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Abstract

In medical science, there is a challenge to find out critical information from the
medical images by !cw vision disability medical experts. As a solution, we can
enhance the medical images by fusing different modality images viz., CT-MRI
which can be more informative. This article presents a new multi-modal
medical image fusion architecture in non-subsampled contourlet transform
(NSCT) domain which is shift-invariant over noisy medical images. Initially
noise from medical images is reduced using a convolution neural network
(CNN) approach. Furthermore, NSCT is applied in denoised source multi-modal
images to obtain approximation and detailed parts. In approximation parts of
both input images, the fusion operation is performed using Direction Total
Variation enabled linear spectral clustering. Simlarly in detailed parts of both
input images fusion operation is performed using sum modified laplacian (SML)
approaches. By performing inverse operation on both modified approximation
and detailed parts, final fused image is obtained. From qualitative and
quantitative result analysis, it can be concluded that the proposed method is an
essential means of ensuring that multi-modality images provide more reliable
analytical results to analyze experimental outcomes and comparative research.
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1 Introduction

In today’s scenario, medical image information has a massive impact on the
diagnosis on detecting critical diseases like cancer, bleeding, and Alzheimer.
To analyze such type of diseases, different modality of images are required and
every modality of medical image contains significant information. By fusing
different modality images, fused image can be obtained which is more
informative and enhanced [1]. The main reason for taking computed
tomography (CT) and magnetic resonance imaging (MRI) images is to convert
them into a particular image that plays a critical role in medical diagnosis.
However, the more advanced modalities are too expensive for the individual to
afford. However, we have some practical fusion-based approaches to capture
and merge the entire information features from the multiple medical images
into a single fused image to diagnose the disease efficiently.

Various medical images for clinical diagnosis of disease, surgery, and therapy
through radiation are not sufficient [2]. The sensors of different modalities of
images in the medical field are required a single modality medical image which
contains maximum critical information. For example, computed tomography
(CT) shows rigid structures like bones and hard tissue with minor deformities
in the structure. In contrast, MRI (magnetic resonance imaging) shows the
structure of the soft tissues [3]. Furthermore, T1-MRI images show human
structure detailing of the tissues, while T2-MRI images show the normal and
pathological tissues [4]. In addition, single-photon emission computed
tomography (SPECT) images refiects clinically remarkable metabolic changes.
Thus, a single sensor iinage usually does not give sufficient information to a
doctor in an authentic clinical state. Generally, it is essential to collaborate on
sensor images of diiferent modalities to get more extensive information
regarding diseased parts or organs. A robust method is used to join the image
fusion technique, which amalgamates multi-modal sensor medical images [5].
The fusion-based images provide a more exact representation of a selected
object and decrease the oddness and error produced by the sensor in the
image. The fusion-based images enhance the efficacy of image-directed
diagnoses and the analysis of medical problems [6]. The image fusion approach
can be differentiated into three steps viz., pixel-level, feature-level, and
decision level [7]. The pixel-level fusion-based approach is mostly accomplished
directly on the actual obtained image [9]. The spatial domain-based method is
applied to the original image using local spatial functionality [10].

The transform domain-based multi-scale image fusion has recently become the
most common fusion approach [11]. Image fusion has been accomplished using
the traditional gradient pyramid (GP) transform and discrete wavelet transform
(DWT) [12-13]. Due to limitation of shift-invariance, in DWT, some advanced
wavelet transform such as dual-tree complex wavelet transform (DTCWT) are
more influential for image fusion applications [14]. To conquer these limitations
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of the DWT, [15] introduced the dual-tree complex wavelet transform (DTCWT),
exhibits both shift-invariance and directional selectivity. Thus, the DTCWT
developed through 2-D wavelet can define isotropic movement in terms of line
and curve singularities [16-17].

Compared with discrete wavelet transform (DWT), contourlet transform (CT)
has various properties such as localization, different directions and anisotropy.
Consequently, the contourlet transform (CT) provides edges and other
singularities along curves that are more systematic [18-19]. Thus, the up-
sampling and down-sampling of contourlet transform (CT) resulting in a loss of
shift invariance and pseudo-Gibbs. Nonsubsampled contourlet transforms also
maintain shift-invariance and successfully overcome the pseudo-Gibbs
existence [20] [21]. However, the NSCT is more acceptable for image fusion. In
[31], a new approach based on clustering has been performed for medical
image fusion. This approach introduced a new fusion framework using Adaptive
Firefly Optimization based Convolutional Neural Network (AFFOCNN) and
modified convolutional network. Initially noise has filtered and then
segmentation and feature learning has been done for further fusion process. In
[32], ambiguous D-means fusion clustering algorithm (ADMFCA) based medical
image fusion has been performed. Initially, edge detection has been done to
analyze the COVID detection and further fusion operation has been performed.
Recent medical image fusion (MIF) research reilects a shift from handcrafted
rules toward deep learning and hybrid optimization. Liang [38] showed that
deep neural networks can directly !earn complementary features from
multimodal inputs, while Luo et al. |39] improved edge and scale consistency
using a cross-scale transformer with explicit edge enhancement.

Several works leverage transfer learning for efficiency and robustness. Dinh
proposed bilateral texiure filtering with ResNet-101 [40], optimization with
VGG19 [41], and coupled neural P systems for adaptive fusion [42]. These
methods exploit pre-trained models to capture modality-invariant features
without heavy retraining. Optimization-driven approaches also remain
influential. Examples include coati optimization with difference-of-Gaussians
[43], local energy-based fusion [44], spectral total variation with neural P
systems [45], and advanced decomposition-optimization pipelines [46]. Earlier,
metaheuristic search with the grasshopper optimization algorithm [47]
provided groundwork for later refinements. Collectively, these studies aim to
preserve edges, suppress noise, and improve diagnostic clarity across diverse
modalities.

With the motivation of NSCT based medical image fusion, a new multi-modality
medical image fusion is proposed using SML and Direction Total Variation in
the NSCT domain. The main contributions of this paper are given below:

* A new Proposed approach is presented for medical image fusion where
modified Laplacian algorithms and Direction Total Variation based linear
spectral clustering are utilized in the NSCT domain followed by CNN.



* In order to demonstrate the effectiveness of the proposed work, both
qualitative and quantitative analysis has been carried out.

The rest of the paper is organised as follows: In section 2, a brief NSCT
description is discussed. The proposed methodology is derived in Section 3.
The results and discussion are included in section 4. Finally, conclusions are
drawn in section 5.

2 Non-Subsampled Counterlet Transform(NSCT)

For medical image fusion, we have many transforms such as wavelet transform,
shearlet transform. However, for medical image fusion, NSCT (Non-subsampled
Contourlet Transform) is most popular transform because of its major
characteristics such as directional filtering, Shift Invariance, Multi-scale
Decomposition, handling elongated structures and edges with varying
orientations. NSCT is a multi-scale and multi-directional computing transform
of discrete pixels based on the contourlet transform [7] which contains 2
phases: a non-sampled pyramid (NSP) and an unsampled heading filter. Using a
two channel non-sampling channel, a filter bank can generate low and high-
frequency images for any NSP decomposition stage. The next steps are taken to
deconstruct the availability of a low-frequency comiponent. The decomposition
of the NSP is done to decompile the low frequency available to capture the
variations of the signal. NSP produces a low-irequency and high-frequency
image that includes images of the same size as a source image and reflecting
the number of stages in the decompositioi.

The non-subsampled contouriet transform [7] can be performed on input
images X(i,j) to obtain low and high-frequency sub-bands i.e. X (j) and Xy(j),
respectively.

X .2k—1p\ yl/\_’) 2|P
(J ) [I‘_()XL(X ), ]I. (1)

NSCTX) = { M Xu(X2P), k = |

3 Proposed multi-modal medical image fusion

This section focuses on the proposed fusion framework on the noisy input
medical images in NSCT domain. Assuming that both input medical images are
noisy due to low transmission. In proposed framework initially a preprocessing
operation is performed over the Gaussian noisy input medical images before
applying the fusion approach. This denoising approach is performed using
CNN.

A: Convolutional Neural Network (CNN)

In proposed work of image fusion, a preprocessing step has been performed
to improve the quality of medical images in terms of noise using CNN. By
applying noise reduction filters in convolutional layer, the clean features
can be obtained. The layers in this model do not differ from other layers but
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execute three complex variants of calculations. The first convolutional
layer, combined with ReLU activation, processes input data within a D-
depth sliding window, where the image acts as the source of nonlinearity
across 64 ReLU-activated feature maps [21]-[27]. In the convolutional
neural network, three layers are downsampled using a max-pooling
operation. For the expanding path, three layers are upsampled using
strided convolutions. Initially, a vertex block with three convolutional layers
was constructed, followed by a strided-convolution layer to complete the
image feature extraction process. Before applying non-linear activations,
the data underwent instance normalization to ensure that all variables were
scaled to comparable magnitudes. Each layer of the network employed a
rectified linear unit (ReLU) activation function, except for the output layer,
which did not use any activation or normalization, thereby producing
outputs with an unrestricted numerical range [28]-[30].

|:| Conv |:| Batch Norm

Figure 1: Convolutional Neural Network (CNN) architecture

Figure 1 illustrates a Convolutional Neural Network (CNN) architecture
specifically designed for medical image denoising with edge preservation. The
input is a noisy medical image (brain MRI), which is passed through a series of
processing layers. The architecture includes multiple convolutional layers
(Conv) for feature extraction, interleaved with Batch Normalization layers to
stabilize and accelerate training, and ReLU activation functions to introduce
non-linearity and enhance feature learning. This structured pipeline allows the
network to suppress noise while preserving essential structural details,
particularly edges. The final output is a denoised and enhanced version of the
medical image, showing clearer anatomical features, demonstrating the
effectiveness of the CNN in improving image quality for diagnostic purposes.

Training sets were created using the noisy simulated images and the matching
"ground truth" (full-count) images included in the supervision. A total of 1200
samples in [33] were used in each network-training phase [33]. The samples
were created after the image data were randomly split into 64 patches of
identical size and pooled together. It was decided to ignore the axial
extremities of each sleeping position's noisy slices throughout the learning
process [34]. Before training, we reduce the mean and variance of all patch
samples to zero and one, respectively, to prepare them for learning. The
normalization factors were retained because they were required to scale the
matching noise label by the same quantities as the normalization factors.
Despite the minor variance, the final result would be quantitatively correct
because of the close closeness of the final result to the less noisy alternative.
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To minimize loss, CNN training was stopped when the loss curve of the
validation set became flat.

The CNN architecture design is to optimize the problem formulated as Eq (2)

follows:

{ argmin,  L(X),Dtrain:Dyalid)
s.t. z €”Z

where Z,={z1,...,Zn} , Z=7Z1X%--XZn , Z, denotes the CNN architecture
parameter setting Z,, and L(-) measures the performance ofZ, on the
validation data valid which has been trained on the training data Dtrain. To
optimize CNN model, the following loss function is utilized for minimizing the
error using Eq (3):

1

18) = 5ZiZ1 IR(yi; €)- (yi - )| (3)

N € N: Total number of training samples.; x i € R™{HxW}: Clean (ground-
truth) reference image for the i-th sample.; y i € R*{HXW}: Observed (noisy
or degraded) image corresponding to the i-th sample.; y i - x i: True residual
(noise or degradation component).; R(y i; 6) € R {HxW}: Residual predicted
by the CNN model R(-;0), parameterized by 0.; 6: Set of trainable parameters of
the CNN (convolutional kernels and biases).; ||| F~2: Squared Frobenius
norm, i.e., sum of squared pixel values in a matrix.; L(0): Average loss across
the entire training dataset.

The next two layers inflate the map scale attribute with Conv+BN and
ReLU, repeatedly merged after mapping, padded elements. The
development and integration of alternated vectors of convolution continue
while a 3x3x64-sized filter reconstructs the denoted images in the last
layer. Every layer is the product of the previous layer. The residual learning
can be implemented and only extracts the remains of the subordinate clean
image. The method produces reliable results that are favorable to image
quality.

B. Proposed Fusion approach:

The model suggested focuses on the Direction Total Variation based fusion
and SML within the NSCT region, which generates a fused F image
using a series of source images represented by A and B as shown in
figure 2. The second part of the proposed image fusion method, with two
source images, A and B, consists of the following steps to perform image fusion
without subsampling contours:

Image decomposition using NSCT: Input images are taken from the
source images, i.e. CT scan and MRI images of the brain. As a general



rule, images of 512 x 512 are selected for evaluation to get low and
high-frequency sub-images at each level using the NSCT transform.

CT Image (A) MRI Image (B)
CNN CNN
NSCT NSCT
ot Detail : ; Detail
Approximation Approximation
Part Part Part Part

Directional Total Variationenabled V Modified SML
linear spectral clustering

Inverse NSCT l _—

il

-
Fused Image !
—J

Figure 2: Proposed framework

Directional Total Variation enabled linear spectral clustering on low-
frequency NSCT coefficients: Iu this novel methodology, the mathematically
dependent local fusion rule is used. The directional total variation fusion law
outperforms fusion laws that depend on a single coefficient, such as the
absolute maximum fusion rule or the edge-preserving fusion rule, in terms of
efficiency and efficacy. The choice of a certain component in the local fusion
law relies on both that factor and its neighboring factor. Boundary selection is
advantageous for the directional total variation of coefficients. The comfort
level of the center coefficient and its surrounding coefficients may be higher in
the vicinity of the margin when the directional total variation is significant. The
effectiveness of regional image fusion is contingent upon the correct
segmentation of images, as highlighted in the first section, since inaccuracies
in division often lead to the formation of certain entities. The evaluation time of
image segmentation is also influenced by the feasible congestion of the area
fusion approach. The proposed improved linear spectral clustering (LSC) in this
part is constrained by these challenges. The LSC approach, introduced in [30],
allows for the representation of each pixel in a color image using one of five
dimensional vectors (I, a, b, x, y). However, it should be noted that normalized
cuts in actual pixel space exhibit a high degree of similarity to weighted K-
means clustering in ten-dimensional space. The evidence is considered
complete if the weighted K-means in equation (4) are comparable to the



standardized cuts, as shown in a prior study [30]. Each pixel's weight is
represented by t(m), and T(m,n) represents the weight that is the same for two
pixels m and n. The symbol "y" represents the map function, which enhances
linear separability by converting the pixels into a spatial feature with a large
number of dimensions. The properties of the LSC superpixel algorithm may be
enhanced [30].

Vm,n € V,y(m) *y(n) = T(m,n)

t(m)t(n)

vm € V,t(m) = 2,evt(m,n)
(4)

At first, we discovered the widely used pixel-by-pixel calculation based on the
Euclidean distance. In a color image, the two pixels that follow =
(In,@m, O Xm,Ym,Zm) @and  n = (I,,,an.bn:Xn:Yn:2n ) , We may express the same
calculation for each m X n pixel as in Equation. (5). Where it is detailed how to

calculate proximity to a given location using color and depth data by 'i's, 'i'c and

el'd, respectively. Although, Ks,K. and Ky are known to supervise the relative
characteristic of spatial information, color and depth features, respectively.

T(Mm,n) = K2[F(Im - In) + 2.552(F(am - @n) + E(bm - bn)] + K2

EF()Xm - Xn) + F(ym - yn)] + Kg[F(Zm - Zn)]
5

Ft)= 1-t2, tel[-1,1]

In summary, it is clear that we have defined a twelve-dimensional space
feature. As an example, the normalized cuts of the input space do not possess a
clear correspondence to the weighted K-means clustering of this space.
Observing within the precise parameters specified in the equation. The
difficulty of assessing the existence approach will be influenced by the
inclusion of more condensed elements, such as the matrix kernel for weighted
kernel K-means and the matrix affinity in the standardized cuts. Alternatively,
using weighted K-means in a twelve-dimensional space with standardized cuts
as the goal function may provide expedited and optimal outcomes. N seed
pixels, which are equally spaced and sampled vertically, are used to determine
the centers of the image, in accordance with the designated number of
superpixels. The first sampling of comparable clusters may be found by using
the vector properties of the N seed pixels. In the k-means method, we
iteratively improve the differentiation of pixel and cluster sampling tasks until
convergence is achieved. The enhanced spectral linear clustering are discussed
below:

0 The mapping of every pixel M = (I, am,bm . Xm,Ym,Zm) to a twelve
dimensional vector Y(p) are in the space feature.



[] A stable horizontal and vertical intervals v, and vy are the sampled K
seeds over the uniform image.
[0 Proceed every seed to its less adjacent gradient in the 3 X 3 adjacent.
[0 Starting the parameters weighted mean meang, search centre of every
cluster equivalent seed Sk , label of every pixel m : Label(m) = 0,
Distance of each pixel : D(m) = «
[ Perform again for every weighted means myg and center search cx do
for each point min the v, X v, adjacent of ck in the image
plane
do
D = Euclidean distance between Y(p) and mg in the feature
space .

if D < d(m) then
d(m) = D
lable(m) = K
end if
end for
end for
0 Improve weighted means and search centers for containing all clusters
up to the point when weighted means oi converge K cluster.
[] Integrate to their adjacent pixel.

Consequently, we associate and choose coefficients from NSCT sources with
higher Directional Total Variation content. This lets us pick the image
coefficients that are transformed. These coefficients are then used to convert
the fused signal in reverse. This fusion law is very unlikely to be a mistake
compared with other single coefficient fusion laws. Then, the Directional Total
Variation of each coefficient is calculated using the formula is given below
Equations.

TOB(™) = Seq alc,d)(|Vy)™(c.d)|) + alc. )7 (c.d))

(6)
is coefficient at spatial location in iteration m.; a(c,d): adaptive weight at
location that balances directional sensitivities (typically set to 1 for uniform
weighting).

Jrn

The equations presented above can be rewritten as follows:
.M A b 2 A b 2
v = argmin S ||V - GI12 + S I - VPOV - e || + S (17 - VPPV - e

(7)

where

A 2
(m+1) _ : A lem  gCbDWFym+1 _ .m
fy = argnr}yln |fy | +2||fy -Vy \ -ey ||

, A 2
7 = argmin|f,| + 5 || - VEPPWFVMHL el



v+l fused NSST coefficient block at iteration m+1.
u: fidelity weight that controls adherence to the observed coefficients.
A: regularization parameter controlling the effect of directional constraints.

V&bDWF: directional derivative operators along y computed under the Complex

balanced Directional Weighted Filter (CbDWF) framework.
|-|l: Euclidean ([J2) norm

The Direction Total Variation similarity-based fusion for the approximation of
source images is represented by sub-images, where the average merged image
cannot be obtained. So we use a Direction Total Variation based fusion rule
shown in Eq (11):

i, i) = C1(i,j) TV, j) > TV>(i, j)
A= 1e,(0) Otherwise
(8)

SML-based fusion on high-frequency coefficients: SML plays a crucial role
in medical image fusion. However, fused rules based on higher SML values
often lead to image distortion or a lack of detail. By merging both images with
the approximation and details after NSCT, a new medical image fused is
improved by the SML-based proposing process. The image detail is preserved
in the algorithm, and pixels are deleted. After implementing local energy-based
fusion, perform SML on the complex compenents that contain information that
mainly exists in the high direction of fiequency sub-bands. It can reflect salient
features and is used as an activity level measure to select the high-frequency
coefficient as shown in Eq (9):

SML(i,j)) = IMuIMAIIMLG + k, | + 1)]2]
(9)

Where ML(Lj)= [2HC(Lj)-HC(i-1,j)-HC(+1,j)| + |2HC(,j)-HC(i,j-1)-HC(Lj+1)|

HC (i, j) refers to the high-frequency pixel coefficient (i, j). The SML doesn't
represent precisely the outstanding features if the parameter M is too high.
The algorithm provides the best results if M is set to 1. The pixel coefficient
with maximum SML value (i,j) is used as the fused coefficient for the high-
frequency subbands obtained. The fusion rule is as shown in Eq (10):

. JHC,(i,j) if SMLy (i, j) > SML,(i, j)
HC(, ) = {HC;(i,j) Otherwise }
(10)

HC(i, j) denotes the coefficient at pixel(i, j).

Image Reconstruction: Finally, the fused images are obtained by performing
the inverse NSCT transform, as follows:
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F = NSCT1(C,HC)
(11)

A summary of algorithm is given below:

Algorithm 1: Directional Total Variation Based Linear Spectral
Clustering
Input:
I « Input image
D < Depth map

Output:
N < Clustered or fused image

Step 1: Feature Mapping
For each pixel p in I:

Y(p)(_ [Ip: apr bpr Xpr Yp: Zp]
Step 2: Seed Initialization
Sample K seeds uniformly across the image:

Define horizontal interval v, and vertical interval v,
Step 3: Gradient Selection for Seeds
For each seed:

Select the seed with the lowest gradient within 3x3 neighborhood
Step 4: Initialization
For each seed K:

Initialize mean K and search center cg
For each pixel m in image:

Label(m) < 0

D(m) « «
Step 5: Clustering via Feature Distance
For each cluster center ck:

For each pixel m in v, X vy neighborhood of ck:

D « EuclideanDistance(y(p), meang)
IfD < D(m):
D(m)«< D
Label(m)« K

Step 6: Update Clusters
Repeat until means converge:

Update meang and center cx based on current labels
Step 7: Spatial Smoothing
Integrate clusters by smoothing labels with adjacent pixels
Step 8: Directional Total Variation (DTV) Computation
For each coefficient |™:

ToJggmy« = {c,d} [ a(c,d) |V_y J"m(c,d)| + a(c,d) |V Jm(ED]]
Step 9: DTV Minimization Optimization

v™(m + 1) «argmin V { p/2:||V - G||? +

11



A 2
_ CbDWF
5l vty e[+
AN2:||If z”m - V. z"CbDWFV - e z"m||? }

A 2

fmHle argminfy{ If,| +5-||f - wSPPWFym+L_ em|| }
. A 2

e argmmfz{ Fo] + 5|l - wgPPWPvmer - el }

Step 10: Low-Frequency Fusion Using DTV Rule
For each pixel (i, j):
IF TV > Vo
C(i,j)< Cigiy
Else:
C(i,j)< Caiy
Step 11: High-Frequency Fusion Using SML
For each pixel (i, j):
ML(i,j)«< |2HC(i,j) - HC(i - 1,j) - HC(i + 1,j)]
+ |2HC(i,j) - HC(i,j - 1) - HC(i,j + 1)]
SML(i,j)¢ k=M to MZi=-M to MmIML(i + k, j + 1)]°

If SMLl(i,i) > :‘MLZ(i,j):
HC(1,i)¢ HCq(i )
Else:
HC(i,j)< HCyq
Step 12: Image Reconstiuction
F « NSCT-1(C, HC)

The Directional Total Variation Based Linear Spectral Clustering (DTV-LSC)
algorithm is an advanced image fusion and segmentation method that combines
spectral, spatial, and depth information for enhanced image analysis. It begins
by mapping each image pixel to a 12-dimensional feature vector that includes
color components, spatial coordinates, and depth values. Uniform seeds are
sampled across the image to initialize cluster centers, which are then refined
by selecting points with the lowest local gradients. Clustering is performed
iteratively, where each pixel is assigned to the nearest cluster center based on
Euclidean distance in the feature space, and cluster means are updated until
convergence.

To improve detail preservation, the algorithm incorporates Directional Total
Variation (DTV), which evaluates edge content in horizontal and vertical
directions. This DTV information guides the fusion of low-frequency
components by selecting those with stronger directional structure. High-
frequency details are handled using the Sum Modified Laplacian (SML), which
highlights regions with significant local variation, ensuring that important
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details are retained during fusion. Finally, the fused image is reconstructed
using the inverse Non-Subsampled Contourlet Transform (NSCT), resulting in a
high-quality output that maintains structural integrity and detail. This method
is particularly useful in applications such as medical imaging and remote
sensing, where preserving both global structure and fine details is critical.

3.1 Significance of proposed method

The proposed work for medical image has been analyzed where the importance
of CNN based denoising can be clearly mentioned in Table 1. Table 1 show that
the results without denoising are not upto the mark. However it can be clearly
analyzed that proposed method including CNN based denoising performs well
in many parameters.

Tablel: Analysis for proposed work with or without CNN

Method Proposed method | Proposed method with
without CNN CNN

MI 4.5432 4.9151

SD 69.4542 72.4345

QAB/F 0.7033 0.7399

SF 27.6532 28.3434

Mean 53.2356 54.2255

Entropy 9.7864 12.5341

FS 1.6432 1.9343

AG 7.3211 9.6532

Comparison of Ditferent Configurations Across Metrics

Metrics
70 - M
| == D
. QAB/F
. SF
mmm Mean
. Entropy
FS

Metric Value

A
e
- quse w

o™
¥
aase\“\e c

Configuration
Figure 3: Graphical analysis for ablation study

Table 1 presents a comparative analysis of the proposed method with and
without the integration of a Convolutional Neural Network (CNN). The results
indicate that incorporating CNN significantly improves performance across all
evaluated metrics. Specifically, Mutual Information (MI) increases from 4.5432

13



to 4.9151, suggesting better fusion of complementary information. The
Standard Deviation (SD), which reflects contrast and variation in pixel
intensities, improves from 69.4542 to 72.4345, while the QAB/F metric,
indicating edge information preservation, rises from 0.7033 to 0.7399. Spatial
Frequency (SF), which measures textural detail, shows a slight increase from
27.6532 to 28.3434. Additionally, the average pixel intensity (Mean) increases
from 53.2356 to 54.2255, and Entropy, a measure of image information
richness, shows a notable gain from 9.7864 to 12.5341. Feature Similarity (FS)
also improves from 1.6432 to 1.9343, while Average Gradient (AG), indicative
of edge strength and sharpness, increases from 7.3211 to 9.6532. These results
confirm that the proposed CNN-enhanced approach offers superior fusion
quality, improved structural preservation, and enhanced detail clarity over the
non-CNN variant. The figure 3 represents the comparative graph analysis of
the proposed CNN-enhanced approach.

The results shown in figure 3 collectively demonstrate the progressive
enhancement in medical image fusion performance as CNN, DTV, and SML
modules are incorporated into the baseline framework. The baseline
configuration shows the lowest values across all metrics, indicating limited
ability to preserve complementary details. With the inclusion of CNN,
noticeable improvements are observed in mutual information, standard
deviation, and entropy, reflecting better infoimation retention and noise
suppression. The addition of DTV further enhances structural consistency and
edge preservation, while the complete proposed method (CNN + DTV + SML)
consistently achieves the highest scores across all metrics. The graphical
trends clearly highlight a steady upward progression without regressions, with
entropy and average gradient showing the most significant gains, confirming
richer information content and sharper anatomical details. Overall, both the
table and the graph coniirm that the proposed method significantly
outperforms the beseline, producing fused medical images with higher
diagnostic fidelity, better structural preservation, and enhanced interpretability
for clinical applications.

4 Results and Discussion

The results and experimental analysis have been performed in the MATLAB
2021 environment. To analyze the results, visual analyses have been done on
the basis of heterogeneous regions, homogeneous regions, sharpness,
smoothness, texture, edges and contrast. The visual results are also examined
by some medical experts such as Researchers in medical imaging and medical
experts (Both type of medical experts who have perfect vision as well as who
have low vison). However, human eyes are not so capable to analyze the visuals
perfectly. Therefore some standard performance metrics are also utilized to
examine the results. All the results have been tested and compared with some
recent and state-of-art methods such as [20], [21], [23], [25], [27], [28] and
[29]. The results are evaluated and tested on the publically available datasets
(Available at http//www.med.harvard.edu/AANLIB/) where medical image pairs
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are utilized for the medical image fusion. There are many different modality
medical image pairs datasets [35], [36], [37] such as MRI-PECT, CT-MRI and
many more. The results are evaluated and tested over the 181 pair of medical
images. To construct the training datasets, we collect 181paired images of each
group such as from CT-MRI, PET-MRI, and SPECT-MRI of size 256x256 for
fusion tasks. To ensure data integrity and prevent leakage, we adopted a
patient-level data split, ensuring no overlap of patient images across training,
validation, and testing sets. The dataset was divided into 126 for training, 27
for validation, and 27 for testing image pairs. This approach aligns with
established practices in recent studies, promoting reproducibility and reliable
model generalization. All images were registered, normalized, and resized to a
uniform resolution of 256x256 pixels. Each image was then divided into
overlapping patches of 64x64 pixels with a stride of 32 pixels. To improve
model robustness, random augmentations such as flips and rotations were
applied, along with a 10% chance of random occlusion using black or white
masks. Finally, patches were upscaled to 128x128 pixels via nearest-neighbor
interpolation and normalized to the [0, 1] intensity range.

In this procedure, to take the quantitative standard applied in the objective
analysis respectively. It is known that distinguish image quality sharpness of
the standard evaluate the visual quality of images {rocin the distinguish facet,
but none of them evaluate the quality of image directly. In this research article,
we observe both the visual representation and the quantitative assessment of
the fused images. For computation of the introduction of the fusion approach,
we have contemplated three distinct fusion performance sharpness of the
standard are described below.

a) Entropy = - 312 pilog.(p;)

(12)
b) Mutual information (mI) : ml = mIAF + mIBF
(13)
In which
AF (o f
mIAF = z'f=ozg=0PAF(a,f)logz(%) ’
And
PBF( 'f)
mIEF = 5o Thoo P (BMlog, (o)

c) Edge Based Similarity Measure (q*8/F):

qABF =TT (WG + a7 (1) wgP (i)
S SN IWgA(L]) +wgB(ij)]

(14)
in which
a”F(ij) = g (iar (i)
a®F(ii) = aq (i))ar (i)
o 1 R N o 21172
d) Standard Deviation (std): |z i=1Zj=1(E(|,J)- 8) )
(15)
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e) sf= \rf2 + cf2
(16)
where rf is the row frequency , and cf is the column frequency :

rf = Qﬁz&%z}té (f(i,j + 1)- f(i,))2

cf = QR(N{D =0 2j=o (f(i + 1,j)- f(i,j)?

(a) (t)

Figure 4: (a) and (b) represent multi-modal medical images. (c) illustrates the outcome using
the method of [20], (d) shows the outcome of [21], (e) presents the result of [23], (f) zoomed
analysis of first input medical image, (g) zoomed analysis of second input medical image, (h)
zoomed analysis of [20], (i) zoomed analysis of [21], (j) zoomed analysis of [23], (k) shows the
outcome from [25], (1) shows the outcome from [27], (m) shows the outcome from [28], (n)
shows the outcome from [29], (0) shows the outcome of proposed method, (p) zoomed analysis
of [25], (q) zoomed analysis of [27], (r) zoomed analysis of [28], (s) zoomed analysis of [29], (t)
zoomed analysis of proposed method
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Figure 5: (a) and (b) represent muiti-modal medical images. (c) illustrates the outcome using
the method of [20], (d) shows the outcome of [21], (e) presents the result of [23], (f) zoomed
analysis of first input medical image, (g) zoomed analysis of second input medical image, (h)
zoomed analysis of [20], (i) zoomed analysis of [21], (j) zoomed analysis of [23], (k) shows the
outcome from [25], (1) shows the outcome from [27], (m) shows the outcome from [28], (n)
shows the outcome from [29], (0) shows the outcome of proposed method, (p) zoomed analysis
of [25], (q) zoomed analysis of [27], (r) zoomed analysis of [28], (s) zoomed analysis of [29], (t)
zoomed analysis of proposed method
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Figure 6: (a) and (b) represent multi-modal medical images. (c) illustrates the outcome using
the method of [20], (d) shows the outcome of [21], (e) presents the result of [23], (f) zoomed
analysis of first input medical image, (g) zoomed analysis of second input medical image, (h)
zoomed analysis of [20], (i) zoomed analysis of [21], (j) zoomed analysis of [23], (k) shows the
outcome from [25], (1) shows the outcome from [27], (m) shows the outcome from [28], (n)
shows the outcome from [29], (0) shows the outcome of proposed method, (p) zoomed analysis
of [25], (q) zoomed analysis of [27], (r) zoomed analysis of [28], (s) zoomed analysis of [29], (t)
zoomed analysis of proposed method

Figures 4, 5, and € present representative visual comparisons of fused medical
images obtained from different modality pairs (e.g., CT-MRI, PET-MRI, SPECT-
MRI). In each case, subfigures (a) and (b) show the input multi-modality
images, while subfigures (c-t) illustrate the fusion results from several existing
methods ([20], [21], [23], [25], [27], [28], [29]) and the proposed method. From
a comparative visual analysis, methods [20] and [21] deliver reasonably good
structural results but fail to preserve texture in homogeneous regions and show
blurring in heterogeneous areas. In contrast, methods [23] and [29] suffer from
significant contrast degradation, which limits the visibility of subtle anatomical
details, making the outputs less useful for clinical interpretation. Method [25]
improves upon this by maintaining some structural integrity, but still falls short
in edge definition, particularly in complex anatomical regions. Methods [27]
and [28] demonstrate better edge and texture preservation in both
homogeneous and heterogeneous areas, with [28] offering a slight advantage in
contrast. However, the proposed method consistently achieves superior
performance across all cases. It effectively enhances contrast, preserves
textures, and maintains sharp edges, resulting in clearer visualization of both
soft tissue and high-intensity structures. These improvements are particularly
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evident in zoomed regions, where fine details and structural transitions are
more accurately retained. Given the consistency of these observations across
different modality pairs, and to avoid redundancy, we consolidate the analysis
and present only two representative figures in the revised manuscript.

Table 2: The outcomes evaluated using performance metrics

Parameter | Dataset [20] [21] [23] [25] [27] [28] [29] Proposed
Method

#1 43418 | 42171 | 4.3212 | 4.1167 | 4.2019 | 4.4178 | 4.1111 | 4.6418

MI #2 4.2270 | 4.2178 | 4.3757 | 4.4238 | 4.1534 | 4.3570 | 4.1898 | 4.9710
#3 4.6310 | 4.4213 | 4.5515 | 4.6003 | 4.6214 | 4.6543 | 4.3610 | 4.8658

#1 79.9053 | 79.0191 | 78.0198 | 78.2526 | 79.8310 | 80.0498 | 78.2122 | 81.0563

SD #2 79.8118 | 79.0111 | 78.3498 | 78.2325 | 79.2587 | 80.2448 | 78.5118 | 81.7798
#3 79.2424 | 79.2195 | 78.2272 | 78.3723 | 79.2187 | 80.1710 | 78.2596 | 80.8467

#1 2.6454 | 2.6312 | 2.6151 | 2.6222 | 2.6123 | 2.6152 | 2.6171 | 2.6960

QAB/F #2 2.5251 | 2.5140 | 2.5178 | 2.5218 | 2.5187 | 2.5211 | 2.5183 | 2.7288
#3 2.6311 | 2.6151 | 2.6281 | 2.6271 | 2.6171 | 2.6351 | 2.5919 | 2.7398

#1 27.8120 | 27.6511 | 27.0710 | 28.3186 | 27.7142 | 28.4504 | 27.1456 | 29.1822

SF #2 27.4123 | 27.7833 | 27.0141 | 27.6113 | 27.5422 | 28.7233 | 27.1113 | 29.8123
#3 27.0019 [ 27.1813 | 27.0111 | 28.1818 | 27.0718 | 28.0019 | 27.0926 | 28.7319

#1 49.3249 | 50.2346 | 53.8543 | 55.1209 | 56.0238 | 57.5120 | 57.5189 | 58.5350

Mean #2 44,1433 | 45.7246 | 47.4440 | 50.3356 | 51.1270 | 52.8219 | 53.3409 | 53.9609
#3 41.3453 | 41.2233 [ 42.1753 | 43.0125 | 44.1241 | 45.1240 | 46.2134 | 47.7970

From Table 2, it is clearly visible that the proposed method consistently
outperforms all other existing inethods across all mentioned datasets by
analyzing performance metrics (MI, SD, QAB/F, SF, and Mean). Proposed
method achieves better outcome values by using performance metrics in most
cases. Furthermore, the statistical analysis of the t-test results demonstrates
that the Proposed Method consistently delivers superior performance across all
evaluated metrics, often with statistically significant improvements over
baseline methods. In terms of Mutual Information (MI), the Proposed Method
achieved the highest mean value (4.8262) across all datasets, with significant
gains over methods [21], [23], [25], and [29] (p-values ranging from 0.0205 to
0.0474), and the largest improvement of +0.6056 observed against [29].
Standard Deviation (SD), an indicator of image contrast and detail
preservation, showed the most consistent statistical advantage, with the
Proposed Method (mean 81.2276) significantly outperforming six out of seven
baselines, including the largest improvements of +3.0287 over [23] (p=0.0059)
and +2.8997 over [29] (p=0.00465). For the QAB/F metric, although the
Proposed Method (mean 2.7215) produced the highest values across all
datasets, none of the pairwise comparisons reached statistical significance,
likely due to the small effect sizes and limited sample size (n=3). In Spatial
Frequency (SF), which reflects image sharpness and detail, the Proposed
Method (mean 29.2421) showed significant improvements in five out of seven
comparisons, with the most notable gain of +2.2100 over [23] (p=0.0197).
Similarly, for the Mean intensity metric, the Proposed Method (mean 53.4309)
significantly outperformed six of seven baselines, recording a substantial
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increase of +8.4931 over [20] (p=0.0204). Overall, the Proposed Method not
only achieved the highest numerical performance for all metrics across all
datasets but also demonstrated statistically significant superiority in SD, Mean,
and SF metrics against most baselines, confirming that the observed
improvements are both consistent and meaningful in terms of image fusion
quality.
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Figure 7: Graphical analysis of the outcomes evaluated using performance metrics; (a):
Comparison of MI; (b): Comparison of SD; (c): Comparison of QAB/F ; (d): Comparison of SF;
(e): Comparison of Mean

In figure 7, the outcomes of all the performance meirics which are evaluated
here with different input images, are shown in graphical representation for
better analysis. Here in figure 7(a-e), the peak node can be easily identified. In
all these graphs, the highest peak node is taken by the proposed method which
indicates that in all these performance metrics the result of proposed methods
are better in compare to all these existing methods and stat-of-arts.

Comparison of Methods by Different Parameters

Blurring
m Texture

m— Edges

mmm Contrast

mmm Smoothness in Homogeneaus Areas

W Structure Preservation in Heterogeneous Areas

[20] [21] [23] [25] [27] [28] [29] Proposed Method
Methods

Figure 8: Graphical analysis of the outcomes evaluated by visual analysis via experts

Additionally, the results are visually evaluated by the low visibility experts in
the fields of medical science, medical doctors, and researches/scientists in
medical imaging fields. Total of 115 medical experts reviewed the visual
outcomes of the proposed methods and existing methods. The results are
evaluated on the basis of visual parameters such as blurring, texture, contrast,
edges, smoothness in homogeneous and sharpness in heterogeneous regions.
The results are evaluated by scaling the value from 1-7 where 1 is the poorest
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result and 7 is the excellent result. The overall average result is estimated of all
scale values of respective methods which is shown as graphical representation
in figure 8. From figure 8, it can be clearly analyzed that the proposed
outcomes gives better outcomes.

The computational complexity of multimodal medical image fusion algorithms
determines their scalability, execution speed, and feasibility for real-time or
large-scale clinical deployment. In this subsection, we derive and compare the
theoretical time complexity of the proposed method with that of several
representative baseline approaches ([20], [21], [23], [25], [27], [28], [29]) in a
unified notation. Let: H, W — height and width of the image (in pixels). N = H
X W — total number of pixels per image. L — number of multiscale
decomposition levels. r — spatial radius (or half-kernel size) of local filters.
Kernel size is k X k, where k = 2r + 1. p — patch size (in pixels per side) for
patch-based operations. f — number of filters (feature channels) in a
convolutional neural network (CNN). d — depth (number of layers) in a neural
network. C conv — cost per convolutional layer of size p x p with f filters:
O(N-p?-f). FFT-based transforms are assumed to have cost O(N log N). Small
fixed-size spatial kernels (r constant) are treated as O(N).

In [20], NSCT + Local Std. Dev. + PCNN: NGCT decomposition &
reconstruction: 3 X O(L-N log N). Local area standard deviation (LF fusion):
O(N-r2?). Pulse Coupled Neural Network (HiF fusion): O(N-p?) per iteration.
Overall: O(L-N log N) (NSCT dominates for large N). In [21], O-DTCWT + NSST
+ Fuzzy Logic + ODNN. O-DTCWT decomposition/reconstruction: 2 x O(Li-N
log N). Fuzzy logic rule (HF fusion): O(N). Maximum rule (LF fusion): O(N).
NSST decomposition/reconstruction: 2 X O(L2'N log N). Optimized Deep Neural
Network (ODNN) for HF fusion: O(N-p2:f-d). Overall: O(L‘-N log N) +
O(N-p?-f-d). In [23] SMEFnet (VGG + Multi-scale Residual Net). VGG feature
extraction: O(N-p?-f VGG-d VGG). Feature addition & fusion: O(N). Multi-scale
residual network decoding: O(N-p2-f res-d res). Overall: O(N-p?(f VGG-d VGG
+ f res-d res)). In [25], PSA + Multiscale Structure Patch Decomposition.
Penalty function-based filtering: O(N-r?). Pixel-level structure-aware filtering:
O(N-r?). Multiscale patch decomposition: O(L-N-p?). Weighted fusion: O(N).
Overall: O(N'r?) + O(L-N-p?). In [27], MSD + Visual Saliency + Weight Maps.
Image enhancement: O(N). MSD decomposition/reconstruction: O(L-N-r?) or
O(L‘N log N) with FFT. Visual saliency & weight maps: O(N-r?). Overall:
O(L-N-r?). In [28], STV + Max-cloud Fusion + Multichannel Neural P System.
Spectral Total Variation decomposition: O(t STV-N). Max-cloud fusion: O(N).
Multichannel coupled neural P system: O(N-p2:f:d). Overall: O(t STV-N) +
O(N-p?-f-d). In [29], NSCT + sCNN + FOTGV. NSCT
decomposition/reconstruction: 3 x O(L:N log N). Siamese CNN: O(N-p?-f-d).
Fractional Order TGV denoising: O(t TGV-N). Overall: O(L‘-N log N) +
O(N-p?-f:d). In proposed CNN + NSCT + DTV + SML. CNN preprocessing:
O(N-p?-f-d). NSCT decomposition/reconstruction: 3 X O(L-N log N). Directional
Total Variation: O(t DTV:N). Modified SML: O(N). Overall: O(L‘N log N) +
O(N-p?-f:d) + O(t DTV-N).
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5 CONCLUSION

This paper presents a novel approach to image fusion using an unsampled
contourlet transform for multi-modal medical images. Two distinct criteria are
used to preserve supplementary information in the merged image, resulting in
improved precision for fusion. Direction Total Variation dependent fusion is
used to combine the low-frequency bands, whereas the fusion process for high-
frequency bands is accomplished via SML. Visual examination by low vision
medical experts, scientists and medical doctors and measurements of output
metrics demonstrate that the suggested algorithm has the ability to enhance
picture details and enhance the quality of the visible outcomes. Based on the
examination of qualitative and quantitative findings, it can be inferred that the
suggested technique is crucial for guaranteeing that multi-modality pictures
provide more dependable analytical outcomes in terms of visual results and
performance metrics. The suggested approach may be used in the medical
sector, namely for the purpose of preparing medical equipment to produce
medical pictures. One way to use a multi-modal picture fusion approach is by
including an additional feature. It is possible (6 get and evaluate composite
pictures or data from several medical systems pertaining to certain organs.
Fusion has the capability to extract a greater amount of information and fused
images with supplementary data. Multi-modal image fusion enables the
creation of image that can be easily identified using both physiological and
anatomical data, also helpful tc low vision medical experts, scientists and
medical doctors for better analysis. This proposed work is only applicable for
multimodality medical imiages such as CT-MRI. As a limitation of this work, it is
not effectively work for ultrasound images. However this work also can be
extended in future for healthcare industry by analyzing the fused image for any
kind of disease predication.
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