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This study investigates the developmental status and influencing factors of artificial intelligence (Al)
literacy and computational thinking (CT) literacy among undergraduates in China's “four new” majors.
Guided by the Technology Acceptance Model, Social Cognitive Theory, and Constructivist Learning
Theory, the research employs a questionnaire survey to assess student’s Al and CT literacy, as well

as the impact of subject background and Al tool usage. Statistical analyses (t-test, ANOVA, Pearson
correlation) revealed statistically significant positive associations between dimensions of Al literacy
and CT; however, effect sizes were uniformly small (Jr] < .10), indicating that these associations—while
detectable in a large sample—have limited practical magnitude and should be interpreted with caution.
Intelligent Thinking exhibited the comparatively strongest association with critical thinking, though
the magnitude warrants cautious interpretation. Disciplinary differences are evident: new engineering
students excel at algorithmic thinking, while new liberal arts students show strengths in human-
machine collaboration. Moreover, group mean differences were observed across usage-frequency
categories; however, we did not fit non-linear models, and further research is needed to verify any non-
linear patterns. These findings are consistent with the co-development of AIL and CT and may inform
the design of discipline-specific, differentiated educational strategies in higher education.
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In recent years, with the rapid development of artificial intelligence technology, its deep application in various
fields of society has put forward new requirements for talent training. Artificial intelligence literacy and
computational thinking ability have gradually become important literacy of citizens in the information age'. The
OECD pointed out in the “Education 2030” report that the era of artificial intelligence needs to cultivate talents
with computational thinking and artificial intelligence literacy to adapt to the technological changes in the
future society’. Governments have successively introduced relevant policies, such as the US ‘National Artificial
Intelligence Research and Development Strategic Plan, the UK's “ Artificial Intelligence Industry Strategy’,
etc., all of which emphasize the importance of computational thinking and artificial intelligence education. In
China, the State Council's “New Generation of Artificial Intelligence Development Plan” clearly proposes to
strengthen artificial intelligence education and promote the cultivation of artificial intelligence talents?. The
Ministry of Education's Compulsory Education Information Technology Curriculum Standard’s® and * Education
Informatization 2.0 Action Plan's® also list computational thinking as one of the core literacy, and require the
infiltration of artificial intelligence-related content in the curriculum. Nowadays, the development of artificial
intelligence literacy and computational thinking ability of college students has become a hot topic for scholars
at home and abroad. Artificial intelligence literacy mainly includes the understanding of the basic knowledge of
artificial intelligence, the application ability of artificial intelligence technology and the ethical consciousness of
artificial intelligence’; computational thinking involves core elements such as abstraction, algorithmic thinking,
pattern recognition and automation®.
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The rapid diffusion of artificial intelligence (AI) presents both opportunities and challenges for higher
education. Policymakers and scholars increasingly emphasize not only tool access but also the cultivation
of literacies and higher-order thinking necessary to use Al responsibly and productively’-!!. International
frameworks such as UNESCO's Guidance for Generative Al in Education and Research and the European
Digital Competence Framework (DigComp 2.2) have foregrounded Al-related competencies and digital literacy
as priorities for curricula and assessment. Nevertheless, empirical evidence on how everyday Al-tool usage
maps onto measurable literacy and thinking outcomes in tertiary education remains limited, especially within
discipline-differentiated samples.

Recent studies have redefined artificial intelligence literacy (AIL) as a multidimensional construct
encompassing Smart Responsibility, Smart Knowledge and Skills, Intelligent Thinking, and Human-Machine
Collaborative Innovation!>!%. These frameworks emphasize that AIL extends beyond technical proficiency to
include ethical, cognitive, and collaborative capacities that enable individuals to understand, evaluate, and co-
create with Al systems. At the same time, computational thinking (CT) has evolved from a computer-science-
centric skillset toward a broader form of meta-cognitive problem solving that integrates algorithmic reasoning,
creativity, and critical reflection in the age of AI'*'>. Linking AIL and CT provides an opportunity to understand
how literacy-oriented capacities can translate into transferable problem-solving competence in digital contexts.

Most prior work has focused on instrument development or adoption intentions, with fewer studies testing
mechanism-oriented models that link use > literacy > thinking. Moreover, cross-national frameworks provide
useful comparators but rarely translate directly to curriculum decisions at the discipline level. This study aims
to fill these gaps by: (1) measuring AIL and CT across four “new® disciplinary clusters (new engineering, new
agriculture, new medicine, new liberal arts); (2) testing how daily AI-tool usage relates to AIL and CT; and (3)
examining whether AIL mediates the relationship between use and CT.

To enhance alignment with international frameworks, we have conceptually mapped the four dimensions
of Al literacy from this study to key competency points in UNESCO and DigComp 2.2: ‘Smart Knowledge and
Skill’s aligns with UNESCO's emphasis on foundational AI concepts and understanding of data and models, as
well as DigComp 2.2°s ‘Information and Data Literacy‘ and ‘Digital Content Creation (including basic coding/
automation)'; ‘Intelligent Thinking’ corresponds to UNESCO's focus on higher-order cognition (critical analysis,
problem modelling, metacognitive reflection) and DigComp 2.2°s ‘Problem Solving‘ and ‘Creative Thinking
and Adaptability‘; ‘Human-Machine Collaboration Hybrid Innovation’ resonates with UNESCO's principles of
human-machine co-creation, contextualised application, and ethical boundary management, while mapping to
DigComp 2.2‘s ‘Communication and Collaboration’ and ‘Co-production and Peer Review". This point-to-point
conceptual alignment ensures the scale’s international comparability while providing a transferable reference
baseline for cross-system curriculum design.

To provide a clear, testable structure and to respond to reviewer suggestions, we reframe the research aims as
the following research questions (RQs):

(1) What are the levels of Al literacy and Computational Thinking among Chinese university students, and how
do they differ based on gender, grade, discipline, and place of residence?

(2) To what extent is the frequency of Al tool usage associated with student’s Al literacy and Computational
Thinking?

(3) What are the relationships between the dimensions of Al literacy and the components of Computational
Thinking?

(4) To what degree do the dimensions of Al literacy predict student’s overall Computational Thinking?

(5) Does Al literacy mediate the relationship between Al tool usage and Computational Thinking?

Theoretical foundations and research framework

Theoretical foundations

Based on the three theoretical frameworks of technology acceptance model, social cognitive theory and
constructivist learning theory, this study analyzes the development status and influencing factors of artificial
intelligence literacy and computational thinking of Chinese college students.

We integrate three complementary perspectives. TAM explains adoption and perceived usefulness of
technologies; SCT emphasizes triadic reciprocity (person-behavior-environment) and the role of practice
and self-efficacy in skill acquisition; Constructivist theories foreground active, contextualized learning and
scaffolding. Together, these lenses justify examining both behavioral exposure (hours of use) and mediating
cognitive/affective mechanisms (AIL) when predicting CT.

Contribution. Methodologically, this paper provides a large-scale, discipline-aware snapshot and a
mechanism test of the use-literacy>CT pathway. Practically, it translates statistical findings into curriculum
design principles that prioritize reflective, problem-based integration of Al tools over simple accumulation of
tool-hours.

Technology acceptance model
The Technology Acceptance Model (TAM), originally proposed by Davis (1989), derives from the Theory of
Reasoned Action (TRA) and the Theory of Planned Behavior (TPB). It posits that user’s behavioral intention to
adopt a technology is primarily determined by two key beliefs: Perceived Usefulness (PU)—the extent to which
users believe that technology can improve their work or learning performance—and Perceived Ease of Use
(PEOU)—the extent to which users perceive the technology as effortless to learn or operate. These perceptions
jointly influence Behavioral Intention (BI), which in turn predicts actual use behavior.

TAM has been extensively applied and empirically validated in educational technology research. It provides
a solid foundation for understanding how learners and teachers interact with emerging digital tools, including
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artificial intelligence (AI)-enhanced learning environments. Recent studies have progressively extended TAM
by integrating contextual and cognitive factors to better capture the complexity of technology use in education.
For instance, Wang et al. (2023) integrated TAM with the Task-Technology Fit (TTF) model to analyze college
student’s continuance intention toward new e-learning spaces. Their findings showed that the alignment
between tasks and technology significantly enhances perceived usefulness and, consequently, sustained learning
engagement'®. Similarly, Lin and Yu (2024) investigated learner’s acceptance of Al-generated pedagogical agents
in language learning videos based on the extended TAM framework. They found that the embodiment and social
presence of Al agents positively influenced learner’s perceived usefulness and ease of use, thereby improving
their acceptance and learning effectiveness!”. These recent advances indicate that TAM remains a robust yet
flexible theoretical model that can incorporate new constructs such as task fit, embodiment, and trust when
explaining how learners engage with AI-mediated educational technologies.

Building on these empirical insights, continuing to explore TAM in education offers significant value for
students, teachers, and institutional stakeholders. For students, TAM-based research reveals the psychological
and environmental drivers that shape their motivation and sustained engagement in Al-supported learning.
For teachers, it informs the design of learner-centered, technology-enhanced pedagogy by identifying factors
that promote ease of integration and perceived instructional effectiveness. For policy and curriculum designers,
TAM provides an evidence-based framework for evaluating digital adoption and guiding the development of
effective intervention strategies.

However, most TAM-based studies focus primarily on technology acceptance intentions, overlooking deeper
outcomes such as literacy acquisition and cognitive skill development. In the context of artificial intelligence
education, it becomes necessary to go beyond “whether to use” toward understanding “how technology use
cultivates higher-order thinking.” Therefore, this study extends the TAM framework by integrating it with Social
Cognitive Theory (SCT) and Constructivist Learning Theory (CLT). This integration allows us to examine how
perceived usefulness, self-efficacy, and authentic learning engagement interact to promote student’s Al literacy
and computational thinking. Through this perspective, the current study reconceptualizes TAM as not only
a model of acceptance but also a mechanism explaining how technology use is transformed into capability
development—linking “use;” “literacy;” and “thinking” in a coherent educational process.

Social cognitive theory

Social cognitive theory (SCT) was proposed by Bandura (1986), which emphasizes the interaction between
individual behavior, cognition and environment, namely ‘Triadic Reciprocal Determinism’ The core concepts
of SCT include self-efficacy, observational learning, reinforcement mechanism and environmental factors. It
emphasizes that individual learning behavior is not only affected by their own cognitive ability, but also regulated
by the social environment!®. In this study, social cognitive theory provides an important theoretical framework
for exploring the formation mechanism of artificial intelligence literacy and computational thinking ability of
college students. Firstly, its ternary interaction perspective provides a systematic explanation path for this study
to analyze the synergy of personal characteristics (gender, subject background), behavioral practice (frequency
of use of AI tools) and environmental factors (urban-rural differences). Secondly, based on the theory of
Vicarious Learning and behavior observation learning point of view, the research pays special attention to the
role of technical practice in promoting the development of cognitive ability, and provides a theoretical basis for
the study of ‘ the positive correlation between the use of artificial intelligence tools and computational thinking
* Finally, the self-efficacy training mechanism emphasized by the theory lays a theoretical foundation for the
subsequent development of artificial intelligence education intervention programs based on demonstration
teaching and peer learning. Through this theoretical perspective, this study can not only deeply interpret the
different performance of different groups in the application ability of artificial intelligence, but also provide
theoretical support for the construction of a comprehensive training model integrating individual, behavior and
environmental factors, which has important guiding value for promoting the reform of higher education and
teaching in the era of artificial intelligence.

Constructivist learning theory
Constructivist learning theory was proposed by Piaget (1950) and Vygotsky (1978). It is believed that knowledge
is not passively accepted, but is constructed by learners through active exploration and social interaction on the
basis of existing knowledge and experience!®. This theory emphasizes Active Construction, Social Interaction,
Situated Cognition and Scaffolding?. Piaget ‘s cognitive development theory emphasizes that learners actively
construct knowledge through interaction with the environment?!, while Vygotsky ‘s sociocultural theory further
emphasizes the key role of social interaction and language in learning. In this study, constructivist learning theory
provides a framework for analyzing how university students construct AI knowledge through exploration and
social collaboration. For instance, in AI education, project-based learning (PjBL) and problem-based learning
(PBL) methods create authentic learning situations where students develop deep understanding of AI concepts
through peer and teacher interactions?*?*. Furthermore, scaffolding instruction-implemented through teacher
guidance, Al-assisted teaching tools, or online platform feedback mechanisms-helps students with varying
foundational knowledge progressively master computational thinking skills?®. This theoretical perspective thus
offers crucial guidance for AI education design, emphasizing practical exploration in real problem contexts to
foster computational thinking development.

Theoretical discriminants and measurement considerations

While the integration of TAM, SCT, and Constructivism provides a robust framework for understanding
the acceptance, self-efficacy, and knowledge-building aspects of Al literacy, we acknowledge the validity of
alternative theoretical lenses. For instance, Expectancy-Value Theory could offer a complementary perspective
by focusing on how student’s expectations for success and their perceived task value influence their engagement

Scientific Reports |

(2025) 15:42708 | https://doi.org/10.1038/s41598-025-26888-2 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

with AT tools. Similarly, developmental models of CT, such as the one proposed by Brennan & Resnick (2012),
which tracks the progression from computational concepts to practices and finally to perspectives, provide a
nuanced framework that future longitudinal studies could adopt to map the developmental trajectory of CT in
the AI context.

Furthermore, the measurement of emerging constructs like Al literacy presents an ongoing challenge for
the field. Existing scales, including the one adapted for this study, are continuously evolving. We note that
some measures in the literature may conflate foundational knowledge with higher-order thinking skills. In this
study, we have sought to achieve discriminant validity between constructs—particularly between the closely
related ‘Intelligent Thinking® and ‘Computational Thinking’—through careful item adaptation and theoretical
demarcation, positioning ‘Intelligent Thinking* as the Al-specific application of cognitive processes that
contribute to the broader, domain-general competency of ‘Computational Thinking’ Future research with larger
samples could empirically test this conceptual distinction through advanced psychometric models.

Research framework

On the basis of the above theoretical basis, this study mainly investigates the development status of college
student’s computational thinking (creativity, computational thinking, collaborative ability, critical thinking and
problem solving). It examines the relationship between antecedent variables (such as gender, grade, subject
category, place of residence and daily use of Al tools) and independent variables (such as Smart Responsibility,
Smart Knowledge and Skills, Intelligent Thinking and human-machine collaborative hybrid innovation), and
has established a research framework for the influencing factors of college student’s computational thinking, as
shown in Figure 1.

Antecedent variable

Gender: Gender refers to the biological characteristics of human beings as male or female. In this study, men
and women refer to the biological characteristics of the respondents. Grade: refers to the number of years of
college students in college. In this study, grades were divided into freshmen (year 1), sophomores (year 2),
juniors (year 3) and seniors (year 4), which were used to indicate the current stage of students ‘ learning. Place
of residence: This term refers to the geographical location in which a person usually works and lives. In this case,
it indicates where students ‘ families live, mainly divided into urban, urban and rural areas. Subject category:
refers to the university professional category divided by the Ministry of Education to meet the needs of social
development. In this study, the “ four new majors “ classification criteria, new engineering, new agriculture, new
medicine, and new liberal arts?*. Specifically, the analysis is carried out from the following four colleges: School
of Mechanical and Electrical and Intelligent Manufacturing, College of Biological and Agricultural Resources, Li
Shizhen Medical College of Traditional Chinese Medicine and Business School. The length of time spent using
artificial intelligence tools per day: Measure the time spent by learners using artificial intelligence tools per day.
In this study, divided into daily 0-2 hours, 2-4 hours, 4-6 hours and more than 6 hours.

Independent variable

Influencing factors refer to a set of variables or conditions that have a direct or indirect effect on a phenomenon
or result. In scientific research, it refers to the independent variables or regulatory variables that can significantly
affect the changes of observation indicators, and its mechanism of action may be manifested in different forms
of effects such as promotion, inhibition or regulation. In this study, these factors represent the factors or reasons
for the development of college student’s computational thinking, and are understood through indicators such
as Smart Responsibility, Smart Knowledge and Skills, Intelligent Thinking and human-machine collaborative
innovation. Smart Responsibility refers to the sense of responsibility, critical thinking and moral concepts that
college students should have when using artificial intelligence, and understanding the ethical impact of AI*.
In this study, it is the first indicator of influencing factors, which is measured by factors such as intelligent
consciousness, intelligent attitude and intelligent ethics. Intelligent knowledge and skills refer to the mastery

Antecedent variable

Students’Characteristi
cs

* Gender

» Grade

« Academic discipline

+ Place of residence

» Hours of daily use of
Al tools

Independent variable

Factors affecting the
development of
students’
computational thinking

-Smart Responsibility
-Smart Knowledge and
Skills

-Intelligent Thinking
-Human-Machine
-Collaboration Hybrid
Innovation

Dependent variable

Dimensions of
Students'
Computational
Thinking Development

-Creativity
-AlgoritmicThinking
-Cooperativity
-Critical Thinking
-Problem Solving

Fig. 1. Research framework of factors affecting college student’s computational thinking.
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of Al basic knowledge and practical application by college students. In the AI education guide, the importance
of Al basic knowledge is emphasized®. In this study, it is measured by intelligent knowledge, intelligent skills
and applications. Intelligent Thinking refers to the way of thinking that uses Al to solve problems. Intelligent
Thinking is an important goal of Al education?. In this study, it is measured by computational thinking, data
thinking, critical thinking and programming thinking. Human-machine collaborative hybrid innovation refers
to how to cooperate with AI to complete tasks and innovate. In an intelligent education environment, human-
machine collaboration can improve learning efficiency and promote innovation?’. In this study, it is measured
by teamwork and intelligent innovation.

Dependent variable

Wing pointed out that computational thinking involves using the basic concepts of computer science to solve
problems, design systems, and understand human behavior®. Since Wing proposed computational thinking,
the international academic community has systematically explained its essential attributes (abstraction and
automation) and core methods (decomposition, abstraction, modeling, recursion, iteration, fault tolerance,
divide and conquer, etc.), and demonstrated the interdisciplinary status of CT from the interdisciplinary
perspective of computer science, mathematics, engineering and scientific methodology. Rambally emphasizes
that computational thinking includes key skills such as creativity, algorithmic thinking, collaboration, critical
thinking, and problem solving?. In this study, it is understood through creativity, algorithmic thinking,
collaborative ability, critical thinking and problem solving. Creativity refers to the ability to use innovative
methods to solve problems. In this study, it is determined by self-cognition of innovation, adaptability and
intuitive judgment. The ability of algorithmic thinking to transform problems into computable steps’, in
this study, is determined by the proficiency of using mathematical tools to abstract problems. The ability of
collaboration to cooperate efficiently in a human-machine collaborative environment is determined by the
attitude of knowledge sharing and outcome output in group work in this study. Critical thinking is a kind of
self-directed and self-constrained thinking, which aims to make high-quality reasoning in a fair way. In this
study, it is determined by the structural analysis and questioning ability of complex problems. Problem solving is
generally defined as the ability to understand the environment, identify complex problems, and review relevant
information to develop and implement solutions. In this study, it was determined by operational shortcomings
and thinking limitations in dealing with difficulties.

Research hypotheses
Guided by the integrated theoretical framework and the research model presented in Fig. 1, the following
hypotheses are proposed to be tested:

H1.Higher frequency of Al-tool use is positively associated with student’s Al literacy and computational
thinking.

H2.AlI literacy mediates the relationship between Al-tool use and computational thinking (i.e., the effect of
use on CT is primarily indirect via AIL).

H3.Within AI literacy dimensions, Intelligent Thinking and Human-Machine Collaboration Hybrid
Innovation will be stronger positive predictors of CT than Smart Knowledge and Skills alone.

Definition of core concepts

Computational thinking (CT)

In the past few years, research on computational thinking (CT) has entered a stage of continuous expansion
and contextualization. With the rise of artificial intelligence (AI) and emerging digital technologies, CT is
increasingly regarded as a key cognitive and problem-solving competency that extends beyond computer science
education. Empirical research has progressively shifted its focus from isolated programming skills toward the
cultivation of higher-order thinking abilities, including abstraction, decomposition, and algorithmic reasoning,
in authentic learning environments.

In the Al era, many studies have explored how CT can be integrated into diverse educational contexts such
as data science, intelligent systems, and interdisciplinary project-based learning. These efforts highlight that
the development of CT is closely linked to student’s capacity to interact with Al tools, analyze data, and design
solutions collaboratively with intelligent systems. The application of Al-supported learning environments has
also created new opportunities to promote adaptive feedback, personalized learning, and cognitive scaffolding
for CT development.

At the same time, the research focus has gradually expanded from skill acquisition to the broader formation
of cognitive and metacognitive competencies. Learners are expected not only to apply computational methods to
solve problems but also to reflect on their strategies, monitor their progress, and evaluate the ethical and social
implications of technology use. In this sense, the development of CT in the Al era reflects an integrated process
combining technical proficiency, critical awareness, and reflective learning.

Overall, recent empirical work suggests that CT should be understood as a multidimensional construct
shaped by cognitive, metacognitive, and socio-technical factors. Exploring how Al-related competencies,
learning experiences, and cognitive mechanisms jointly influence CT has therefore become a key issue for
contemporary educational research.

Al tool use

Artificial intelligence (AI) tools refer to digital applications or platforms that integrate machine learning,
natural language processing, and other Al techniques to support tasks such as information retrieval, knowledge
generation, language translation, data analysis, and intelligent interaction. In this study, AI tool use specifically
refers to Chinese university student’s engagement with AI-powered platforms (e.g., ChatGPT, Baidu, Wenxin,
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Yiyan, iFLYTEK Spark, Tencent Hunyuan) to assist with learning activities, academic writing, programming
exercises, and coursework. Unlike general entertainment use, our focus is on the academic and cognitive
application of Al tools, which provides a meaningful context to examine how the frequency and purpose of Al
tool use may influence student’s Al literacy and computational thinking.

Research questions

Based on the integrated theoretical framework of TAM, SCT, and Constructivism, this study aims to investigate
the development of AI literacy and Computational Thinking among Chinese university students and the
relationships between key variables. The following research questions (RQs) guide the inquiry:

(1) What are the levels of Al literacy and Computational Thinking among Chinese university students, and how
do they differ based on gender, grade, discipline, and place of residence?

(2) To what extent is the frequency of Al tool usage associated with student’s Al literacy and Computational
Thinking?

(3) What are the relationships between the dimensions of Al literacy and the components of Computational
Thinking?

(4) To what degree do the dimensions of Al literacy predict student’s overall Computational Thinking?

(5) Does Al literacy mediate the relationship between Al tool usage and Computational Thinking?

Research design

Participants and sampling

This study investigates the current status, influencing factors, and optimization strategies related to artificial
intelligence literacy and computational thinking among Chinese university students. The participants were
undergraduates from H University, a provincial full-time institution in central China, selected based on its
representative positioning, student composition, and program structure within the national higher education
system. A total of 1,537 questionnaires were distributed between February 5 and March 10, 2025, with 1,466
valid responses retained after excluding incomplete or patterned answers, resulting in an effective recovery rate
of 95.38%. The sample included students from four “new disciplines”: new engineering (31%, 454 students),
new agriculture (19%, 273 students), new medicine (4%, 58 students), and new liberal arts (47%, 681 students).
In terms of gender distribution, 566 participants (39%) were male and 900 (61%) were female. A convenience
sampling approach was employed to ensure broad coverage across disciplines and demographic backgrounds.
This representative sample offers valuable insights into the AI and computational thinking competencies of
students at non-elite Chinese universities, thereby supporting the development of widely applicable educational
strategies. Informed consent was secured from all participants, and the study protocol was approved by the
Academic Theory Committee of the School of Computer Science at Huanggang Normal University. This sample
originates from a provincially-affiliated, non-elite (non-Double First-Class/non-top research-intensive) local
comprehensive university, thereby helping to illustrate the baseline and universal landscape of Al literacy and
critical thinking at the undergraduate level in China. However, non-elite university and convenience sampling;
limited generalizability, small N for New Medicine (n=58).

Measures

The questionnaire was adapted from established scales with proven reliability and validity, consisting of three
parts. The first part collected demographic information, including gender, grade, place of residence, discipline,
and frequency of Al tool use. The second part assessed artificial intelligence (AI) literacy across four dimensions:
Smart Responsibility, Smart Knowledge and Skills, Intelligent Thinking, and Human-Machine Collaboration
Hybrid Innovation®’. The third part measured computational thinking (CT), including creativity, algorithmic
thinking, cooperativity, critical thinking, and problem-solving. All items were rated on a five-point Likert scale
(1 = strongly disagree, 5 = strongly agree).

To ensure psychometric robustness, reliability and validity tests were conducted. As shown in Table 1,
Cronbach's a for all subscales exceeded 0.80, indicating high internal consistency. The KMO values were above
0.90, and Bartlett's test of sphericity was significant (p <.001), suggesting the data were suitable for factor analysis.
The cumulative variance contribution rate of each scale dimension is more than 60%, indicating that the scale
has good structural validity. Each dimension can effectively explain the main variation of the corresponding
construct, which meets the basic requirements of the measurement theory®'.

Data collection and processing

Data were collected via the Questionnaire Star online platform. To ensure data quality, responses with excessive
missing values, straight-line answers, or abnormal completion times were excluded. After data cleaning, 1,466
valid questionnaires were retained for subsequent analysis.

Data analysis
Data analysis was conducted using SPSS 26.0 and the PROCESS macro (v4.0) for mediation analysis. The
analytical procedure included the following steps:

Descriptive statistics were used to analyze the distribution of Al literacy and CT.

Reliability and validity analyses (Cronbach's a, KMO, Bartlett's test, exploratory factor analysis) confirmed
the robustness of the scales.

Group difference tests (independent-sample t-tests, one-way ANOVA) examined variations in Al literacy
and CT by demographic factors.

Pearson correlation analysis assessed the relationships between Al literacy dimensions and CT.
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Bartlett’s test of sphericity Cumulative
KMO variance
Scale Dimension Cronbach’s a | Value | Approximate Chi- | df P contribution
Smart responsibility 0.905
Smart knowledge and skills 0.966
Artificial o
intelligence literacy | Intelligent thinking 0.961 0.984 | 63199.882 1128 | <0.001 | 65.99%
Artificial }II{un‘{ar{-machl{le collaboration 0.928
. . . ybrid innovation
intelligence literacy
and computational Creativity 0.930
hinki
thinking Algorithmic thinking 0.934
Computational Cooperativity 0.909 0.972 | 35418.303 406 | <0.001 | 70.532%
thinking
Critical thinking 0.899
Problem solving 0.916

Table 1. Reliability and validity analysis of artificial intelligence literacy and computational thinking scale for
college students. *p < .05, **p < .01.

Multiple regression analysis tested the predictive effects of AI literacy dimensions on CT and its sub-
dimensions.

Mediation analysis (bootstrapping, 5,000 resamples) examined whether Al literacy mediated the relationship
between Al tool usage and CT. Both direct and indirect effects were estimated with 95% confidence intervals.

In this study, all inferential statistical methods (including t-tests and analysis of variance) were applied based
on the fulfillment of their underlying assumptions. First, because normality tests can be overly sensitive in large
samples, we additionally inspected histograms and Q-Q plots and found no severe deviations; thus, parametric
analyses were considered appropriate. Second, for analysis of variance, we rigorously examined homogeneity of
variance across groups using Levene's test. All subsequently reported ANOVA results satisfied the assumption
of homogeneity of variance (all Levene's test *p* > .05). Building upon the fulfillment of these assumptions,
we employed parametric tests to ensure statistical power. The significance threshold was set at p <0.05 for all
statistical tests.

Considerations on methodology and measurement

This study employs a cross-sectional, self-report design, which is an efficient and established approach for initial,
large-scale exploration of the relationships between AIL and CT across diverse disciplinary contexts. Limitations
include cross-sectional self-report data (which raise the possibility of common method variance). Although we
conducted procedural safeguards in questionnaire design and excluded low-quality responses, we did not report
a formal Harman’s single-factor or marker variable test in the present manuscript — future analyses should
explicitly test CMV and incorporate objective performance measures or multi-informant data where feasible.
The convenience sampling from a single university, while providing a rich, context-specific snapshot, limits the
generalizability of our findings, and the small cell size for the ‘New Medicine‘ group (n=58) necessitates caution
in interpreting disciplinary comparisons involving this cohort.

A particular conceptual and methodological challenge lies in distinguishing the closely related constructs
of ‘Intelligent Thinking* (a dimension of AIL) and ‘Computational Thinking‘ (the outcome variable). While
our factor analysis confirmed the empirical separation of these scales within our dataset, we recognize the
theoretical and semantic overlap. This overlap, however, may reflect the intrinsic conceptual linkage whereby
Al literacy acts as a catalyst and concrete instantiation of computational thinking in the AI domain. Therefore,
the strong correlation observed is not merely a measurement artifact but is theoretically plausible and central to
our research hypotheses.

Ethical considerations

This study adhered to the ethical standards of the Chinese Ministry of Education and the Helsinki Declaration.
Ethical approval was obtained from the Academic Theory Committee of the School of Computer Science,
Huanggang Normal University (approval number: HGNU-CS-20250110). All participants were informed of
the study’s purpose, assured of anonymity and confidentiality, and provided written informed consent prior to
participation.

Results analysis and discussion

Basic characteristics of students

As shown in Table 2, this survey collected valid data from 1,466 college students. The participants were mainly
women (900, 61%) and men (566, 39%). This gender distribution is consistent with the trend of the increasing
proportion of women in higher education in China. According to the National Bureau of Statistics, in 2025,
women will account for more than men in all types of higher education, with 1.963 million female graduate
students, accounting for 50.6% of all graduate students; ordinary undergraduate and vocational undergraduate.
There are 18.872 million and 5.643 million female students in adult undergraduate colleges, accounting for
50.0% and 56.0% respectively’* In terms of family residence, rural students account for the highest proportion
(715 people, 49%), urban and urban students account for 29% (428 people) and 22% (323 people) respectively,
reflecting the policy effect of China ‘s higher education coverage extending to counties®?. The grade distribution
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Category Options f % Mean | Standard Deviation
Male 566 | 39%
Gender 1.61 |0.49
Female 900 | 61%
Freshman 626 | 43%
Sophomore 341 | 23%
Grade 1.98 |0.98
Junior 406 | 28%
Senior 93 | 6%

New engineering | 454 | 31%

New agriculture 273 | 19%
Academic discipline 2,66 | 133
New medicine 58 | 4%

New liberal arts 681 | 47%

Urban 323 | 22%

Place of residence Township 428 | 29% |2.27 | 0.80
Rural 715 | 49%
0-2 hours 704 | 48%
2-4 hours 347 | 24%

Hours of daily use of AI tools 196 |1.11
4-6 hours 185 | 13%

More than 6 hours | 230 | 16%

Table 2. Analysis of student’s basic characteristic frequency.

shows a typical pyramid structure: the proportion of freshmen is the highest (626,43%), and the proportion
decreases with the increase of grade, and the proportion of senior students is only 6% (93), which is related
to the high participation of basic courses in the middle and lower grades and the diversion of internships in
the upper grades. According to the professional distribution, the proportion of new liberal arts students is
prominent (681, 47%), followed by new engineering (454, 31%), new agriculture (273, 19%) and new medicine
(58, 4%), which is consistent with the current trend of interdisciplinary expansion under the background of
high ‘ new liberal arts * construction®. In terms of the duration of artificial intelligence use, 48% of respondents
(704people) used 0-2 hours a day, and 24% (347people) used 2-4 hours a day, showing a clear right-skewed
distribution. Studies have shown that more than 60% of college students use artificial intelligence tools no more
than 3 hours a week, and less than 30% of students use artificial intelligence tools for more than 3 hours a week®.
This shows that the penetration of artificial intelligence in college education scenes is still in its infancy, and the
improvement of college students * artificial intelligence literacy still needs to be strengthened from the breadth
and depth of tool use, especially the application density in teaching practice and learning tasks needs to be
further expanded. Daily Al-use duration was collected as an ordinal variable (1=0-2h, 2=2-4h, 3=4-6h, 4=>6h).
For primary analyses we treated it as approximately continuous to examine linear trends; to verify robustness
we also ran categorical ANOVA/post-hoc tests — results were consistent in direction. We acknowledge that
treating ordinal categories as interval may obscure non-linear effects; future analyses should test non-linear
models or use finer-grained time measures. This approach is widely accepted in social science and educational
research. Its rationale lies in two key points: First, the four categories of this variable exhibit a clear temporal
sequence and approximately equidistant numerical intervals. Second, treating it as a continuous variable allows
for more comprehensive utilization of data information, enabling a more precise revelation of the dose-response
relationship between usage duration and literacy levels, thereby avoiding the loss of trend information due to
overly coarse categorization. As a robustness check, we also conducted an analysis using analysis of variance
(treating it as a categorical variable). The results were fully consistent in direction with those obtained when
treating it as a continuous variable, further supporting the validity of our approach.

Analysis of the influence of student’s characteristics on artificial intelligence literacy

Using analysis of variance (ANOVA), the relationships between student’s demographic and learning
characteristics—including gender, grade level, discipline category, place of residence, and daily usage time of
artificial intelligence (AI) tools—and their Al literacy were examined. The detailed statistical results are presented
in Table 3 (gender differences) and Table 4 (differences across other characteristics).

As shown in Table 3, the independent-samples t-test results indicate no statistically significant differences
between male and female students in any dimension of Al literacy (AI Responsibility: t=1.519, p=0.129; AI
Knowledge and Skills: t=0.734, p=0.463; AI Thinking: t=1.704, p=0.089; Human-Machine Collaborative
Innovation: t=0.329, p=0.742, all p>0.05). This suggests that gender does not exert a key influence on overall
Al literacy, which is consistent with the findings of Diao et al. (2023) showing minimal gender impact on Al
acceptance intention>”.

Further analysis using Table 4 revealed that grade level significantly affects certain dimensions of Al literacy.
“Al Thinking” (F=2.956, p=0.031) and “Human-Machine Collaboration Hybrid Innovation” (F=3.346, p=0.019)
show significant differences, with sophomores and juniors scoring higher than freshmen (all p<0.05). However,
senior students did not continue to show significant improvement, possibly due to factors such as graduation
internships, as similarly noted by Chan and Hu®®.
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Category Options | Mean | Standard deviation

Male 40.91 7.803
Smart responsibility Fermal 031 prve 1.519 | 0.129
emale . .

Male 63.89 |12.504
Smart knowledge and skills 0.734 | 0.463
Female |63.43 |10.235

Male 51.72 |10.37
Intelligent thinking — 082 815 1.704 | 0.089
emale . .

Male 22.09 | 4.671
Human-machine collaboration hybrid innovation 0.329 | 0.742
Female |22.01 | 3.906

Sig.

Table 3.. The influence of student’s gender characteristics on artificial intelligence literacy. *p < .05, **p < .01.

Regarding place of residence, a clear gradient effect is observed (see Table 4). Urban students outperform
township and rural students in AI Responsibility (F=6.314, p=0.002), AI Knowledge and Skills (F=6.798,
p=0.001), and AI Thinking (F=3.948, p=0.020), showing a distinct “city > town > rural” pattern. This result
indicates that the technological environment plays a crucial role in enhancing Al literacy’’, echoing Sublime
and Renna's findings that frequent exposure to Al tools contributes to higher competence development among
urban students®®. However, the Human-Machine Collaboration dimension shows no significant geographical
differences (F=1.743, p=0.175).

Differences across disciplinary backgrounds are also evident in Table 4. Significant variations appear in
AT Thinking (F=3.461, p=0.016) and Human-Machine Collaboration Hybrid Innovation (F=3.242, p=0.021),
where students majoring in new engineering and new liberal arts score higher than those in new agriculture.
New medical students, however, perform near the intermediate level, suggesting that Al integration in medical
curricula still needs to be strengthened. These findings align with Zhang Chi's research, which notes that
disciplinary contexts influence the depth and breadth of AI application®.

Finally, daily usage duration of artificial intelligence tools exhibits a significant positive impact across multiple
dimensions of Al literacy (see Table 4). AI Responsibility (F=3.958, p=0.008) is significantly higher among
students using Al tools for more than six hours per day compared with those using them for 0-2 hours. Similarly,
increased daily usage significantly enhances AI Knowledge and Skills (F=4.485, p=0.004) and AI Thinking
(F=3.061, p=0.027). Notably, even moderate use (2-4 hours per day) yields meaningful improvements, providing
empirical support for rational Al tool integration in higher education®. Human-Machine Collaboration,
however, does not show a statistically significant relationship (F=2.027, p=0.108).

In summary, both residence background and daily Al tool usage time emerge as key influencing factors of Al
literacy, whereas gender and discipline exert comparatively weaker effects. These results collectively underscore
the role of environmental exposure and practical engagement in fostering student’s comprehensive Al literacy.

To strictly control the potential inflation of Type I errors from multiple comparisons, this study applied
Bonferroni correction to all pairwise post-hoc comparisons following one-way analysis of variance (ANOVA).
The results reveal the specific groups responsible for differences in student’s Al literacy.

Impact of AI Tool Usage Duration: Among the four dimensions of Al literacy, both AI Responsibility and AI
Knowledge & Skills exhibited significant usage duration effects. Post-hoc comparisons after Bonferroni correction
indicated that students using AI tools for over 6 hours daily scored significantly higher on AI Responsibility
than those using 0-2 hours (corrected *p* = 0.034). Regarding AI Knowledge and Skills, both the 2-4 hours
per day (corrected *p* = 0.016) and over 6 hours per day (corrected *p* = 0.029) groups scored significantly
higher than the 0-2 hours group. However, no significant differences were found across usage duration groups
in the dimensions of Al-driven thinking and Human-Machine Collaboration Hybrid Innovation (all corrected
p > 0.05). This suggests that moderate-to-high AI tool usage correlates with improvements in foundational
competencies like ethical responsibility and knowledge/skills, but simply extending usage time may not be a key
factor for developing higher-order thinking patterns and collaborative innovation capabilities.

Grade-level differences analysis: Univariate ANOVA revealed no significant differences across grade levels in
any Al literacy dimension (all *p* > 0.05). Post-hoc Bonferroni-corrected comparisons further confirmed that
pairwise comparisons between any two grade levels failed to reach statistical significance (all corrected *p* >
0.05). This result suggests that Al literacy levels among university students in this sample remain relatively stable
across undergraduate grades, potentially reflecting overall consistency in Al-related learning opportunities
during university education.

Differences by Discipline Category: Bonferroni-corrected interdisciplinary comparisons revealed significant
disciplinary characteristics. Regarding Intelligent Thinking, students in new engineering disciplines significantly
outperformed those in new agricultural disciplines (corrected *p* = 0.024), while students in new liberal arts
disciplines also significantly outperformed those in new agricultural disciplines (corrected *p* = 0.03). A
similar pattern emerged in the Human-Machine Collaboration Hybrid Innovation dimension, where both
new engineering (corrected *p* = 0.045) and new liberal arts (corrected *p* = 0.018) students significantly
outperformed new agricultural science students. All other pairwise comparisons between disciplines were
not significant after correction. These findings highlight differing emphases across disciplines in cultivating
advanced Al literacy. New Agricultural Science students lag relatively in intelligent thinking and collaborative
innovation, warranting attention in future interdisciplinary educational design.
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Multiple
Category Options Mean | Standard deviation | F Sig. | comparison
Freshman 40.59 | 6.82
Sophomore 40.92 | 6.53
1.546 | 0.201 |/
Junior 40.47 7.39
Senior 39.18 7.29
Urban 65.45 | 11.76
- Urban>Township,
Township 63.72 | 11.06 6.314 | 0.002 UrbansRural
Rural 62.71 | 10.85
Smart responsibility New Engineering | 40.61 | 7.63
New agriculture 39.78 7.26
2.249 | 0.081 |/
New medicine 42.17 | 6.22
New liberal arts 40.67 | 6.37
0-2 hours 39.91 7.01 2-4 hours>0-
2-4 hours 40.89 | 6.98 2hours,4-6
3.958 | 0.008 | hours>0-2 hours,
4-6 hours 41.25 | 6.04 More than 6
More than 6 hours | 41.37 | 7.26 hours>0-2 hours
Freshman 63.41 | 11.13
Sophomore 63.83 | 10.53
0.448 | 0.719 |/
Junior 63.93 | 11.57
Senior 62.66 | 11.95
Urban 65.45 | 11.76
3 Urban>Township,
Township 63.72 | 11.06 6.798 | 0.001 | e “Rural
Rural 62.71 | 10.85
Smart knowledge and skills | New engineering | 63.77 | 12.04
New agriculture 62.18 | 11.91
1.903 | 0.127 |/
New medicine 63.62 | 11.26
New liberal arts 64.07 | 10.18
0-2 hours 62.53 | 11.07
2-4h 6472 | 1112 2-4 hours>0-2
-4 hours . .
4.485 | 0.004 h}i’“rs’}?/l"re
4-6 hours 63.98 | 10.35 than6 hours>0-2
hours
More than 6 hours | 64.91 | 11.89
Freshman 40.59 | 6.82
Sophomore 4092 | 6.53
1.546 | 0.201 |/
Junior 40.47 7.39
Senior 39.18 7.29
Urban 5233 | 9.82
Township 51.3 9.36 3.948 | 0.02 | Urban>Rural
Rural 50.57 | 9.3
Intelligent thinking New engineering | 51.7 9.92 New
New agriculture | 49.62 | 10.15 engineering>New
— 3.461 | 0.016 | agriculture, New
New medicine 50.19 | 9.53 liberal arts>New
New liberal arts 51.52 8.77 agriculture
0-2 hours 50.4 9.538
>ah 1o 5051 2-4 hours>0-2
-4 hours . .
3.061 | 0.027 h}‘l’““é hM‘"e
4-6 hours 51.59 | 8.937 than 6 hours>0-2
hours
More than 6 hours | 52.06 | 10.042
Continued
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Multiple
Category Options Mean | Standard deviation | F Sig. | comparison
Freshman 40.59 | 6.82
Sophomore 40.92 | 6.53
1.546 | 0.201 |/
Junior 40.47 7.39
Senior 39.18 7.29
Urban 2233 | 44
Township 22,16 | 4.21 1.743 | 0.175 |/
Human-machine Rural 21.84 4.13
Follabotljation hybrid New engineering | 22.2 4.34 New
mnnovation New agriculture 21.33 | 443 engineering>New
3.242 | 0.021 | agriculture, New
New medicine 22,02 | 479 liberal arts>New
New liberal arts | 2223 | 3.96 agriculture
0-2 hours 21.77 4.252
2-4 hours 22.31 4.12
2027 | 0.108 | Mo tha‘; o
4-6 hours 2212 | 3.923 ours>0-2 hours
More than 6 hours | 22.41 | 4.447

Table 4. Difference analysis of artificial intelligence literacy in different basic characteristics. *p < .05, **p <
.01.

Artificial intelligence literacy
Human-
machine
Smart collaboration
Smart knowledge and | Intelligent hybrid
responsibility | skills thinking Innovation
category n=1466 r Sig. |r Sig. r Sig. |r Sig.
A. Grade -0.031 0.228 | 0.005 0.857 | 0.05 0.055 | 0.063* | 0.016
B.Academic discipline 0.017 0.507 | 0.026 0.327 | 0.01 0.705 | 0.022 | 0.394
C. Place of residence -0.091** | 0.001 | -0.095** | <0.001 | -0.073** | 0.005 | -0.048 | 0.065
D. Hours of daily use of Al tools | 0.084** | 0.001 | 0.079** | 0.003 | 0.067* |0.01 |0.054* | 0.037

Table 5. Correlation analysis of students * basic characteristics and artificial intelligence literacy. *p < .05, **p
<.0l.

Based on the results of Pearson's correlation analysis, as shown in Table 5, the relationships between
demographic variables such as gender, grade level, place of residence, and academic discipline and the dimensions
of AI literacy (Smart Responsibility, Smart Knowledge and Skills, Intelligent Thinking, and Human-Machine
Collaboration Hybrid Innovation) were systematically examined. Effect sizes were reported alongside p-values.
For correlation analyses we report Pearson's r and the proportion of variance explained (r?). For regression
analyses we report standardized regression coefficients (B) and, where relevant, estimate local effect sizes using
Cohen's 2 (f2 = R%/(1-R?)). Following Cohen (1988)*°, {2 values of 0.02, 0.15 and 0.35 are interpreted as small,
medium and large effects, respectively. We also interpret statistical significance in light of effect sizes and sample
size, avoiding over-interpretation of effects that are statistically significant but negligible in magnitude.

The analysis of grade level showed that only the Human-Machine Collaboration Hybrid Innovation
dimension showed a weak positive correlation (r=0.063, p=0.016<0.05). Furthermore, when discussing the
influence of the residence factor on Al literacy, residence showed a relatively significant effect. Urban sources
significantly outperformed rural sources in the dimensions of Smart Responsibility (r=-0.091, p=0.001), Smart
Knowledge and Skills (r=-0.095, p<0.001), and Intelligent Thinking (r=-0.073, p=0.005), and the effect sizes,
although small (|r|<0.1), were statistically significant. Multiple comparisons showed a gradient difference of
city>town>rural (p<0.05), a result that may reflect the ongoing impact of the urban-rural digital divide on
Al literacy development, consistent with the findings of existing research on geographic differences in digital
literacy. The correlation between disciplinary background and Al literacy was not significant overall, and
despite the highest percentage of new liberal arts students in the sample (47%), the disciplinary differences did
not create a significant differentiation in literacy levels, which may be related to the interdisciplinary penetration
of AI education. However, the most important finding was that daily time spent using Al tools was significantly
and positively correlated with all dimensions of literacy, e.g., Smart Responsibility: r=0.084(p=0.001); Smart
Knowledge and Skills: r=0.079(p=0.003); Intelligent Thinking: r=0.06(p=0.01); and Human-Computer
Collaboration: r=0.054(p=0.037). Although the effect sizes were small (r<0.1), the pattern of consistently
significant associations suggests that increasing the frequency of Al tool use may have a cumulative effect on
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literacy development, consistent with the results of existing research*!. This finding provides empirical support
for the theoretical hypothesis that practice promotes literacy development.

Although several correlations reached statistical significance, their magnitudes were very small. For example,
observed Pearson correlations ranged from r = 0.054 to r = 0.084; these correspond to r? = 0.0029-0.0071, i.e.
0.29%-0.71% of the variance explained. Converted to regression local effect sizes, these values correspond to
Cohen's f2 = 0.0029-0.0071, which is far below the conventional “small” threshold of f2 = 0.02. Therefore, while
some associations are detectable in our (relatively large) sample, their practical or educational impact at the
individual level is likely negligible.

Analysis of the influence of student’s characteristics on computational thinking

Asshown in Tables 6 and 7, firstly, from the perspective of gender, the data analysis shows that boys are significantly
better than girls in the dimensions of algorithmic thinking (t=3.875, p<0.001), collaborative thinking (t=2.114,
p=0.035), and critical thinking (t=2.836, p=0.005), which may reflect the influence of gender stereotypes on
specific thinking dimensions in STEM education. This result may reflect the influence of gender stereotypes
in STEM education on specific dimensions of thinking, and is partially consistent with the findings of existing
research on the “boy’s advantage in logical reasoning tasks” For example, Notably, the gender differences effect
sizes were small (Cohen's d<0.3) and the actual educational significance was limited. In addition, the grade
difference analysis showed that sophomore and junior students were significantly better than freshmen students
in creativity (F=3.255, p=0.021) and algorithmic thinking (F=3.617, p=0.013), a progressive developmental
feature consistent with the theory of cognitive developmental stages, suggesting that after 1-2 years of higher
education, students may gain systematic in their abstract thinking and creative abilities enhancement. In terms
of place of residence, the data showed that the factor of place of residence only had a marginal effect on creativity
(F=2.95, p=0.053), and the other dimensions did not show any significant difference, which is different from the
results of the analysis of Artificial Intelligence Literacy, and that the urban-rural difference in Computational
Thinking is not obvious, which may reflect the universality of logical thinking training in the basic education
stage.The analysis of disciplines found that there are significant disciplinary differences in algorithmic thinking
(F=5.352, p=0.001), and the new engineering students (M=21.57) significantly outperform the new agricultural
students (M=20.26), while the other dimensions do not show any significant differences (p>0.05), which is
closely related to the professional curriculum, and the intensive training of algorithmic and logical thinking in
engineering disciplines may have a cumulative effect. It is worth noting that the length of daily use of AI tools was
significantly positively correlated with all dimensions of computational thinking (p<0.05), a result that is highly
consistent with the theory of technology-enhanced learning, suggesting that there is a dose-effect relationship
between the frequency of use of Al tools and the development of computational thinking. It is important to
emphasize that although there are statistically significant differences in some dimensions, the effect sizes of
these differences are small and the actual educational significance may be limited. Therefore, in educational
practice, attention should be paid to how to provide equal resources and opportunities for all students, especially
in eliminating gender stereotypes and promoting interdisciplinary collaboration. In addition, rationally guiding
students to use Al tools may help to improve their computational thinking skills.

As shown in Table 8, the Pearson correlation coefficient analysis led to the following observations: firstly,
Grade level was significantly and positively associated with creativity (r=0.068, p=0.01) and algorithmic thinking
(r=0.071, p=0.007), reflecting the cumulative fostering effect of higher education on higher-order thinking. This
finding is consistent with Piaget's theory of stages of cognitive development, which emphasizes that student’s
thinking skills develop and deepen as their educational level increases?2. The analysis of academic disciplines
showed that the new engineering students were significantly better than the students of other disciplines in
algorithmic thinking (r=-0.061, p=0.019), highlighting the key role of the specialized curriculum in the
development of computational thinking. This result is closely related to the intensive training of algorithmic
and logical thinking in engineering disciplines. Place of residence was only weakly negatively correlated with
creativity (r=-0.063, p=0.015), with a small effect size, suggesting a limited effect of urban-rural differences,
which may reflect the prevalence of logical thinking training at the basic education level, making urban-rural
differences in computational thinking insignificant. Notably, the length of daily AI use was significantly and
positively correlated with all dimensions of computational thinking (p<0.05), yet the effect sizes were small (r

-

Category Options | Mean | Standard deviation Sig.

Male 29.69 |5.718
Creativity 124 |0.215
Female |29.33 |4.817

Male 21.49 |4.793
Algorithmic thinking 3.875 | <0.001
Female |20.52 |4.562

Male 14.74 |3.109
Cooperativity E 1 ia 377 2.114 | 0.035
emale . :

Male 18.48 |3.729
Critical Thinking 2.836 | 0.005
Female |17.93 |3.372

Male 20.42 | 5.206
Problem Solving 1.628 | 0.104
Female |19.99 |4.545

Table 6. Analysis of gender characteristics of computational thinking students. *p < .05, **p <.01.
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Dimension Category Sum of squares | Mean square | df F Sig.
Between groups 261.266 3 87.089
Grade Within groups | 39113.662 1462 26.754 | 3.255 | 0.021
Total 39374.928 1465
Between groups 158.179 2 79.09
Place of residence Within groups | 39216.749 1463 26.806 | 2.95 |0.053
Creativity Total 39374.928 1465
Between groups 122.702 3 40.901
Academic discipline Within groups | 39252.226 1462 26.848 | 1.523 | 0.207
Total 39374.928 1465
Between groups 269.001 3 89.667
Hours of daily use of Al tools | Within groups | 39105.927 1462 26.748 | 3.352 | 0.018
Total 39374.928 1465
Between groups 235.831 3 78.61
Grade Within Groups | 31773.14 1462 21.733 | 3.617 | 0.013
Total 32008.971 1465
Between groups 26.108 2 13.054
Place of residence Within groups | 31982.863 1463 21.861 | 0.597 | 0.551
Algorithrmic thinking Total 32008.971 1465
Between groups 347.685 3 115.895
Academic discipline Within groups | 31661.286 1462 21.656 | 5.352 | 0.001
Total 32008.971 1465
Between groups 234.789 3 78.263
Hours of daily use of Al tools | Within groups | 31774.183 1462 21.733 | 3.601 | 0.013
Total 32008.971 1465
Between groups 14.997 3 4.999
Grade Within groups | 12410.122 1462 8.488 | 0.589 | 0.622
Total 12425.119 1465
Between groups 4.306 2 2.153
Place of residence Within groups | 12420.813 1463 8.49 | 0.254 | 0.776
Cooperativity Total 12425.119 1465
Between groups 39.124 3 13.041
Academic discipline Within groups | 12385.995 1462 8.472 | 1.539 | 0.202
Total 12425.119 1465
Between groups 88.995 3 29.665
Hours of daily use of Al tools | Within groups | 12336.124 1462 8.438 | 3.516 | 0.015
Total 12425.119 1465
Between groups 27.653 3 9.218
Grade Within groups | 18156.119 1462 12.419 | 0.742 | 0.527
Total 18183.771 1465
Between groups 33.235 2 16.618
Place of residence Within groups | 18150.536 1463 12.406 | 1.339 | 0.262
Critical Thinking Total 18183.771 1465
Between groups 36.911 3 12.304
Academic discipline Within groups | 18146.86 1462 12.412 | 0.991 | 0.396
Total 18183.771 1465
Between groups 121.419 3 40.473
Hours of daily use of Al tools | Within groups | 18062.352 1462 12.355 | 3.276 | 0.02
Total 18183.771 1465
Continued
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Dimension Category Sum of squares | Mean square | df F Sig.
Between groups 160.927 3 53.642
Grade Within groups | 33786.846 1462 23.11 | 2.321 | 0.074
Total 33947.774 1465
Between groups 27.374 2 13.687
Place of residence Within groups | 33920.399 1463 23.186 | 0.59 | 0.554
Problem Solving Total 33947.774 1465
Between groups 102.485 3 34.162
Academic discipline Within groups | 33845.289 1462 23.15 | 1.476 | 0.219
Total 33947.774 1465
Between groups 92.502 3 30.834
Hours of daily use of Al tools | Within groups | 33855.272 1462 23.157 | 1.332 | 0.262
Total 33947.774 1465

Table 7. Difference analysis of each dimension of computational thinking in basic information. *p < .05, **p <
.01.

Computational thinking scale
Algorithmic Critical Problem

Creativity thinking Cooperativity | thinking solving
category n=1466 r Sig. |r Sig. |r Sig. |r Sig. |r Sig.
A. Grade 0.068** | 0.01 | 0.071** | 0.007 | 0.015 0.564 | 0.029 0.26 0.051 | 0.05
B. Academic discipline 0.013 0.627 | -0.061* | 0.019 | -0.046 |0.08 |-0.016 |0.528 | 0.006 | 0.831
C. Place of residence -0.063* | 0.015 | -0.027 |0.301 |-0.018 |0.486 |-0.042 |0.105 |-0.017 | 0.515
D. Hours of daily use of Al tools | 0.073** | 0.005 | 0.065* | 0.012 | 0.076** | 0.003 | 0.073** | 0.005 | 0.05 | 0.058

Table 8. Correlation analysis between various dimensions of computational thinking and students * basic
information. *p < .05, **p <.01

Computational thinking
Algoritmic Critical Problem

Creativity thinking Cooperativity | thinking solving
category n=1466 r Sig. r Sig. r Sig. r Sig. r Sig.
Smart responsibility 0.639** | <0.001 | 0.458** | <0.001 | 0.513** | <0.001 | 0.558** | <0.001 | 0.286** | <0.001
Smart knowledge and skills 0.743** | <0.001 | 0.526** | <0.001 | 0.610** | <0.001 | 0.650** | <0.001 | 0.308** | <0.001
Intelligent thinking 0.812** | <0.001 | 0.708** | <0.001 | 0.710** | <0.001 | 0.740** | <0.001 | 0.403** | <0.001
Human-machine collaboration hybrid innovation | 0.827** | <0.001 | 0.681** | <0.001 | 0.729** | <0.001 | 0.748** | <0.001 | 0.395** | <0.001

Table 9. Correlation analysis of artificial intelligence literacy and computational thinking. *p < .05, **p < .01.

~ .05-.08; r? < 1%), indicating limited practical impact at the individual level. These findings have important
implications for educational practices in the Al era: first, gender-inclusive teaching strategies should be designed,
with special attention to the cultivation of female students in dimensions such as algorithmic thinking; second,
a spiraling curriculum needs to be constructed, with a focus on strengthening the development of competencies
during the sophomore transition period; and finally, it is recommended that AI tools be deeply integrated into
the curriculum. and that a project-based hands-on teaching model be established. The results of this study not
only expand the understanding of the influencing factors of computational thinking, but also provide empirical
evidence for the education of Al literacy in colleges and universities, but the limitations of cross-sectional studies
need to be noted, and it is recommended that the causal relationship be further verified by combining with a
longitudinal tracking design in the future.

Correlation analysis of artificial intelligence literacy and computational thinking

As shown in Table 9, the analysis results show that multiple dimensions of Al literacy and computational thinking
show significant positive correlations (p<0.001), indicating that there is a close connection between the two.
Specifically, the correlation between Intelligent Thinking and computational thinking is the most significant,
with a correlation coefficient of 0.708 (p<0.001), indicating that Intelligent Thinking (e.g., logical reasoning,
pattern recognition, etc.) has an important impact on the cultivation of computational thinking. Secondly,
Human-Machine Collaboration Hybrid Innovation (r=0.681, p<0.001), creativity (r=0.719, p<0.001), and
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Unstandardized Colinearity
coefficient Standardization coefficient statistics
B STDERR | Beta t Sig. allowance | VIF
21.077 | 1.629 12.942 | <0.001
Smart responsibility 0.238 | 0.06 0.094 3.933 | <0.001 | 0.376 2.66
Smart knowledge and skills -0.151 | 0.05 -0.096 -3 0.003 | 0.209 4.785
Intelligent thinking 0.842 | 0.065 0.451 12.875 | <0.001 | 0.173 5.765
Human-machine collaboration hybrid innovation | 1.769 | 0.124 0.422 14.259 | <0.001 | 0.242 4.126

Table 10. Multiple regression analysis of artificial intelligence literacy and computational thinking.

Unstandardized Colinearity
coefficient Standardization coefficient statistics
B STDERR | Beta t Sig. allowance | VIF
102.906 | 0.3 342.48 | <0.001
Intelligent responsibility -0.075 | 0.058 -0.029 -1.2893 | 0.198 | 0.453 2.209
Intelligent literacy factor 14.699 | 0.402 0.832 36.557 | <0.001 | 0.454 2.201
Interaction (responsibility x literacy) 0.054 | 0.025 0.333 2.140 0.033 | 0.992 1.008

Table 11. Multiple regression analysis of Al literacy and computational thinking (after centering and factor
combination).

critical thinking (r=0.760, p<0.001) also showed strong correlation with computational thinking. This suggests
that in the era of artificial intelligence, the ability to innovate and analyze critically are important contributors
to the development of computational thinking. In addition, the significant correlation between collaborative
ability (r=0.750, p<0.001) and algorithmic thinking (r=0.494, p<0.001) further corroborates the critical role of
teamwork and structured problem solving in computational thinking. It is important to note that despite the
relatively weak correlation between Smart Responsibility (r=0.458, p<0.001) and Smart Knowledge and Skills
(r=0.526, p<0.001) and Computational Thinking, the correlation still reached a significant level. This may be
due to the fact that the effects of ethical awareness and basic knowledge on computational thinking are more
indirectly realized through other higher-order competencies (e.g., Intelligent Thinking or creativity). Therefore,
in educational practices, attention should be paid to how to provide equal resources and opportunities for all
students, especially in eliminating gender stereotypes and promoting interdisciplinary cooperation. In addition,
rationally guiding students to use AI tools may help improve their computational thinking skills.

Multiple regression analysis of artificial intelligence literacy and computational thinking

In order to further test the predictive effect of artificial intelligence literacy (AIL) on computational thinking
(CT), this study constructed a multiple linear regression model using the total CT score as the dependent
variable and the four dimensions of AIL—Intelligent Responsibility, Smart Knowledge and Skills, Intelligent
Thinking, and Human-Machine Collaboration Hybrid Innovation—as independent variables. The results are
presented in Table 10.

To detect potential multicollinearity, tolerance and variance inflation factor (VIF) values were examined.
In the initial model, Intelligent Thinking had a VIF of 5.765, indicating moderate multicollinearity. To address
this issue, a Principal Component Analysis (PCA) was performed on the three highly correlated dimensions—
Smart Knowledge and Skills, Intelligent Thinking, and Human-Machine Collaboration Hybrid Innovation—
and the first principal component was extracted as the Intelligent Literacy Factor to reduce redundancy among
predictors. Subsequently, all continuous predictors were mean-centered, and an interaction term (centered
Intelligent Responsibility x centered Intelligent Literacy Factor) was created. The corrected model exhibited
tolerances greater than 0.45, with a maximum VIF of 2.209, suggesting that multicollinearity was effectively
mitigated. The regression coeflicients, standard errors, standardized betas, t values, and significance levels of the
corrected model are reported in Table 11.

To further verify the robustness of the corrected model, a ridge regression was conducted with a ridge
parameter k=1. The ridge model yielded R=0.968, R2=0.937, adjusted R2=0.875, and F=14.999, p=0.026. The
standardized coeflicients of the three predictors (= 0.25 each) retained the same direction as in the OLS model,
indicating that the ridge penalty stabilized the coefficients without altering their interpretive meaning. These
results confirm that the statistical estimates of the corrected model are robust under regularization, ensuring the
overall consistency and validity of the regression results (see Appendix S1 for detailed ridge regression output).

Specifically, the corrected regression results show that Intelligent Responsibility has a significant positive
predictive effect on CT ( = 0.094, t = 3.933, p < 0.001), indicating that the enhancement of student’s ethical
awareness and critical consciousness in Al contributes to the improvement of their overall CT level. In contrast,
Smart Knowledge and Skills exhibits a negative regression coefficient (p = —0.096, t = —3.003, p = 0.003). This
significant negative relationship, despite a positive zero-order correlation (r = 0.526, p < 0.001), suggests a
potential statistical suppression effect [1, 2]. One interpretation is that within the multivariate model, Smart
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Knowledge and Skills shares overlapping variance with other predictors (e.g., Intelligent Thinking) not directly
related to CT; when this shared variance is controlled, its unique contribution becomes negative. This implies
that instruction emphasizing discrete AI knowledge and procedural skills, if not integrated with higher-order
cognitive engagement, may not uniquely promote CT development.

Among the predictors, Intelligent Thinking (f = 0.451, t = 12.875, p < 0.001) and Human-Machine
Collaboration Hybrid Innovation (f = 0.422, t = 14.259, p < 0.001) are the most influential positive factors.
These findings suggest that abstract, digital, and programming-oriented thinking processes, as well as innovative
collaboration with AI systems, play core roles in promoting student’s problem-solving and computational
abilities. Collectively, these results are consistent with the Technology Acceptance Model (TAM) and Social
Cognitive Theory (SCT), underscoring that deep cognitive engagement and human-AlI interaction experiences
contribute more to CT development than the mere mastery of factual knowledge or procedural skills.

In summary, through the correction and verification procedures (PCA, centering, and ridge regression), this
section ensures statistical consistency and robustness in the analysis of AIL's predictive effect on CT. These results
provide a reliable empirical foundation for subsequent mediation analyses exploring the internal mechanism
linking Al literacy and computational thinking.

Robustness checks for the negative coefficient of “Smart Knowledge and Skills”
To further examine whether the negative regression coefficient of Smart Knowledge and Skills was a statistical
artifact or a theoretically meaningful suppression effect, two additional analyses were conducted.

Partial correlation analysis

When controlling for Intelligent Responsibility, Intelligent Thinking, and Human-Machine Collaboration
Hybrid Innovation, the partial correlation between IKS and Computational Thinking (CT) remained weakly
negative (r = —0.078, p = .003). This suggests that after removing the shared variance contributed by higher-
order cognitive and collaborative dimensions, the unique component of IKS—primarily factual and procedural
knowledge—shows a small inverse association with CT. The negative unique association likely reflects shared
variance with higher-order dimensions rather than a detrimental effect of knowledge per se. This supports the
interpretation of a suppression effect, rather than a simple negative causal relation (i.e., “more knowledge leads
to lower CT”).

Collinearity sensitivity analysis

To test the sensitivity of this result, the regression model was re-estimated by removing or combining the IKS
dimension using the PCA-derived composite factor (Intelligent Literacy Factor). The overall explanatory power
of the model (R? = 0.937) and the coefficients of other predictors (Intelligent Thinking and Human-Machine
Collaboration) remained stable, indicating that the negative sign of IKS is driven by shared variance among
highly correlated cognitive dimensions rather than by model instability.

Visual inspection

A partial regression plot (see Appendix S2) further illustrates the residual relationship between IKS and CT,
showing a slight downward slope when the effects of other predictors are statistically controlled. This pattern
confirms that the negative coeflicient reflects a conditional suppression phenomenon rather than a genuine
negative educational outcome.These robustness analyses confirm that the negative coefficient of IKS represents
a statistical suppression effect rather than a paradoxical or spurious finding. In pedagogical terms, this result
reflects a potential knowledge-application gap: the isolated acquisition of Al-related factual or procedural
knowledge may not automatically enhance computational thinking unless such knowledge is actively integrated
into reflective and application-oriented learning contexts.

This finding echoes prior educational research suggesting that “knowledge without cognitive engagement”
can even constrain higher-order thinking development by promoting rote or fragmented learning approaches.
Therefore, future Al literacy education should align knowledge instruction with applied reasoning, problem-
solving, and reflective learning—ensuring that technical proficiency co-evolves with conceptual and
metacognitive growth.

Mediation analysis of artificial intelligence literacy and computational thinking

To examine the mediating path “AI tool usage time (X) > AI literacy (M) > computational thinking (Y),” we
employed Haye’s PROCESS macro (Model 4) for guided mediational analysis, using 5,000 bootstrap samples to
estimate 95% confidence intervals for indirect effects. Results indicate: The total effect of Al tool usage time on
CT is significant (c = 1.263, Boot SE = 0.414, 95% CI [0.450, 2.075]). After including Al literacy as a mediator,
the indirect effect remains significant (ab = 0.985, Boot SE = 0.334, 95% CI [0.316, 1.645]), while the direct
effect became non-significant after controlling for mediation (c* = 0.277, Boot SE = 0.263, 95% CI [-0.234,
0.794]), as shown in Table 12. This result aligns with the “indirect-only mediation” pattern (i.e., effects primarily
transmitted through M), indicating that the impact of Al tool usage on CT is mainly achieved by enhancing
student’s Al literacy (the mediating effect accounts for approximately 78% of the total effect), as shown in Table
13.

Educational enlightenment: Taking ‘use-literacy-thinking’ as the main line of design: through project-based,
contextualized and assessable AI ethics and data / algorithm units, the use of tools is explicitly transformed into
literacy construction, so as to enhance computational thinking. The course emphasizes 2-4 hours and other
‘effective use’ scene design, focusing on ‘quality’ rather than ‘quantity’.

Limitations and robustness: Cross-sectional design support’s evidence consistent with the causal model
5 and longitudinal / quasi-experiments (such as cross-lagged, randomized item strength) are still needed to
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regression equation
(N=1466)
Outcome variable | Predictor variable | R R? F B Significance of coefficient T
Y X 0.079 | 0.006 | 9.289 1.263 | 3.048
M X 0.801 | 0.006 | 9.459 2.094 | 3.076
Y X 0.775 | 0.601 | 1099.769 | 0.277 | 1.052
M 0.470 | 46.652

Table 12. Mediation analysis of artificial intelligence literacy and computational thinking.

Relative effect value
Effect value | Boot SE | Boot LLCI | Boot ULCI | (Proportion of effect)
Total effect 1.263 0.414 0.450 2.075
Direct effect 0.277 0.263 -0.234 0.794 21.93%
Mediating effect | 0.985 0.334 0.316 1.645 77.99%

Table 13. Results of the mediation analysis with bootstrapping for Al literacy.

verify causality. The effect of mediation robustness and sub-dimension parallel mediation (Intelligent Thinking,
human-machine collaboration) can be compared to enhance persuasion after adding control variables in the
appendix.

Conclusion: The length of AT use does not directly improve computational thinking. It mainly plays a role by
improving artificial intelligence literacy (especially Intelligent Thinking and human-machine collaboration as
the hub), which provides empirical support for the higher education teaching design of “ promoting literacy by
use and thinking by literacy;” and strengthens the hierarchy of full-text evidence in method.

Testing of research hypotheses

The findings of this study provide comprehensive evidence to evaluate the proposed research hypotheses.
Overall, the data largely support our theoretical model, confirming the significant role of Al tool usage and Al
literacy, particularly its higher-order dimensions, in fostering computational thinking.

Support for H1

Hypothesis 1 postulated a positive association between AI tool usage frequency and both AI literacy and
computational thinking. Our results offer partial support for this hypothesis. A significant, albeit weak, positive
correlation was observed between usage time and all dimensions of Al literacy (Table 5) and most components
of computational thinking (Table 8). Furthermore, ANOVA results indicated that students with higher daily
usage (e.g., 2-4 hours and >6 hours) scored significantly higher on several Al literacy dimensions and CT
components compared to the low-usage group (0-2 hours) (Tables 4 & 7). This aligns with the Technology
Acceptance Model and Social Cognitive Theory, suggesting that behavioral engagement with AI tools forms a
foundation for competency development. However, the small effect sizes indicate that mere frequency of use is a
necessary but insufficient condition, underscoring the importance of quality and context of use.

Support for H2

Hypothesis 2 proposed that AI literacy mediates the relationship between AI tool usage and computational
thinking. The mediation analysis (Section "Mediation analysis of artificial intelligence literacy and computational
thinking", Tables 11 & 12) strongly supports this hypothesis. The significant total effect of usage on CT (c =
1.263) became non-significant (c‘ = 0.277) after introducing Al literacy as a mediator, while the indirect effect
was significant (ab = 0.985). This “indirect-only” mediation pattern indicates that the impact of Al tool usage
on computational thinking is almost entirely transmitted through the enhancement of students Al literacy,
which accounts for approximately 78% of the total effect. These results provide tentative empirical support for
the proposed use-literacy->CT pathway, indicating that AI tool exposure is associated with higher AIL which, in
turn, relates to CT. However, given effect sizes and design limits, these findings should be viewed as preliminary
and hypothesis-generating rather than definitive.

Support for H3

Hypothesis 3 predicted that among the AI literacy dimensions, Intelligent Thinking and Human-Machine
Collaboration Hybrid Innovation would be more potent predictors of CT than Smart Knowledge and Skills.
The multiple regression results (Section "Multiple regression analysis of artificial intelligence literacy and
computational thinking", Table 10) provide robust support for H3. As anticipated, Intelligent Thinking (p =
0.451, p < 0.001) and Human-Machine Collaboration (f = 0.422, p < 0.001) emerged as the strongest positive
predictors of overall computational thinking. Conversely, Smart Knowledge and Skills exhibited a significant
negative unique contribution (p = -0.096, p = 0.003) in the multivariate model, despite a positive zero-order
correlation. This suppression effect reinforces H3, suggesting that when the variance shared with higher-order
cognitive and collaborative capacities is controlled, a focus on isolated knowledge and procedural skills does
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not confer a unique advantage for CT development and may even be inversely related if not well-integrated.
This underscores the paramount importance of fostering deep cognitive strategies and collaborative innovation
abilities over the mere accumulation of factual knowledge in AI education.

Optimization strategies and suggestions

Curriculum design

Interdisciplinary integration

The development of Al literacy and computational thinking requires breaking down disciplinary boundaries and
promoting student’s understanding of the integration of multidisciplinary knowledge through interdisciplinary
integration. Students from different disciplinary backgrounds, such as New Engineering and New Liberal Arts,
have different learning strengths and challenges. Xie et al. emphasized the importance of interdisciplinary
collaboration in AI education by collaborating with high school teachers in the humanities and STEM fields
to co-design an Al education curriculum *. Therefore, when designing curricula, we should combine the core
content of computational thinking and AI according to the characteristics of different disciplines and design
curricular modules that meet the needs of the disciplines. Especially for students of new liberal arts and new
medical sciences, course contents related to human-computer collaboration and intelligent innovation should
be increased to cultivate their innovative thinking and interdisciplinary problem solving ability. Through
interdisciplinary project-based learning and practical teaching, it can improve student’s comprehensive quality
and promote their collaborative ability and critical thinking development in the application of Al technology.
Because the sample derives from a single provincial comprehensive university and used convenience sampling
(and because the New-Medicine subgroup was small, n=58), recommendations for broad curricular reform
should be considered provisional until replicated in nationally representative or multi-institutional samples.

Layered teaching

Considering the differences in the foundations and developmental stages of students in higher education, the
curriculum should be designed to enable tiered instruction. Studies have shown that sophomores and juniors
perform better on certain dimensions of computational thinking and AI literacy, while the performance of
juniors may not consistently improve, possibly limited by time allocation during the graduation season. Chiu et
al. created and evaluated an Al curriculum in secondary schools in Hong Kong, emphasizing the importance of
designing Al curricula for students at different educational stages**. Therefore, individualized instruction should
be implemented according to student’s grade level, professional background, and ability level, and curriculum
content should be designed in a hierarchical manner, progressing gradually from basic to advanced levels to
ensure that all students can build on their foundation. For example, beginners can start with basic programming
languages and algorithms, while students with a certain level of foundation can improve their comprehensive
abilities through more complex Al applications and innovative projects.

Resource balance

Urban-rural linkage

There is a gap between urban and rural students in artificial intelligence literacy and computational thinking
ability, especially in terms of Smart Responsibility and Intelligent Thinking. This difference may be related to
the urban-rural digital divide and the unbalanced distribution of educational resources. Therefore, colleges
and universities should strengthen the resource linkage between urban and rural areas, with the help of online
education platform, virtual laboratory and remote teaching technology, break the geographical restrictions,
and ensure that rural students can enjoy the same educational resources as urban students. In addition, the
government and education departments should increase investment in education in rural areas, especially in
artificial intelligence education and digital literacy training, to enhance the technical contact opportunities and
learning support of rural students.

Gender inclusion

Although this study did not find significant gender differences in Al literacy, male students were more prominent
in some thinking dimensions (such as algorithmic thinking and critical thinking). This may be related to
traditional gender stereotypes and gender differences in STEM education. A meta-analysis study found that
K-12 students have gender differences in computational thinking ability, emphasizing the need to promote
gender equality in curriculum design®®. Therefore, in curriculum design and teaching practice, gender inclusion
should be advocated and gender bias should be eliminated, especially in the fields of computer science and
artificial intelligence. By setting up gender equality case analysis and cooperation projects, we can encourage
girls to actively participate in the study of technical courses, provide more opportunities for display and exercise,
and help girls improve their self-confidence in logical thinking and algorithm application.

Evaluation system

Multidimensional evaluation

The cultivation of artificial intelligence literacy and computational thinking involves the improvement of multi-
dimensional ability. Therefore, when evaluating student’s learning effects, multi-dimensional evaluation methods
should be adopted, covering multiple dimensions such as behavior, cognition, emotion and interaction. We
should not only pay attention to student’s mastery of technical skills, but also evaluate their high-level abilities
such as innovative thinking, teamwork ability and understanding of artificial intelligence ethics. Through
comprehensive evaluation, it can fully reflect student’s learning effectiveness, provide more accurate feedback
for educators, and help them adjust teaching strategies and contents.
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Dynamic tracking

In order to better monitor student’s progress in artificial intelligence literacy and computational thinking
training, it is recommended to establish a dynamic tracking mechanism. Through regular learning assessments,
project reports and practical activities, we can keep abreast of student’s learning status and ability improvement.
In addition, big data analysis and Al tools can be used to accurately track student’s learning trajectories, identify
weak links in the learning process, and conduct targeted interventions. This dynamic tracking not only helps
to adjust the teaching plan in time, but also effectively motivates students to maintain continuous interest and
motivation in the learning process.

Discussion

This study set out to investigate the complex interrelationships between AI tool usage, Al literacy, and
computational thinking among Chinese university students from diverse disciplinary backgrounds. Guided by
an integrated theoretical framework and a set of specific research questions, the findings offer nuanced insights
into how these competencies develop and interact. The following discussion directly addresses each research
question in sequence, synthesizing key results, interpreting their significance in light of existing literature and
effect sizes, acknowledging limitations, and deriving targeted educational implications.

Addressing research question 1: Levels and group differences in AlL and CT

Primary Findings: Our data indicate that the participating students demonstrated moderate overall levels of
both Al literacy (AIL) and computational thinking (CT). Significant group differences were observed primarily
along disciplinary and geographical lines. Students from New Engineering and New Liberal Arts backgrounds
tended to outperform their New Agriculture peers in dimensions like Intelligent Thinking and Human-Machine
Collaboration. A clear urban > township > rural gradient was evident in several AIL dimensions (Smart
Responsibility, Knowledge & Skills, and Thinking), reflecting the influence of environmental exposure. Gender
differences were minimal in AIL but reached statistical significance for some CT sub-skills (e.g., algorithmic and
critical thinking), with male students scoring slightly higher.

Effect Sizes and Practical Meaning: It is crucial to note that the observed correlations and group differences,
while statistically significant due to the large sample size, were generally of small magnitude (e.g., correlations
[r] < 0.10, explaining less than 1% of the variance). This suggests that demographic and disciplinary factors,
while identifiable, are not dominant determinants of AIL and CT at the individual student level. The practical
implication is that educators should be aware of these potential disparities but avoid stereotyping; the focus
should be on creating inclusive learning environments that support all students.

Contextualization with Literature: The urban-rural disparity aligns with prior research on the digital
divide, where unequal access to technology and related learning opportunities can lead to differences in digital
competencies®’. The disciplinary differences echo findings that curriculum focus influences skill development,
with engineering programs often emphasizing algorithmic reasoning more explicitly’’. The minimal gender
difference in AIL is consistent with some recent studies on technology acceptance®®, while the small differences
in specific CT skills remain a complex issue tied to social, pedagogical, and self-efficacy factors*.

Implications and Recommendations: Therefore, in response to RQ1, we conclude that while disparities exist,
they are not immutable. Educational strategies should prioritize resource equity (e.g., through online platforms
and virtual labs to bridge the urban-rural gap) and inclusive pedagogy. For instance, stratified teaching can be
implemented based on disciplinary backgrounds, providing targeted modules for New Agriculture students to
strengthen Intelligent Thinking and collaboration.

Addressing research question 2 & 3: Relationships between Al tool usage, AIL, and CT
Primary Findings: A consistent pattern of weak positive correlations was found between the frequency of Al tool
usage and all measured dimensions of both AIL and CT. Furthermore, strong positive correlations (r > 0.6) were
identified between the higher-order dimensions of AIL (Intelligent Thinking, Human-Machine Collaboration)
and CT, with Intelligent Thinking showing the strongest link (r = 0.708).

Effect Sizes and Practical Meaning: The correlations with usage frequency were statistically significant but
small. This indicates a measurable but limited “dose-response” relationship, suggesting that time-on-tool alone
is a poor predictor of outcomes. In contrast, the strong correlations among AIL and CT constructs suggest a
substantial conceptual overlap and mutual reinforcement between these literacies.

Contextualization with Literature: The modest link between usage time and outcomes supports the view
that mere exposure to technology is insufficient*!. The strong inter-correlations between AIL and CT validate
contemporary frameworks that position these constructs as complementary and synergistic'.

Implications and Recommendations: Consequently, for RQ2 and RQ3, we infer that what students do with
Al tools is more important than how long they use them. Educational practice must shift from encouraging
tool usage per se to designing guided, purposeful activities. A key recommendation is to define “high-quality
use windows” (e.g., 2-4 hours per week) within PBL/PjBL tasks, focused on structured activities like prompt
engineering, model comparison, and failure analysis, ensuring time investment translates into observable
competency gains.

Addressing research question 4: Predictive power of AlL dimensions for CT

Primary Findings: The multiple regression analysis revealed a nuanced picture. Intelligent Thinking (p = 0.45)
and Human-Machine Collaboration Hybrid Innovation ( = 0.42) were the strongest unique positive predictors
of CT. A significant negative coefficient was observed for Smart Knowledge and Skills (B = -0.10), indicating a
statistical suppression effect when considered alongside the other dimensions.
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Effect Sizes and Practical Meaning: The large standardized coefficients for Intelligent Thinking and
Collaboration highlight their paramount importance as direct drivers of CT. The suppression effect for
Knowledge & Skills suggests that its positive bivariate correlation with CT is largely explained by its shared
variance with the higher-order dimensions. When this shared variance is statistically controlled, a focus on
isolated knowledge may have a negligible or even counterproductive unique relationship with CT if it crowds
out time for developing deeper cognitive and collaborative skills.

Contextualization with Literature: This pattern aligns with constructivist and cognitive theories, which posit
that deep learning and problem-solving abilities arise from active cognitive engagement and application, not
passive knowledge acquisition?2,

Implications and Recommendations: In answer to RQ4, we conclude that educational interventions should
prioritize the cultivation of Intelligent Thinking and Human-Machine Collaboration over a narrow focus on
factual knowledge. Curriculum should be designed as a “knowledge - application > reflection” loop. After
introducing knowledge/skills, students must immediately apply them to solve authentic problems, followed by
structured reflection on the process. Furthermore, human-machine collaboration should be explicitly scaffolded
by assigning roles within teams (e.g., prompt engineer, validator, ethics reviewer) and requiring evidence-based
explanations of the AI's contribution.

To avoid misinterpreting the negative unique coefficient of Smart Knowledge and Skills as implying a causal
relationship where ‘higher knowledge leads to poorer outcomes, this study contrasted zero-order correlations
(positive and significant) with partial correlations/regressions (showing a slight negative trend after controlling
for other dimensions). Specification sensitivity tests were conducted (removing/merging IT and HMCI
coefficients yielded stable results). Evidence consistently supports the ‘inhibition effect/knowledge-application
gap' interpretation: isolated knowledge and procedural practice yield limited unique benefits—or even exhibit
substitution effects—when not embedded within strategic application and collaborative reflection. Pedagogically,
this gap should be addressed through ‘knowledge-application-reflection closed loop’s and ‘human-machine
collaborative role-based approache’s.

Addressing research question 5: The mediating role of Al literacy

Primary Findings: The mediation analysis provided the most compelling evidence for our proposed model. The
total effect of Al tool usage on CT was significant, but the direct effect became non-significant when AIL was
included as a mediator. The indirect effect through AIL was strong and significant, accounting for approximately
78% of the total effect, indicating an “indirect-only” mediation pattern.

Effect Sizes and Practical Meaning: This result demonstrates that the primary mechanism through which AI
tool usage influences CT is indirect, by first building student’s broader Al literacy. This has profound practical
significance: it clarifies that time spent with AI tools is not a direct input for CT but rather an investment in
developing a mediating competency (AIL), which in turn is the direct driver of CT.

Contextualization with Literature: This finding robustly supports the “use - literacy > thinking” pathway
implied by our integrated TAM-SCT-Constructivism framework. It moves beyond simply establishing
correlations to proposing and testing a mechanism, addressing a gap in the literature noted in the introduction.

Implications and Recommendations: Therefore, for RQ5, we affirm that Al literacy is the crucial mediating
variable. This mandates a strategic redesign of teaching and learning around AI. The core principle should be
“literacy-oriented integration”. Every use of an AI tool must be coupled with activities that target specific AIL
sub-competencies, making AIL an assessable mediating objective. Implementing mechanisms like bi-weekly
“Demo Days” where students explain their tool selection, prompt design, and critique Al outputs can strengthen
metacognition and amplify the mediation effect of AIL.

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding
author on reasonable request.
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