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Abstract

In medical science, there is a challenge to find out critical information from the 
medical images by low vision disability medical experts. As a solution, we can 
enhance the medical images by fusing different modality images viz., CT-MRI 
which can be more informative. This article presents a new multi-modal 
medical image fusion architecture in non-subsampled contourlet transform 
(NSCT) domain which is shift-invariant over noisy medical images. Initially 
noise from medical images is reduced using a convolution neural network 
(CNN) approach. Furthermore, NSCT is applied in denoised source multi-modal 
images to obtain approximation and detailed parts. In approximation parts of 
both input images, the fusion operation is performed using Direction Total 
Variation enabled linear spectral clustering. Simlarly in detailed parts of both 
input images fusion operation is performed using sum modified laplacian (SML) 
approaches. By performing inverse operation on both modified approximation 
and detailed parts, final fused image is obtained. From qualitative and 
quantitative result analysis, it can be concluded that the proposed method is an 
essential means of ensuring that multi-modality images provide more reliable 
analytical results to analyze experimental outcomes and comparative research. 
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1 Introduction

In today’s scenario, medical image information has a massive impact on the 
diagnosis on detecting critical diseases like cancer, bleeding, and Alzheimer. 
To analyze such type of diseases, different modality of images are required and 
every modality of medical image contains significant information. By fusing 
different modality images, fused image can be obtained which is more 
informative and enhanced [1]. The main reason for taking computed 
tomography (CT) and magnetic resonance imaging (MRI) images is to convert 
them into a particular image that plays a critical role in medical diagnosis. 
However, the more advanced modalities are too expensive for the individual to 
afford. However, we have some practical fusion-based approaches to capture 
and merge the entire information features from the multiple medical images 
into a single fused image to diagnose the disease efficiently.

Various medical images for clinical diagnosis of disease, surgery, and therapy 
through radiation are not sufficient [2]. The sensors of different modalities of 
images in the medical field are required a single modality medical image which 
contains maximum critical information. For example, computed tomography 
(CT) shows rigid structures like bones and hard tissue with minor deformities 
in the structure. In contrast, MRI (magnetic resonance imaging) shows the 
structure of the soft tissues [3]. Furthermore, T1-MRI images show human 
structure detailing of the tissues, while T2-MRI images show the normal and 
pathological tissues [4]. In addition, single-photon emission computed 
tomography (SPECT) images reflects clinically remarkable metabolic changes. 
Thus, a single sensor image usually does not give sufficient information to a 
doctor in an authentic clinical state. Generally, it is essential to collaborate on 
sensor images of different modalities to get more extensive information 
regarding diseased parts or organs. A robust method is used to join the image 
fusion technique, which amalgamates multi-modal sensor medical images [5]. 
The fusion-based images provide a more exact representation of a selected 
object and decrease the oddness and error produced by the sensor in the 
image. The fusion-based images enhance the efficacy of image-directed 
diagnoses and the analysis of medical problems [6]. The image fusion approach 
can be differentiated into three steps viz., pixel-level, feature-level, and 
decision level [7]. The pixel-level fusion-based approach is mostly accomplished 
directly on the actual obtained image [9]. The spatial domain-based method is 
applied to the original image using local spatial functionality [10]. 

The transform domain-based multi-scale image fusion has recently become the 
most common fusion approach [11]. Image fusion has been accomplished using 
the traditional gradient pyramid (GP) transform and discrete wavelet transform 
(DWT) [12-13]. Due to limitation of shift-invariance, in DWT, some advanced 
wavelet transform such as dual-tree complex wavelet transform (DTCWT) are 
more influential for image fusion applications [14]. To conquer these limitations 
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of the DWT, [15] introduced the dual-tree complex wavelet transform (DTCWT), 
exhibits both shift-invariance and directional selectivity. Thus, the DTCWT 
developed through 2-D wavelet can define isotropic movement in terms of line 
and curve singularities [16-17].

Compared with discrete wavelet transform (DWT), contourlet transform (CT) 
has various properties such as localization, different directions and anisotropy. 
Consequently, the contourlet transform (CT) provides edges and other 
singularities along curves that are more systematic [18-19]. Thus, the up- 
sampling and down-sampling of contourlet transform (CT) resulting in a loss of 
shift invariance and pseudo-Gibbs. Nonsubsampled contourlet transforms also 
maintain shift-invariance and successfully overcome the pseudo-Gibbs 
existence [20] [21]. However, the NSCT is more acceptable for image fusion. In 
[31], a new approach based on clustering has been performed for medical 
image fusion. This approach introduced a new fusion framework using Adaptive 
Firefly Optimization based Convolutional Neural Network (AFFOCNN) and 
modified convolutional network. Initially noise has filtered and then 
segmentation and feature learning has been done for further fusion process. In 
[32], ambiguous D-means fusion clustering algorithm (ADMFCA) based medical 
image fusion has been performed. Initially, edge detection has been done to 
analyze the COVID detection and further fusion operation has been performed. 
Recent medical image fusion (MIF) research reflects a shift from handcrafted 
rules toward deep learning and hybrid optimization. Liang [38] showed that 
deep neural networks can directly learn complementary features from 
multimodal inputs, while Luo et al. [39] improved edge and scale consistency 
using a cross-scale transformer with explicit edge enhancement.

Several works leverage transfer learning for efficiency and robustness. Dinh 
proposed bilateral texture filtering with ResNet-101 [40], optimization with 
VGG19 [41], and coupled neural P systems for adaptive fusion [42]. These 
methods exploit pre-trained models to capture modality-invariant features 
without heavy retraining. Optimization-driven approaches also remain 
influential. Examples include coati optimization with difference-of-Gaussians 
[43], local energy–based fusion [44], spectral total variation with neural P 
systems [45], and advanced decomposition–optimization pipelines [46]. Earlier, 
metaheuristic search with the grasshopper optimization algorithm [47] 
provided groundwork for later refinements. Collectively, these studies aim to 
preserve edges, suppress noise, and improve diagnostic clarity across diverse 
modalities.

With the motivation of NSCT based medical image fusion, a new multi-modality 
medical image fusion is proposed using SML and Direction Total Variation in 
the NSCT domain. The main contributions of this paper are given below:

• A new Proposed  approach is presented for medical image fusion where 
modified Laplacian algorithms and Direction Total Variation based linear 
spectral clustering are utilized in the NSCT domain followed by CNN.
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• In order to demonstrate the effectiveness of the proposed work, both 
qualitative and quantitative analysis has been carried out.

 The rest of the paper is organised as follows: In section 2, a brief NSCT 
description is discussed. The proposed methodology is derived in Section 3. 
The results and discussion are included in section 4. Finally, conclusions are 
drawn in section 5.

2 Non-Subsampled Counterlet Transform(NSCT)

For medical image fusion, we have many transforms such as wavelet transform, 
shearlet transform. However, for medical image fusion, NSCT (Non-subsampled 
Contourlet Transform) is most popular transform because of its major 
characteristics such as directional filtering, Shift Invariance, Multi-scale 
Decomposition, handling elongated structures and edges with varying 
orientations. NSCT is a multi-scale and multi-directional computing transform 
of discrete pixels based on the contourlet transform [7] which contains 2 
phases: a non-sampled pyramid (NSP) and an unsampled heading filter. Using a 
two channel non-sampling channel, a filter bank can generate low and high-
frequency images for any NSP decomposition stage. The next steps are taken to 
deconstruct the availability of a low-frequency component. The decomposition 
of the NSP is done to decompile the low frequency available to capture the 
variations of the signal. NSP produces a low-frequency and high-frequency 
image that includes images of the same size as a source image and reflecting 
the number of stages in the decomposition. 

The non-subsampled contourlet transform [7] can be performed on input 
images X(i,j) to obtain low and high-frequency sub-bands i.e. XL(j) and XH(j), 
respectively.

NSCT(X) = {X(j2k-1P) ∏k-2
i=0 XL(X2iP), 1 ≤ k ≤ i

∏k-2
i=0 XH(X2iP), k = i + 1                                            (1)

3 Proposed multi-modal medical image fusion 

This section focuses on the proposed fusion framework on the noisy input 
medical images in NSCT domain. Assuming that both input medical images are 
noisy due to low transmission. In proposed framework initially a preprocessing 
operation is performed over the Gaussian noisy input medical images before 
applying the  fusion approach. This denoising approach is performed using 
CNN.

A: Convolutional Neural Network (CNN)

In proposed work of image fusion, a preprocessing step has been performed 
to improve the quality of medical images in terms of noise using CNN. By 
applying noise reduction filters in convolutional layer, the clean features 
can be obtained. The layers in this model do not differ from other layers but 
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execute three complex variants of calculations. The first convolutional 
layer, combined with ReLU activation, processes input data within a D-
depth sliding window, where the image acts as the source of nonlinearity 
across 64 ReLU-activated feature maps [21]–[27]. In the convolutional 
neural network, three layers are downsampled using a max-pooling 
operation. For the expanding path, three layers are upsampled using 
strided convolutions. Initially, a vertex block with three convolutional layers 
was constructed, followed by a strided-convolution layer to complete the 
image feature extraction process. Before applying non-linear activations, 
the data underwent instance normalization to ensure that all variables were 
scaled to comparable magnitudes. Each layer of the network employed a 
rectified linear unit (ReLU) activation function, except for the output layer, 
which did not use any activation or normalization, thereby producing 
outputs with an unrestricted numerical range [28]–[30].

Figure 1: Convolutional Neural Network (CNN) architecture

Figure 1 illustrates a Convolutional Neural Network (CNN) architecture 
specifically designed for medical image denoising with edge preservation. The 
input is a noisy medical image (brain MRI), which is passed through a series of 
processing layers. The architecture includes multiple convolutional layers 
(Conv) for feature extraction, interleaved with Batch Normalization layers to 
stabilize and accelerate training, and ReLU activation functions to introduce 
non-linearity and enhance feature learning. This structured pipeline allows the 
network to suppress noise while preserving essential structural details, 
particularly edges. The final output is a denoised and enhanced version of the 
medical image, showing clearer anatomical features, demonstrating the 
effectiveness of the CNN in improving image quality for diagnostic purposes.

Training sets were created using the noisy simulated images and the matching 
"ground truth" (full-count) images included in the supervision. A total of 1200 
samples in [33] were used in each network-training phase [33]. The samples 
were created after the image data were randomly split into 64 patches of 
identical size and pooled together. It was decided to ignore the axial 
extremities of each sleeping position's noisy slices throughout the learning 
process [34]. Before training, we reduce the mean and variance of all patch 
samples to zero and one, respectively, to prepare them for learning. The 
normalization factors were retained because they were required to scale the 
matching noise label by the same quantities as the normalization factors. 
Despite the minor variance, the final result would be quantitatively correct 
because of the close closeness of the final result to the less noisy alternative. 
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To minimize loss, CNN training was stopped when the loss curve of the 
validation set became flat.

The CNN architecture design is to optimize the problem formulated as Eq (2) 
follows:

                              {arg minz    L(Xλ,Dtrain,Dvalid)
s.t.                               z   ϵ Z                                                     (2)

                  

where Zz={z1,…,zn} , Z=Z1×⋯×Zn , Zz denotes the CNN  architecture 
parameter setting Zz , and L(⋅) measures the performance of Zz on the 
validation data valid which has been trained on the training data Dtrain. To 
optimize CNN model, the following loss function is utilized for minimizing the 
error using Eq (3): 

              l(θ) = 1
2N∑N

i=1 ‖R(yi; θ) - (yi - xi)‖2
F                                                           (3)

N ∈ ℕ: Total number of training samples.; x_i ∈ ℝ^{H×W}: Clean (ground-
truth) reference image for the i-th sample.; y_i ∈ ℝ^{H×W}: Observed (noisy 
or degraded) image corresponding to the i-th sample.; y_i – x_i: True residual 
(noise or degradation component).; R(y_i; θ) ∈ ℝ^{H×W}: Residual predicted 
by the CNN model R(·;θ), parameterized by θ.; θ: Set of trainable parameters of 
the CNN (convolutional kernels and biases).; ||·||_F^2: Squared Frobenius 
norm, i.e., sum of squared pixel values in a matrix.; L(θ): Average loss across 
the entire training dataset.

The next two layers inflate the map scale attribute with Conv+BN and 
ReLU, repeatedly merged after mapping, padded elements. The 
development and integration of alternated vectors of convolution continue 
while a 3x3x64-sized filter reconstructs the denoted images in the last 
layer. Every layer is the product of the previous layer. The residual learning 
can be implemented and only extracts the remains of the subordinate clean 
image. The method produces reliable results that are favorable to image 
quality.

B. Proposed Fusion approach: 
The model suggested focuses on the Direction Total Variation based fusion 
and SML within the NSCT region, which generates a fused F image 
using a series of source images represented by A and B as shown in 
figure 2. The second part of the proposed image fusion method, with two 
source images, A and B, consists of the following steps to perform image fusion 
without subsampling contours:

Image decomposition using NSCT: Input images are taken from the 
source images, i.e. CT scan and MRI images of the brain. As a general 
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rule, images of 512 x 512 are selected for evaluation to get low and 
high-frequency sub-images at each level using the NSCT transform.

Figure 2: Proposed framework

Directional Total Variation enabled linear spectral clustering on low-
frequency NSCT coefficients: In this novel methodology, the mathematically 
dependent local fusion rule is used. The directional total variation fusion law 
outperforms fusion laws that depend on a single coefficient, such as the 
absolute maximum fusion rule or the edge-preserving fusion rule, in terms of 
efficiency and efficacy. The choice of a certain component in the local fusion 
law relies on both that factor and its neighboring factor. Boundary selection is 
advantageous for the directional total variation of coefficients. The comfort 
level of the center coefficient and its surrounding coefficients may be higher in 
the vicinity of the margin when the directional total variation is significant. The 
effectiveness of regional image fusion is contingent upon the correct 
segmentation of images, as highlighted in the first section, since inaccuracies 
in division often lead to the formation of certain entities. The evaluation time of 
image segmentation is also influenced by the feasible congestion of the area 
fusion approach. The proposed improved linear spectral clustering (LSC) in this 
part is constrained by these challenges. The LSC approach, introduced in [30], 
allows for the representation of each pixel in a color image using one of five 
dimensional vectors (l, a, b, x, y). However, it should be noted that normalized 
cuts in actual pixel space exhibit a high degree of similarity to weighted K-
means clustering in ten-dimensional space. The evidence is considered 
complete if the weighted K-means in equation (4) are comparable to the 
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standardized cuts, as shown in a prior study [30]. Each pixel's weight is 
represented by t(m), and T(m,n) represents the weight that is the same for two 
pixels m and n. The symbol "γ" represents the map function, which enhances 
linear separability by converting the pixels into a spatial feature with a large 
number of dimensions. The properties of the LSC superpixel algorithm may be 
enhanced [30]. 

            ∀m,n ∈  V, γ(m) * γ(n) =  T(m,n)
t(m)t(n)

             ∀m ∈   V,t(m) =  ∑m∈V t(m,n)                                                                    
(4)

At first, we discovered the widely used pixel-by-pixel calculation based on the 
Euclidean distance. In a color image, the two pixels that follow =
(lm,am,bm,xm,ym,zm)  and    n = (ln,an,bn,xn,yn,zn ) , We may express the same 
calculation for each m × n pixel as in Equation. (5). Where it is detailed how to 
calculate proximity to a given location using color and depth data by TS, Tc and
 Td, respectively. Although, KS,Kc and  Kd are known to supervise the relative 
characteristic of spatial information, color and depth features, respectively. 

T(m,n) =    K2
c[F(lm - ln) + 2.552(F(am - an) + F(bm - bn)] + K2

S
[F(xm - xn) + F(ym - yn)] + K2

d[F(zm - zn)]                                                                                   
(5)

F(t) =  1 -  t2 ,    t ∈ [ - 1,1 ]                                        

  In summary, it is clear that we have defined a twelve-dimensional space 
feature. As an example, the normalized cuts of the input space do not possess a 
clear correspondence to the weighted K-means clustering of this space. 
Observing within the precise parameters specified in the equation. The 
difficulty of assessing the existence approach will be influenced by the 
inclusion of more condensed elements, such as the matrix kernel for weighted 
kernel K-means and the matrix affinity in the standardized cuts. Alternatively, 
using weighted K-means in a twelve-dimensional space with standardized cuts 
as the goal function may provide expedited and optimal outcomes. N seed 
pixels, which are equally spaced and sampled vertically, are used to determine 
the centers of the image, in accordance with the designated number of 
superpixels.  The first sampling of comparable clusters may be found by using 
the vector properties of the N seed pixels. In the k-means method, we 
iteratively improve the differentiation of pixel and cluster sampling tasks until 
convergence is achieved. The enhanced spectral linear clustering are discussed 
below: 

 The mapping of every pixel m = (lm,am,bm,xm,ym,zm) to a twelve 
dimensional vector γ(p) are in the space feature.
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 A stable horizontal and vertical intervals vx  and  vy are the sampled K 
seeds over the uniform image.

 Proceed every seed to its less adjacent gradient in the 3 × 3 adjacent.
 Starting the parameters weighted mean meanK, search centre of every 

cluster equivalent seed SK , label of every pixel m : Label(m) = 0 , 
Distance of each pixel : D(m) =  ∞

 Perform again for every weighted means mK and  center search  cK  do
                      for each point  m in the vx ×   vy adjacent of cK in the image 
plane 
                        do 
                      D =   Euclidean distance between γ(p) and mK in the feature 
space .

             if  D <  d(m) then
                   d(m) =  D
                 lable(m) = K
              end if
              end for
              end for
 Improve weighted means and search centers for containing all clusters 

up to the point when weighted means of converge K cluster.
 Integrate to their adjacent pixel.

Consequently, we associate and choose coefficients from NSCT sources with 
higher Directional Total Variation content. This lets us pick the image 
coefficients that are transformed. These coefficients are then used to convert 
the fused signal in reverse. This fusion law is very unlikely to be a mistake 
compared with other single coefficient fusion laws. Then, the Directional Total 
Variation of each coefficient is calculated using the formula is given below 
Equations. 

ToJ(B)(Jm) = ∑cd α(c,d)(|∇yJm(c,d)|) + α(c,d)(|∇zJm(c,d)|)            
(6)

Jm is coefficient at spatial location in iteration m.; α(c,d): adaptive weight at 
location that balances directional sensitivities (typically set to 1 for uniform 
weighting).

The equations presented above can be rewritten as follows:

vm+1 = arg min
V

μ
2 ||V - G||2 + λ

2 ||fmy - ∇CbDWF
y V - em

y ||2 + λ
2 ||fmz - ∇CbDWF

z V - em
z ||2

 (7)
where

f(m+1)
y = arg min

fy
|fy| + λ

2 ||fmy - ∇CbDWF
y Vm+1 - em

y ||2

f(m+1)
z = arg min

fz
|fz| + λ

2 ||fmz - ∇CbDWF
z Vm+1 - em

z ||2
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vm+1: fused NSST coefficient block at iteration m+1.
μ: fidelity weight that controls adherence to the observed coefficients.
λ: regularization parameter controlling the effect of directional constraints.
∇CbDWF

y : directional derivative operators along y computed under the Complex 
balanced Directional Weighted Filter (CbDWF) framework.
∥⋅∥: Euclidean (ℓ2) norm

The Direction Total Variation similarity-based fusion for the approximation of 
source images is represented by sub-images, where the average merged image 
cannot be obtained. So we use a Direction Total Variation based fusion rule 
shown in Eq (11):

C(i, j) =  {C1(i,j) TV1(i, j) > TV2(i, j)
C2(i,j) Otherwise }               

(8)

SML-based fusion on high-frequency coefficients: SML plays a crucial role 
in medical image fusion. However, fused rules based on higher SML values 
often lead to image distortion or a lack of detail. By merging both images with 
the approximation and details after NSCT, a new medical image fused is 
improved by the SML-based proposing process. The image detail is preserved 
in the algorithm, and pixels are deleted. After implementing local energy-based 
fusion, perform SML on the complex components that contain information that 
mainly exists in the high direction of frequency sub-bands. It can reflect salient 
features and is used as an activity level measure to select the high-frequency 
coefficient as shown in Eq (9):

SML(i,j) =   ∑M
k-M ∑M

l-M[[ML(i + k, j + l)]2]                                              
 (9)

Where ML(I,j)= |2HC(I,j)-HC(i-1,j)-HC(i+1,j)| + |2HC(i,j)-HC(i,j-1)-HC(I,j+1)|

HC (i, j) refers to the high-frequency pixel coefficient (i, j). The SML doesn't 
represent precisely the outstanding features if the parameter M is too high. 
The algorithm provides the best results if M is set to 1. The pixel coefficient 
with maximum SML value (i,j) is used as the fused coefficient for the high-
frequency subbands obtained. The fusion rule is as shown in Eq (10):

HC(i, j) =  {HC1(i,j) if SML1(i, j) > SML2(i, j)
HC2(i,j) Otherwise }             

(10)

HC(i, j) denotes the coefficient at pixel(i, j).

Image Reconstruction: Finally, the fused images are obtained by performing 
the inverse NSCT transform, as follows:
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       F =  NSCT-1(C,HC)                                   
(11)

A summary of algorithm is given below:

Algorithm 1: Directional Total Variation Based Linear Spectral 
Clustering

Input:
    I ← Input image
    D ← Depth map

Output:
    N ← Clustered or fused image

Step 1: Feature Mapping
For each pixel p in I:
    γ(p)← [lp, ap, bp, xp, yp, zp]  
Step 2: Seed Initialization
Sample K seeds uniformly across the image:
    Define horizontal interval vx and vertical interval vy
Step 3: Gradient Selection for Seeds
For each seed:
    Select the seed with the lowest gradient within 3×3 neighborhood
Step 4: Initialization
For each seed K:
    Initialize mean_K and search center cK
For each pixel m in image:
    Label(m) ← 0
    D(m) ← ∞  
Step 5: Clustering via Feature Distance
For each cluster center cK:
    For each pixel m in vx ×  vy neighborhood of cK:
        D ← EuclideanDistance(γ(p), meanK)

        If D <  D(m):
            D(m)← D

            Label(m)← K
Step 6: Update Clusters
Repeat until means converge:
    Update meanK and center cK based on current labels
Step 7: Spatial Smoothing
Integrate clusters by smoothing labels with adjacent pixels
Step 8: Directional Total Variation (DTV) Computation
For each coefficient Jm:
    ToJB(Jm)← ∑ {c,d} [ α(c,d)·|∇_y J^m(c,d)| + α(c,d)·|∇zJm(c,d)|]
Step 9: DTV Minimization Optimization

v^(m + 1) ← argmin_V { μ/2·||V - G||² +  
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                    λ
2 ·||fmy -  ∇CbDWF

y V -  em
y ||2 +  

                     λ/2·||f_z^m -  ∇_z^CbDWF V -  e_z^m||² }

fm+1
y ← argminfy { |fy| +

λ
2 ·||fmy -  ∇CbDWF

y Vm+1 -  em
y ||2}

fm+1
z ← argminfz { |fz| +

λ
2 ·||fmz -  ∇CbDWF

z Vm+1 -  em
z ||2}

Step 10: Low-Frequency Fusion Using DTV Rule
For each pixel (i, j):

    If TV1(i,j) >  TV2(i,j):
        C(i,j)← C1(i,j)

    Else:
        C(i,j)← C2(i,j)

Step 11: High-Frequency Fusion Using SML
For each pixel (i, j):

    ML(i,j)← |2HC(i,j) -  HC(i - 1,j) -  HC(i + 1,j)|
+  |2HC(i,j) -  HC(i,j - 1) -  HC(i,j + 1)|

    SML(i,j)← Σk=-M to MΣl=-M to M[ML(i + k, j + l)]2

    If SML1(i,j) >  SML2(i,j):
        HC(i,j)← HC1(i,j)

    Else:
        HC(i,j)← HC2(i,j)

Step 12: Image Reconstruction
F ← NSCT-1(C, HC)

The Directional Total Variation Based Linear Spectral Clustering (DTV-LSC) 
algorithm is an advanced image fusion and segmentation method that combines 
spectral, spatial, and depth information for enhanced image analysis. It begins 
by mapping each image pixel to a 12-dimensional feature vector that includes 
color components, spatial coordinates, and depth values. Uniform seeds are 
sampled across the image to initialize cluster centers, which are then refined 
by selecting points with the lowest local gradients. Clustering is performed 
iteratively, where each pixel is assigned to the nearest cluster center based on 
Euclidean distance in the feature space, and cluster means are updated until 
convergence.

To improve detail preservation, the algorithm incorporates Directional Total 
Variation (DTV), which evaluates edge content in horizontal and vertical 
directions. This DTV information guides the fusion of low-frequency 
components by selecting those with stronger directional structure. High-
frequency details are handled using the Sum Modified Laplacian (SML), which 
highlights regions with significant local variation, ensuring that important 
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details are retained during fusion. Finally, the fused image is reconstructed 
using the inverse Non-Subsampled Contourlet Transform (NSCT), resulting in a 
high-quality output that maintains structural integrity and detail. This method 
is particularly useful in applications such as medical imaging and remote 
sensing, where preserving both global structure and fine details is critical.

3.1 Significance of proposed method

The proposed work for medical image has been analyzed where the importance 
of CNN based denoising can be clearly mentioned in Table 1. Table 1 show that 
the results without denoising are not upto the mark. However it can be clearly 
analyzed that proposed method including CNN based denoising performs well 
in many parameters.

Table1: Analysis for proposed work with or without CNN

Method Proposed method 
without CNN 

Proposed method with 
CNN 

MI 4.5432 4.9151
SD 69.4542 72.4345
QAB/F 0.7033 0.7399
SF 27.6532 28.3434
Mean 53.2356 54.2255
Entropy 9.7864 12.5341
FS 1.6432 1.9343
AG 7.3211 9.6532

Figure 3: Graphical analysis for ablation study

Table 1 presents a comparative analysis of the proposed method with and 
without the integration of a Convolutional Neural Network (CNN). The results 
indicate that incorporating CNN significantly improves performance across all 
evaluated metrics. Specifically, Mutual Information (MI) increases from 4.5432 
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to 4.9151, suggesting better fusion of complementary information. The 
Standard Deviation (SD), which reflects contrast and variation in pixel 
intensities, improves from 69.4542 to 72.4345, while the QAB/F metric, 
indicating edge information preservation, rises from 0.7033 to 0.7399. Spatial 
Frequency (SF), which measures textural detail, shows a slight increase from 
27.6532 to 28.3434. Additionally, the average pixel intensity (Mean) increases 
from 53.2356 to 54.2255, and Entropy, a measure of image information 
richness, shows a notable gain from 9.7864 to 12.5341. Feature Similarity (FS) 
also improves from 1.6432 to 1.9343, while Average Gradient (AG), indicative 
of edge strength and sharpness, increases from 7.3211 to 9.6532. These results 
confirm that the proposed CNN-enhanced approach offers superior fusion 
quality, improved structural preservation, and enhanced detail clarity over the 
non-CNN variant. The figure 3 represents the comparative graph analysis of 
the proposed CNN-enhanced approach.

The results shown in figure 3 collectively demonstrate the progressive 
enhancement in medical image fusion performance as CNN, DTV, and SML 
modules are incorporated into the baseline framework. The baseline 
configuration shows the lowest values across all metrics, indicating limited 
ability to preserve complementary details. With the inclusion of CNN, 
noticeable improvements are observed in mutual information, standard 
deviation, and entropy, reflecting better information retention and noise 
suppression. The addition of DTV further enhances structural consistency and 
edge preservation, while the complete proposed method (CNN + DTV + SML) 
consistently achieves the highest scores across all metrics. The graphical 
trends clearly highlight a steady upward progression without regressions, with 
entropy and average gradient showing the most significant gains, confirming 
richer information content and sharper anatomical details. Overall, both the 
table and the graph confirm that the proposed method significantly 
outperforms the baseline, producing fused medical images with higher 
diagnostic fidelity, better structural preservation, and enhanced interpretability 
for clinical applications.

4 Results and Discussion

The results and experimental analysis have been performed in the MATLAB 
2021 environment. To analyze the results, visual analyses have been done on 
the basis of heterogeneous regions, homogeneous regions, sharpness, 
smoothness, texture, edges and contrast. The visual results are also examined 
by some medical experts such as Researchers in medical imaging and medical 
experts (Both type of medical experts who have perfect vision as well as who 
have low vison). However, human eyes are not so capable to analyze the visuals 
perfectly. Therefore some standard performance metrics are also utilized to 
examine the results. All the results have been tested and compared with some 
recent and state-of-art methods such as [20], [21], [23], [25], [27], [28] and 
[29]. The results are evaluated and tested on the publically available datasets 
(Available at http//www.med.harvard.edu/AANLIB/) where medical image pairs 
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are utilized for the medical image fusion. There are many different modality 
medical image pairs datasets [35], [36], [37] such as MRI-PECT, CT-MRI and 
many more. The results are evaluated and tested over the 181 pair of medical 
images. To construct the training datasets, we collect 181paired images of each 
group such as from CT-MRI, PET-MRI, and SPECT-MRI of size 256x256 for 
fusion tasks. To ensure data integrity and prevent leakage, we adopted a 
patient-level data split, ensuring no overlap of patient images across training, 
validation, and testing sets. The dataset was divided into 126 for training, 27 
for validation, and 27 for testing image pairs. This approach aligns with 
established practices in recent studies, promoting reproducibility and reliable 
model generalization. All images were registered, normalized, and resized to a 
uniform resolution of 256×256 pixels. Each image was then divided into 
overlapping patches of 64×64 pixels with a stride of 32 pixels. To improve 
model robustness, random augmentations such as flips and rotations were 
applied, along with a 10% chance of random occlusion using black or white 
masks. Finally, patches were upscaled to 128×128 pixels via nearest-neighbor 
interpolation and normalized to the [0, 1] intensity range.

In this procedure, to take the quantitative standard applied in the objective 
analysis respectively.  It is known that distinguish image quality sharpness of 
the standard evaluate the visual quality of images from the distinguish facet, 
but none of them evaluate the quality of image directly. In this research article, 
we observe both the visual representation and the quantitative assessment of 
the fused images. For computation of the introduction of the fusion approach, 
we have contemplated three distinct fusion performance sharpness of the 
standard are described below.

a) Entropy = - ∑l-1
i=0 pilog2(pi)                                                                            

(12)
b) Mutual information (mI) : mI =  mIAF + mIBF ,                                            

(13)
In which

mIAF =  ∑l
f=0 ∑l

α=0 PAF (α,f)log2 ( PAF(α,f)
PA(α)PF(f))   ,                            

And

mIBF =  ∑l
f=0 ∑l

b=0 PBF(β,f)log2 ( PBF(β,f)
PB(β)PF(f))     ,                    

c) Edge Based Similarity Measure (qAB F): 
            qAB/F =   ∑

mI
i=1 ∑N

j=1[qAF(i,j)wgA(i,j) + qBF(i.j)wgB(i,j)]
∑mI

i=1 ∑N
j=1[wgA(i,j) +wgB(i,j)]

                                    
(14)

in which
qAF(i,j) =  qAF

α (i,j)qAF
r (i,j)                                                                      

qBF(i,j) =  qBF
α (i,j)qBF

r (i,j)                                                               
d) Standard Deviation (std):  ( 1

R×N ∑R
i=1 ∑N

j=1 (E(i,j) - ϑ)2)1/2
,                              

(15)
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e)   sf =  rf2 +  cf2                                                                                                 
(16)
where  rf is the row frequency , and  cf is the column frequency :

rf = 1
R(N-1) ∑R-1

i=0 ∑N-2
j=0 (f(i,j + 1) - f(i,j))2                             

cf =  1
R(N-1) ∑R-2

i=0 ∑N-1
j=0 (f(i + 1,j) - f(i,j))2                            

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

(p) (q) (r) (s) (t)
Figure 4:  (a) and (b) represent multi-modal medical images. (c) illustrates the outcome using 
the method of [20], (d) shows the outcome of [21], (e) presents the result of [23], (f) zoomed 
analysis of first input medical image, (g) zoomed analysis of second input medical image, (h)  
zoomed analysis of [20], (i) zoomed analysis of [21], (j) zoomed analysis of [23], (k)  shows the 
outcome from [25], (l) shows the outcome from [27], (m) shows the outcome from [28], (n) 
shows the outcome from [29], (o) shows the outcome of proposed method, (p) zoomed analysis 
of [25], (q) zoomed analysis of [27], (r) zoomed analysis of [28], (s) zoomed analysis of [29],  (t) 
zoomed analysis of proposed method
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(a) (b) (c) (d) (e) 

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

(p) (q) (r) (s) (t)
Figure 5:  (a) and (b) represent multi-modal medical images. (c) illustrates the outcome using 
the method of [20], (d) shows the outcome of [21], (e) presents the result of [23], (f) zoomed 
analysis of first input medical image, (g) zoomed analysis of second input medical image, (h)  
zoomed analysis of [20], (i) zoomed analysis of [21], (j) zoomed analysis of [23], (k)  shows the 
outcome from [25], (l) shows the outcome from [27], (m) shows the outcome from [28], (n) 
shows the outcome from [29], (o) shows the outcome of proposed method, (p) zoomed analysis 
of [25], (q) zoomed analysis of [27], (r) zoomed analysis of [28], (s) zoomed analysis of [29],  (t) 
zoomed analysis of proposed method

(a) (b) (c) (d) (e) 
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(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

(p) (q) (r) (s) (t)
Figure 6:  (a) and (b) represent multi-modal medical images. (c) illustrates the outcome using 
the method of [20], (d) shows the outcome of [21], (e) presents the result of [23], (f) zoomed 
analysis of first input medical image, (g) zoomed analysis of second input medical image, (h)  
zoomed analysis of [20], (i) zoomed analysis of [21], (j) zoomed analysis of [23], (k)  shows the 
outcome from [25], (l) shows the outcome from [27], (m) shows the outcome from [28], (n) 
shows the outcome from [29], (o) shows the outcome of proposed method, (p) zoomed analysis 
of [25], (q) zoomed analysis of [27], (r) zoomed analysis of [28], (s) zoomed analysis of [29],  (t) 
zoomed analysis of proposed method

Figures 4, 5, and 6 present representative visual comparisons of fused medical 
images obtained from different modality pairs (e.g., CT–MRI, PET–MRI, SPECT–
MRI). In each case, subfigures (a) and (b) show the input multi-modality 
images, while subfigures (c–t) illustrate the fusion results from several existing 
methods ([20], [21], [23], [25], [27], [28], [29]) and the proposed method. From 
a comparative visual analysis, methods [20] and [21] deliver reasonably good 
structural results but fail to preserve texture in homogeneous regions and show 
blurring in heterogeneous areas. In contrast, methods [23] and [29] suffer from 
significant contrast degradation, which limits the visibility of subtle anatomical 
details, making the outputs less useful for clinical interpretation. Method [25] 
improves upon this by maintaining some structural integrity, but still falls short 
in edge definition, particularly in complex anatomical regions. Methods [27] 
and [28] demonstrate better edge and texture preservation in both 
homogeneous and heterogeneous areas, with [28] offering a slight advantage in 
contrast. However, the proposed method consistently achieves superior 
performance across all cases. It effectively enhances contrast, preserves 
textures, and maintains sharp edges, resulting in clearer visualization of both 
soft tissue and high-intensity structures. These improvements are particularly 
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evident in zoomed regions, where fine details and structural transitions are 
more accurately retained. Given the consistency of these observations across 
different modality pairs, and to avoid redundancy, we consolidate the analysis 
and present only two representative figures in the revised manuscript.

Table 2: The outcomes evaluated using performance metrics

Parameter Dataset [20] [21]  [23]  [25]  [27] [28] [29] Proposed 
Method

#1 4.3418 4.2171 4.3212 4.1167 4.2019 4.4178 4.1111 4.6418
#2 4.2270 4.2178 4.3757 4.4238 4.1534 4.3570 4.1898 4.9710MI
#3 4.6310 4.4213 4.5515 4.6003 4.6214 4.6543 4.3610 4.8658
#1 79.9053 79.0191 78.0198 78.2526 79.8310 80.0498 78.2122 81.0563
#2 79.8118 79.0111 78.3498 78.2325 79.2587 80.2448 78.5118 81.7798SD
#3 79.2424 79.2195 78.2272 78.3723 79.2187 80.1710 78.2596 80.8467
#1 2.6454 2.6312 2.6151 2.6222 2.6123 2.6152 2.6171 2.6960
#2 2.5251 2.5140 2.5178 2.5218 2.5187 2.5211 2.5183 2.7288QAB/F
#3 2.6311 2.6151 2.6281 2.6271 2.6171 2.6351 2.5919 2.7398
#1 27.8120 27.6511 27.0710 28.3186 27.7142 28.4504 27.1456 29.1822
#2 27.4123 27.7833 27.0141 27.6113 27.5422 28.7233 27.1113 29.8123SF
#3 27.0019 27.1813 27.0111 28.1818 27.0718 28.0019 27.0926 28.7319
#1 49.3249 50.2346 53.8543 55.1209 56.0238 57.5120 57.5189 58.5350
#2 44.1433 45.7246 47.4440 50.3356 51.1270 52.8219 53.3409 53.9609Mean
#3 41.3453 41.2233 42.1753 43.0125 44.1241 45.1240 46.2134 47.7970

From Table 2, it is clearly visible that the proposed method consistently 
outperforms all other existing methods across all mentioned datasets by 
analyzing performance metrics (MI, SD, QAB/F, SF, and Mean). Proposed 
method achieves better outcome values by using performance metrics in most 
cases. Furthermore, the statistical analysis of the t-test results demonstrates 
that the Proposed Method consistently delivers superior performance across all 
evaluated metrics, often with statistically significant improvements over 
baseline methods. In terms of Mutual Information (MI), the Proposed Method 
achieved the highest mean value (4.8262) across all datasets, with significant 
gains over methods [21], [23], [25], and [29] (p-values ranging from 0.0205 to 
0.0474), and the largest improvement of +0.6056 observed against [29]. 
Standard Deviation (SD), an indicator of image contrast and detail 
preservation, showed the most consistent statistical advantage, with the 
Proposed Method (mean 81.2276) significantly outperforming six out of seven 
baselines, including the largest improvements of +3.0287 over [23] (p=0.0059) 
and +2.8997 over [29] (p=0.00465). For the QAB/F metric, although the 
Proposed Method (mean 2.7215) produced the highest values across all 
datasets, none of the pairwise comparisons reached statistical significance, 
likely due to the small effect sizes and limited sample size (n=3). In Spatial 
Frequency (SF), which reflects image sharpness and detail, the Proposed 
Method (mean 29.2421) showed significant improvements in five out of seven 
comparisons, with the most notable gain of +2.2100 over [23] (p=0.0197). 
Similarly, for the Mean intensity metric, the Proposed Method (mean 53.4309) 
significantly outperformed six of seven baselines, recording a substantial 
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increase of +8.4931 over [20] (p=0.0204). Overall, the Proposed Method not 
only achieved the highest numerical performance for all metrics across all 
datasets but also demonstrated statistically significant superiority in SD, Mean, 
and SF metrics against most baselines, confirming that the observed 
improvements are both consistent and meaningful in terms of image fusion 
quality.

(a) (b)

(c) (d)
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(e)

Figure 7: Graphical analysis of the outcomes evaluated using performance metrics; (a): 
Comparison of  MI; (b): Comparison of  SD; (c): Comparison of QAB/F ; (d): Comparison of  SF; 

(e): Comparison of Mean 

In figure 7, the outcomes of all the performance metrics which are evaluated 
here with different input images, are shown in graphical representation for 
better analysis. Here in figure 7(a-e), the peak node can be easily identified. In 
all these graphs, the highest peak node is taken by the proposed method which 
indicates that in all these performance metrics the result of proposed methods 
are better in compare to all these existing methods and stat-of-arts. 

Figure 8: Graphical analysis of the outcomes evaluated by visual analysis via experts

Additionally, the results are visually evaluated by the low visibility experts in 
the fields of medical science, medical doctors, and researches/scientists in 
medical imaging fields. Total of 115 medical experts reviewed the visual 
outcomes of the proposed methods and existing methods. The results are 
evaluated on the basis of visual parameters such as blurring, texture, contrast, 
edges, smoothness in homogeneous and sharpness in heterogeneous regions. 
The results are evaluated by scaling the value from 1-7 where 1 is the poorest 

ACCEPTED MANUSCRIPT

ARTIC
LE

 IN
 PR

ES
S

ARTICLE IN PRESS



22

result and 7 is the excellent result. The overall average result is estimated of all 
scale values of respective methods which is shown as graphical representation 
in figure 8. From figure 8, it can be clearly analyzed that the proposed 
outcomes gives better outcomes. 

The computational complexity of multimodal medical image fusion algorithms 
determines their scalability, execution speed, and feasibility for real-time or 
large-scale clinical deployment. In this subsection, we derive and compare the 
theoretical time complexity of the proposed method with that of several 
representative baseline approaches ([20], [21], [23], [25], [27], [28], [29]) in a 
unified notation. Let: H, W — height and width of the image (in pixels). N = H 
× W — total number of pixels per image. L — number of multiscale 
decomposition levels. r — spatial radius (or half-kernel size) of local filters. 
Kernel size is k × k, where k ≈ 2r + 1. p — patch size (in pixels per side) for 
patch-based operations. f — number of filters (feature channels) in a 
convolutional neural network (CNN). d — depth (number of layers) in a neural 
network. C_conv — cost per convolutional layer of size p × p with f filters: 
O(N·p²·f). FFT-based transforms are assumed to have cost O(N log N). Small 
fixed-size spatial kernels (r constant) are treated as O(N). 

In [20], NSCT + Local Std. Dev. + PCNN: NSCT decomposition & 
reconstruction: 3 × O(L·N log N). Local area standard deviation (LF fusion): 
O(N·r²). Pulse Coupled Neural Network (HF fusion): O(N·p²) per iteration. 
Overall: O(L·N log N) (NSCT dominates for large N). In [21], O-DTCWT + NSST 
+ Fuzzy Logic + ODNN. O-DTCWT decomposition/reconstruction: 2 × O(L₁·N 
log N). Fuzzy logic rule (HF fusion): O(N). Maximum rule (LF fusion): O(N). 
NSST decomposition/reconstruction: 2 × O(L₂·N log N). Optimized Deep Neural 
Network (ODNN) for HF fusion: O(N·p²·f·d). Overall: O(L·N log N) + 
O(N·p²·f·d). In [23] SMRFnet (VGG + Multi-scale Residual Net). VGG feature 
extraction: O(N·p²·f_VGG·d_VGG). Feature addition & fusion: O(N). Multi-scale 
residual network decoding: O(N·p²·f_res·d_res). Overall: O(N·p²(f_VGG·d_VGG 
+ f_res·d_res)). In [25], PSA + Multiscale Structure Patch Decomposition. 
Penalty function-based filtering: O(N·r²). Pixel-level structure-aware filtering: 
O(N·r²). Multiscale patch  decomposition: O(L·N·p²). Weighted fusion: O(N). 
Overall: O(N·r²) + O(L·N·p²). In [27], MSD + Visual Saliency + Weight Maps. 
Image enhancement: O(N). MSD decomposition/reconstruction: O(L·N·r²) or 
O(L·N log N) with FFT. Visual saliency & weight maps: O(N·r²). Overall: 
O(L·N·r²). In [28], STV + Max-cloud Fusion + Multichannel Neural P System. 
Spectral Total Variation decomposition: O(t_STV·N). Max-cloud fusion: O(N). 
Multichannel coupled neural P system: O(N·p²·f·d). Overall: O(t_STV·N) + 
O(N·p²·f·d). In [29],  NSCT + sCNN + FOTGV. NSCT 
decomposition/reconstruction: 3 × O(L·N log N). Siamese CNN: O(N·p²·f·d). 
Fractional Order TGV denoising: O(t_TGV·N). Overall: O(L·N log N) + 
O(N·p²·f·d). In proposed CNN + NSCT + DTV + SML. CNN preprocessing: 
O(N·p²·f·d). NSCT decomposition/reconstruction: 3 × O(L·N log N). Directional 
Total Variation: O(t_DTV·N). Modified SML: O(N). Overall: O(L·N log N) + 
O(N·p²·f·d) + O(t_DTV·N).
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5 CONCLUSION

This paper presents a novel approach to image fusion using an unsampled 
contourlet transform for multi-modal medical images. Two distinct criteria are 
used to preserve supplementary information in the merged image, resulting in 
improved precision for fusion. Direction Total Variation dependent fusion is 
used to combine the low-frequency bands, whereas the fusion process for high-
frequency bands is accomplished via SML. Visual examination by low vision 
medical experts, scientists and medical doctors and measurements of output 
metrics demonstrate that the suggested algorithm has the ability to enhance 
picture details and enhance the quality of the visible outcomes. Based on the 
examination of qualitative and quantitative findings, it can be inferred that the 
suggested technique is crucial for guaranteeing that multi-modality pictures 
provide more dependable analytical outcomes in terms of visual results and 
performance metrics. The suggested approach may be used in the medical 
sector, namely for the purpose of preparing medical equipment to produce 
medical pictures. One way to use a multi-modal picture fusion approach is by 
including an additional feature. It is possible to get and evaluate composite 
pictures or data from several medical systems pertaining to certain organs. 
Fusion has the capability to extract a greater amount of information and fused 
images with supplementary data. Multi-modal image fusion enables the 
creation of image that can be easily identified using both physiological and 
anatomical data, also helpful to low vision medical experts, scientists and 
medical doctors for better analysis. This proposed work is only applicable for 
multimodality medical images such as CT-MRI. As a limitation of this work, it is 
not effectively work for ultrasound images. However this work also can be 
extended in future for healthcare industry by analyzing the fused image for any 
kind of disease predication.  
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