonable request.
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